National Biological Assessment and Criteria Workshop

Advancing State and Tribal Programs

Coeur d'Alene, Idaho 31 March – 4 April, 2003

A Procedure to Determine the Biological Gradient of Macroinvertebrates to Stream Temperature

Presented by Darren Brandt, Idaho Dept of Environmental Protection

SI 101

Purpose of this Project

 Determine a biological gradient for common macroinvertebrate taxa in response to stream temperature.
Develop a metric to indicate the temperature regime of a stream.

Number of BURP sites with both Macroinvertebrate and	2607
temperature data	
Total taxa in database	1163
Taxa that occur in $>2\%$ of the samples	289
Taxa that appear to have a temperature response	137

Method for DeterminingOptimum and Tolerance > Weighted Average $T_{opt} = \frac{Temp * Proportion of time present}{\Sigma Proportion of time present}$

Weighted Standard Deviation

Method for Determination of Temperature Preference for individual taxa

Water	Ameletus	Baetis	Baetis
Temperature	sp.	bicaudatus	tricaudatus
4	0.19	0.88	0.25
5	0.44	0.75	0.48
6	0.27	0.77	0.43
7	0.30	0.67	0.53
8	0.31	0.65	0.58
9	0.28	0.60	0.71
10	0.26	0.39	0.80
11	0.28	0.34	0.83
12	0.26	0.32	0.88
13	0.31	0.23	0.85
14	0.25	0.21	0.91
15	0.21	0.16	0.94
16	0.23	0.13	0.89
17	0.20	0.05	0.88
18	0.14	0.10	0.86
19	0.14	0.03	0.78
20	0.06	0.02	0.82
21	0.07	0.15	0.89
22	0.09	0.06	0.76
23	0.00	0.00	0.89
24	0.10	0.00	0.71
25	0.00	0.00	0.70
26	0.00	0.00	1.00
Weighted		S. C. C.	
Mean	11.50	8.76	16.04

Examples of Taxa that Exhibit a Preference for Cold Water

Examples of Taxa that Exhibit a Preference for Cool Water

Examples of Taxa that Exhibit a Preference for Warm Water

Temperature (C)

Final Products

Temperature optimums and tolerance values for 137 macroinvertebrate taxa. An additional use of this information is the development of macroinvertebrate temperature preference metric that can be used to indicate the thermal regime of a stream when no other data exists.

Metric Development Process

Site or stream scores are determined by calculating the average of the weighted mean values for the taxa present in the macroinvertebrate sample.

TPM vs. Avg. July/Aug Temp for 50 Oregon Streams

March 31 - April 4, 2003

National Biological Assessment and Criteria Workshop, SI 101_12

Application of the Information

Idaho DEQ has developed an obligate cold water indicator taxa, and a warm water indicator taxa list.

 These lists can be used to determine if the stream's macroinvertebrate community is composed of the taxa expected for streams of different temperature classifications.