
### National Biological Assessment and Criteria Workshop

Advancing State and Tribal Programs



Coeur d'Alene, Idaho 31 March – 4 April, 2003

### **RFC 101**

## Development of Reference Conditions for Management Classes

Presented by
Dave Courtemanch,
Maine Department of Environmental Protection

## Why Establish Management Classes (Conditions) of Aquatic Life Use Support

- Define the biological condition for different levels of disturbance (references other than "pristine", "least disturbed", "best attainable")
- Establish 'acceptable' patterns of biological response to disturbance ("reference library" along the Biocondition Gradient).
- Establish interim goals for aquatic life uses. Provide management with measurable targets along the Biocondition Gradient

### Designated Aquatic Life Uses: MAINE

natural

<u>Class AA/A</u>: Habitat Natural. Aquatic life as naturally occurs

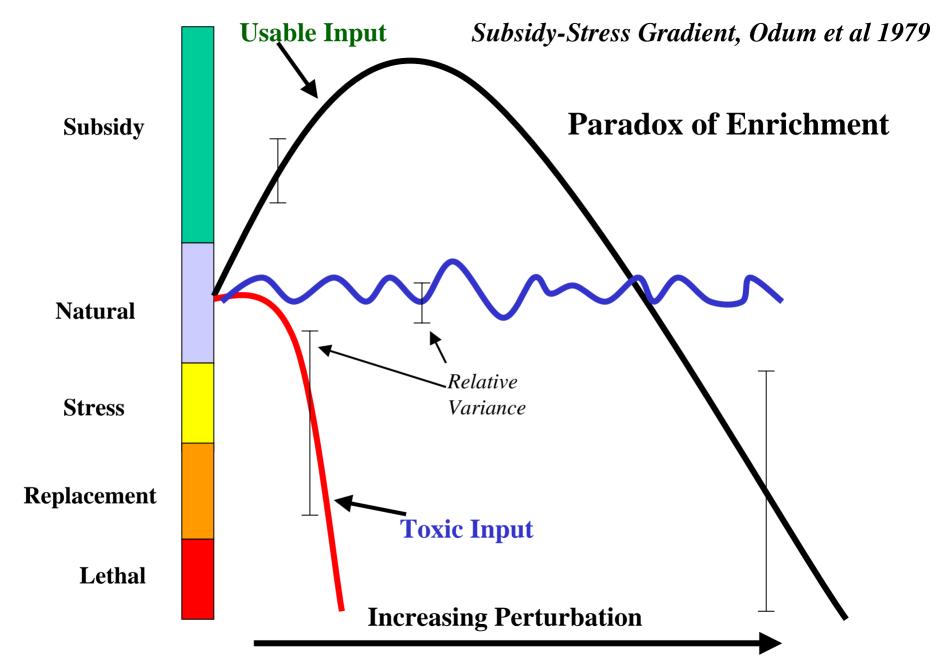
**Biological Condition** 

Class B: Habitat unimpaired. Ambient water quality sufficient to support life stages of indigenous species. No detrimental change allowed.

<u>Class C</u>: Ambient WQ sufficient to support life stages of all indigenous fish species & maintain structure & function.

degraded

Not meeting CWA 101a uses for protection & propagation of aquatic life


High

# How Can Management Classes (Conditions) Differ

• Conditions may be set a priori

Used to aggregate complex responses

May be non-linear



- 1. Establish water quality classes that define biological conditions (use of narrative biological standards, definitions)
- 2. Identify ecological attributes that describe the defined biological condition
- 3. Identify measures that are sensitive to changes in the attributes
- 4. Construct reference models

### Maine's Water Classification

- Classes A and AA (same aquatic life use)
  - Aquatic life shall be as naturally occurs.
- Class B
  - no detrimental changes to resident biological community
  - maintain all indigenous species, allow recruitment
- Class C
  - maintain structure and function of community
  - maintain all indigenous fish species
- Non-attainment of any class (NA)

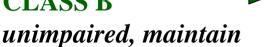
- 1. Establish water quality classes that define biological conditions (use of narrative biological standards, definitions)
- 2. Identify ecological attributes that describe the defined biological condition
- 3. Identify measures that are sensitive to changes in the attributes
- 4. Construct reference models

## Maine Tiered Uses Based on Measurable Ecological Values

#### **Narrative Standard**

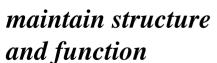
#### **Biological Attribute**

**CLASS A** 




Taxonomic and Numeric

**Equality**; Presence of


**Indicator Taxa** 

**CLASS B** 



unımpairea, mainiaii indigenous taxa

**CLASS C** 



Retention/recruitment of taxa and numbers; Absence of hyperdominance; Presence of sensitive taxa

Resistance, Redundancy; Resilience; Balanced Distribution Energy Transfer; Resource assimilation; Reproduction

- 1. Establish water quality classes that define biological conditions (use of narrative biological standards, definitions)
- 2. Identify ecological attributes that describe the defined biological condition
- 3. Identify measures that are sensitive to changes in the attributes
- 4. Construct reference models

# Maine Tiered Uses Based on Measurable Ecological Values

| Narrative Standard                           | Biological Value                                                                     | Quantifiable Measures                                                                                              |  |  |
|----------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--|--|
| CLASS A natural                              | Taxonomic and Numeric  Equality; Presence of Indicator Taxa                          | Similarity, Richness, Abundance, Diversity; EPT, Indicator Taxa, Biotic Index                                      |  |  |
| CLASS B unimpaired, maintain indigenous taxa | Retention of taxa and numbers; Absence of hyperdominance; Presence of sensitive taxa | Community loss; Richness;<br>Abundance; diversity;<br>equitability; evenness; EPT;<br>Indicator Taxa, Biotic Index |  |  |
| CLASS C  maintain structure                  | Resistance, Redundancy;  Resilience; Balanced  Distribution                          | Richness; Diversity;<br>Equitability; Evenness                                                                     |  |  |
| and function                                 | Energy Transfer; Resource assimilation; Reproduction                                 | Trophic groups; Richness; abundance; community loss; fecundity; colonization rate                                  |  |  |

- 1. Establish water quality classes that define biological conditions (use of narrative biological standards, definitions)
- 2. Identify ecological attributes that describe the defined biological condition
- 3. Identify measures that are sensitive to changes in the attributes
- 4. Construct reference models

# Development of Linear Discriminant Models

- DEP biologists assigned 376 blind samples to one of four *a priori* groups -
  - Class A (n = 120)
  - Class **B** (n = 117)
  - Class  $\mathbb{C}$  (n = 72)
  - Non-attainment (NA) of criteria (n = 67)
- Assignment of samples was based on abundance, richness, community structure, and ecological theory.

### Consistency of a priori Assignments

- Consistency of MDEP biologists
  - 96% of independent assignments were unanimous OR majority agreement (2 of 3)
- Non-MDEP biologists independently assigned *a priori* classes to samples
  - 80% of independent assignments concurred with MDEP biologists assignments
- Interpretations never differed by more than one class in either direction

### **Model Performance**

| Class A Model |        |                     | B or Better Model |          |      | C or Better Model |      |          |       |            |     |
|---------------|--------|---------------------|-------------------|----------|------|-------------------|------|----------|-------|------------|-----|
|               |        | Model<br>Prediction |                   |          |      | Мо                | del  |          |       | Mod        | lel |
|               |        |                     |                   |          |      | Prediction        |      |          |       | Prediction |     |
|               |        | Α                   | B,C,NA            |          |      | A,B               | C,NA |          |       | A,B,C      | NA  |
| A Priori      | А      | 87%                 | 13%               | A Priori | A,B  | 94%               | 6%   | A Priori | A,B,C | 96%        | 4%  |
|               | B,C,NA | 9%                  | 91%               |          | C,NA | 6%                | 94%  |          | NA    | 12%        | 88% |

# Does the model accurately classify minimally disturbed streams?

- 27 samples selected with following criteria:
  - not used to build the model
  - no known point sources
  - average % of upstream watershed
    - 97% forested; (3% logged)
    - 2% crop
    - 1% residential, urban, industrial, commercial
- 24 (89%) of samples had model outcomes of Class A

### **For More Information**

- Biomonitoring Web Site
  - http://www.state.me.us/dep/blwq/docmonitoring/biomonitoring/index.htm
- Methods Manual
  - http://www.state.me.us/dep/blwq/docmonitoring/finlmeth1.pdf
- Fifteen Year Retrospective
  - http://www.state.me.us/dep/blwq/docmonitoring/biomonitoring/biorep2000.htm
- E-mail
  - biome@maine.gov