National Biological Assessment and Criteria Workshop

Advancing State and Tribal Programs

Coeur d'Alene, Idaho 31 March – 4 April, 2003

Reference Site Selection: Overview and a Framework

RFC 101

Presented by Phil Larsen, USEPA

Reference site selection is

- An iterative screening process for selecting sites
 - That are minimally or least disturbed by human activities and resultant stressors
 - That are representative of the aquatic resource in the region of interest
- Guided by indicators of human disturbance/stress
 - In the atmosphere
 - In the landscape/watershed
 - In the riparian corridor or near the site
 - In the channel
 - In the water
 - In the biota
- Available at different spatial scales

A simple conceptual model: Human activity > stressors > responses

A more complex conceptual model

(from Bryce et al. 1999. J. Am. Wat. Resour. Assoc. 35:23-36)

_									
Human Activity	Urbanization Channelizatio Levees Roads/Culver Erosion MWTPs/CSO Septic systems Imperviousnes Fragmentation	on ts s s s n	Ag/CAFO/ Silviculture Grazing Harvest Dams Channelization Diversions Levees Roads/Culverts Erosion Fertilizer Pesticides Compaction	Mining/ Drilling Extraction Metals Liming Tailings Valley Fill Diversions Roads/Culverts Erosion Petroleum Pipelines Fragmentation	Industry/ Power Gen. Dams Stacks Liming Wastewater WTP/CSOs Roads/Culverts Channelization Revetments Imperviousness Fragmentation				
Stressors			Fragmentation						
(Habitat	Habitat Flow	Habitat Flow Sediment Nutrient Oxygen Temperature Toxics							
change)									
Biological Responses	,	Alt	ered Biological S	Structure/Function	n				

The Five Major Factors that Determine the Integrity of Aquatic Resources (from OHIO EPA)

March 31 – April 4, 2003 National Biological Assessment and Criteria Workshop, RFC 101_04

Increasing Disturbance

	Industrial Mines Dominant Urban Dominant	Extreme Flows Only Inter-basin Transfers	F
Irrigated Rowcrops CAFOs; Crop Processors	Suburban Mines Common	Regulated Flows Only Intra-basin Transfers	Е
Intense Riparian Grazing Irrigated Forage	Small Cities Industrial Mines Present	Dammed Local Transfers	D
Constant Grazing Dryland Agriculture	Large Lot Residential Small Metal/Aggregate Mines	Slightly Flashier	С
Light/Rotated Grazing	Rural Residential Hand Mines	Natural Flow	В
Natural Vegetation	Transients	Natural Flow	Α
<u>Agriculture</u>	Urbanization/Mining	<u>Flow</u>	<u>Tier</u>

March 31 – April 4, 2003 National Biological Assessment and Criteria Workshop, RFC 101_04

Overview of process: Preliminary steps

- Select Region/aquatic resource of interest
- Identify the important natural gradients in the region (size? elevation? slope? geology? Lake or channel type?...)
- Identify human activities/stressors likely to be encountered in the region (local effects? Regional effects?)
- Establish criteria by which to rank disturbances
- Identify/locate sources of information that will be used in the sorting process

Hierarchical Screening Process

Extensive data

- Identify sources of complete coverages
 - GIS resources?
 - GeoReferenced databases?
- Sources of data
 - Landscape screens
 - Land use/cover (TM imagery; other satellite imagery)
 - Roads
 - Population density/points sources
 - Mines
 - Feedlots
 - ...

Office Data

- Identify sources of candidate sites
 - Air photos, digital orthophoto quads, maps
- Sources of data
 - Terraserver
 - USGS topo maps/local maps
 - National High Altitude Photography (NHAP)
 - Satellite imagery

Recon sites

- By air
- By ground site visit
- ID disturbances missed by the coarser filters

Site measurements

- Apply routine field protocol
 - EMAP
 - USGS
 - STATE
- To identify disturbances missed by coarser screens:
 - Riparian habitat
 - Physical habitat
 - Water quality
 - Biota

Is the use of biological data circular? The case against:

• Circularity Problem

Need an independent measure of what "undisturbed by humans" means.

Is the use of biological data circular? The case for:

- Lesions/anomalies?
- Alien species dominate?
- Expert knowledge about biology of systems under consideration?

Criteria for Candidate Reference Sites (Georgia, Alabama, S. Carolina)

Stream Gradient

		High	Low
1.	Natural vegetation, i.e., forest/grassland/wetland (% in catchment)	> 65%	> 50%
2.	Minimum overall habitat score (% of maximum)	> 70%	> 70%
3.	Minimum riparian zone width (m)	>15 m	>15 m
4.	Riparian zone in catchment (% of stream length)	> 60%	> 60%
5.	Agriculture (% in catchment)	< 20%	< 30%
6.	Urban land (% in catchment)	< 15%	< 15%
7.	Silviculture (active [within 5 years] in catchment)	none	none
8.	Road density (length/area of catchment)	?	?
9.	Point source discharges (% of flow at 7Q10)	< 5%	< 5%
10.	Channel alteration in catchment	none	none

March 31 – April 4, 2003 National Biological Assessment and Criteria Workshop, RFC 101_04

Criteria for Alaska Reference Sites (**Must meet all criteria**)

- no channelization
- > no upstream impoundments
- > no known point source dischargers
- > dissolved oxygen greater or equal to 5 ppm
- urban land use less than 15% in catchment
- mining and/or logging affecting less than 15% in catchment

➢ forest land use (or other natural wetland, grassland) greater than 70% in catchment

riparian buffer width greater or equal to 18 m

Sources of candidate reference sites

- Digital maps of the aquatic resource
 - RF3/NHD
 - National Wetlands inventory
- BPJ supplied
- Available from existing surveys
 - Probability surveys
 - Other surveys
- In any case, the screening criteria should be applied to all sites in the candidate pool, however obtained

Selecting Reference sites: Repeatable outcome?

• Two sets of criteria, independently applied should give us the same outcome

Criteria set #1

- Drainage: entirely within subregion
- Land use: >80% forest; no ag/urban; no recent disturbance, e.g., construction; clearcutting
- Habitat: No cattle in w/s; no disturbances
- Channel: Characteristic of region
- Riparian veg: > 30m buffer for most of w/s
- Instream substrate: no significant siltation or embeddedness
- Water Quality: No point sources; no recent spills; pH>6.

Criteria set # 2

"Filters": exclude all sites with:

- sulfate over 400 ueq/L (mine drainage)
- acid neutralizing capacity less than 50 ueq/L (acid rain)
- average RBP habitat score less than 16 (habitat)
- total phosphorus over 100 ug/L (nutrient enrichment)
- total nitrogen over 750 ug/L (nutrient enrichment)
- chloride over 100 ueq/L (general watershed disturbance
- total benthic count less than 100 individuals (inadequate sample)

Are Reference Sites Representative?

- Reference sites should be representative of the natural gradients in the region of interest, e.g.,
 - Elevation
 - Latitude
 - Longitude
 - Stream gradient

March 31 – April 4, 2003 National Biological Assessment and Criteria Workshop, RFC 101_04

Revisiting minimally and least disturbed

March 31 – April 4, 2003 National Biological Assessment and Criteria Workshop, RFC 101_04

Minimally Disturbed Condition (MDC)

- Condition in absence of significant, or with minimal, human disturbance
- MDC changes little over time, due to natural processes
- Stable benchmark
- Derived from minimally disturbed reference sites

Least Disturbed Condition (LDC)

- Best available given today's state of the landscape
- Can change over time as land use and management practices change
- Derived by characterizing least disturbed reference sites

Concluding remarks

- Establish a framework for reference site screening
- Identify some key concepts to be kept in mind
- Illustrations of the process in subsequent "lectures" and in RFC201 and RFC202.
- Use framework as a guide in your evaluation/applicability of courses to follow with respect to your unique situation

Concluding remarks

- After Break:
 - Ed Rankin (Tuesday morning) or
 Dave Courtemanch (Tuesday afternoon)
 - Mike Edmondson
 - Jeffrey Schuldt
 - Break/Questions