National Biological Assessment and Criteria Workshop

Advancing State and Tribal Programs

Coeur d'Alene, Idaho 31 March – 4 April, 2003

ORSANCO: Biological Criteria Development for the Ohio River

Presented by Erich Emery, ORSANCO

LR 201

Introduction

• ORSANCO

- Interstate water pollution control agency for the Ohio River Basin
- Compact Signed in 1948
- Eight States (NY-VA-PA-WV-OH-KY-IN-IL)
- Committee Structure (All States represented; multiple levels).
- Regulatory Authority
 - Wastewater Discharge Requirements
 - Pollution Control Standards
 - Ohio River 305(b)

Introduction (Cont'd...)

• ORSANCO

- Unique Organization
 - Regulatory Authority
 - Standards Development
 - Expanding Role (TMDLs)
- Expanding role from a 'Mainstem' Agency to a 'Basin' Agency
- New concept of developing biological standards across multiple state boundaries.

Program Objectives

- Future pollution control standards for the Ohio River to include, or reference numeric biological criteria.
- Expand community condition indicators to the basin.
 - Next step; large Ohio River tributaries.

Sampling Design

- Fish
 - Lockchamber rotenone surveys (1957 present)
 - Night Electrofishing (1991-2001)
 - Targeted sampling of individual pools (2 mile resolution).
 - Provided resolution to detect critical spatial and temporal aspects of background variability.
 - Night Electrofishing (2002 and beyond)
 - Employing a random probability design with a spatial systematic component developed by US EPA's EMAP program.
- Macroinvertebrates
 - Hester-Dendy artificial substrates
 - Gathering background information (1991-2000)
 - 2mi. Resolution; entire river (1997-1998)

March 31 - April 4, 2003

National Biological Assessment and Criteria Workshop, LR 201_04

Quality Assurance Measures

- In-Field
 - Gear efficiency
 - Seasoned biologists in place as crew leaders
 - Redundancy of expertise in the field
 - Vouchers
 - Site; Pool; Regional
 - Small specimens preserved for in-house ID
- In-house
 - Panel review of results

Data Applications

- Assessment and reporting of biological condition for 305(b) report.
 - 303(d) list; TMDL's
- Supplement to State Programs.
 - NPDES, 404, 319 etc..(at states request)
- Temporal and spatial trend assessments.
 - Public reports and documentation.

Scales Addressed

• Past

- Mainstem Ohio River
- Present
 - Moving into major tributaries with the States
- Future
 - More comprehensive basinwide assessment

Design Features

- Site Selection
 - Past: Targeted Intensive Surveys (2mi. Res.)
 - Present: Probability-based site selection
- Sampling Period
 - Targeting low flow, stable period of July through October.
 - Reduces flow-induced variability; most YOY large enough to be identified; worst-case-scenario for WQ impacts such as thermal, DO etc.

Indicators

- Fish (500m night electrofishing)
 - Most information in place at program inception (1991).
 - Lockchamber rotenone sampling
 - 1957 to present!
- Macroinvertebrates (Hester-Dendy multiplates, composite of 5)
 - Began baseline collections in 1991; expanded program in 1997 (2 mile resolution –1997-1998)

Future Indicators

- Algae
 - Collections of phytoplankton ongoing
 - Initiated by drinking water utilities
 - 10 locations / semimonthly / species counts / Chl.a
 - Community indices under development
 - May influence nutrient standards
- Mussels
 - Workload carried by USFWS
 - Future work may be geared to developing community expectations
 - Excellent measure of historic perturbations (habitat loss)
 - Historic collection in existence
- Genetic Diversity (fish community)
- Impacts from endocrine disruptors
 - Feminization of males (fish)

Obstacles to Program

• Scale

- Samples, Samples, Samples
- Lack of 'True' Reference Condition
 - Best attainable condition defined as ceiling for expectation.
 - Set as a 'moving target', designed to reflect condition as system continues to improve.
- Lack of Defined Methods
 - Methods modified from stream techniques (OH EPA)

Existing Biocriteria

- Panel of experts established to help develop an IBI for the Ohio River.
 - Reviewed, reconsidered and reclassified all Ohio River species.
 - Over 70 metrics developed for testing; 13 selected for index.
 - Metrics scored following traditional methods.
 - Over 800 'least impacted' sites utilized to derive expectations for metrics.
 - Equally distributed over entire length of river
 - Captures full range of variation within all possible segments

Ohio River Fish Index (ORFIn)

- Number of Native Species
- Number of Sucker Species
- Number of Centrarchid Species
- Number of Great River Species
- Number of Intolerant Species
- Percent Tolerant Individuals

- Percent Simple Lithophils
- Percent Non-Native Individuals
- Percent Detritivores
- Percent Invertivores
- Percent Top-Piscivores
- Relative Number of DELT Anomalies
- Catch Per Unit Effort

Metric Scoring

- Least Impacted sites used as reference for developing scoring expectations.
- Data plotted longitudinally along river-mile, acting as a surrogate for drainage area.
- Data was trisected following conventional methods.
 - 95th Percentile (Proportional Metrics) –OR- Maximum Observed Line – MOL (Species Richness Metrics)
 - Drawn parallel to regression line
 - Trisected beneath

Metric Scoring

Metric Testing

- Are metrics responsive?
 - Do they respond as expected?
- Do they reveal disturbance?
 - Do they reveal the magnitude of the disturbance?

Metric Testing

- Two 500-m electrofishing zones (data collected in 100m increments) were conducted simultaneously, back-to-back, in an area where a known water quality gradient existed.
- Design allowed data reconfiguration /compilation for 6 500m traveling or T-zones, each beginning progressively further downstream from the area of impact.

Metric Testing (T-Zones)

T-Zone Example

Reducing Variance

• Spatial

- Ecoregions?
 - Data suggests 3 river reach segments may exist
- 3 Distinct habitat types defined.
- Temporal
 - Seasonal shifts in water quality (temperature and DO) result in shifts in aquatic community over certain habitat types.
 - Seasonal expectations may be set for these habitats.

Defining Habitat Types

- Use first visits to least impacted sites only.
- Principal Components Analysis (PCA) on habitat variables: measures of depth, woody cover and substrate composition.
- K-means clustering based on PCA axis.
- Use CART with cluster as dependant and habitat variables predictor variables.

New Habitat Clusters

March 31 - April 4, 2003

National Biological Assessment and Criteria Workshop, LR 201_04

Calculation of Biocriteria

- Calculate 25th percentile value for least impacted sites (all visits)
- Calculate the nonparametric 90% confidence interval around percentile using binomial distribution
- Use lower confidence bound as biocriterion for that habitat class

March 31 - April 4, 2003

National Biological Assessment and Criteria Workshop, LR 201_04

3 Habitat types defined based on substrate composition

Least impacted sites

Indications of Seasonal Differences Within Annual Timeframe (Sandy Substrates Only) 50 40 **ORFIn score** 30 20 10

Fall

0

Summer

Deriving Biocriteria

• Current

- Using 3 habitat types
 - 25th percentile for each type
 - Lower 90th confidence interval around the 25th will serve as criteria.
 - Revisits required to sites falling within 90th bands.
 - Multiple passes used for assessment
- Future
 - Additional data collection needed
 - May incorporate seasonal and reach-specific expectations.

Regulatory Changes

- A more thorough and accurate 305(b) assessment.
- Demonstrated use of biological indices to detect and delineate areas of degraded condition.
- Action against dischargers.

Is it worth it?

- Yes!
- Very labor intensive.
- Many samples required.
- Results allow us to tap into the ability of large rivers to 'tell their side of the story'.
 - The integrity, stability and beauty of the biotic community of large rivers can be measured, understood, and revealed to those who care to look.

Questions ?