National Biological Assessment and Criteria Workshop

Advancing State and Tribal Programs

Coeur d'Alene, Idaho 31 March – 4 April, 2003

INTRODUCTION TO BIOLOGICAL ASSESSMENTS & CRITERIA

Course Presenters

William Swietlik, Michael Barbour, Chris Yoder

BIO 101

National Biological Assessment and Criteria Workshop

Advancing State and Tribal Programs

Coeur d'Alene, Idaho 31 March – 4 April, 2003

BIO 101

Introduction

Presented by William Swietlik, USEPA Office of Science & Technology

Take Home Concepts

The Basics:

- What are biological assessments and criteria.
- How they are derived.
- How they fit into water quality standards.
- How they can be used in water quality management.

THEME

"The true health of our aquatic environments is reflected by the biological communities that reside within them"

> Prof. J. Karr University of Washington

To Restore & Maintain the Chemical, Physical, & <u>Biological Integrity</u> of the Nation's Waters

Elements of Ecological Integrity

ECOLOGICAL INTEGRITY

March 31 – April 4, 2003 National Biological Assessment and Criteria Workshop, BIO 101_01

BIOLOGICAL INTEGRITY

Definition:

The ability of an aquatic ecosystem to support and maintain a balanced adaptive community of organisms having a species composition, diversity, and functional organization comparable to that of natural habitats within a region.

STATUTORY AUTHORITY

Section 303(c)2(B):

"...where numeric criteria are not available, States shall adopt criteria based on biological.. assessment methods..."

STATUTORY AUTHORITY

Section 303(c)2(A):

...State water quality standards shall consist of <u>designated uses</u> of navigable waters and the <u>criteria</u> for protecting such uses.

...State water quality standards shall protect and enhance the quality of water and serve the purposes of the Act, including propagation of fish and wildlife.

March 31 – April 4, 2003 National Biological Assessment and Criteria Workshop, BIO 101_01

THE LINKAGE FROM STRESSOR EFFECTS TO ECOSYSTEM RESPONSE

Figure 1. Five classes of environmental variables that affect water resource integrity and overall biological condition (modified from Karr et al. 1986).

VALUE OF BIOLOGICAL CRITERIA: Ohio Comparison of Biosurvey with Chemical Evaluation

BIOASSESSMENT

Definition:

An evaluation of the biological condition of a water body using biological surveys of the structure and function of the community of resident biota.

BIOLOGICAL CRITERIA (Biocriteria- in Standards Sense)

Definition: *narrative* descriptions or numerical values of the structure and function of aquatic communities in a water body necessary to protect the designated aquatic life use, implemented in, or through water quality standards.

NARRATIVE AND NUMERIC BIOCRITERIA

- <u>Narrative Biocriteria</u>- General Statements of the Structure and Function of Aquatic Communities in a Water Body Necessary to Protect the Designated Aquatic Life Use.
- Numeric Biocriteria Specific Quantitative Measures of the Structure and Function of Aquatic Communities in a Water Body Necessary to Protect the Designated Aquatic Life Use.

Other Meaning

• **Biocriteria**– (scientific) quantified values representing the biological condition of a water body as measured by structure and function of the aquatic communities typically at reference condition.

TYPICAL APPROACHES TO BIOCRITERIA DEVELOPMENT

✓ *Multimetric Index:* a number that integrates one or more biological metrics to express a site's condition or health. (IBI).

✓ *Multivariate Predictive Model*: a predicted value of the biological condition based on what is observed at a site versus what is expected. (RIVPACS)

✓ *Discriminant Models*: based on aquatic life use classes

MULTIMETRIC APPROACH

<u>Attribute</u>: any measurable component of a biological system.

Metric: attribute that shows a quantitative change in value along a gradient of human influence.

Multimetric Index: a number that integrates several biological metrics to express a site's condition or health. *Index of Biotic Integrity (IBI).*

<u>MEASURES OF COMMUNITY</u> <u>STRUCTURE AND FUNCTION (Metrics)</u>

- ✓ Species Richness
- Tolerant/Intolerant Species
- **V** Distribution of Trophic Feeding Groups
- Diseases and Anomalies
- **V** Number of Individuals
- ✓ Non-native Species
- Reproductive Preferences
- Total Number of Species
- Mean Individual Size Measurement
- ✓ Biomass

PROCESS FOR DEVELOPING & IMPLEMENTING BIOLOGICAL CRITERIA

DEVELOPING BIOCRITERIA (Multimetric approach)

- **1. Select Standardized, Consistent Biosurvey Protocols**
- **2. Classify Water Bodies into Similar Groups or Classes**
- **3. Identify Reference Sites in Each Class**
- 4. Conduct Bioassessments at Unimpaired Reference Sites in Each Class
- **5. Derive Reference Conditions for Each Class**

6. Conduct Bioassessments at Impacted Sites

DEVELOPING BIOCRITERIA

- 7. Test Attributes for Response to Gradient of Conditions
- 8. Select Responsive Metrics
- **9. Develop Scoring Criteria for Each Metric**
- **10. Aggregate Metrics With Scoring Criteria to Derive Biocriteria Index**
- **11. Develop Biocriteria for each Aquatic Life Use**
- 12. Apply Biocriteria to Water Bodies to Protect Those Uses

Review Fish IBI Metrics for North America and Karr IBI

Multivariate Approach – (RIVPACS)

Figure out which taxa you=should probably capture

Compare to what you <u>actually observe</u> \pm \bigcirc

The final measure = percent of expected taxa present

= O/E

Steps in the Multivariate Process

- 1. Describe the continuum of assemblage types using 'reference' streams
- 2. Link assemblage types to physical-chemical features
- 3. Predict expected (E) assemblage of a test stream based on physical appearance
- 4. Compare to the observed (O) assemblage
- 5. O/E provides a simple measure

Biological Surveys

✓ Classification

Reference Condition

KEY COMPONENTS OF BIOLOGICAL CRITERIA

Biological Surveys

SELECTING COMMUNITY COMPONENTS

Target Species & Taxa

 Serve as Effective Indicators of Biological Response to Effects of Human Activity

Represent a Range of Pollution Tolerances

Provide Predictable, Repeatable Results

Are Readily Identifiable by State
Personnel

Streams, Small Rivers, Lakes, Estuaries

March 31 – April 4, 2003 National Biological Assessment and Criteria Workshop, BIO 101_01

COMMUNITY COMPONENTS

Bioassessment -- Streams and

Small Rivers

Invertebrate community bioassessment using a kicknet

March 31 – April 4, 2003 National Biological Assessment and Criteria Workshop, BIO 101_01

 ✓ Identifies Regions of Ecological Similarity from Which To Select Reference Sites.

 Biological Conditions Expected to be Similar.

Level III Ecoregions of the United States

REFERENCE CONDITION

The benchmark for determining biological conditions.

- Regional Reference Sites
- Site-Specific Reference Sites
- Historical Data
- Model-Based Approach
- Expert Opinion

Review Examples of Narrative Biocriteria

Review Examples of Numeric Biocriteria

March 31 – April 4, 2003 National Biological Assessment and Criteria Workshop, BIO 101_01

APPLYING BIOCRITERIA

Sample test sites and compare to biocriteria

Stressor Identification

> Identifying Unknown causes of biological impairment

APPLYING BIOCRITERIA IN WATER QUALITY STANDARDS

Biological Assessments and Criteria Can Be Used to Better Define and Protect Aquatic Life Uses

• "Bioassessment-based" designated uses can be subcategorized (or tiered) according to reference conditions, restoration potential, human disturbance and management objectives.

• Once *bioassessment-based* designated uses are established, they can be protected by biocriteria.

BIOLOGICAL INTEGRITY AND DESIGNATED USES

<	_Range of	f Biological C	onditions_	
Natural				
	Cha	nges in Structu	re & Functi	on of
		Biological Co	mmunities	
No Impact				
from Human				
Activities	Minimal			
		Moderate		
			Major	
				Severe
← Ra	ange of Ma	nagement Optio	ns	
(Range of A	quatic Life Use	s)	

Hypothetical Subcategorized Biologically-Based Aquatic Life Uses

Designated Uses

Cold water salmon fishery/natural spawning	$\mathbf{IBI} = 60$
Cold water salmon nursery/rookery	IBI = 50
Cold water salmon passage	IBI = 40
Seasonal cold water salmon passage	$\mathbf{IBI}=30$
Habitat restoration	IBI = 20
Limited aquatic life habitat	IBI = 10

PROGRAM GOALS

✓ All States use bioassessments to **evaluate the health** of aquatic life in all waterbodies

✓ Bioassessment data is used to **better define aquatic life** uses

✓ Quantifiable biocriteria are in all State/Tribal water quality standards to protect aquatic life uses

Biocriteria/bioassessments used to assess the effectiveness of water quality management efforts

✓ Bioassessment data and biocriteria used to better communicate the health of the Nation's waters

FUTURE DIRECTIONS

MAN DESIGNATION DESIGNATION DESIGNATION DESIGNATION DESIGNATION DESIGNATION DESIGNATION DESIGNATION DESIGNATION

- Great Rivers
- Coral Reefs
- Great Lakes
- Intermittent and ephemeral streams

