#### National Biological Assessment and Criteria Workshop

Advancing State and Tribal Programs



Coeur d'Alene, Idaho 31 March – 4 April, 2003

Use of RIVPACS-type Predictive Models in Aquatic Biological Assessment: Theory and Application

Chuck Hawkins, Utah State University; Rick Hafele, Oregon Dept. of Environmental Quality

### Index 101

#### The Concept: O versus E as a Measure of Biological Integrity

the *set* of native taxa expected at a site that are actually observed.

the set of native taxa expected to occur at a site in the absence of human-caused stress.

The deviation of O from E is a measure of compositional similarity and thus a community-level measure of biological integrity.

**O** It has an intuitive biological meaning (taxa are the ecological capital on which all ecosystem processes depend) and is interpretable by researchers, managers, the public, and policy makers.

O It means the same thing everywhere, which allows direct and meaningful comparisons across regions and states.

#### • Its derivation and interpretation are independent of type and knowledge of stressors in the region.

### O It is quantitative.

#### Great Britain

One Model Can Apply to all Streams, Lakes, or Wetlands within a Large Region

## Major Issues for the 101 Course

- Understanding the units of measure.
- Predicting the expected taxa.
- Calculating O/E, the biological condition value.
- O Determining if an assessed site is impaired.

March 31 - April 4, 2003

National Biological Assessment and Criteria Workshop, INDEX 101\_06

# Basic Concepts

#### O Predictive models base assessments on the compositional similarity between observed and expected biota.

## The Unit of Measure

- The deviation of O from E is difficult to express in a simple way given the multivariate nature of both terms.
- We need a simple currency that also retains the information content of compositional similarity.
- We also need a way of dealing with the fact that we *sample* the biota and thus deal with probabilities not absolutes.

### O/E: A Simplified Expression of a Multivariate World

- Define E as the *number* of native taxa expected to occur at a site in the absence of human-caused stress.
- Define O as the *number* of taxa that are predicted to occur that are actually present.
- The ratio O/E is the *proportion* of taxa observed that should have been collected.
- O/E is not based on raw taxa richness; O is constrained to include only those taxa with a probability of capture greater than a stated threshold.

#### Basic Concepts (Units of Measure & the Expected Taxa)

|                                   | Replicate Sample Number |   |   |   |   |   | Freq |   |   |    |                   |
|-----------------------------------|-------------------------|---|---|---|---|---|------|---|---|----|-------------------|
| Species                           | 1                       | 2 | 3 | 4 | 5 | 6 | 7    | 8 | 9 | 10 | (P <sub>c</sub> ) |
| A                                 | *                       | * | * | * | * | * | *    | * | * | *  | 1.0               |
| B                                 | *                       | * |   | * | * | * |      | * | * | *  | 0.8               |
| C                                 | *                       |   | * |   | * | * |      |   | * |    | 0.5               |
| D                                 |                         | * | * |   |   |   | *    |   | * | *  | 0.5               |
| E                                 |                         |   |   |   | * |   |      |   |   |    | 0.1               |
| Sp Count                          | 3                       | 3 | 3 | 2 | 4 | 3 | 2    | 2 | 4 | 3  | 2.9               |
| Species Richness is the Currency. |                         |   |   |   |   |   |      |   |   |    |                   |

 $E = \sum P_c = 0$  number of species / sample = 2.9.

### O/E as a Measure of Impairment

| Expected Bioto    | Observed Biota |                       |                       |                       |                       |
|-------------------|----------------|-----------------------|-----------------------|-----------------------|-----------------------|
| Species           | Рс             | <i>O</i> <sub>1</sub> | <i>O</i> <sub>2</sub> | <i>O</i> <sub>3</sub> | <i>O</i> <sub>4</sub> |
| A                 | 1.0            | *                     | *                     | *                     | *                     |
| В                 | 0.8            | *                     |                       | *                     |                       |
| С                 | 0.5            |                       | *                     |                       |                       |
| D                 | 0.5            | *                     |                       |                       |                       |
| E                 | 0.1            |                       |                       |                       |                       |
| F                 | 0              |                       |                       |                       | *                     |
| Expected Sp Count | 2.9            | 3                     | 2                     | 2                     | 1                     |
|                   | O/E            | 1.03                  | 0.69                  | 0.69                  | 0.34                  |







The basic approach to modeling pc's and estimating E was worked out by Moss et al.\*

#### *River InVertebrate Prediction and Classification System (RIVPACS)*

\*Moss, D., M. T. Furse, J. F. Wright, and P. D. Armitage. 1987. The prediction of the macroinvertebrate fauna of unpolluted running-water sites in Great Britain using environmental data. Freshwater Biology 17:41-52.

#### RIVPACS-type Models: 8 Basic Steps

- 1. Establish a network of reference sites.
- 2. Establish standard sampling protocols.
- 3. Classify sites based on their biological similarity.
- 4. Estimate individual probabilities of capture by relating environmental setting to the biological classification (multivariate statistics).
- For each assessed site:
- 5. Sum  $p_c$ 's to estimate E.
- 6. Count O
- 7. Calculate O/E.
- 8. Determine if observed O/E is different from reference?

## Creating RIVPACS Models

1. Establish a network of reference sites that span the range of environmental conditions in the region of interest.



# 2. Use standard protocols to sample biota and habitat features.





## Sampling Effort

# 3. Classify sites in terms of their compositional similarity.



#### 4. Derive a multivariate model to predict from environmental features the probabilities of sites belonging to biologically-defined groups and the probabilities of capturing each taxon.

P<sub>c</sub> = f(elevation, watershed area, geology)

#### The Discriminant Model



#### Combining the Discriminant Model + Frequencies of Occurrence Provides Estimates of Probabilities of Capture



| 5. Sum $p_c$ 's to            | Species | P <sub>c</sub> |
|-------------------------------|---------|----------------|
| estimate the                  | 1       | 0.70           |
| number of                     | 2       | 0.92           |
| taxa (E) that                 | 3       | 0.86           |
| should be                     | 4       | 0.63           |
| observed at<br>the site based | 5       | 0.51           |
| on standard                   | 6       | 0.32           |
| sampling.                     | 7       | 0.07           |
|                               | 8       | 0.00           |
|                               | E       | 4.01           |

| 6. Determine O, | Species | P <sub>c</sub> | 0 |
|-----------------|---------|----------------|---|
| the number      | 1       | 0.70           | * |
| of predicted    | 2       | 0.92           | * |
| taxa that       | 3       | 0.86           |   |
| were            | 4       | 0.63           |   |
|                 | 5       | 0.51           | * |
| collected (O).  | 6       | 0.32           |   |
|                 | 7       | 0.07           |   |
| 7. Calculate    | 8       | 0.00           |   |
| O/E.            | E       | 4.01           | 3 |
|                 |         |                |   |

O/E = 3 / 4.01 = 0.75

8. Determine if the O/E value is significantly different from the reference condition by comparing against model predictions and error.



National Biological Assessment and Criteria Workshop, INDEX 101\_06

#### Statistical Issues Regarding Inferences of Impairment

Single Sites/Samples Hypothesis: the observed O/E value is from the same distribution of values estimated for reference sites, i.e., the site is equivalent to reference.



### Statistical Issues Regarding Inferences of Impairment

Multiple Sites or Replicated Samples at a Site

Hypothesis: the observed mean is different from 1 (the reference mean).



#### RIVPACS-type Models: 8 Basic Steps

- 1. Establish a network of reference sites.
- 2. Establish standard sampling protocols.
- 3. Classify sites based on their biological similarity.
- 4. Estimate individual probabilities of capture by relating environmental setting to the biological classification (multivariate statistics).
- For each assessed site:
- 5. Sum  $p_c$ 's to estimate E.
- 6. Count O
- 7. Calculate O/E.
- 8. Determine if observed O/E is different from reference?

RIVPACS Outputs Can Also Be Used to Identify Sensitive and Tolerant Taxa

# Sensitivity Index:

# # sites taxon was observed # sites taxon was expected