National Biological Assessment and Criteria Workshop

Advancing State and Tribal Programs

Coeur d'Alene, Idaho
31 March - 4 April, 2003

ORSANCO: Biological Criteria Development for the Ohio River

Presented by
 Erich Emery, ORSANCO

Introduction

- ORSANCO
- Interstate water pollution control agency for the Ohio River Basin
- Compact Signed in 1948
- Eight States (NY-VA-PA-WV-OH-KY-IN-IL)
- Committee Structure (All States represented; multiple levels).
- Regulatory Authority
- Wastewater Discharge Requirements
- Pollution Control Standards
- Ohio River 305(b)

Introduction (corid..)

- ORSANCO
- Unique Organization
- Regulatory Authority
- Standards Development
- Expanding Role (TMDLs)
- Expanding role from a 'Mainstem' Agency to a 'Basin' Agency
- New concept of developing biological standards across multiple state boundaries.

Program Objectives

- Future pollution control standards for the Ohio River to include, or reference numeric biological criteria.
- Expand community condition indicators to the basin.
- Next step; large Ohio River tributaries.

Sampling Design

- Fish
- Lockchamber rotenone surveys (1957 - present)
- Night Electrofishing (1991-2001)
- Targeted sampling of individual pools (2 mile resolution).
- Provided resolution to detect critical spatial and temporal aspects of background variability.
- Night Electrofishing (2002 and beyond)
- Employing a random probability design with a spatial systematic component developed by US EPA's EMAP program.
- Macroinvertebrates
- Hester-Dendy artificial substrates
- Gathering background information (1991-2000)
- 2mi. Resolution; entire river (1997-1998)

Quality Assurance Measures

- In-Field
- Gear efficiency
- Seasoned biologists in place as crew leaders
- Redundancy of expertise in the field
- Vouchers
- Site; Pool; Regional
- Small specimens preserved for in-house ID
- In-house
- Panel review of results

Data Applications

- Assessment and reporting of biological condition for 305(b) report.
- 303(d) list; TMDL's
- Supplement to State Programs.
- NPDES, 404, 319 etc..(at states request)
- Temporal and spatial trend assessments.
- Public reports and documentation.

Scales Addressed

- Past
- Mainstem Ohio River
- Present
- Moving into major tributaries with the States
- Future
- More comprehensive basinwide assessment

Design Features

- Site Selection
- Past: Targeted Intensive Surveys (2mi. Res.)
- Present: Probability-based site selection
- Sampling Period
- Targeting low flow, stable period of July through October.
- Reduces flow-induced variability; most YOY large enough to be identified; worst-case-scenario for WQ impacts such as thermal, DO etc.

Indicators

- Fish (500m night electrofishing)
- Most information in place at program inception (1991).
- Lockchamber rotenone sampling
- 1957 to present!
- Macroinvertebrates (Hester-Dendy multiplates, composite of 5)
- Began baseline collections in 1991; expanded program in 1997 (2 mile resolution -1997-1998)

Future Indicators

- Algae
- Collections of phytoplankton ongoing
- Initiated by drinking water utilities
- 10 locations / semimonthly / species counts / Chl.a
- Community indices under development
- May influence nutrient standards
- Mussels
- Workload carried by USFWS
- Future work may be geared to developing community expectations
- Excellent measure of historic perturbations (habitat loss)
- Historic collection in existence
- Genetic Diversity (fish community)
- Impacts from endocrine disruptors
- Feminization of males (fish)

Obstacles to Program

- Scale
- Samples, Samples, Samples
- Lack of ‘True’ Reference Condition
- Best attainable condition defined as ceiling for expectation.
- Set as a 'moving target', designed to reflect condition as system continues to improve.
- Lack of Defined Methods
- Methods modified from stream techniques (OH EPA)

Existing Biocriteria

- Panel of experts established to help develop an IBI for the Ohio River.
- Reviewed, reconsidered and reclassified all Ohio River species.
- Over 70 metrics developed for testing; 13 selected for index.
- Metrics scored following traditional methods.
- Over 800 'least impacted’ sites utilized to derive expectations for metrics.
- Equally distributed over entire length of river
- Captures full range of variation within all possible segments

Ohio River Fish Index (orfin)

- Number of Native Species
- Number of Sucker Species
- Number of Centrarchid Species
- Number of Great River Species
- Number of Intolerant

Species

- Percent Tolerant Individuals
- Percent Simple Lithophils
- Percent Non-Native Individuals
- Percent Detritivores
- Percent Invertivores
- Percent Top-Piscivores
- Relative Number of DELT Anomalies
- Catch Per Unit Effort

Metric Scoring

- Least - Impacted sites used as reference for developing scoring expectations.
- Data plotted longitudinally along river-mile, acting as a surrogate for drainage area.
- Data was trisected following conventional methods.
- 95 ${ }^{\text {th }}$ Percentile (Proportional Metrics) -OR- Maximum Observed Line - MOL (Species Richness Metrics)
- Drawn parallel to regression line
- Trisected beneath

Metric Scoring

Metric Testing

- Are metrics responsive?
- Do they respond as expected?
- Do they reveal disturbance?
- Do they reveal the magnitude of the disturbance?

Metric Testing

- Two 500-m electrofishing zones (data collected in 100m increments) were conducted simultaneously, back-to-back, in an area where a known water quality gradient existed.
- Design allowed data reconfiguration /compilation for 6500 m traveling or T-zones, each beginning progressively further downstream from the area of impact.

Metric

Testing (T-Zones)

T-Zone Example

Reducing Variance

- Spatial
- Ecoregions?
- Data suggests 3 river reach segments may exist
- 3 Distinct habitat types defined.
- Temporal
- Seasonal shifts in water quality (temperature and DO) result in shifts in aquatic community over certain habitat types.
- Seasonal expectations may be set for these habitats.

Defining Habitat Types

- Use first visits to least impacted sites only.
- Principal Components Analysis (PCA) on habitat variables: measures of depth, woody cover and substrate composition.
- K-means clustering based on PCA axis.
- Use CART with cluster as dependant and habitat variables predictor variables.

New Habitat Clusters

First visits - least impacted

All visits - least impacted

Combined

Calculation of Biocriteria

- Calculate $25^{\text {th }}$ percentile value for least impacted sites (all visits)
- Calculate the nonparametric 90\% confidence interval around percentile using binomial distribution
- Use lower confidence bound as biocriterion for that habitat class

3 Habitat types defined based on substrate composition

Least impacted sites

Indications of Seasonal Differences Within

 Annual Timeframe(Sandy Substrates Only)

Deriving Biocriteria

- Current
- Using 3 habitat types
- $25^{\text {th }}$ percentile for each type
- Lower $90^{\text {th }}$ confidence interval around the $25^{\text {th }}$ will serve as criteria.
- Revisits required to sites falling within $90^{\text {th }}$ bands.
- Multiple passes used for assessment
- Future
- Additional data collection needed
- May incorporate seasonal and reach-specific expectations.

Regulatory Changes

- A more thorough and accurate 305(b) assessment.
- Demonstrated use of biological indices to detect and delineate areas of degraded condition.
- Action against dischargers.

Is it worth it?

- Yes!
- Very labor intensive.
- Many samples required.
- Results allow us to tap into the ability of large rivers to 'tell their side of the story'.
- The integrity, stability and beauty of the biotic community of large rivers can be measured, understood, and revealed to those who care to look.

Questions ?

