National Biological Assessment and Criteria Workshop

Advancing State and Tribal Programs

Coeur d'Alene, Idaho 31 March – 4 April, 2003

LR 101

Section 4c: Water Chemistry

Presented by
Joseph E. Flotemersch, USEPA
Office of Research & Development

Water Chemistry Assessment

What is it?

 Measurements of chemical concentrations and physical properties of flowing waters.

Why collect?

 To characterize surface water quality and condition by measuring a suite of analytes.

Water Chemistry Assessment Features from 5 existing programs

- Each program has unique objectives and suite of analytes
- Some have additional protocols to further assess surface water quality
 - ground water
 - bed sediment
 - tissue analyses

Water Chemistry Assessment USEPA-EMAP-SW

Why collect?

- determine acidity/alkalinity
- identify water chemistry type
- characterize trophic condition
- establish presence/absence of chemical stressors

■ When?

- Collected during biological sampling
 - Field determined: specific conductance, dissolved oxygen, temperature
 - Laboratory determined: major ions, nutrients, total iron, total manganese, turbidity, color, pH, dissolved inorganic carbon, and monomeric aluminum species.

(Herlihy 1998)

Water Chemistry Assessment USGS-NAWQA

■ Feature: Tiered sampling

- basic fixed-site: temperature, specific conductance, suspended sediment, major ions and metals, nutrients, and organic carbon
- intensive fixed-site: addition of dissolvedpesticide analyses

(Gilliom et al. 1995)

Water Chemistry Assessment USEPA-RBP

- Feature: All measured parameters are field collected
 - estimated measurements: stream type, water odors, water surface oils, and turbidity(or measured directly)
 - quantitative measurements: temperature, dissolved oxygen, pH , and specific conductance
- Why?
 - to provide a brief and easily-obtained analysis of water chemistry

(Barbour et al. 1999)

Water Chemistry Assessment MDNR-MBSS

■ Feature: Split sampling design

- Spring: samples are collected from each site for lab: pH, ANC, specific conductance, sulfate, nitrate, and DOC.
- Summer, in situ measurements are made of DO, pH, temperature, and conductivity
- Why: Minimize equipment required per visit

(Roth et al. 1997b)

Water Chemistry Assessment Idaho DEQ

Feature: River Physiochemical Index (RPI)

- Based on the Oregon Water Quality Index (OWQI)
 - 8 parameters scored 10-100 then average for index score
- Data from U.S.G.S. (river chemistry network)

Results:

- Correlates with measures of human disturbance
 - Particularly agriculture and forest percentages within a watershed
- Correlates with professional opinion regarding the status of river

Water Chemistry Assessment Common Parameters

Field determined

- Dissolved oxygen
- Temperature
- Specific conductance
- рН

Laboratory determined

- Nutrients: Nitrogen, Phosphorus
- Alkalinity / Acid Neutralizing Capacity (ANC)
- Turbidity
- Chloride
- Sulfate

Water Chemistry Assessment Common Parameters: Dissolved Oxygen

- "the most important of all chemical methods available for the investigation of the aquatic environment" Wetzel and Likens 1979
- Why collect it?
 - Necessary for the survival of many aquatic organisms
 - Many chemical and biological reactions depend on the amount of D.O. present
 - Needed to support other water chemistry measures
- Why low D.O.?
 - decomposing organic material (high bacteria), e.g. algae, manure
 - wastewater discharges
 - high ammonia discharges
 - warmer temperatures
- D.O. cyclic (diel cycle), but a single data point has value

Water Chemistry Assessment Common Parameters: Temperature

Why Collect?

- Needed to support other measures
 - Dissolved oxygen, conductivity, pH, rate and equilibria of chemical reactions, biological activity, fluid properties
- Essential to document thermal alterations
 - natural phenomena
 - human activities
- Useful for classifying streams
 - Coldwater vs. Warmwater

Water Chemistry Assessment Common Parameters: Specific Conductance

■ What is it?

- Measure of capacity of water to conduct an electrical current
- A function of the types and quantities of dissolved substances in water

■ Why collect it?

- Rough measure of ground water intrusion
- Correlates with nutrients
- Indicator of mine waste or waste water

Water Chemistry Assessment Common Parameters: pH

■ What is it?

- A measure representing the hydrogen-ion activity of water
- Can be natural

Why collect it?

- Useful for stream classification
 - Blackwater systems vs Other
- Can increase with
 - agriculture (runoff from liming)
 - acid rain
 - can decrease pH
 - reduce buffering capacity

Water Chemistry Assessment Common Parameter: Nutrients (Nitrogen and Phosphorus)

Common sources:

- Agricultural and urban uses of fertilizer
- Agricultural use of manure
- Combustion of fossil fuels
 - Increased levels of total nitrogen and total phosphorus

Note: Chlorophyll can serve as a surrogate for nutrients

Water Chemistry Assessment Common Parameter: Nutrients (Nitrogen and Phosphorus)

- Potential effects on systems:
 - can alter trophic dynamics
 - increase algal and macrophyte production
 - increase turbidity
 - decrease average D.O. concentrations
 - increase fluctuations in diel D.O. and pH.

Water Chemistry Assessment Common Parameter: Nutrients (Nitrogen and Phosphorus)

- Specific effects
 - Nitrogen Ammonia is toxic to fish
 - Phosphorus
 - High excessive plant growth (eutrophication)
 - Low can be culturally oligotrophic
 - Harvest of migrating salmon removes potential nutrient contributions of post-spawn salmon carcass'

Water Chemistry Assessment Common Parameters: Alkalinity / ANC

■ What is it?

- measures of the ability of a sample to neutralize strong acid
- Why collect it?
 - Can provide information on
 - efficiency of wastewater processing
 - presence of contamination by anthropogenic wastes
 - maintaining ecosystem health
 - Useful for stream classification
 - geologic nature of stream
 - Determining susceptibility to acid deposition

Water Chemistry Assessment Common Parameter: Chloride

Source:

- Water used by sewage treatment plants
 - Indicator of sewage input
 - Low-flow chloride concentration
 - Increase with population density
 - Decline with increase discharge
 - Good measure of discharge
- Salt from roads (also adds sodium)
 - Urban and rural areas
- Can be concentrated by irrigation
- Impact: fish kills and changes in water chemistry

Water Chemistry Assessment Common Parameters: Turbidity

■ What is it?

clay, silt, finely divided organic and inorganic matter, soluble colored organic compounds, plankton, and microscopic organisms

American Public Health Association 1992

Why collect it?

Indicator of the condition and productivity of a system

Water Chemistry Assessment Common Parameter: Sulfate

Sources:

- Mining activity
- Naturally occurring
 - Coal seam
 - Sulfur containing rock or soils
- Component of acid rain
- Concentrated by irrigation practices

Effects

- Taste and odor
- Changes in surface water, chemistry and aquatic biota

