#### National Biological Assessment and Criteria Workshop

Advancing State and Tribal Programs



Coeur d'Alene, Idaho 31 March – 4 April, 2003

# Development of a Reference Site Screening Approach

**RFC 201** 

Part 1

Presented by Peter Lattin, Dynamac Corporation

Also contributed Paul Ringold, USEPA

## Project objectives

- Develop a 'top-down' reference stream reach screening approach for states/regions
- Identify <u>'least disturbed'</u> reference sites in any biophysical stratum
- Keys: practical, based on readily available data, reproducible, regionally flexible

# Operational Definition of Reference Condition Used in Approach

 'Least Disturbed Condition' – found in conjunction with the best available physical, chemical, and biological habitat given today's state of the landscape





Definition: Screening of all potential stream reaches using available GIS data layers, to create a ranked list by estimated level of stressors in the network, stratified by ecoregion and stream order

#### Main Elements:

- Nested network coding to organize stressors
- Estimation of stressor level by network
- Organization of landscape into biophysical strata
- Determine dominant ecoregion by network

# Goal: Calculate the Proportion of Each Network Potentially Impacted by Disturbances



## Why Nested Networks?

- Facilitates iterative, multi-scale searches
- More thorough than large watersheds or Hydrological Unit Codes (HUCs)
- More hydrologically meaningful than HUCs
- And a convenient unit for estimating human activity/stressor levels with coarse data (as opposed to reaches)

## **Underlying Assumption**

Networks with low Coarse Screen
Disturbance Scores will generally be less
impacted by human disturbance than networks
with high Coarse Screen Disturbance Scores.

## **Overview of Coarse Screening Process**



## Selection of Stream Data

- Type of data (RF3, National Hydrological Dataset (NHD), or other stream data)
- Preliminary screening
  - ✓ Intermittent and perennial to capture as many potential pathways to perennial waters as possible
- Final Screening (after calculating % disturbance)

✓ Eliminate non-candidate stream classifications during candidate sorting.

#### Nested Networks - Example



## Example A Priori Biophysical Strata

- Strahler Order;
- Geographic Strata (e.g. Omernik Level IV Ecoregions)

## Coarse Screening Helps Identify Networks Dominated By One Stratum







*Example:* Drainage 1 has more stream length in Ecoregion B, while Drainage 2 has more stream length in Ecoregion A. For Stratum 2<sup>nd</sup> Order X Ecoregion A, reaches in Drainage 2 would be preferred.





- Why focus on disturbances? To avoid the circularity problem.
- Derived from readily available sources
  - ✓ Land Cover/Land Use (National Land Cover Data -NLCD)
  - ✓ Transportation (TIGER, other)
  - ✓ Point sources (EPA, USGS)
  - Estimates of livestock density
  - ✓ Census data
  - ✓ Dams/impoundments

#### Other state/regional data





## **Representing Disturbances**

- GIS Buffers created around human activities / stressors (e.g., roads, agriculture)
- Buffer widths crudely represent zone of potential impacts on streams depicted at a certain scale, recognizing that:
  - ✓ focus is to identify least disturbed candidates
  - ✓ stream data is coarse
  - ✓ stressor data is coarse
  - $\checkmark$  misclassification and misregistration errors are common
- Based on literature and Best Professional Judgment
- Keep in mind... it is a very coarse screen, and just the first step in the process

# **Typical Disturbances**



#### AGRICULTURE

**LIVESTOCK** 





March 31 - April 4, 2003 National Biological Assessment and Criteria Workshop, RFC201\_02

# Example of Disturbance Buffers for Potential Use with <u>1:100,000 Scale Stream Data</u>

- (1000m) High density development
- (1000m) Commercial/industrial zones
- (1000m) Major mines (e.g., coal, metal ore, etc.)
- (1000m) Point sources
- (300m) Agriculture
- (300m) Minor mines (sand & gravel)
- (250m) Low density development
- (150m) Urban/recreational grasses
- (100m) Silviculture
- (45m) Roads

# Buffered Disturbances with Stream Networks



# Riparian Continuity – (A Potential Alternative to % Disturbance in Highly Disturbed Landscapes)

 GIS 'moving window' analysis is used to sum the number of pixels of 'unmanaged' landcover types within a defined neighborhood of each pixel

 Calculate percent of each network with intact riparian landcover

Problem: Issues related to classification local accuracy of NLCD data

#### Riparian Continuity (Proportion of Network Length Inside a Full Window)



Locations of Full Windows



Riparian Continuity <u>(prcntRIP)</u> <u>Calculation:</u> length (FULL)/ length total

> In this example: prcntRIP ~ 15%

Circular 'moving window' passed over raster image and sum of natural vegetation recorded



March 31 – April 4, 2003 National Biological Assessment and Criteria Workshop, RFC201\_02

## The Final Inventory – All Networks

#### Each Reach is:

- Coded by flow status
- Coded as inside or outside of a stressor buffer zone
- Stratified by:
  - ✓ Biophysical strata (example: stream order x ecoregion)
  - ✓ Ranked by ascending percent disturbance
- Ancillary data provided for building database queries:
  - ✓ Presence of impoundments in the network
  - ✓ Presence of mines close to the network
  - ✓ Approximate livestock density at the HUC level
  - ✓ Riparian continuity

## **Example Coarse Screen Database**

| Reach ID# |        |     | Second | Secondary Sorting<br>Elements |     |           | Primary Sorting<br>Element |  |
|-----------|--------|-----|--------|-------------------------------|-----|-----------|----------------------------|--|
|           |        |     |        |                               |     |           |                            |  |
| NET_ID3   | RCH_ID | ECO | majECO | Mines                         | Dam | prcntDIST | prcntRIP                   |  |
| 19880     | 236376 | 43i | 43i    |                               |     | 11.8%     | 94.7%                      |  |
| 19880     | 236710 | 43i | 43i    |                               |     | 11.8%     | 94.7%                      |  |
| 19901     | 237047 | 43i | 43i    | У                             |     | 17.9%     | 89.5%                      |  |
| 19875     | 236113 | 43i | 43i    |                               |     | 28.5%     | 82.2%                      |  |
| 10231     | 115701 | 43a | 43a    | У                             |     | 30.5%     | 70.8%                      |  |
| 10231     | 115870 | 43a | 43a    | У                             |     | 30.5%     | 70.8%                      |  |
| 19830     | 240675 | 43i | 43i    |                               |     | 35.0%     | 72.7%                      |  |
| 3486      | 39898  | 43a | 43a    |                               | у   | 41.5%     | 80.5%                      |  |
| 3486      | 40459  | 43a | 43a    |                               | у   | 41.5%     | 80.5%                      |  |
| 6410      | 67300  | 43a | 43a    |                               | у   | 47.2%     | 67.1%                      |  |

## Coarse Screening – example criteria

- Perennial flow
- Reach outside stressor buffer zone
- Stratified by stream order and ecoregion
- Meets length criteria (e.g. > 1 km)
- Reach ecoregion same as dominant network ecoregion
- Exclusionary criteria absent:
  - ✓ No major upstream impoundments
  - ✓ No major upstream mining operations
  - ✓ No upstream point sources
- Low percent network disturbance

### How is the Reach Inventory Used?

- For each reference stream reach desired within a stratum:
  - 10 networks should be Fine Screened
  - ✓ More may be required if 3 4 potential reference candidates are not identified. Samples are drawn in order of ascending percent disturbance.

### What if the Query is too restrictive?

- Flexibility permits relaxation of query restrictions from region to region, and between strata (e.g., elimination of the exclusionary or ancillary criteria for larger stream systems), or
- Percent Riparian Continuity may be evaluated in place of, or in addition to Percent Disturbance as the primary sorting factor

## **Transferability of Approach**

#### Skills required:

- GIS (raster and vector), database and spreadsheet proficiency
- Photointerpretation skills (Fine Screening)
- Macro transferability:
  - ✓ Need to be able to handle <u>both</u> raster and vector data
  - ✓ Pilot used ARC/INFO AML language
- Adaptation to other areas:
  - ✓ Identification of types of characteristic disturbances
  - ✓ Relative rankings of disturbances
  - ✓ Local data accuracy / availability issues
  - ✓ Adaptations to handle complex water routing issues



Utah State Pilot (2001 – 2002)

#### Coarse Screen Step:

•122,000 km perennial & intermittent streams

• 28 Stream order / ecoregion strata with perennial streams

 400 reaches drawn for Fine Screening

## - Summary -

- <u>Multi-stage</u>, top-down process of increasingly refined evaluations
- GIS-based Coarse Screening
- Aerial photo-based Fine Screening
- All reaches <u>ranked</u> by % disturbance
- <u>Stratified</u> by underlying environmental gradients
- <u>Flexible design</u>, accommodates different ambient levels of human disturbance
- Uses readily available data
- Reproducible results

#### Continued in Part 2