National Biological Assessment and Criteria Workshop

Advancing State and Tribal Programs

Coeur d'Alene, Idaho 31 March – 4 April, 2003

Section 4e: Methods for Sampling Fish in Large Rivers

Presented by Joseph E. Flotemersch, USEPA, Office of Research & Development

LR 101

I'm healthy, I'm healthy, let me go...

Fish are a widely identifiable

Many are valued for their recreational uses

component of aquatic systems

Most species, however, are obscure

And comprise the second most endangered group of animals

Characteristics of Vertebrates (e.g., Fish) that make them useful indicators

- 1) Accurate environmental assessment of health
- 2) Visibility
- 3) Standardized use and interpretation
- 4) Extensively used in large river programs around the world
- 5) Long history of development and use in assessment; thus a strong body of literature from which to draw Ref: Simon 1999
- 6) Historical knowledge of distribution

March 31 - April 4, 2003

Fish (Vertebrates)

Important program development questions

- Which sub-habitats
- What reach length
- What time of day
- Which methods (single vs. multiple gear)
- Field identification (knowing what to take back to the lab)
- What is the final indicator

Fish (Vertebrates) Common Sampling Approaches

Active sampling methods

- Electrofishing
- Seining
- Passive sampling methods
 - Nets (hoop, fyke, gill, trap, etc.)
 - Specific applications
 - Electrofishing prohibited
 - Target Species
 - Prohibitive conductivity (low and high)

Fish (Vertebrates) Active Sampling Methods

Electrofishing – Widely considered the most comprehensive and effective *single* method for collecting river fishes

Electrofishing Examples

Wisconsin

1 mile shoreline; daytime; 3000 W, 60 Hz; 1 netter (17 mm mesh); downstream

Ohio

500m shoreline; daytime; 5000 W, 120 Hz; 1 netter (1/4" mesh); downstream EPA – EMAP (Western Rivers)

ORSANCO (Ohio R.)

500m of shoreline; nighttime; 5000 W, 120 Hz; 1 netter (1/4" mesh); downstream

May require an array of equipment to cover all encountered systems.

March 31 - April 4, 2003

Human factors influencing electrofishing performance

Equipment ✓Configuration ✓ Boat size ✓ Electrode array ✓ Setting Equipment condition Crew experience Especially crew leader Skill of boat driver ✓ Historical focus

 Physical skill and capacity

Attention to detail

 Skill in fish identification

✓ Training

Environmental factors influencing electrofishing performance

 Recent weather patterns
 Time of day
 Wind

Departures from normal summer (low flow) water conditions ✓ Flow rate ✓ Water level ✓ Conductivity ✓ Clarity of water

March 31 - April 4, 2003

Recent Electrofishing Sample Design Research

Western Rivers

Phil Kaufmann, USEPA, Corvallis, OR. Bob Hughes, Dynamac, Corvallis, OR.

March 31 - April 4, 2003

Intolerant Species Richness

	Willamette-1	Willamette-2	Snake	Yellowstone
Species Observed	22	20	24	21
Number of Individuals	470	445	580	564
No. Species Occurring Once	2	2	2	2
No. Species Occurring Twice	2	2	2	1
True Species Richness (TSR)	23	23	25	22
Channel-widths for 80% TSR	92	77	105	79
Channel-widths for 90% TSR	164	138	182	166
Channel-widths for 95% TSR	220	186	240	240
Channel-widths for 100% TSR	294	250	316	348

Recent Electrofishing Sample Design Research

Field Sampling Methods Comparison Notes (East-Central Rivers)

Joseph E. Flotemersch and Karen A. Blocksom, USEPA, Office of Research & Development, Cincinnati, OH.

March 31 - April 4, 2003

Single experimental design Testing of multiple designs Testing of distance effects on metrics Collected >28,000 Electrofished 180 km

Electrofished 180 km

Principal Component Analysis

Monte Carlo Simulations

Cumulative electrofishing distance (m)

March 31 - April 4, 2003

Monte Carlo Simulations

Cumulative electrofishing distance (m)

March 31 - April 4, 2003

Overview of Conclusions...

- Degree of impoundment plays a critical role in characterizing sites.
 - Metrics did not perform the same across sites of differing impoundment status (e.g., free-flowing vs. impounded).
 - May categorize by degree of impoundment
 - Different designs may be required to adequately describe different categories of systems.
 - Shallow systems daytime electrofishing
 - Deeper, impounded systems night electrofishing
 - Distance required may also vary

Ref: Flotemersch & Blocksom, submitted

March 31 - April 4, 2003

Active Sampling Methods: Seining

In places where electrofishing is prohibited ✓ Difficult boat access Low conductivity Low equipment cost Per-capita cost may be higher

Active Sampling Methods: Seining

- Selective
 - Small (species and juveniles)
 - Schooling (normally inhabit shallow water areas)
 - Slower

Horse seining, Columbia River, Oregon

Passive Fish Sampling Methods Nets: Hoop, Fyke, Trap, Gill, Etc.

Advantages

- Simple in design and construction
- No electrical equipment to fail
- Require little specialized training
- Yield fairly precise data (relative abundance)
- Disadvantages
 - Selective (species, size, sex)
 - Require multiple trips to a site
 - Cannot pull fish out of cover
 - Spatial coverage is limited

(Ref: Hubert 1992)

Field and Laboratory Processing of Fish

- Be humane to collected specimens
- Be cognizant of who is watching
 Public relations
- Identification
 - Vouchers
 - Length or size classes
 - Weight
 - * Recording anomalies
 - * Tissue samples
- Other issues

External Anomalies:

Deformities, Erosions, Lesions, Tumors (DELT) anomalies

- Effective communicator of degraded quality
- Useful in sites degraded by multiple and cumulative stresses
- Reliable indicator condition
- Occurrence may be part of the recovery
- Important diagnostic tool
- Includes parasites (Ref: Sanders et al. 1999)

March 31 - April 4, 2003

Fish Tissue Sampling

Fish Tissue

- Commonly used indicator of contaminant risk
- Strong connection to resource use and exposure
- Standard methods exist
- Important questions
 - How to sample?
 - What to sample?
 - Which analytes to consider?

March 31 - April 4, 2003