National Biological Assessment and Criteria Workshop

Advancing State and Tribal Programs

Coeur d'Alene, Idaho 31 March – 4 April, 2003

Florida Lake Biocriteria and Bioassessment Development

Presented by

Jim Hulbert & Dana Denson, Florida Department of Environmental Protection Jeroen Gerritsen, Tetra Tech, Inc.

LAKES 101

FLORIDA'S BIOCRITERIA/ BIOASSESSMENT HISTORY

- Macroinvertebrate program started in 1948
- Single metric indices:
 - Beck's Biotic Index in 1950; changed to Florida Index in 1980's
 - Shannon Index into Florida Administrative Code in late 1980's
- Primarily Risk Assessment for organic pollution/DO (wastewater effluents)
- Problems with single metric indices
- Risk Assessment became for NPS (nutrients) in 1990's
- Bioassessment and Biocriteria documents developed, following EPA's recommended procedures:
 SCI in 1996; LCI in 2000

Silver Glen Spring, Ocala National Forest

 >1000 powerboats anchored in spring run at times. • Many remain for days; most with no sanitary facilities.

Midgie Mouse

BIOLOGICAL INTEGRITY

Biological integrity is the ability of an aquatic ecosystem to support and maintain a balanced community of organisms having a species composition, diversity, and functional organization comparable to that of the natural habitats within a region.

(Karr and Dudley 1981)

Level IV Sub-ecoregions Level III Ecoregions

Level IV Sub-Ecoregions for Lakes

Establishing Reference Sites and Conditions

Determine sources of effect (NPS, sedimentation, turbidity, human or agricultural activity, proximity of roads)

Evaluate vegetation (shoreline, complexity, age, extent, quality)

Evaluate biological health of candidate sites

Paleolimnology

Local expert consensus

Review historical data

Conduct aerial and ground reconnaissance

Lake Campbell clear, acid

Big Blue Lake clear, acid

Lake Formation

Lake Louisa colored, acid

Lake Seminary (best available) clear, acid

Lake Tsala Apopka naturally eutrophic

Lake Apopka culturally eutrophic

Development of Invertebrate Index

- Examine responsiveness of 33 metrics
 - compare reference and non-reference lakes
 - by lake type
- Select responsive, not overly redundant metrics for multimetric index

FW macroinvertebrate indicators

- "EPT" larval mayflies, stoneflies, and caddisflies
 - occur mainly in clean and flowing streams
 - adult stages very short-lived
 - stoneflies chiefly in Panhandle area
 - well known to fly fishermen

Dragonflies and Damselflies (Odonata)

various species of Argia

Boyeria vinosa

bifid epiproct

Response varies among lake types

Hulbert Index (HI)

5 practical lake classes

Acid clear

Southeastern Plains (65) Southern Coastal Plain (75)

Acid colored

Alkaline clear

Alkaline colored

WQ Index (trophic)

Benthic Lake Index

Invertebrate index of 6 metrics:

- Total taxa
- EOT taxa (mayflies, dragonflies, caddisflies)
- Hulbert tolerance index (HI; macroinvertebrate part)
- Shannon-Wiener diversity
- % EOT
- % Diptera

Works best in clear lakes (<60 PCU)

Benthic Index

Conclusions

- No single index (among 5) was able to consistently discriminate reference from stressed lakes. Use of two indexes will allow assessment throughout Florida
 - benthic macroinvertebrate index for uncolored lakes (color \leq 20 PCU)
 - Trophic index for colored lakes (color > 20 PCU)
- Benthic macroinvertebrate assemblage associated with color and transparency
 - highly colored lakes have depauperate benthic fauna tolerant to low DO, organic muck

Conclusions

- Throughout Florida, the lake index is associated with trophic state.
- Lake index and trophic state are associated with urban or agricultural land use in 2 types:
 - Acid, clear lakes of region 65 (Panhandle uplands)
 - Alkaline, colored lakes throughout

Recommendations

- Adoption of 2 LCIs
 - macroinvertebrate LCI for clear lakes (< 80 PCU?)
 - trophic LCI for colored lakes (> 20 PCU)

- Further calibration and testing of benthic LCI in acidclear lakes, especially stressed or altered lakes
- Examination of 20-80 PCU "intermediate" color range
- Use LCIs as primary response variable for nutrient criteria development

Floristic Quality Index Development

- Compile list of all taxa sampled
- Floristic quality response form
 - Species list
 - Coefficient of Conservation scoring criteria
- Compile and calculate "Coefficient of Conservation" (C of C)
- Calculate the "Floristic Quality Index"

Floristic Quality Index

"Simple Mean" Coefficient of Conservation

Avg C of C = (\sum C of C_{*ijk*})

where *j* is the sampling unit, *i* is each species at unit *j* and *k* is the weighting factor

Coefficient of Conservatism Scoring Criteria

(modified from Fennessy et al. 1996)

- 0 Alien and invasive native taxa
- 1.0 3 Tolerant taxa
- 3.1 6 Ubiquitous taxa
- 6.1 9 Intolerant (sensitive) taxa
- 9.1 10 Taxa that exhibit high degrees of fidelity to a narrow set of ecological conditions.

Habitat Assessment

Field observations by trained biologist.

Accompanies biological sampling.

If habitat is impaired, biota will be adversely affected, despite presence of good water quality.

STATE OF FLORIDA DEPARTMENT OF ENVIRONMENTAL PROTECTION

LAKE HABITAT ASSESSMENT FIELD DATA SHEET (2-22-00)

STORET STATION NUMBER	DATE (M/D/Y):	LAKE NAME:											FIBLD II)/NAME	3			
ECO-REGION: COUNTY:		ION/DE	IN/DESCRIPTION:											Ú	\KΈ ŚĺZ	B:		
Parameter Hydrology	No surface inflo present, very lor residence time, s seepage dominat	w or outflow 19 water groundwater tes	Surface water inflow present, but flow is rare, moderate to long water residence time				Surface water inflow and outflow present (or outflow only), sometimes with visible flow, short water residence time					Impounded, hydrology of system artificially controlled						
Color	Very clear, uncolored water (benthic sampling appropriate)			Water somewhat tannin stained (benthic sampling appropriate)				Dark, discolored water (water color 40 PCU or higher)					Visibility extremely reduced due to high color					
	Optimal		Suboptimal				Marginal					Poor						
Secchi	Secchi>3 m or VOB 20 1	Secchi (m) 9 18 17 16	3 m 1.4_ 15	2.8	2.2 13	1.1	8	10	0. 9	0.6	7	6.7		4	4 01 3	0.3 2	0.2	
Vegetation Quality	Diverse, expecte vegetation (eme: submersed), less nuisance taxa	Mostly expected native plants, but moderate growths (6%-20% of lake) of nuisance macrophytes, or more than 50% of lake covered with plants					Large masses (21%-40%) of nuisance macrophytes (e.g., Hydrilla, hyacinth, cattail, etc.) or algal mats					Lake choked (>40%) with nuisance macrophytes (duckweed, hyacinth, etc.) or algal mats, or few plants present at all (e.g., plants removed)						
	20 19 18	3 17 16	15	5 14	13	12	11	10	9	8	7	6	5	4	3	2	1	
Stormwater Inputs	sheet flow over non-cultivated and/or natural vegetation			(ditches, pipes, cultivated vegetation < 10%) but good BMPs in place				stormwater (ditches, pipes, cultivated vegetation 11%-50%) but few BMPs in place					(ditches, pipes, cultivated vegetation > 51%) and no or ineffective BMPs in place					
Bottom Substrate Quality	20 19 18 17 16 Diverse mixture of sand, detritus, with small amounts of CPOM/mud/muck. SAV may be present			15 14 13 12 11 Mixture of sand or olay and detritus with higher % CPOM/mud/muck content. SAV may be present					10 9 8 7 6 Moderate layer of CPOM/ mud/muck, or hardpacked sand only, or moderate algal growth (mats or Chara) on bottom					5 4 3 2 1 Thick deposits of CPOM, or fine detritus and anaerobic muck/mud/silt, or algal growth or nuisance plants (Hydrilla) cover bottom				
	20 19 18	17 16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	
Lakeside Adverse Human Alterations	Very few man-made structures, roads, or other disturbance adjacent to lake (<10%)			Moderate disturbance visible (structures, roads or other), 10%- 49% lakeside affected				Many structures, roads or other human disturbance visible (50%- 70%) lakeside affected)					Highty developed or disturbed (>70% of lakeside affected)					
	20 19 18 Expected paties	3 17 16	15	14	13 Fabore	12	11	10	9	8 shore	7	6	5 < 20%	4	3 reline	2	1	
Upland Buffer Zone	expected naive vegetation between uplands and littoral zone, greater than 90% of shore with >18 m buffer			>>re-51 % of shorebline with >18m buffer or >75% with 10m to 18m buffer					>18m buffer or 50%-74% with 10m to 18m buffer					>18m buffer				
	20 19 18	3 17 16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	
Adverse Watershed Land Use	Score the potential effects from adverse human land uses, based on a continuum of amount and type, with least to most adverse as follows: Native vegetation, Silviculture, Pasture or Citrus, Low Density Residential, Row Crops, Commercial, High Density Residential, Urban, Industrial																	
	20 19 1	15 14 13 12 11					10 9 8 7 6					54321						
Total Score	COMMENTS:																	