National Biological Assessment and Criteria Workshop

Advancing State and Tribal Programs

Coeur d'Alene, Idaho 31 March – 4 April, 2003

Index 201

Confidence: Variability & Reliability

Presented by Jeroen Gerritsen, Tetra Tech, Inc.

Problem

- Perceived variability of community-level bioassessment
 - Many species, taxonomic uncertainty
 - Here today, gone tomorrow
 - Plethora of sampling and analytical methods; no standardization

Solutions

- Standardized collection methods
- Stable metrics and indexes (no abundance, ratio metrics)
- Estimate variability!

Estimating variability

- Replicate samples: measurement error
- Seasonal: among index periods (spring, fall)
- Interannual: repeat site visits (2-6 yr)
- Among sites within regions
- Among regions

Level IV Sub-Ecoregions for Streams

Florida Peninsula

Genus level, 100 subsample

Chemical and biological

- Biotic indexes (100 pt)
 - Multiyear s.d. = 7
 - Or, approximately 9-11% of reference site scores
- Conductivity (VA)
 - Log-transformed s.d = 0.145
 - 1 s.d. is -29% to +40% of measured conductivity
- Total P (Florida)
 - 1 s.d. is -50% to +100% of measured value

Conclusions

- High variability of biological measures is a myth!
- Equivalent power of detection for a **10%** decline in biotic index, and a **doubling** of nutrient concentrations

Biocriteria decision points

Where is the threshold?

Reference sites in an imperfect world

Decision Errors

- Type I false positives, i.e., reject the null hypothesis when it is true
 - Unnecessary regulation
- Type II false negatives, i.e., accept the null hypothesis when it is false.
 - Continued degradation of the resource

Decision Errors

Decision

	Accept null (Do not detect effect)	Reject null (Detect effect)
Null is true	Correct	Type I error
(no effect)	<i>p</i> =1-α	$p = \alpha$
	confidence	significance
		(false positive)
Null is false	Type II error	Correct
(effect exists)	$p = \beta$	<i>p</i> =1- β
	(false negative)	power

Issues in setting thresholds

- What is balance between Type 1 and Type 2 errors?
- Variability
- Confidence in reference site selection
- What is politically acceptable or desirable?

Where does impairment begin?

Null hypothesis: site is member of unimpaired population. Test: Estimate the percentile.

Wyoming Plains Multimetric index

Reference sites Mean = 59 Median = 61 s.d. = 13.5 25% = 51 5% = 36 Minimum = 21

Biocriteria

Indexes And Tiered Aquatic Life Use

Draft Tiered Aquatic Life Use

- Human disturbance gradient
- Biological condition gradient

*Protection & Propagation of Fish, Shellfish and Wildlife

Biological Condition Gradient

- 1 Native or natural condition
- 2 Minimal loss of taxa; some density changes
- 3 Some replacement of sensitive-low abundance taxa; functions fully maintained
- 4 Some sensitive taxa maintained; notable replacement by tolerant taxa; altered distributions; functions maintained
- 5 Tolerant taxa more dominant; sensitive taxa rare; functions altered
- 6 Severe alterations of structure and function

Tiers

- Native or natural condition logical integrity Minimal GW of Gaa; some density changes 1
- 2
- Some replacement of sensitive-low abundance training functions fully maintained Goal: degraded, but as a sensitive taxarime Goal: notable replacement 3
- by toleraot taxa; altereabletsWittons; functions 4 maintained
- Tolerant taxa more dominant fensitive taxa rare; functions altered 5
- Severe alteratio f structure and function 6

*Protection & Propagation of Fish, Shellfish and Wildlife

How many tiers can we detect?

- Depends on variability of our indicator
- What is range of index value for single category in biological condition gradient?
- Assessment "bands"

Wyoming O/E

Non-reference sites.

Mean = 0.79

Green = 0.8 - 1.2	(53%)
Yellow = 0.6 - 0.8	(28%)
Red = < 0.6	(19%)

Reference site O/E values.

Mean = 0.98S.D. = 0.16 10^{th} percentile = 0.73 90^{th} percentile = 1.19

Wyoming Rocky Mts. Multimetric index

Non-Reference

Green, 51-70 = 48% Yellow, 32-51 = 36% Red, 14-32 = 6.6% Gray, <14 = 2%

Reference Mean = 61 Median = 61 s.d. = 11.0 20% = 51 80% = 70

Mountain Index

Wyoming Plains Multimetric index

Non-Reference

Green, 49-71 = 14% Yellow, 27-49 = 41% Red, 5-27 = 40% Gray, <5 = 4%

Reference Mean = 59 Median = 61 s.d. = 13.5 20% = 49 80% = 71

