National Biological Assessment and Criteria Workshop

Advancing State and Tribal Programs

Coeur d'Alene, Idaho 31 March – 4 April, 2003

Why a Formal Method for Causal Evaluation?

Presented by Glenn Suter II, USEPA, Office of Research & Development

SI 101

Where are we going?

- Place of causal analysis in environmental management
- Why a formal method?
- History of causal analysis
- Relation to Stressor Identification

When is Causal Analysis Needed?

- Implementing biological standards
- Investigating fish kills
- Contaminated sites
- Interpreting biological monitoring results
- Recovery plans for T&E species
- Any other case of observed effects

Why use a formal method?

- To convince skeptical stakeholders
- To increase a manager's confidence that costly remedial or restoration efforts are targeted at factors that can truly improve biological condition.
- To identify causal relationships that are otherwise not immediately apparent.
- To prevent biases or lapses of logic that may not be apparent until a formal method is applied.

"The first principle of science is that you must not fool yourself--and you are the easiest person to fool" --Richard Feynman

This is Harder Than Rocket Science

- Causation is one of the most difficult and controversial concepts in philosophy
- Only one reliable method
 - Randomized, replicated, controlled experiment
 - Lesson of hormone replacement
 - Not available to us
- But we all think we know how to do it
 - Hard wired to jump to conclusions
 - Creaking wood at night means intruder!
 - Causal analysis says thermal contraction

History of Causality

- Galileo Galilei: causes must be
 - Necessary: Never E without C
 - Sufficient: Always E when C
- Hume: all we know is:
 - Time order: C precedes E
 - Association: E when C
 - Consistency: Always E when C
- Mill: no causality without experiment
 - Must manipulate C and observe E
- Pearson: Probabilistic causality
 - Frequency of E given C = probability of causation
- Fisher: probabilistic analysis of experiments
 - Probability of E given imposed C

March 31 – April 4, 2003

Causation in Epidemiology

- Conventionally probabilistic
 - Does smoking cause cancer?
 - Contingency table
 - 400 smokers
 - 400 nonsmokers

	Cancer	No Cancer
Smokers	40	360
NonSmokers	2	398

Fisher Strikes Back

Hill to the Rescue

- His criteria:
 - Strength
 - Consistency
 - Specificity
 - Temporality
 - Biological Gradient
 - Plausibility
 - Coherence
 - Experiment
 - Analogy
- Established causality based on strength of evidence

March 31 – April 4, 2003

Current State of the Art

- Hill's criteria and variants
 - Susser, Fox, etc.
- Popperian disproof
 - Based on experiment (Mill, Platt)
 - Based on observation (Galileo)
- Fisherian disproof
 - Only for experiments
- Probabilistic Association
 - Frequentist or Bayesian
- Koch's Postulates (single chem. or pathogen)
 - Association of C and E
 - Isolation of C from E
 - Experimental Association of C and E
 - Experimental Isolation of C from E

Synthesis

- Hume was right
 - Its all association
 - But, not all associations are equal
- Experimental Association
 - Reliable due to control, replication & randomization
 - Results may be uncertain due to variance
 - Results may not be relevant
- Observational Association
 - Results may be directly relevant
 - Not reliable: no control or randomization
- Mechanistic Association
 - Associations at lower level of organization
 - Reductionism

March 31 – April 4, 2003

Mechanistic Response to Fisher

March 31 – April 4, 2003

Alternatives to Association for Identifying Causes

 Deduction from theory - Our theories are not that good Computational toxicology some day Consensus Stakeholder processes Regulatory constraints The cause is the one we can hammer

Our Causal Strategy

- Logically eliminate when can
- Diagnose when can
- Use strength of evidence for the rest
- Do not claim proof of causation
- Identify the most likely cause
- Use a consistent process
- Document the evidence and inferences