National Biological Assessment and Criteria Workshop

Advancing State and Tribal Programs

Coeur d'Alene, Idaho 31 March – 4 April, 2003

BASIC REFERENCE CONDITION & CLASSIFICATION TECHNIQUES

Course Presenters

Phil Larsen, Charles Hawkins, Ed Rankin, Dave Courtemanch, Mike Edmondson, Jeffrey Schuldt

Course Contributors

Cyndi Grafe, Chris Yoder, Lucinda B. Johnson, Jan Ciborowski, George E. Host, Carl Richards, Tom Hollenhorst

RFC 101

National Biological Assessment and Criteria Workshop

Advancing State and Tribal Programs

Coeur d'Alene, Idaho 31 March – 4 April, 2003

Reference Condition and the Role of Classification: A Series of 3 Courses

RFC 101

Presented by Phil Larsen, USEPA Larsen.Phil@epa.gov

Reference Condition and the role of classification

- RFC101 Basic Reference Condition and Classification Techniques: Introduction, overview, concepts, and some case studies
- RFC201 Reference Condition Case Studies: Emphasis on selection of reference sites
- RFC202 Advanced Reference Condition Techniques: Special Circumstances and Problem Solving

RFC101 - Basic Reference Condition and Classification Techniques

- Background, concepts, context within EPA and state/tribal water programs (Larsen, ¹/₂ hr)
- Role of classification and modeling (Hawkins, ¹/₂ hr)
- Characterizing reference sites as a method to describe reference condition (Larsen, ½ hr)
- Questions/discussion (15 min)
- Break (15 min)
- Case study #1 (Yoder, Ohio, ½ hr Tues. morning)

(Courtemanch, Maine, ¹/₂ hr – Tues. afternoon)

- Case study #2 (Edmondson, Idaho, ½ hr)
- Case study #3 (Schuldt, Wisconsin, ½ hr)
- Questions/Discussion

RFC201 – Reference Condition Case Studies: Emphasis on selection of reference sites

- Brief Introduction (Larsen, 5 min)
- A coarse screening process for initial selection of reference sites (Lattin, ½ hour)
- Oregon's process for selection of reference sites (Drake, ½ hr)
- Arizona's reference site selection and classification (Spindler, ¹/₂ hr)
- Developing multi-state criteria for selecting reference sites (Sarver, ¹/₂ hr)
- Break
- A fine scale screening process for selecting reference sites (Lattin, ½ hr)
- Wyoming's reference site selection experience (Zumberge, $\frac{1}{2}$ hr)
- A hierarchical classification for stream reaches (Sowa, ½ hr)
- Discussion

RFC202 – Advanced Reference Condition Techniques: Special Circumstances and Problem Solving

- Brief Introduction (Larsen, 5 min)
- Using historical information to assist characterizing reference condition (McAllister, ½ hr)
- Challenges in urban (MD) and agricultural landscapes (MS) (Barbour, ¹/₂ hr)
- Reference condition for reservoirs (TVA) (Hickman, ½ hr)
- Break
- Challenges in agricultural landscapes (SD) (Heakin, ½ hr)
- Challenges in agricultural landscapes (MT) (Suplee, ½ hr)

Context

- Emphasis is on goals and concepts
- Recognition that practical implementation requires compromises
- Framework for evaluating the extent to which compromises are made

What is covered

- Primary goal: How does one describe a reference condition?
- Not covered: How one uses the description of reference condition to:
 - Set narrative or numeric criteria
 - Establish management goals
 - Evaluate a bioassessment
- Go to other courses for topics not covered here

Underlying Question

- How does human activity affect aquatic ecosystems and, in particular, aquatic biota?
- What do we do about our effects on aquatic ecosystems and aquatic biota?

Societal Response: Clean Water Act

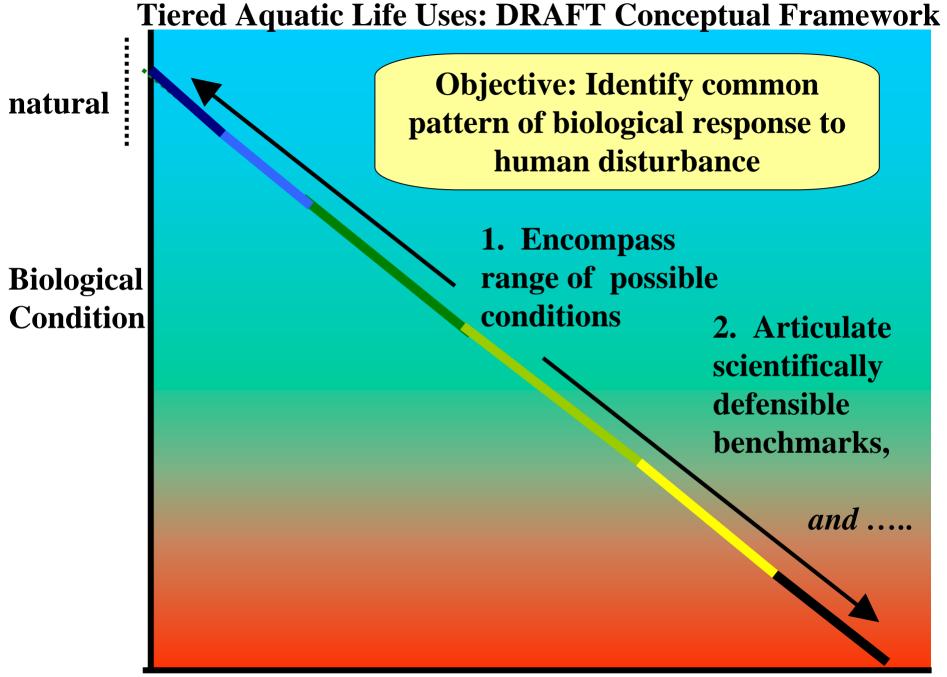
- Physical, chemical, and biological integrity objective
- Fishable/swimmable interim goal (propagation of fish/shellfish/wildlife)
- Water Quality Standards Regulation: Designated Uses; Criteria to judge attainment of uses; antidegradation
- How do we judge where we are with respect to these mandates? Need some kind of benchmark, a reference condition.

Aquatic Life Use Support and The BioCondition Gradient

- Define biointegrity as the biological condition under no (or minimal) human disturbance
- Is there a common pattern of biological response as human disturbance increases? (The biocondition gradient)
- How might the interim goal and aquatic life uses be related to the biological condition gradient?
- Reference condition for biointegrity? Reference condition for the interim goal? Reference condition for specific aquatic life uses?

Tiered Aquatic Life Uses: DRAFT Conceptual Framework

natural


Biological Condition

Low

<u>First Task</u>: Identify common pattern of biological response to human disturbance

Gradient encompasses range
of possible conditions, and,

 Articulates
 scientifically defensible
 benchmarks in context of CWA

Low

Human Disturbance

High

Tiered Aquatic Life Uses: DRAFT Conceptual Framework

natural

Biological Condition **CWA Integrity Objective**

Objective: Identify common pattern of biological response to human disturbance

CWA 101(a) Uses: Aquatic Life Protection and Propagation Goals 3. ID commonalities in interpretation of CWA objectives

Not meeting CWA 101(a) uses for protection & propagation of aquatic life

Human Disturbance

Designated Aquatic Life Uses: Example Maine

natural

Biological Condition <u>Class AA/A</u>: Habitat Natural. Aquatic life as naturally occurs

> <u>Class B</u>: Habitat unimpaired. Ambient water quality sufficient to support life stages of indigenous species. No detrimental change allowed.

> > <u>Class C</u>: Ambient WQ sufficient to support life stages of all indigenous fish species & maintain structure & function.

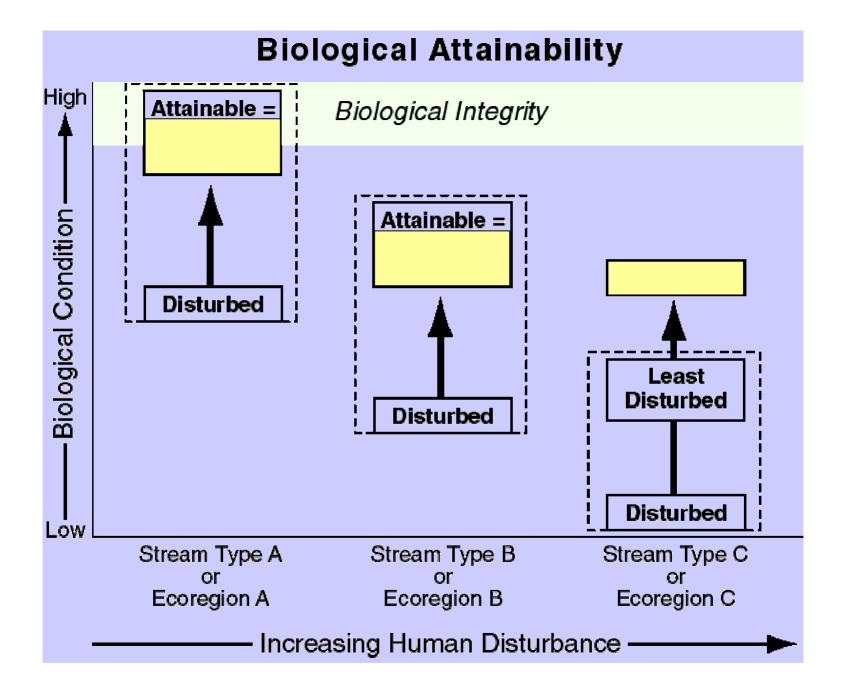
Not meeting CWA 101a uses for protection & propagation of aquatic life

Low

Human Disturbance

High

Why reference condition?


- For TALU: establish framework for defining aquatic life use thresholds (i.e. biological criteria)
- For Watershed Management (BMPs;TMDLs): establish a basis for setting targets for protection, restoration, or management actions
- For Bioassessment: estimate degree of effect from human disturbance: are aquatic life uses met?
- For sample surveys: set criteria to judge extent of use attainment

Operational Definitions of Reference Condition

- Minimally Disturbed Condition-condition in the absence of significant human disturbance (e.g., "natural", "pristine", or "undisturbed")
- Least Disturbed Condition-found in conjunction with the best available physical, chemical, and biological habitat given today's state of the landscape
- Best Attainable Condition-this condition is equivalent to the ecological condition of (hypothetical) least disturbed sites where the best possible management practices are in use

Reference Condition vs. Reference Sites

- Characterizing reference sites is one method of describing a reference condition
- As will be discussed, reference site description is not the only method

Distinguishing minimally and least disturbed

- Minimally Disturbed: An absolute. Some regions might have no sites that meet minimal disturbance criteria.
- Least Disturbed: Relative. No matter how disturbed the region, some sites are likely less disturbed than others.
- Could use a "proportion of the resource" criterion for least disturbed: The 5% of the resource that is least disturbed; the 1% of the resource that is least disturbed

Linking Reference Condition to BioCondition Gradient

- Minimally disturbed \rightarrow Biological Integrity
- Least disturbed \rightarrow specific aquatic life uses
- Attainable goal → might be better than least disturbed

Characterizing Reference Condition

- Minimally disturbed sites >> Biointegrity
- Least disturbed sites>> Least disturbed condition
- Historical reconstruction from times with minimal stress
 - Early journals/surveys, land survey records, old photos,...
 - Paleo-reconstruction
- Best ecological judgment (including models)
 - Use knowledge gained from regions with minimal disturbance
- Restoration experiments
- Infer from data distributions
 - Y-intercept from "dose-response" curves
 - Shape of "dose-response curves

What do we mean by "Characterizing Reference Condition"

- Translating concepts to numbers
 - Assemblage composition and structure
 - Frequency distribution of indicator scores
 - Reference condition is not a single number, although we might extract a single number from a distribution as a biological criterion.

Is reference condition representative?

• Mimic natural gradients of the region of interest....

Some examples....

- Translating concepts to numbers
 - Assemblage composition and structure
 - Frequency distribution of indicator scores
 - Reference condition is not a single number, although we might extract a single number from a distribution as a biological criterion.

Second order stream in a minimally disturbed, forested watershed

Maine DEP

ME Example BCG Tier 1

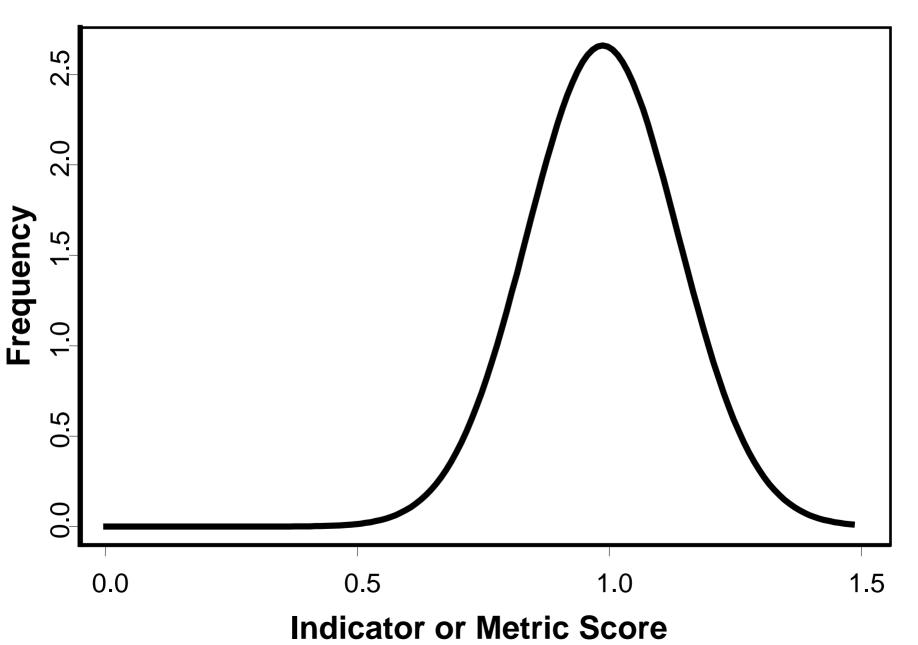
Intact watershed

- Generic Richness
 - Total = 51
 - EPT = 25 (49%)

8

6

11


- Mayfly =
- Stonefly =
- Caddisfly =
- 10 - Midges =
- Abundance
- Total = 312
- Mayfly =157
- Stonefly =57

- **II** Sensitive- rare, specialist 48 Taeniopteryx Epeorus 13 Hexatoma 8 Probezzia 8 Isoperla 7 Pteronarcys Capniidae Chloroperlidae Glossosoma Brachycentrus **III - Sensitive - ubiquitous, generalist** Ephemerella 127 Acentrella 13 8 Stenonema **IV** - Intermediate tolerance, opportunistic Hydropsyche 24 Cheumatopsyche 5
- V Tolerant Taxa
 - 8 Polypedilum

```
Maine DEP-Log 249
```

March 31 - April 4, 2003

Frequency distributions describe a reference condition

Reference Variability: Classification and Modeling

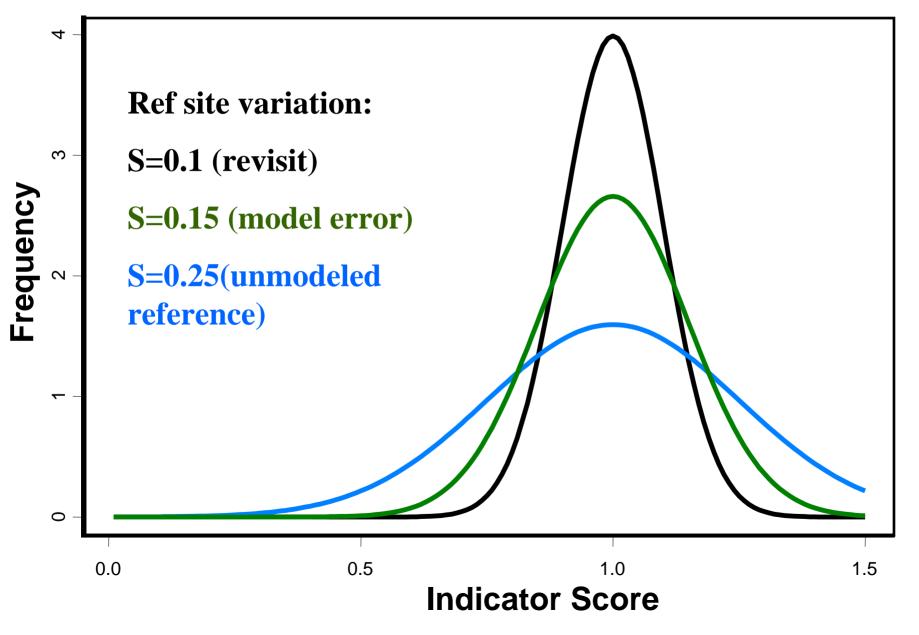
- All streams are the same.....each stream is unique
- Goal: Site specific prediction
- Natural variability produces a range or distribution of reference condition scores
- We account for natural variability through classification and modeling (Ecoregion, size, elevation, gradient..., e.g., RC = f(classification/model + residual))

Goal: site specific prediction

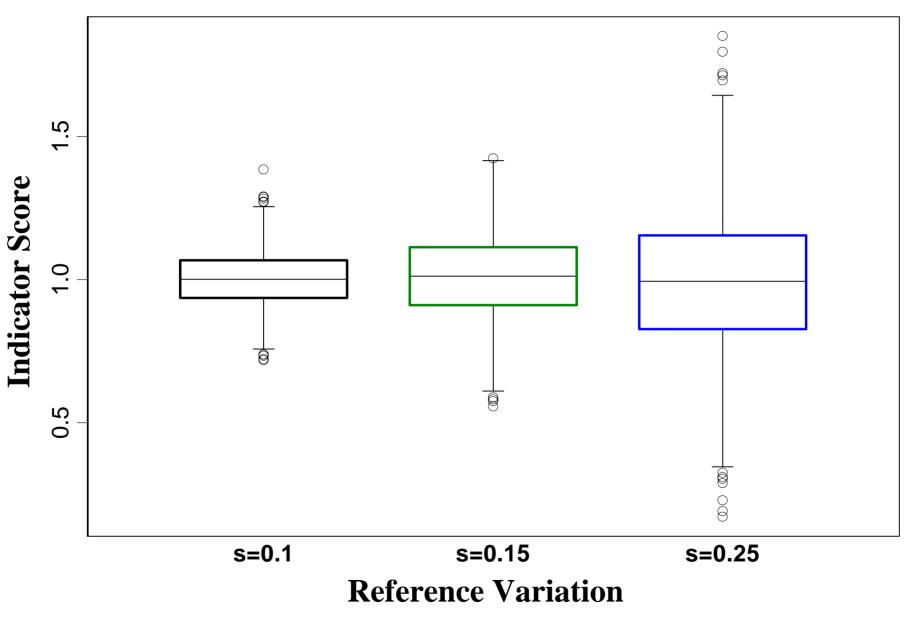
- Prediction = f(classification/model + residual)
 - Account for site-to-site natural variability
- Classification/model based on natural features
- Goal: Model such that residual from prediction = within-site variability

Regional vs. site specific

- Set of regional reference sites: likely highly variable
- Classification/model based on natural features helps account for natural variability
- Site specific: take into account regional uniqueness as well as site scale factors: if successful, greater precision...


Measuring predictive progress

• Estimate site scale variation by revisits to sites across time and by different crews.


– Sets target

- Estimate among site variation by including multiple sites in survey.
- Model among site variation and estimate prediction error.
- Compare prediction error with site scale variation.
 Ambitious goal reached when equal, or nearly so.

Evaluation of models and classification: a framework

Evaluation of models and classification: a framework

Summary

- Overview and context for reference condition
 - What do we mean?
 - Why do we do it?
- Operational definitions of reference condition
- How do we characterize or describe a reference condition?
- A framework for evaluating classification and modeling