LAKES 101

N

Coeur d'Alene, Idaho 31 March – 4 April, 2003

Reservoir Biological Assessment and Criteria: TVA Methods and Experiences

Presented by

Tyler Baker, Tennessee Valley Authority (TVA)

Tennessee River System

Why Is TVA Involved in Water Quality Monitoring?

- TVA's focus for its monitoring program is aimed at:
 - Stewardship responsibilities
 - Operating the reservoir system
 - Responding to stakeholders
- TVA has no regulatory authority related to water quality monitoring.
- TVA monitoring is not aimed at use attainment per sec'.

Presentation Outline – Reservoir Ecological Health

I. Monitoring Design Considerations

II. Data Evaluation Considerations

III. TVA Reservoir Ecological Health Rating Methods

March 31 – April 4, 2003 National Biological Assessment and Criteria Workshop, LAKES 101_04

A. Monitoring Design – Selection of Indicators and Sampling Frequency

- Dissolved oxygen: Monthly (April October)
- Trophic status (chlorophyll/nutrients): Monthly (April – October)
- Sediment quality: Annually (summer)
- Benthic macroinvertebrate community: Annually (fall)
- Fish assemblage: Annually (fall)

Ecological Indicators & Reservoir "Compartments"

"Compartments" in Reservoir Cross-section

B. Monitoring Design - Sample Locations

II. Data Evaluation Considerations

- Is the reservoir in good condition; must have reference or yardstick for comparison.
- Standard approaches used to determine reference conditions for streams are not appropriate for reservoirs.
 - Reservoirs lack natural reference sites.
 - Reservoirs have had little opportunity to evolve an adaptive community.
 - Not enough information available to model all indicators used in reservoir monitoring.

A. Data Evaluation – Reservoir Classification

(Important Considerations: size, gradient/depth, ecoregion, reservoir management objective, etc.)

B. Data Evaluation – A Fundamental Question To Be Answered

Should reservoir ecological health evaluations be based on:

- Ideal conditions, or
- The best conditions attainable/observed given the environmental and operational characteristics of the dam/reservoir?

Data Evaluation – TVA Response to The Fundamental Question

- Ideal Condition (Regardless of Reservoir Class)
 - DO
 - Sediment Quality
- Best Expected/Attainable Condition
 - Benthos
 - Fish Assemblage
- Combination of the Two Approaches
 Trophic Status (Chlorophyll)

III. TVA Reservoir Ecological Health Rating Methods

Results for each indicator at each site are given a rating from 1 (poor) - 5 (good);

- Ratings from all sites within a reservoir are then summed;
- That sum is then divided by the maximum possible sum for the reservoir to provide a single overall score which is expressed as a %.
- Scores generally range from the low 40s (poor) to high 80s (good).

A. TVA Reservoir Ecological Health Rating Methods - DO

- The rating criteria represent a multidimensional approach.
 - Water column DO
 - Bottom DO
- A DO concentration <2.0 mg/L is the critical value.

Reservoir Cross-sectional Area Showing the Area with DO Less Than 2.0 mg/L

Example of a Reservoir with a Good DO Rating

Blue Ridge Reservoir - ToRM 54.1

Dissolved Oxygen (mg/L)

Example of a Reservoir with a **Poor DO Rating**

Cherokee Reservoir - HRM 55.0

Dissolved Oxygen (mg/L)

B. TVA Reservoir Ecological Health Rating Methods – Trophic Status

 Scoring criteria were developed separately for each of the two classes of reservoirs.
 – Reservoirs expected to be mesotrophic
 – Reservoirs expected to be oligotrophic

 Ratings are developed based on seasonal average concentrations compared to a sliding scale.

Trophic Status Rating for Reservoirs Expected to be Mesotrophic

Chlorophyll-a Scoring Methods for Mesotrophic Reservoirs

Trophic Status Rating for Reservoirs Expected to be Oligotrophic

Chlorophyll-a Scoring Methods for Oligotrophic Reservoirs

(Blue Ridge Ecoregion)

C. TVA Reservoir Ecological Health Rating Methods – Sediment Quality

- Based on chemical analysis for:
 - Metals (compared to sediment guidelines adapted from EPA Region 5 [EPA, 1977]).
 - Pesticides and PCBs (compared to laboratory detection limits)
- Rating developed as follows:
 - No analyte exceeding highest rating= 2.5
 - One or two exceeding medium rating= 1.5
 - Three or more exceeding lowest rating= 0.5

March 31 – April 4, 2003

National Biological Assessment and Criteria Workshop, LAKES 101_04

D. TVA Reservoir Ecological Health Rating Methods – Benthos

- Based on 7 metrics or characteristics.
- Scoring criteria for each metric based on the trisection of data from TVA reservoirs.
- Criteria vary by reservoir class, ecoregion, and zone.
- Score is the total of these metrics (from 7 35).
- Scores converted to rating from 1-5.

Metrics Used to Evaluate Benthic Macroinvertebrate Results

Metric	R-O-R Res.	Trib Res.
Taxa Richness	X	X
EPT Taxa	X	
Long-lived Taxa	X	
Non-Chiron. / Oligo. Density	X	Х
Percent Oligochaetes	X	Х
Dominance	X	Х
Zero Samples	X	Х
Non-Chiron. / Oligo. Taxa		X
Chironomid Density		Х

E. TVA Reservoir Ecological Health Rating Methods – Fish Assemblage

- Based on 12 metrics or characteristics.
- Scoring criteria for each metric is based on the trisection of data from TVA reservoirs.
- Criteria vary by reservoir class, ecoregion, and zone.
- Score is the total of these metrics (from 12 60).
- Scores converted to rating from 1-5.

23

Metrics Used to Evaluate Fish Assemblage Results

Species Richness and Composition Metrics

- 1. Total number of species
- 2. Number of centrarchid species
- 3. Number of benthic invertivore species
- 4. Number of intolerant species
- 5. Number of top carnivore species
- 6. Percent tolerant individuals (excluding Young-of-Year)
- 7. Percent non-native species
- 8. Percent dominance by one species

Trophic Composition Metrics

- 9. Percent individuals as omnivores
- 10. Percent individuals as top carnivores

Abundance Metrics

11. Average number per run

Fish Health Metrics

12. Percent individuals with anomalies

Reservoir Ecological Health Scoring Process

Average Reservoir Scores (1994-2001)

March 31 – April 4, 2003

Reservoir Ecological Health

Long-Term Average Reservoir Ecological Health Scores

March 31 – April 4, 2003

Long-Term Ecological Health Scores for Three Reservoirs

March 31 – April 4, 2003 National Biological Assessment and Criteria Workshop, LAKES 101_04

Most Notable Trend Is Increase In Chlorophyll

	Decreasing		
	Trend		
Type of	(Negative	No Trend	Increasing Trend
Reservoir	Slope)	(Flat Slope)	(Positive Slope)
Run-of-	1 site	3 sites	20 sites (10 sites
the-river			significant $\alpha = 0.05$)
Tributary	0	4 sites	30 sites (16 sites
Reservoirs			significant $\alpha = 0.05$)
Total	1 site	7 sites	50 sites (26 sites
			significant $\alpha = 0.05$)

Regressions: Concentration vs Time (1990-2001) Total of 59 locations

March 31 – April 4, 2003

National Biological Assessment and Criteria Workshop, LAKES 101_04