APPENDIX I

SUMMARIES OF CHRONIC STUDIES CONSIDERED FOR FCV DERIVATION

Dobbs, M.G., D.S. Cherry, and J. Cairns, Jr. 1996. Toxicity and bioaccumulation of selenium to a three-trophic level food chain. Environ. Toxicol. Chem. 15:340-347.

Test Organism: Rotifer (Brachionus calvciflorus), and fathead minnow (Pimephales promelas) 12 to 24 hr-old at start. **Exposure Route:** Dietary and waterborne Water Filtered and sterilized natural creek water supplemented with nutrients (Modified Guillard's Woods Hole Marine Biological Laboratory algal culture medium) for algal growth. Sodium selenate (Na_2SeO_4) was added to test water to obtain nominal concentrations of 100, 200, or 400 µg Se/L. Concentrations remained stable and equal in each trophic level. Control Diet No selenium was added to the water medium for the alga; green alga was free of selenium for the rotifer; and rotifers were free of selenium for the fathead minnow. Selenium Diet Sodium selenate was added to the culture medium for the alga; green alga thereby contained a body burden for the rotifer; and rotifers thereby contained a body burden for the fathead minnow. **Dietary Treatments:** Each trophic level had a different treatment. The green alga was exposed directly from the water (1, 108.1, 204.9, 397.6 µg total Se/L); rotifers were exposed from the water (1, 108.1, 204.9, 393.0 µg total Se/L) and the green alga as food (2.5, 33, 40, 50 µg Se/g dry wt.); and the fathead minnow were exposed from water (1, 108.1, 204.9, 393.0 µg total Se/L) and the rotifer as food (2.5, 47, 53, 60 µg Se/g dry wt.). **Test Duration:** 25 days **Study Design:** A flow-through system utilizing a stock solution of filtered and sterilized creek water controlled at 25°C was used to expose three trophic levels of organisms. Approximately one liter of media was pumped from the algal chamber into the rotifer chamber each day. A cell density between 3 and 6×10^6 cells/ml was delivered to the rotifer chambers. Rotifers were started at a density of $151.4 \pm$ 7.7 females/ml and one liter/day of rotifers containing culture water was intermittently pumped into the minnow chamber. (B. calyciflorus have a life span of about 7 days at 25°C.) The pump was necessary to overcome the swimming ability of rotifers to avoid an overflow tube. Larval fathead minnows (35/chamber) were prevented from escaping by a screened overflow. Chambers were cleaned daily and aeration was provided. All chambers were duplicated for test replication and water was measured for selenium on days 0, 2, 6, 7, 11, 14, 17, 20, and 24. All algal and rotifer biomass and selenium samples were made

on these days. Fathead minnow chambers were measured for biomass, dissolved selenium, and tissue selenium concentrations of days 0, 7, 11, 14, 20, and 24. Additional measurements were made in the 200 μ g Se/L test chambers on the fathead minnow on day 16. Selenium concentrations were maintained near the nominal concentrations and the standard deviation of mean concentrations was less than 4 percent.

Effects Data: Rotifers. Rotifers did not grow well and demonstrated reduced survival at all selenium exposure concentrations during the 25 day test. By test day 7 only the lowest test concentration $(108.1 \ \mu g/L)$ had surviving rotifers which showed a decrease in selenium content from test days 18 through 25. A reduction in rotifer biomass was discernable by test day 4 in the selenium treatments and since all test concentrations had viable rotifer populations present, the effect level was calculated using these data.

Effect of Dietary and Waterborne Selenium on Rotifers after 4 Days Exposure					
Se in water, µg/L	$ \mu g/L \qquad Se in diet, \ \mu g/g \ dw \qquad Se in rotifer tissue, \\ \mu g/g \ dw \qquad dw \qquad dw $				
1	2.5	2.5	0.028		
108.1	33	40	0.025		
202.4	40	54	0.011		
393	50	75	0.003		

<u>Fathead minnows</u>. Due to the reduction of rotifer biomass in the higher test concentrations, fish mortality and reduction in fish growth observed in the latter days of the test was difficult to discern between effects from starvation and selenium toxicity. The data from test day 8 was selected for determining the effect of selenium on fathead minnows because starvation could be excluded as a variable.

Effect of Dietary and Waterborne Selenium on Larval Fathead Minnows after 8 Days Exposure				
Se in water, µg/L	Se in diet, $\mu g/g dw$ Se in fathead minnow tissue, $\mu g/g dw$ average fish weigh mg dw			
1	2.5	2.5	0.8	
108.1	47	45	0.7	
202.4	53	75	0.4	
393	60	73	0.2	

Chronic Value:

Rotifers	42.36 μ g Se/g dw (EC ₂₀)
Fish	$< 73 \mu g$ Se/g dw (LOAEC)-not amenable to statistical treatment; the LOAEC
	was based on the observation that a >50 percent reduction in mean fish weight
	occurred at this tissue concentration.

Rotifer (Dobbs 1996) 0.05 0.04 Weight (mg/ml) 0.03 0.02 0.01 0.00 + 1.0 2 з 4 5 6 7 8 10.0 2 з 4 5 6789 Tissue Se[µg/g dw]

Hamilton, S.J., K.J. Buhl, N.L. Faerber, R.H. Wiedermeyer and F.A. Bullard. 1990. Toxicity of organic selenium in the diet of chinook salmon. Environ. Toxicol. Chem. 9:347-358.

Test Organism:	Chinook salmon (Oncorhynchus tshawytscha Walbaum; swim-up larvae)
Exposure Route:	Dietary only <u>Control Diet</u> Oregon moist pellet diet where over half of the salmon meal was replaced with meal from low-selenium mosquitofish $(1.0 \ \mu g \ \text{Se/g} \ \text{dw})$ collected from a reference site
	Selenium Diet #1 Oregon moist pellet diet where over half of the salmon meal was replaced with meal from high-selenium mosquitofish (35.4 μ g Se/g dw) collected from the San Luis Drain, CA, termed SLD diet.
	Selenium Diet #2 Oregon moist pellet diet where over half of the salmon meal was replaced with meal from low-selenium mosquitofish same as in the control diet, but fortified with seleno-DL-methionine (35.5 μ g Se/g dw), termed SeMet diet.
Dietary Treatments:	Each selenium diet was formulated to contain about $36 \mu g$ Se/g dw as the high exposure treatment. The remaining treatments were achieved by thoroughly mixing appropriate amounts of high-exposure treatment diet with control diet to yield the following nominal concentrations (3, 5, 10, and 18 μg Se/g dw).

Test Duration: 90 days

Study Design: Each dietary treatment was fed twice each day to swim-up larvae (n=100) in each of two replicate aquaria that received 1 L of replacement water (a reconstituted experimental water that simulated in quality a 1:37 dilution of water from the San Luis Drain, CA minus the trace elements) every 15 minutes (flow-through design). Mortality was recorded daily. Growth was evaluated at 30-day intervals by measuring the total lengths and wet weights of two subsets of individual fish (n=10x2) held in separate 11.5 L growth chambers within each replicate aquarium. Tissue samples were collected for whole-body selenium determinations (dry wt. basis) at 30-day intervals throughout the study; 10, 5, and 2 fish were sampled from each duplicate treatment after 30, 60, and 90 days of exposure, respectively. Concentrations of selenium measured in water were below the limit of detection (1.5-3.1 μ g/L) in all dietary selenium exposure concentrations.

Effects Data: The magnitude of reduced growth was most evident in the weight of the fish, although total length was significantly reduced in fish fed high Se-laden diets as well. The effect of increasing dietary selenium on mean larval weight was similar in both the SLD and seleno-methionine diets.

Effect of San Luis Drain Diet on Growth and Survival of Chinook Salmon Larvae after 60 Days				
Se in diet, µg/g dw	Se in chinook salmon, µg/g dw	mean larval weight, g	survival, %	
1	0.9	3.35	99	
3.2	3.3	2.68	97.3	
5.3	4.5	2.76	93	
9.6	8.4	2.8	95	
18.2	13.3	2.62	92.4	
35.4	29.4	1.4	89	

Effect of Seleno-methionine Diet on Growth and Survival of Chinook Salmon Larvae after 60 Days				
Se in diet, µg/g dw	Se in chinook salmon, µg/g dw	mean larval weight, g	survival, %	
1	0.9	3.35	99	
3.2	2	3.08	100	
5.3	3.1	3.22	95	
9.6	5.3	3.07	94.1	
18.2	10.4	2.61	92.4	
35.4	23.4	1.25	62.5	

Chronic Value: Due to unacceptable control mortality of swim-up larvae in control treatments after 90 days (33.3 percent - SLD diet; 27.5 percent - SeMet diet), chronic values had to be determined from respective values reported after 60 days (tables above).

Analysis of the elemental composition of the SLD diet indicated that B, Cr, Fe, Mg, Ni and Sr were slightly elevated compared to the control and SeMet diets. No additional analyses were performed to determine the presence of other possible contaminants, i.e., pesticides.

	EC ₂₀ values		
	SurvivalGrowth(after 60 d of exposure)(after 60 d of exposure)		
Diet type	Tissue Se (μg/g dw)	Tissue Se (μg/g dw)	
SLD	\mathbf{NA}^{a}	15.74	
SeMet	\mathbf{NA}^{a}	10.47	

^a The EC₂₀ values for survival of swim-up larvae versus levels of selenium for the SLD and SeMet dietary exposure could not be estimated using non-linear regression.

Hilton, J.W. and P.V. Hodson. 1983. Effect of increased dietary carbohydrate on selenium metabolism and toxicity in rainbow trout (*Salmo gairdneri*). J. Nutr. 113:1241-1248.

Test Organism:	Rainbow trout (Oncorhynchus mykiss; juvenile; approx. 0.6 g each)
Exposure Route:	Dietary only <u>Low carbohydrate diet (LCD)</u> This diet contained capelin oil at 11 percent of the diet with cellulose as the filler.
	High carbohydrate diet (HCD) This diet contained cerelose at 25 percent of the diet with cellulose as the filler.
	For both diets, the selenium was supplemented as sodium selenite which was mixed with cellulose and then added to the diet as a selenium premix.
Test Treatments:	The two diets were supplemented with selenium (as sodium selenite) at the rate of 0, 5, or $10 \mu g/g$ dw to make up the six different dietary selenium treatments (n = 3 low carbohydrate diet; n= 3 high carbohydrate diet). The six diets were fed to duplicate groups of 100 fish. The trout were fed to satiation 3-6 times per day. Measured concentrations of selenium in the low carbohydrate diet were: 0.6 (control), 6.6, and 11.4 $\mu g/g$ dw, and the measured concentrations of selenium in the high carbohydrate diet were: 0.7 (control), 6.6, and 11.8 $\mu g/g$ dw. The tanks received a continuous flow of water with a flow rate of 3-4 Liters per minute.
Test Duration:	16 weeks
Study Design:	Body weights, feed:gain ratios, and total mortalities were determined after each 28-day interval. After 16 weeks, approximately 20 fish were randomly removed from each tank, weighed, and blood was collected for hemoglobin, hematocrit, and plasma glucose, protein, and calcium determination. The livers and kidneys were then dissected. The livers were assayed for glycogen content, and samples of both liver and kidney were assayed for selenium content. Additional subsamples of fish were sacrificed and assayed for selenium content and for ash, crude protein, and moisture content (n=6 per treatment). Finally, 30 fish were killed, their livers and kidneys dissected, and analyzed for Ca, Cu, Fe, Mg, P, and Zn content.
Effects Data:	The only overt sign of selenium toxicity was food avoidance observed in trout fed the highest selenium content in both low and high carbohydrate diets, which led to significantly reduced body weight after 16 weeks. There were no significant differences detected between treatment groups in hematological parameters. Kidney, liver, and carcass selenium levels increased with increasing selenium content of the diet, however, only the liver selenium concentrations were significantly affected by dietary selenium level, dietary carbohydrate level, and the interaction between the two treatments. Mineral analysis of the kidney

showed significantly higher levels of calcium and phosphorous in trout reared on the two highest levels of dietary selenium. Concentrations of copper in the liver increased significantly with increasing dietary selenium levels and decreasing dietary carbohydrate levels.

Effect of Selenium in Low carbohydrate Diet to Rainbow Trout				
Se in diet, µg/g dw	Se in trout liver, µg/g dw	trout weight, kg/100 fish		
0.6	0.8	3.3		
6.6	38.3	3.3		
11.4	49.3	1.8		

Effect of Selenium in High carbohydrate Diet to Rainbow Trout				
Se in diet, µg/g dw	Se in trout liver, µg/g dw	trout weight, kg/100 fish		
0.7	0.6	2.7		
6.6	21.0	2.3		
11.8	71.7	1.4		

Chronic Value: The MATC estimated for growth of rainbow trout relative to final concentration of selenium in liver tissue of trout reared on the low carbohydrate diet is the GM of 38.3 (NOAEC) and 49.3 (LOAEC) μ g/g dw, or 43.45 μ g/g dw. The MATC estimated for growth of rainbow trout relative to final concentration of selenium in liver tissue of trout reared on the high carbohydrate diet is the GM of 21.0 (NOAEC) and 71.7 (LOAEC) μ g/g dw, or 38.80 μ g/g dw. Using equation III in the text to convert this selenium concentration in liver tissue to a concentration of selenium in whole-body, the MATC for rainbow trout exposed to selenium in food with low carbohydrate content becomes 13.08 μ g Se/g dw., whereas the MATC for rainbow trout exposed to selenium in food with high carbohydrate content becomes 11.65 μ g Se/g dw. The latter value is selected as the chronic value for the study.

 EC_{20} values could not be determined for this study. Data did not meet minimum requirements for analysis.

Hicks, B.D., J.W. Hilton, and H.W. Ferguson. 1984. Influence of dietary selenium on the occurrence of nephrocalcinosis in the rainbow trout, *Salmo gairdneri* Richardson. J. Fish Diseases. 7:379-389.

(Note: These data are the exact same as reported for the low carbohydrate diet in Hilton and Hodson 1983, with the addition of prevalence of nephrocalcinosis occurring in trout after 16 to 20 weeks of consuming the contaminated test diets).

Test Organism:	Rainbow trout (Oncorhynchus mykiss; juvenile; approx. 0.6 g each)
Exposure Route:	Dietary only This diet contained capelin oil at 11 percent of the diet with cellulose as the filler. The selenium was supplemented as sodium selenite which was mixed with cellulose and then added to the diet as a selenium premix.
Test Treatments:	The test diet was supplemented with selenium (as sodium selenite) at the rate of 0, 5, or 10 μ g/g dw to make up the three different dietary selenium treatments. The three diets were fed to duplicate groups of 100 fish. The trout were fed to satiation 3-6 times per day. Measured concentrations of selenium in the low carbohydrate diet were: 0.6 (control), 6.6, and 11.4 μ g/g dw. The tanks received a continuous flow of water with a flow rate of 3-4 Liters per minute.
Test Duration: 16 to	20 weeks
Study Design:	See Hilton and Hodson (1983). After 20 weeks on the test diets, ten fish were randomly removed from each treatment. Tissues for histopathological examination included the stomach, intestine and pyloric ceca (including pancreas), spleen, liver, heart, kidney, skin, muscle, and gills.
Effects Data:	Only effects of selenium on kidney tissue are included in the article. The kidneys of the 10 trout fed the highest selenium content in the diet exhibited normal appearance. Five of these trout exhibited precipitation of calcium in the tubules with some epithelial necrosis, but no loss of epithelial continuity. Extensive mineralized deposition of Ca within the tubules, tubular dilation and necrosis of tubular epithelium, ulceration of tubules, and intestinal Ca mineralization was observed in four of the ten fish.
Chronic Value:	Same as for growth of rainbow trout reported by Hilton and Hodson (1983). The MATC estimated for growth of rainbow trout relative to final concentration of selenium in liver tissue of trout reared on the low carbohydrate diet is the GM of 38.3 (NOAEC) and 49.3 (LOAEC) μ g/g dw, or 43.45 μ g/g dw. Using equation III to convert the selenium concentration in liver tissue to a concentration of selenium in whole-body, the MATC becomes 13.08 μ g/g dw.
	EC_{20} values could not be determined for this study. Data did not meet minimum

requirements for analysis.

Hilton, J.W., P.V. Hodson, and S.J. Slinger. 1980. The requirements and toxicity of selenium in rainbow trout (*Salmo gairdneri*). J. Nutr. 110:2527-2535.

Test Organism:Rainbow trout (Oncorhynchus mykiss; juvenile; approx. 1.28 g each)Exposure Route:Dietary only
A casien-torula yeast diet was formulated to contain geometrically increasing
levels of selenium from 0 to 15 μ g/g dw. The selenium was supplemented as
sodium selenite which was mixed with cellulose and then added to the diet as a
selenium premix.

Test Duration: 20 weeks

Study Design: Six test diets were fed to triplicate groups of 75 fish. The trout were fed to satiation 3-4 times per day, 6 days per week, with one feeding on the seventh day. Measured concentrations of selenium in the diet were: 0.07 (control), 0.15, $0.38, 1.25, 3.67, \text{ and } 13.06 \,\mu\text{g/g}$ dw. The tanks received a continuous flow of dechlorinated tap water from the City of Burlinton, Ontario municipal water supply. The waterborne selenium content of this water was 0.4 µg/L. During the experiment, the fish were weighed every 2 weeks with the feeding level adjusted accordingly. Mortalities were noted daily and the feed consumption for each treatment was recorded weekly. After 4 and 16 weeks, three to six fish were randomly removed from each tank, sacrificed, and their livers and kidneys removed and weighed. An additional three to six fish were then obtained from each treatment, killed, and prepared for tissue analysis. Organs and carcasses were freeze-dried for determination of selenium concentration. After 16 weeks, three more fish were removed. Kidney, liver, spleen and dorsal muscle tissue was dissected for examination of histopathology. At the end of 8 and 16 weeks, four to five fish were removed, sacrificed, and a blood sample was taken for hematological measurements (hematocrit, red blood cell count, and blood iron concentration). After 20 weeks, three to four more fish were removed, sacrificed, and a blood sample was taken for measurement of glutathione peroxidase activity. **Effects Data:** There were no significant differences detected between treatment groups in histopathology, hematology, or plasma glutathione peroxidase activity. Trout raised on the highest dietary level of selenium $(13.06 \mu g/g dw)$ had a significantly lower body weight and a higher number of mortalities (10.7; expressed as number per 10,000 fish days) than trout from the other treatments levels after 20 weeks of exposure.

Effects on Juvenile Rainbow Trout					
Se in diet, µg/g dw	Se in diet, µg/g dw Se in Liver, µg/g dw weight, g/fish mortality*				
0.07	0.6	3.2	0		
0.15	0.95	3.5	0		
0.38	2.4	3.7	0.6		
1.25	11	4.1	0.6		
3.67	40	4.1	0		
13.06	100	1.4	10.7		

*expressed as number per 10,000 fish-days

Chronic Value:

An MATC was preferred over regression analysis because of the large standard error associated with the EC_{20} value. The MATC for the growth and survival of juvenile trout based on selenium in liver tissue is the GM of the NOAEC (40 µg/g dw) and the LOAEC (100 µg/g dw), or 63.25 µg Se/g dw. Using the equation III in the text to convert the selenium concentration in liver tissue to a concentration of selenium in whole-body tissue, the MATC becomes 19.16 µg/g dw.

Holm, J. 2002. Sublethal effects of selenium on rainbow trout (*Oncorhynchus mykiss*) and brook trout (*Salvelinus fontinalis*). Masters Thesis. Department of Zoology, University of Manitoba, Winnipeg, MB.

Holm, J., V.P. Palace, K. Wautier, R.E. Evans, C.L. Baron, C. Podemski, P. Siwik and G. Sterling. 2003. An assessment of the development and survival of rainbow trout (*Oncorhynchus mykiss*) and brook trout (*Salvelinus fontinalis*) exposed to elevated selenium in an area of active coal mining. Proceedings of the 26th Annual Larval Fish Conference 2003, Bergen, Norway. ISBN 82-7461-059-B.

Test Organism:	Rainbow trout (<i>Oncorhynchus mykiss</i> ; spawning adults) and brook trout (<i>Salvelinus fontinalis</i> ; spawning adults)
Exposure Route:	dietary and waterborne - field exposure Total selenium concentrations measured at the high selenium site ranged from 6 to 32 μ g/L. Selenium was not measured at the reference streams; selenium concentrations at reference locations in the area ranged from <0.5 to 2.2 μ g/L.
Study Design:	Spawning fish were collected at low selenium or reference streams (Deerlick Creek and Cold Creek), a slightly elevated selenium stream (Gregg Creek), and an elevated selenium stream (Luscar Creek) in the Northeastern slopes region of Alberta, Canada. An active coal mine is the source of selenium in the elevated streams. Eggs and milt from the spawning trout were expressed by light pressure from abdomen. Individual clutches of eggs were fertilized from a composite volume of milt derived from 3-5 males. Fertilized eggs from individual females were reared to swim-up stage and examined for a number of parameters including percent fertilization, mortality, edema, and deformities (craniofacial, finfold, and spinal malformations). Similar studies were incubated at 8°C in 2000 and at 5°C in 2001. The authors noted that 5°C is a better representation of the actual stream temperature during embryo development
Effects Data :	Other than selenium, there were no significant differences in the concentrations of other elements (Al, As, Sb, Ba, Be, Ni, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mn, Hg, Mo, Ag, Sr, Tl, Th, Sn, Ti, U, V, Zn) in trout eggs between the low level and elevated selenium streams. There are two ways to approach determination of effects due to selenium in this study and both are presented here. The first approach determines effects based on a comparison of average conditions between streams (<i>between streams approach</i>). For example, if there is a significant difference between the average frequency of deformities in a contaminated stream and reference stream, the effect level for the <i>between streams approach</i> would be the average concentration of selenium in the tissue from the contaminated stream. The second approach evaluates individual response variables (e.g., edema, deformities) against the individual selenium tissue concentrations for the combined contaminated and reference stream data set with each year (<i>within streams approach</i>). This approach, which results in an EC ₂₀ value if the data meet the model assumptions, is explained in the <i>Calculations of Chronic Values</i> section of the text.

Between streams approach: For both rainbow and brook trout embryos, there were no significant differences in fertilization, time to hatch and mortality between the streams with elevated selenium and the reference streams in both 2000 and 2001. The frequency of embryonic effects were significantly greater in the high selenium stream (Luscar Creek) in 2000. Rainbow trout embryos from Luscar Creek had a greater frequency of craniofacial, skeletal and finfold deformities and edema; whereas brook trout from Luscar Creek had a greater frequency of only craniofacial deformities (see Holm Tables 1 and 2 below). In 2001, however, there were no significant differences in embryonic deformities between Luscar Creek and reference streams for both species of trout. The only difference observed in 2001 was a greater frequency of finfold deformities in brook trout collected from Gregg Creek (intermediate selenium levels) relative to the reference stream (see Holm table 2 below). All other embryonic measurements in 2001 were not significantly different between streams with elevated selenium and reference streams. When the data for both years were pooled, no significant effects were observed in embryos obtained from rainbow and brook trout collected in Luscar Creek relative to reference streams (see Holm Table 3).

Within streams approach: EC_{20} values could not be calculated for total deformities or edema for the 2000 rainbow trout data because a logistic curve could not be fitted to the data (see Holm Figures 1 and 2). For the 2001 data, EC_{20} values could not be computed for edema and skeletal and finfold deformities for rainbow trout data because a logistic curve could not be fitted to the data (see Holm Figures 3 and 4). Craniofacial deformities in the rainbow embryo as a function of selenium in egg ww (2001 data) was fitted to a logistic curve from which an EC_{20} value was calculated (see Holm Figure 5). The brook trout data for 2000 and 2001 were not suitable for fitting logistic curves (see Holm Figure 6).

Holm Table 1

Mean embryo-larval parameters for rainbow trout collected from a high Se site (Luscar Creek), an intermediate Se site (Gregg River), and reference sites (Deerlick Creek and Wampus Creek) in northeastern Alberta over two consecutive years (mean \pm SE). Values that are significantly different at $\alpha = 0.05$ are marked with different letters. (Table modified from Holm 2002)

	2000 2001					
Measurement	Luscar	Deerlick	Luscar	Gregg	Deerlick	Wampus
Se, egg, µg/g ww	8.37 ± 1.62	2.05 ± 1.06	6.49 ± 0.89	6.65 ± 1.83	2.77 ± 0.20	2.35 ± 0.31
Se, adult muscle, µg/g ww	1.50 ± 0.28	0.48 ± 0.15	NT	NT	NT	NT
n ^a	297	261	2021	720	1342	209
% fertilization	79.8 ± 4.3	51.5 ± 10.9	81.5 ± 5.0	79.4 ± 5.2	88.0 ± 2.1	94.0 ± 4.8
% mortality	3.3 ± 1.0	0.7 ± 0.4	27.8 ± 7.3	38.3 ±13.7	26.5 ± 4.7	4.2 ± 0.8
% CR	$7.7\pm3.7^{\mathrm{b}}$	$0.2\pm0.2^{\rm c}$	14.7 ± 3.4	11.7 ± 2.7	10.6 ± 1.9	12.0 ± 4.1
% SK	$13.8\pm5.6^{\mathrm{b}}$	$0.7\pm0.5^{\circ}$	19.4 ± 8.2	11.1 ± 2.3	15.6 ± 4.7	4.9 ± 4.9
% FF	$3.2\pm2.0^{\rm b}$	$0.2\pm0.2^{\circ}$	6.8 ± 3.0	15.5 ± 6.6	4.0 ± 0.9	1.5 ± 0.2
% ED	30.8 ± 27.4^{b}	$0.2\pm0.2^{\circ}$	19.9 ± 8.5	13.9 ± 5.3	10.8 ± 2.5	7.5 ± 0.4
% TD	38.9 ± 25.6^{b}	$0.7\pm0.5^{\circ}$	ND	ND	ND	ND

^a number of fry to reach the swim-up stage

^{b and c} statistically different values

CR = craniofacial defects, SK = skeletal defects, FF = finfold defects, ED = edema, TD = total defects, NT = not tested, ND = not done

Holm Table 2

Mean embryo-larval parameters for brook trout collected from a high Se site (Luscar Creek), an intermediate Se site (Gregg River), and reference sites (Cold Creek) in northeastern Alberta over two consecutive years (mean \pm SE). Values that are significantly different at $\alpha = 0.05$ are marked with different letters. (Table modified from Holm 2002)

	2000		2001		
Site	Luscar	Cold	Luscar	Gregg	Cold
Se, egg, µg/g ww	6.37 ± 0.78	1.35 ± 0.24	8.02 ± 0.77	6.88 ± 0.51	1.25 ± 0.15
Se, adult muscle, $\mu g/g$ ww	3.79 ± 0.51	0.55 ± 0.10	NT	NT	NT
n ^a	4904	1560	3440	1892	1440
% fertilization	97.4 ± 0.8	96.1 ± 1.2	87.2 ± 2.6	85.2 ± 5.4	77.8 ± 14.2
% mortality	12.6 ± 3.8	9.3 ± 2.4	2.9 ± 0.8	2.9 ± 0.9	3.7 ± 1.6
% CR	$13.6\pm3.5^{\rm b}$	$3.0\pm0.5^{\circ}$	5.6 ± 3.2	2.12 ± 1.0	0.7 ± 0.3
% SK	1.9 ± 0.8	1.3 ± 0.8	2.1 ± 1.1	0.81 ± 0.3	0.6 ± 0.4
% FF	1.1 ± 0.6	1.2 ± 0.8	3.7 ± 1.8	$4.1 \pm 2.4^{\circ}$	$0.1\pm0.1^{\text{b}}$
% ED	0.6 ± 0.4	0.3 ± 0.1	0.4 ± 0.1	0.3 ± 0.2	1.7 ± 1.2
% TD	$14.4 \pm 3.6^{\text{b}}$	$4.0 \pm 2.3^{\circ}$	ND	ND	ND

^a number of fry to reach the swim-up stage

^{b and c} statistically different values

CR = craniofacial defects, SK = skeletal defects, FF = finfold defects, ED = edema, TD = total defects, ND = not done

Holm Table 3

Mean embryo-larval parameters for rainbow trout and brook trout collected from a high Se site (Luscar Creek) and reference sites (Deerlick Creek and Cold Creek) in northeastern Alberta over two consecutive years, combined over both years of the study by site (mean \pm SE). Values that are significantly different at $\alpha = 0.05$ are marked with different letters. (Table modified from Holm 2002)

	Rainbow Trout		Brook	Trout
Measurement	Luscar	Deerlick	Luscar	Cold
Se, egg, µg/g ww	6.92 ± 0.78	2.56 ± 0.32	7.20 ± 0.56	1.30 ± 0.14
n ^a	2318	1603	8344	3000
% fertilization	81.1 ± 3.9	77.6 ± 5.6	92.3 ± 17.7	88.5 ± 6.2
% mortality	22.2 ± 6.3	19.1 ± 4.6	7.7 ± 2.1	6.9 ± 1.7
% CR	13.1 ± 3.2	7.6 ± 7.1	9.9 ± 2.4	2.7 ± 0.6
% SK	18.1 ± 6.3	11.4 ± 3.8	2.0 ± 0.6	1.0 ± 0.4
% FF	6.0 ± 2.4	2.9 ± 0.8	2.6 ± 1.0	1.2 ± 0.5
% ED	22.4 ± 8.5	7.8 ± 2.2	1.3 ± 0.7	0.9 ± 0.5

^a number of fry to reach the swim-up stage

CR = craniofacial defects, SK = skeletal defects, FF = finfold defects, ED = edema,

Holm Figure 1. Plot of percent normal (100 - percent edematous) against selenium concentration in adult rainbow trout muscle ww.

Holm Figure 2. Plot of percent normal (100 - percent total deformities) against selenium concentration in adult rainbow trout muscle ww, 2000 data.

Holm Figure 3. Plot of percent normal (100 - percent total deformities) against selenium concentration in rainbow trout eggs ww, 2001 data.

Holm Figure 4. Plot of percent normal (100 - percent skeletal deformities) against selenium concentration in rainbow trout eggs ww, 2001 data.

Holm Figure 5. Plot of percent normal (100 - percent total deformities) against selenium concentration in rainbow trout eggs ww, 2001data. EC_{20} value at 10.4 µg Se/g egg ww.

Holm Figure 6. Plot of percent normal (100 - total abnormalities) for craniofacial, skeletal and finfold deformities and edema against selenium concentration in brook trout eggs ww, 2000 and 2001 data.

The effect levels determined using the *between streams* or *within streams* approach resulted in values based on ww in eggs or muscle. Several conversions were necessary to transform a selenium concentration in egg ww to whole body dw. Using data reported by Holm et al., quantile regression was used to estimate selenium in adult muscle (ww) from selenium in egg (ww) (see Projection of Muscle Selenium Concentrations below). A percent moisture of 75.84% derived from rainbow trout data was used to convert ww to dw and equation 1 was used to convert muscle dw to the whole body dw values listed below (under Chronic Values).

Projection of Muscle Selenium Concentrations

Median concentrations of selenium in rainbow trout muscles were projected from selenium concentrations in rainbow trout eggs according to an empirical equation:

$$[Se_{muscle}] = 0.1827 + 0.1287[Se_{egg}] \qquad (R = 0.6244, 5 df)$$

Parameters of the linear model were estimated by quantile regression, which minimizes the sum of weighted absolute deviations. Such method is less sensitive to outliers than ordinary least squares (Koenker and Portnoy 1996). This difference is clearly illustrated in Holm Figure 7: projections of selenium concentrations in muscles of rainbow trout by the least squares regression line are consistently greater than projections by the quantile regression line $([Se_{muscle}] = 0.2613 + 0.1418[Se_{egg}])$ due to the disproportional influence of one data point (6.6,1.9).

Holm Figure 7. Regression lines projecting selenium concentrations in muscles of rainbow trout as a function of selenium concentrations in rainbow trout eggs.

Chronic Values:Between streams approachRainbow trout 2000: effects (craniofacial, skeletal and finfold deformities and
edema) at 1.50 µg Se/g muscle ww or 5.79 µg Se/g dw whole body using
conversion factors listed above; chronic value is 5.79 µg Se/g dw whole body

Brook trout 2000: effects (craniofacial deformities) at 3.79 μ g Se/g muscle ww or 13.2 μ g Se/g dw whole body using conversion factors listed above; **chronic value is 13.2 \mug Se/g dw whole body**

Rainbow trout 2001: no effects at 6.65 μ g Se/g egg ww or 4.14 μ g Se/g dw whole body using conversion factors listed above; **chronic value is >4.14 \mug Se/g dw whole body**

Brook trout 2001: effects (finfold deformities) at 6.88 μ g Se/g egg ww or 12.4 μ g Se/g dw whole body using conversion factors listed above; **chronic value is 12.4** μ g Se/g dw whole body

Within streams approach

Rainbow trout 2000: **no value available**; EC_{20} analysis not appropriate for data sets

Brook trout 2000: no value available; EC_{20} analysis not appropriate for data sets

Rainbow trout 2001: EC_{20} value (craniofacial deformities) at 10.4 µg Se/g egg ww or 5.85 µg Se/g whole body dw; chronic value is 5.85 µg Se/g whole body dw

Brook trout 2001: no value available; EC_{20} analysis not appropriate for data set

Kennedy, C.J., L.E. McDonald, R. Loveridge, M.M. Strosher. 2000. The effect of bioaccumulated selenium on mortalities and deformities in the eggs, larvae, and fry of a wild population of cutthroat trout (*Oncorhynchus clarki lewisi*). Arch. Environ. Contam. Toxicol. 39:46-52.

Test Organism:	Cutthroat trout (Oncorhynchus clarki lewisi; spawning adults, 3-6 years)
Exposure Route:	dietary and waterborne - field exposure Total selenium concentrations measured at the time the eggs were taken were <0.1 μ g/L from the reference site and 13.3 to 14.5 μ g/L at the exposed site.
Study Design:	At reference and exposed site (Fording River, BC, Canada which receives drainage from open-pit coal mining), eggs were stripped from females (n=20 from reference site; n=17 from exposed site) and fertilized from milt from one male collected at each site. Fertilized eggs were reared in well water and examined for time to hatch, deformities (craniofacial, finfold, skeletal and yolk sac malformations), and mortalities. Inspection of deformities in eggs were performed using 40X magnification.
Effects Data :	No significant correlations between the selenium concentrations in the eggs from either site and: hatching time (reference, 25.5-26.5 days; exposed, 22-25.5 days); percent deformities preponding (reference, 0-2.4%; exposed, 0-0.34%); percent deformities after ponding (reference, 0-0.26%; exposed, 0-0.09%); percent mortalities preponding (reference, 1.5-70.3%; exposed, 1-100%); percent mortalities after ponding (reference, 0.3-4.3%; exposed, 1.5-43.7%); total percent mortalities (reference, 2.8-55.8%; exposed, 3.7-100%). The average selenium residue in tissues were as follows:

Site	Adult fish liver, µg Se/g dw	Adult fish muscle, µg Se/g dw	eggs, μg Se/g dw
reference	8.2; Range: 3.4-14.6	2.4; 1.4-3.8	4.6
exposed	36.6; Range:18.3-114	12.5; Range: 6.7-41	21.2

Effects $>12.5 \,\mu g$ Se/g dw in muscle

Chronic Value: >10.92 µg Se/g dw estimated using the equation I to convert the selenium concentration in muscle tissue (>12.5 µg Se/g dw) of adult fish to a selenium concentration in whole-body.

Hardy, R.W. 2002. Effects of dietary selenium on cutthroat trout (*Oncorhynchus clarki*) growth and reproductive performance. Annual report for Montgomery Watson Harza. April 30, 2002.

Test Organism:	Cutthroat trout (Oncorhynchus clarki, 0.9 g)
Exposure Route:	Dietary only Six experimental dietary treatments were produced by cold extrusion. The formulation of the diet was designed to be similar to commercial trout diets and had a proximate composition of 45% protein and 16% lipid. Seleno-methionine diluted in distilled water (100 ug/L) was added in appropriate volumes to each batch of feed to facilitate pelleting. Measured dietary selenium concentrations were 1.2 (control), 3.8, 6.4, 9.0, 11.5, and 12 ug Se/g dw. Fry were fed initially at a rate of 10 times per day 6 days a week to apparent saturation. Feeding frequency decreased as fish grew.
Test Duration:	124 weeks (865 days, 2.5 yrs)
Study Design:	Groups of 50 fish were placed into triplicate tanks (145 L) receiving 4-15 L/min of hatchery water at 14.5 °C and fed one of the six experimental diets. The fish in each tank were bulk-weighed and counted every 14 days for the first 12 weeks of the experiment, and then every 4 weeks until 48 weeks. Samples of fish for whole-body selenium analysis were taken at each sampling date for the first 12 weeks followed by every 3 months thereafter. After six months of feeding, the fish were transferred to 575 L tanks and the number of replicate tanks per dietary treatment was reduced to two. After 80 weeks of feeding, the fish were transferred to 1050 L outdoor tanks each supplied with 70 L/min of constant temperature (14.5 °C) spring (hatchery) water. After 2.5 years of the feeding trial, fish were spawned and whole body selenium level, egg selenium level, % eyed eggs, % hatched eggs, and % deformed larvae were examined.
Effects Data :	No signs of toxicity (reduced growth or survival relative to controls) were observed in fish fed the highest dietary selenium treatment (12 ug Se/g dw) after the first 80 weeks of exposure just prior to transfer outdoors. No signs of clinical disease were evident, and no relationship was found between feed conversion ratios and the level of selenium added to the feed. Whole body selenium levels were approximately 6.8, 10, 12 and 12.5 ug Se/g dw in the four highest dietary treatments. Nine months later, whole body selenium levels at spawning had decreased somewhat to 5.21, 8.80, 9.37 and 6.66 ug Se/g dw in these four highest dietary treatment groups, respectively. Percent survival from the eyed stage to hatching varied among treatment groups, with the control having the highest survival (97%) and the fifth dietary treatment group the second highest (93%). Percent deformed larvae ranged from a low of 3.4% in controls to a high of 30% in the 9.0 ug Se/g dw dietary treatment group; larvae in the two highest dietary treatment groups only exhibited 7 and 6.8 %, respectively.
Chronic Value:	The chronic value for this study is a NOAEC of >9.37 ug Se/g dw whole-body parent tissue based on embryo/larval deformity.

Bennett, William N., Arthur S. Brooks, and Martin E. Boraas. 1986. Selenium uptake and transfer in an aquatic food chain and its effects on fathead minnow larvae. Arch. Environ. Contam. Toxicol. 15:513-517.

Test Organism: Fathead minnow (*Pimephales promelas*; 2 to 8 day-old larvae).
Exposure Route: Dietary only Green alga, *Chlorella pyrenoidosa* were exposed to Se (H₂⁷⁵SeO₄) in culture water for 3 days. Rotifers, *Brachionus calyciflorus*, were cultured in chambers with selenium containing green algae at the ratio of 25 μg algae/ml to 50 μg rotifer/ml for 5 hr. The rotifers were filtered to separate them from the algae and immediately heat-killed. The Se concentration in the rotifers was measured for ⁷⁵Se activity.
Test Duration: 9 to 30 days

Study Design:Selenium uptake by larval fathead minnows was measured in three experiments.
Se-contaminated and control rotifers for feeding to larval fish were prepared in
advance using the low algae:rotifer ratio. Daily equal volumes of rotifers were
divided among five 800 mL polypropylene larval chambers. Three chambers
received Se-contaminated rotifers and two received control rotifers. The rotifers
were dead at the time of feeding (heat killed).

Larval fish were hatched from eggs spawned in the laboratory. After hatching, active larvae were divided equally among the larval test chambers (daily renewal exposures using declorinated Lake Michigan water). Larvae were initially fed rotifers raised on control algae (no selenium). The age of the larvae when first fed Se-contaminated rotifers was 4, 9, and 3 days post-hatch for experiments 1, 2, and 3, respectively. Larval fish were fed Se-contaminated rotifers for 7, 9, and 7 days in the 3 experiments. A post-exposure observation period of 19 and 2 days was used for experiments 1 and 2, respectively. During this time the larvae were fed control rotifers. Daily, larvae from a replicate were removed from the test chamber, washed, placed in a 20 ml vial, and counted for ⁷⁵Se activity for 20 min. All larvae were then placed in test chambers with fresh food rations. At the end of the study all fish were individually dried and weighed.

	Experiment 1	Experiment 2	Experiment 3
Initial feeding of control diet (days)	3	8	2
Day Se diet first fed	4	9	3
Day Se diet last fed	11	17	9
Observation days on control diet	19	2	0
Age at study termination (days)	30	19	9

Effects Data:

	Experiment 1	Experiment 2	Experiment 3
Mean food Se concentration $(\mu g/g)$	>70	68	55
Food intake (µg rotifers/larva)	50	1330	1190
Initial larvae mean dry wt. at start of Se-laden food (µg)	90	400	100
Final larvae mean dry wt. (µg) at end of test	1470 (Control) 800 (Treatment) ^a	1888 (Control) 1354 (Treatment) ^a	475 (Control) 416 (Treatment)
Final mean larval Se content (µg Se/larva) ^b	0.0062	0.0700	0.0248
Final mean larval Se concentrations (µg Se/g dw)	43.0	51.7	61.1

^a Significantly different from the control.

^b Values when Se-laden feeding was ended.

Selenium was measured in the test water during the feeding exposures, but the concentrations were insignificant (0.84 μ g/L). Survival was not affected by the selenium exposures. Preliminary tests showed that fathead minnow larvae would reach plateau concentrations of selenium within the 7- to 9-day exposure periods. The food supply was sufficient to sustain growth of the larvae during the study, according to the authors. The authors state that selenium uptake and higher selenium content in experiment 2 larvae was due to their larger size and ability to consume more rotifers/unit time. Se-exposed larvae were significantly smaller (p<0.05) in mass than controls for experiments 1 and 2.

Chronic Value: The estimated whole-body chronic value for this study, determined as the geometric mean of the final mean larval selenium concentrations measured in the three experiments, i.e., 43.0, 51.7, and 61.1 μ g/g dw, respectively, is 51.40 μ g Se/g dw.

Ogle, R.S. and A.W. Knight. 1989. Effects of elevated foodborne selenium on growth and reproduction of the fathead minnow (*Pimephales promelas*). Arch. Environ. Contam. Toxicol. 18:795-803.

Test Organism:	Fathead minnows (Pimephales promelas; juvenile, 59 to 61 d old)
Exposure Route:	Dietary only Purified diet mix spiked with inorganic and organic selenium: 25 percent selenate, 50 percent selenite, and 25 percent seleno-L-methionine, homogenized in dextrin.
Test Treatments:	Completely randomized block design (2 blocks); 4 replicates per block (n = 8 replicates total per treatment). Actual mean total selenium levels in each exposure treatment were: 0.4 (control), 5.2, 10.2, 15.2, 20.3, and 29.5 μ g/g dw. Fish used in the first randomized block (F ₂ generation fish) were progeny from F ₁ generation originally obtained from the Columbia National Fishery Research Laboratory, some of which were used in an initial range-finding experiment. Fish obtained from a commercial supplier were used in the second randomized block. The prepared diet was extruded into 1.5 mm pellets which were air-blow dried to 5 percent moisture content and crushed and sieved so that only particles retained by an 11.8 mesh/cm sieve were used in the study. The amount of selenium in water that leached from the food during the experiment averaged only 0.8 µg/L.
Test Duration:	105 days, F_2 generation (block one) and commercial fish (block two); 14 days F_3 generation
Study Design:	Ten fish were randomly placed in each cell per block (n = $8x10$, or 80 fish total per treatment). Fish were fed twice daily at 6 percent body weight per day, with wastes and uneaten food removed 30 min. after each feeding. Test tanks were flushed with two tank volumes of fresh test water after each feeding (solution renewal). Growth (as wet weight) was determined every two weeks by bulk weighing, and one fish from two of the cells per treatment in a given block (n = 4 total per treatment) was removed for selenium (whole-body) analysis. After 105 days of exposure, a single male and female fish from each treatment replicate (n = 4 breeding pairs per treatment in a given block, or 8 breeding pairs per treatment total) were placed in 250 ml beakers and inspected for spawning activity for 30 days following the first spawning event for that pair (each pair being one replicate). Gonads and muscle tissue were dissected for selenium analysis from these fish at the end of the 30 days spawning period. The spawning substrates were inspected daily for eggs to determine fertility and viability. Samples of not more than 50 eggs from each spawn were incubated in flowing, aerated water and inspected for percent hatch determination. Ten larvae from each incubated brood were transferred to separate glass test chambers and maintained (48 h renewal; fed brine shrinp twice daily) for 14 days to determine percent larval survival.
Effects Data:	There was no effect of selenium on any of the reproductive parameters measured at the dietary concentrations tested. Percent hatch and percent larval survival were very high (>87.4 percent) and essentially equal for all of the treatments.

Effects on Fathead Minnow Growth after 98 days of Exposure to Dietary Selenium		
Measured mean selenium in diet, µg/g dw	Whole-body selenium, µg/g dw	Mean fish weight, g ww
0.4	1.76	1.30
5.2	2.78	1.24
10.2	3.42	1.20
15.2	5.40	1.21
20.3	6.58	1.09
29.5	7.46	0.94

Growth of pre-spawning adults was affected by the selenium exposure. Growth data are given in the following table:

Chronic Value: An EC₂₀ value could not be calculated for these data because the data did not meet the minimum requirements for analysis. The MATC for growth of prespawning fathead minnows versus levels of selenium found in whole-body tissue was the GM of 5.40 and 6.58 μ g/g dw, or 5.961 μ g Se/g dw.

Schultz, R. and R. Hermanutz. 1990. Transfer of toxic concentrations of selenium from parent to progeny in the fathead minnow (*Pimephales promelas*). Bull. Environ. Contam. Toxicol. 45:568-573.

Test Organism:	Fathead minnow (Pimephales promelas; Adults)
Exposure Route:	Dietary and waterborne Selenite was added to artificial streams which entered the food web; thus, fish were also exposed to selenium in the diet.
Study Design:	Four Monticello artificial streams were used for the study which lasted from September 1987 to September 1988. For each study, two streams (treated) were dosed continuously to achieve 10 µg/L and two streams served as controls. Mean selenium concentrations at the head of the treated streams were 9.8 ± 1.2 and $10.3 \pm 1.7 \mu g/L$, respectively. The concentrations of selenium measured in the water from controls streams were all less than the detection limit, i.e., $2 \mu g/L$. Spawning platforms were submerged into each stream. One subset of six embryo samples (n = 2000 embryos per sample) were collected from the streams for selenium analysis. Another subset of ten embryo samples were reared in incubation cups receiving the same streamwater dosed with sodium selenite via a proportional diluter. The treated embryos in egg cups received an average $9.7 \pm 2.6 \mu g$ of selenium/L. Samples of hatched larvae were analyzed for selenium content while others were inspected for occurrence of edema and lordosis. Prior to test termination, female parents were seined. The mean selenium content in the ovaries of seven to eight females from the treated and control streams was reported.
Effects Data :	Edema and lordosis occurred in approximately 25 percent of the fish spawned and reared in 10 μ g of selenium/L. Corresponding occurrence in control fish incubated in the egg cups was only 1 and 6 percent, respectively. Selenium residues in the ovaries of females from the control and treated streams were 0.77 and 5.89 μ g/g ww. Assuming 85 percent moisture content in the ovaries (see Gillespie and Baumann below), these concentrations equate to 5.133 and 39.27 μ g Se/g dw.
Chronic Value:	<18.21 μ g Se/g dw estimated using equation II to convert the selenium concentration in adult female ovaries (39.27 μ g Se/g dw) to a selenium concentration in whole-body.

Beyers, D.W. and Sodergren, C. 2001a. Evaluation of interspecific sensitivity to selenium exposure: Larval razorback sucker versus flannelmouth sucker. Larval Fish Laboratory. Department of Fishery and Wildlife Biology, Colorado State University, Fort Collins, Colorado.

Test Organism:	Larval flannelmouth sucker (<i>Catostomus latipinnis</i>) and larval razorback sucker (<i>Xyrauchen texanus</i>)
Exposure Route:	Dietary and waterborne - laboratory exposure (28-d early life stage) Continuous flow diluter supplied a range of aqueous test concentrations <1, 25.4, 50.6, 98.9, and 190.6 μ g/L selenate. Well water was used as the dilution water. Across the range of aqueous exposure concentrations, each test chamber was fed the same daily ration of living rotifers containing selenium at <0.702, 1.35, 2.02, 4.63, and 8.24 μ g/g dw, respectively. Rotifers accumulated selenium from algae (<i>Chlorella vulgaris</i>) exposed to 0, 25, 50, 100, and 200 μ g/L selenate.
Study Design:	Replicated (n=4) exposure beakers using a randomized, balanced $5x2$ factorial design (1 st factor - selenium; 2 nd factor - species). Survival was monitored daily and growth measured at the end of the 28-day exposure. Selenium was measured in the larvae at the end of the 28-day exposure.
Effects Data :	No survival effects were observed and there were no decreases in fish weight or length. Fish mass was found to increase as a function of selenium concentration.
Chronic Value:	The chronic values for the flannelmouth sucker and razorback sucker were >10.2 and >12.9 μ g Se/g dw, respectively, based on the concentrations of selenium measured in whole-body tissue of larval fish at the highest water and dietary selenium concentrations.

Beyers, D.W. and Sodergren, C. 2001b. Assessment of exposure of larval razorback sucker to selenium in natural waters and evaluation of laboratory-based predictions. Larval Fish Laboratory. Department of Fishery and Wildlife Biology, Colorado State University, Fort Collins, Colorado.

Test Organism: Larval razorback sucker (Xyrauchen texanus) **Exposure Route:** Dietary and waterborne - laboratory exposure (28-d early life stage) Larvae were exposed in a daily static-renewal system to control water (reconstituted very hard) and site waters: De Beque, Orchard Mesa, North Pond diluted 50%, and North Pond. Each water type received either a control diet (rotifers) or a diet previously exposed to the site water (site food: rotifers fed algae exposed to respective site water). **Study Design:** Replicated (n=4) exposure beakers using a randomized, balanced 5x2 factorial design (1st factor - test water type; 2nd factor - rotifers cultured in control water or in site water). Survival was monitored daily and growth measured at the end of the 28-day exposure. Selenium was measured in the larvae at the end of the 28day exposure. **Effects Data :** No survival effects were observed. There were no significant decreases in growth of fish exposed to both site water and site food compared to fish exposed to control water and control food. There was a significant increase in growth of fish exposed to site water and control food relative to fish exposed to control water and control food (p < 0.0001). There were reductions in the growth of fish (14%) exposed to site water and site food compared to site water and control food (p<0.0001). Due to the lack of a dose-response relationship in both the concentration of selenium in the food (rotifers) and growth, and the concentration of selenium in the fish larvae and growth, the authors did not attribute the effect of site food on the growth of fish to selenium. **Chronic Value:** The NOAEC for the razorback sucker larvae in the four site water types based on selenium in whole-body tissue were: De Beque $>5.45 \mu g \text{ Se/g dw}$; Orchard Mesa $>11 \mu g$ Se/g dw; North Pond 50% dilution $>41.1 \mu g$ Se/g dw; North Pond $>42 \mu g$ Se/g dw. Because no significant effects were observed in larvae exposed to North Pond water at >42 μ g Se/g dw whole-body tissue, this value was selected as the

chronic value for the study.

Bryson, W.T., W.R.Garrett, M.A. Mallin, K.A. MacPherson, W.E. Partin, and S.E. Woock. 1984. Roxboro Steam Electric Plant 1982 Environmental Monitoring Studies, Volume II, Hyco Reservoir Bioassay Studies. Environmental Technology Section. Carolina Power & Light Company.

28-day Embryo/Larval Study		
Test Organism:	Bluegill sunfish (Lepomis macrochirus; embryos and larvae)	
Exposure Route:	dietary and waterborne - field exposure Native adult bluegill were collected from Hyco Reservoir in Person County, North Carolina and from a nearby control lake (Roxboro City Lake). Hyco Reservoir is a cooling lake for Carolina Power & Light and receives the discharge from the ash storage pond. No selenium values were given for Hyco Reservoir, total selenium was not detected in the control lake (< 1 μ g/L). A mean selenium for the ash pond effluent from a previous study was 53 μ g/L (N=59; range 35-80 μ g/L).	
Study Design:	All combinations of crosses between the Hyco and control fish were made using gametes from the collected fish. Fertilized eggs were exposed in egg cups to 0, 20 and 50 percent ash pond effluent under flow-through conditions. Percent hatch and swim-up success were measured. Swim-up larvae were released to exposure tanks where there were fed zooplankton collected from Hyco and the control lake. Larvae were observed for 28 days at which time survival and weight were measured.	
Effects Data :	Survival to the swim-up stage was different between larvae from Hyco females fertilized with either male type and those larvae from control females fertilized with either male type. All crosses involving a Hyco female resulted in larvae exhibiting 100 percent mortality prior to reaching swim-up. Percent survival from hatch to 28 days for larvae from control females exposed to control water and fed control lake zooplankton was only 5 and 12 percent for the two replicates so no meaningful comparisons can be made to the different dilution exposures or diet exposure. The mean concentrations of selenium in the ovaries, female liver and female muscle were 49, 130, and 84 μ g/g dw, respectively.	
	Effect level: $<$ 49, $<\!\!130$ and $<$ 84 μg Se/g dw in adult ovaries, liver and muscle, respectively	
Chronic Value:	<59.92 µg Se/g dw estimated using the equation I to convert the selenium concentration in the muscle of Hyco females (84 µg Se/g dw) to a selenium concentration in whole-bod y.	

Ingestion Study

Test Organism:	Bluegill sunfish (Lepomis macrochirus; 30-day old larvae)
Exposure Route:	Dietary and waterborne - field exposed adults Juvenile bluegill from crosses with females in 0, 20 and 50 percent ash pond effluent were transferred to control water and fed zooplankton from either Hyco or the control lake. Selenium in Hyco and control zooplankton was 45 and 1.9 μ g/g dw, respectively. Duration was not given.
Study Design:	Survival and observations on pathology and morphology were made in the two diet treatments.
Effects Data:	Mortality in larvae fed control zooplankton was 23.7 percent, whereas mortality in larvae fed Hyco zooplankton was 97.3 percent. There were no differences in survival (for two diet treatments) in larvae that were raised for the 30 days prior to the test in different effluent concentrations (0, 20 50 percent). The average selenium concentrations in the larvae fed control and Hyco zooplankton were 1.9 and 24.7 μ g/g dw, respectively.
	Effect level for larval survival: $<24.7 \ \mu g \ Se/g \ dw$ in larvae
Chronic Value:	None recommended for larval tissue.

Bryson, W.T., W.R.Garrett, M.A. Mallin, K.A. MacPherson, W.E. Partin, and S.E. Woock. 1985a. Roxboro Steam Electric Plant Hyco Reservoir 1983 Bioassay Report. Environmental Services Section. Carolina Power & Light Company. September 1985.

28-day Embryo/Larval Study

Test Organism:	Bluegill sunfish (Lepomis macrochirus; embryos and larvae)									
Exposure Route:	dietary and waterborne - field exposed Resident adult bluegill were collected from Hyco Reservoir in Person County, North Carolina and from a nearby control lake (Roxboro City Lake). Hyco Reservoir is a cooling lake for Carolina Power & Light and receives the discharge from the ash storage pond. For embryo/larval study up to swim-up stage, control fish were collected from the unaffected portion of Hyco.									
Study Design:	<u>Repeat of 1982 28-day Embryo/Larval Study</u> . Three crosses between: Hyco female and Hyco male; control female with Hyco male; and control female with control male. Gametes were fertilized and maintained for the 28-day test in ash pond effluent dilutions of 0, 20 and 50 percent. Percent hatch, percent swim-up success and survival were measured to 28 days post hatch. Two treatments were replicated and fed zooplankton collected from Hyco-affected and Hyco-unaffected (control). Larvae were observed for 28 days at which time survival and weight were measured.									
	<u>Embryo/Larval Study up to Swim-up Stage</u> . Five crosses were made between fish collected from the affected and unaffected areas. Percent hatch, percent swim-up and survival were measured until swim-up (approximately 3-4 days after hatch).									
Effects Data :	<u>28-day Embryo/Larval Study</u> . All larvae that hatched from eggs obtained from Hyco females died prior to completing swim-up (see table below).									
	Effect level (larval survival): < 30 , < 33 and $< 59 \ \mu g \ Se/g \ dw$ for adult female bluegill in ovaries, liver and muscle, respectively									
Summary of 28-day embryo larval study										
---------------------------------------	----------------	---------	---------------	----------------	--------------------------	-----	-------	-----	--------	-----
					adult tissue, µg Se/g dw					
% effluent	source in	% hatch	% swim- up	% survival,	gonad		liver		muscle	
	cross M X F			28-days	М	F	М	F	М	F
0	НХН	92	0	0	33	30	43	33	62	59
20	НХН	98	0	0	33	30	43	33	62	59
20	НХН	92	0	0	33	30	43	33	62	59
50	НХН	97	0	0	33	30	43	33	62	59
0	H X C	89	87	18	33	2.2	43	4.4	62	2.7
20	H X C	96	96	34	33	2.2	43	4.4	62	2.7
50	H X C	60	84	58	33	2.2	43	4.4	62	2.7
0	C X C	79	95	40	nd	2.2	37	4.4	27	2.7
20	C X C	90	96	36	nd	2.2	37	4.4	27	2.7
20	C X C	88	97	25	nd	2.2	37	4.4	27	2.7
50	CXC	72	92	42	nd	2.2	37	4.4	27	2.7

Chronic Value:

 $<43.70 \ \mu g \ Se/g \ dw$ estimated using equation I to convert the selenium concentration in the muscle of Hyco females (59 $\ \mu g \ Se/g \ dw$) to a selenium concentration in whole-body.

<u>Embryo/larval study to swim-up</u>. Percent swim-up of larvae from parents collected in non-affected Hyco averaged 93 percent, whereas percent swim-up from larvae collected from affected Hyco was 12 percent. Effect levels were determined for adult female and larval tissues. Larval tissues were averaged across effluent concentrations (geometric mean).

Effect level (percent swim-up):

Adult female ovaries: >9.1 μ g/g dw; <30 μ g/g dw Adult female liver: >26 μ g/g dw, <33 μ g/g dw Adult female muscle: >25 μ g/g dw, <59 μ g/g dw Larvae: >12.8 μ g/g dw; <165 μ g/g dw

	Summary of Embyo/Larval Study up to Swim-up - Affected vs Unaffected Hyco										
	Parents'	percent hatch			perce	percent swim-up		selenium in tissue, µg/g dw			/g dw
date of fert.	capture location in	at % effluent		at 9	at % effluent		adult female				
	Нусо	0	20	50	0	20	50	ovary	liver	musc	larvae
6-24	affected	93	98	94	0	0	0	30	33	59	0: 130 20: 120
6-27	affected	99	88	77	0	0	0	30	33	59	0: 130 20: 120
6-28	affected	29	34	35	25	14	3	30	33	59	0: 130 20: 120
6-28	affected	98	86	91	5	0	0	30	33	59	0: 130 20: 120
6-29	affected	88	93	85	59	42	25	30	33	59	0: 130 20: 120
7-14	unaffected	92	80	84	79	92	89	9.1	26	25	0: 19 20: 11 50: 10
7-26	unaffected	99	94	93	100	98	98	9.1	26	25	0: 19 20: 11 50: 10
7-27	unaffected	76	84	86	100	89	91	9.1	26	25	0: 19 20: 11 50: 10

Chronic Value: The chronic value estimated for the percentage larvae reaching the swim-up stage is presented as a range >25 μ g Se/g dw in muscle tissue of Hyco females from the unaffacted area and >59 μ g Se/g dw in muscle tissue of Hyco females from the affected area. Using equation I to convert the selenium concentration in the muscle of Hyco females to a selenium concentration in whole-body these values become >20.29 μ g Se/g dw and <43.70 μ g Se/g dw, respectively.

Bryson, W.T., K.A. MacPherson, M.A. Mallin, W.E. Partin, and S.E. Woock. 1985b. Roxboro Steam Electric Plant Hyco Reservoir 1984 Bioassay Report. Environmental Services Section. Carolina Power & Light Company

Ingestion Study

Test Organism:	Bluegill sunfish (Lepomis macrochirus; juvenile- hatchery raised)
Exposure Route:	Dietary only
Test Treatments:	5 diets: <u>Se form (nominal selenium concentration in base diet)</u> seleno-DL-cystine (5 μg/g) seleno-DL-cystine (10 μg/g) seleno-DL-methionine (5 μg/g) sodium selenite (5 μg/g) Hyco zooplankton (5 μg/g)
Test Duration:	60 days
Study Design:	Each treatment contained 40 fish which were maintained in a flow-through system. Fish were fed at 3 percent of their body weight. Length and weight were measured on days 30 and 60. Total selenium was measured in liver and whole-body.
Effects Data:	No decreased length or weight in any of the Se-diets relative to the control.
Chronic Value:	all values are whole-body seleno-DL-cysteine: >2.16 µg Se/g dw seleno-DL-cysteine-2X: >3.74 µg Se/g dw seleno-DL-methionine: >2.46 µg Se/g dw sodium selenite : >1.21 µg Se/g dw Hyco zooplankton: >2.35 µg Se/g dw
	Because none of the selenium-spiked diet formulations affected growth of juvenile fish at the concentrations tested, the chronic value selected for this study is >3.74 μ g Se/g dw for the seleno-DL-cysteine-2X formulation.
Source and Exposu	re Embryo-Larval Study

Test Organism:	Bluegill sunfish (Lepomis macrochirus; Adults from Hyco and a control lake)
Exposure Route:	dietary and waterborne - field exposure
Test Treatments:	Four treatments: Hyco–collected fish exposed to Hyco water in flow through spawning tanks. Hyco-collected fish in control water in flow through spawning tanks.

	Control fish exposed to Hyco water in flow through spawning tanks. Hyco-collected fish in control water in flow through spawning tanks.
Test Duration:	Adult fish were in spawning tanks 4-7 months
Study Design:	Eggs from each treatment were observed for percent hatch and percent swim-up.
Effects Data:	Fish collected from the control lake did not spawn. Percent hatch and percent swim-up from Hyco fish in Hyco and control water are given in the table below. The percent hatch and percent swim-up were >83 and >83 for all the Hyco fish suggesting no effect for these endpoints.

Source of parents	Se in parental liver tissue, µg/g dw	water type for eggs and larvae	N	percent hatch	percent swim- up
Нусо	18.6	Нусо	16	86.6	91.1
Нусо	18.6	well water	10	83.8	95.5
Control	13.8	Нусо	a	a	83.3
Control	13.8	well water	12	86.0	97.4

a percent hatch unknown.

Chronic Value:

The chronic value for this study is $>18.6 \,\mu g$ Se/g dw liver tissue, or $>5.45 \,\mu g$ of Se/g dw whole body tissue using equation III.

Gillespie, R.B. and P.C. Baumann. 1986. Effects of high tissue concentrations of selenium on reproduction by bluegills. Trans. Am. Fish. Soc. 115:208-213.

Test Organism:	Bluegill sunfish, wild-caught (Lepomis macrochirus; adults; embryos and larvae)
Exposure Route:	dietary and waterborne - field exposure
Test Treatments:	High selenium adult fish were collected (electrofishing and with Fyke nets) from Hyco Reservoir. Low selenium adult fish were collected from Roxboro City Lake, Roxboro, NC.
Study Design:	All possible combinations of bluegill parents from Hyco Reservoir and Roxboro City Lake were artificially crossed in June and July, 1982 and 1983, respectively. Fertilization success was assessed by stripping subsamples of 100 to 500 eggs per female and combining them with 2 ml of sperm. All zygotes were reared in Roxboro City Lake water and percent fertilization was estimated 2-3 hours later as the proportion of mitotically active zygotes. To estimate hatching success, gametes were combined as before and subsamples of 100 to 300 embryos per cross were transferred to egg cups and maintained in closed aquaria receiving recirculated Roxboro City Lake water. Percent hatch (approx. 2d at 22 to 25°C) was based on the number of yolk-sac larvae.
	In 1982, about 200 embryos from 8 crosses were observed and preserved at intervals up to 40 h afer fertilization, and about 450 larvae were preserved at intervals of 40 to 180 h after fertilization. In 1983, about 1,800 larvae were observed and preserved from 40 to 150 hr from crosses involving females from Hyco Reservoir, and about 40-300 hr for crosses involving females from Roxboro City Lake (10 crosses total).
Effects Data:	No significant differences were found in percent fertilization or in percent hatch among parent combinations from the 18 crosses made in June 1982 and July 1983. In contrast, larvae from all crosses involving a Hyco female were edematous; 100 percent of the larvae were abnormal in 7 of 8 crosses. Note: This outcome was observed when the same female from Hyco Reservoir was crossed with males from either Hyco Reservoir or Roxboro City Lake. The range of selenium concentrations in the ovaries of Hyco Reservoir females used for the cross experiments was from 5.79 to 8.00 (GM = 6.945 µg/g wet weight; n=7). The reported concentrations of selenium in ovaries and carcasses of females collected from Hyco Reservoir in 1982 and 1983 were 6.96 and 5.91 µg/g wet weight (n=22 and 28, respectively). The reported concentrations of selenium in ovaries and carcasses of females collected from Roxboro City Lake in 1982 and 1983 were 0.66 and 0.37 µg/g wet weight (n=14 and 19, respectively). The mean selenium concentration in bluegill larvae (n=222) from artificial crosses of parents from Hyco Reservoir was 28.20 µg Se/g dw.

Chronic Value: <21.47 µg Se/g dw estimated using equation II to convert the selenium concentration in ovaries of Hyco females (46.30 µg Se/g dw; assuming 85 percent moisture content) to a selenium concentration in whole-body.

Coyle, J.J., D.R. Buckler and C.G. Ingersoll. 1993. Effect of dietary selenium on the reproductive success of bluegills (*Lepomis macrochirus*). Environ. Toxicol. Chem. 12:551-565.

Test Organism:	Bluegill sunfish (<i>Lepomis macrochirus</i> ; two-year old pond-reared adult fish and resultant fry)				
Exposure Route:	Dietary and waterborne				
	Dietary				
	Seleno-L-methionine added in an aqueous solution to Oregon moist pellets;				
	moisture content of diet was 25 percent.				
	Waterborne				
	Flow through, 10 µg Se/L nominal, 6:1 ratio of selenate: selenite, 98 percent				
	purity, adjusted to pH 2 with HCl to prevent bacterial growth and change in				
	oxidation states of Se(IV) and Se(VI).				

Test Duration: 140 days

Study Design:The experiment consisted of a test control and food control (see Test Treatment
table below) with fish (n=28 initially) in the four remaining treatments fed one of
the four seleno-methionine diets in combination with 10 μ g Se/L in water.
Spawning frequency, fecundity, and percentage hatch were monitored during the
last 80 days of the exposure period. Survival of resulting fry (n=20) was
monitored for 30 days after hatch. Adults and fry were exposed in separate,
modified proportional flow-through diluters. Fry were exposed to the same
waterborne selenium concentrations as their parents. Adults were fed twice daily
ad libitum. Whole-body selenium concentrations in adult fish were measured at
days 0, 60, and were calculated from individually analyzed carcass and gonadal
tissue (ovaries and testes) at day 140. Eggs not used in percentage of hatch
determinations were frozen and analyzed for total selenium.

	Test Treatments							
Measured Se in:	1 (test control)	2 (food control)	3	4	5	6		
water (µg Se/L)	0.56	8.4	10.5	10.5	10.1	11.0		
diet (µg Se/g dw)	0.76	0.76	4.63	8.45	16.8	33.3		

Effects Data: There was no effect of the combination of highest dietary selenium concentration $(33.3 \ \mu g/g \ dw)$ in conjunction with exposure to a waterborne selenium concentration of $11.0 \ \mu g/L$ on adult growth (length and weight), condition factor, gonad weight, gonadal somatic index, or reproductive endpoints (i.e., spawning frequency, number of eggs per spawn, percentage hatch) during the 140-day exposure. The mean corresponding whole-body selenium concentration in adults

exposed to this waterborne and dietary selenium combination was $19 \mu g/g \, dw$. Survival of fry from the exposed adults was affected by 5 days post-hatch. Concentrations of whole-body selenium in adult tissue at day 60 were used to determine effects in the fry because eggs were taken for the larval tests beginning at day 60 of the adult exposure.

		Eff	ects on Adult	ts		
Se in diet, µg/g dw	Se in water, µg/L	whole-body Se (140 d), µg/g dw	replicate	total no. spawns	eggs/spawn	hatchability, %
0.8	0.5	0.8	А	15	14,099	94.5
			В	10	5,961	90.5
0.8	7.9	1.0	А	12	9,267	89.5
			В	11	9,255	84.5
4.6	10.5	3.4	А	20	9,782	86.5
			В	12	13,032	96.5
8.4	10.5	6.0	А	2	10,614	96.5
			В	9	7,995	90
16.8	10.1	10	А	13	10,797	83
			В	13	9,147	91.5
33.3	10.1	19	А	14	8,850	80
			В	4	8,850	80

Effects on Larvae				
Se in diet, µg/g dw	Se in water, µg/L	adult whole-body (60 d), μg/g dw	mean survival, %	
0.8	0.5	0.9	92	
0.8	7.9	0.9	93	
4.6	10.5	2.9	90	
8.4	10.5	4.9	95	
16.8	10.1	7.2	87	
33.3	10.1	16	7	

Chronic Value:

The EC_{20} value calculated for survival of fry versus levels of selenium found in the eggs and whole-body tissue of adults after 60 d of exposure is 8.954 µg Se/g dw.

Cleveland, L. et al. 1993. Toxicity and bioaccumulation of waterborne and dietary selenium in juvenile bluegill sunfish (*Lepomis macrochirus*). Aquatic Toxicol. 27:265-280.

Test Organism: Life Stage:	Bluegill sunfish (<i>Lepomis macrochirus</i>) juvenile (5 months - waterborne exposure; 3 months - dietary exposure)
Exposure Route:	waterborne (60-d) and dietary (90-d) - separate exposures waterborne - 6:1 selenate: selenite at 0.17, 0.34, 0.68, 1.38, 2.73 mg/L; dietary - seleno-L-methionine in Oregon moist at 1.63, 3.25, 6.5, 13, 26 µg Se/g dw)
Study Design:	Fish were exposed using a flow-through diluter. Each test consisted of an exposure and a depuration phase. Whole body tissue measurements were made at 31 and 60 days of waterborne exposure and at 31, 59 and 90 days of dietary exposure. Mortality and condition factor, K (weight x 10^5 /length ³), were measured at selected intervals.
Effects Data :	The waterborne exposure (see table below) was determined to have an $EC_{20} = 4.07 \ \mu g \ Se/g \ dw \ (1.96-8.44 \ \mu g/g \ 95\% \ CL)$. However, because it was a water-only exposure, it was not considered in the derivation of the FCV. A mortality effect level for the dietary exposure could not be calculated because the highest selenium whole body concentration (13.4 \ \mu g \ Se/g \ dw) only had 17.5% mortality. The middle selenium concentration did have 22.5% mortality. Cleveland et al. reported a significant decrease in K between 4.7 and 7.7 \ \mu g/g \ dw (see table below).

measured selenium in water (µg/L)	60-d measured selenium in whole body (μg/g dw)	60-d mortality (%)	condition factor (K)
20 (control)	1.1	10	1.5
160	2.8	12.5	1.5
330	4	22.5	1.6
640	5.3	52.5	1.5
1120	9.8	70	1.6
2800	14.7*	97.5	NA

Waterborne Exposure Study

*A 30-d measurement because all fish were dead at 60 days in this concentration.

Dietary Exposure Study

measured selenium in food $(ug/g ww)$	60-d measured	60-d mortality (%)	condition factor (K)
1000 (μg/g ww)	$(\mu g/g dw)$		

0.68 (control)	1	5	1.3
2.3	2.1	7.5	1.3
3.5	3.3	10	1.3
6.6	4.7	22.5	1.3
12.7	7.7	15	1.2
25	13.4	17.5	1.2

Chronic Value:Given the very slight reduction in K (1.3 to 1.2) and the uncertain relevance of
growth data, the NOAEC is interpreted to be 13.4 μ g Se/g dw for this study; and
the chronic value is >13.4 μ g Se/g dw.

Lemly, A.D. 1993a. Metabolic stress during winter increases the toxicity of selenium to fish. Aquatic Toxicol. 27:133-158.

Test Organism:	Bluegill sunfish (Lepomis macrochirus; juvenile 50-70 mm)
Exposure Route:	Waterborne and dietary <u>Water</u> 1:1 selenite:selenate in stock at pH 2; metered in to reach 5 µg/L <u>Diet</u> seleno-L-methionine in TetraMin (5 µg/g dw)
Test Duration:	180 days
Study Design:	Fish were exposed (treatment and control) under intermittent flow-through conditions for 180 days. Tests were run at 4° and 20°C with biological (histological, hematological, metabolic and survival) and selenium measurements made at 0, 60, 120 and 180 days. Fish were fed at a rate of 3% body weight per day. All treatments were initiated at 20°C and then decreased in the cold treatment at a rate of 2°C per week for 8 weeks to reach 4°C and then maintained at that temperature for the remainder of the 180 days.
Effects Data :	In the 20°C test, fish accumulated 6 μ g/g dw selenium (whole-body) with no significant effect on survival (4.3% and 7.4% mortality in control and treatment, respectively). In the 4°C test, fish exposed to selenium accumulated 7.9 μ g/g dw (whole-body) selenium and had significant mortality after 120 (33.6%) and 180 days (40.4%) relative to control (3.9%). Several hematological measurements were significantly different in both the warm and cold selenium exposures relative to controls. Both warm and cold selenium treatments also had greater O ₂ consumption than controls. Fish lipid content in the cold Se treatment decreased more than the cold control; lipid content did not decrease in either the warm control or the warm Se treatment (see summary tables below). The results suggest significant mortality occurs in juvenile bluegill during winter months when tissue concentrations reach 7.91 μ g/g dw and lipid levels decrease to 6 percent.
Chronic Value:	20° C, > 6 µg/g Se whole-body; 4°C, < 7.91 µg/g dw Se whole body

	cold - Se control				cold + Se				warm - Se control				warm + Se			
day	Se ^a	Surv. %	lipid, %	O_2^{b}	Se ^a	Surv. %	lipid, %	O_2^{b}	Se ^a	Surv. %	lipid, %	O_2^{b}	Se ^a	Surv. %	lipid, %	O_2^{b}
0	1	100	13.2	98	1	100	13.2	98	1	100	13.2	98	1	100	13.2	98
60	1	97.1	12.5	58	5.8	92.9	10	63	1.2	95.7	13.3	98	5.8	100	13.3	103
120	1.1	97.1	11.5	57	7.9	66.4	6	81	1.1	95.7	13.4	100	6	96.7	13.4	120
180	1.4	97.1	10.5	57	7.9	59.6	6	78	1.2	95.7	13.6	100	6	92.6	13.5	120

Mean Concentration of Selenium in Tissues, Cumulative Survival*, Percent Lipid Content and Oxygen Consumption in Juvenile Bluegill

a whole body Se tissue concentration, $\mu g/g dw$

b oxygen consumption, mg/kg/hr

* Cumulative Survival: In this experiment, 240 juvenile bluegill were placed in three 400-L fiberglass tanks, 80 in each, and exposed to each control and treatment for a period of 180 days. Ten fish were removed at random from each treatment replicate on days 0, 60, 120, and 180 for selenium, histological, hematological, and metabolic measurements.

	day 0					day 60			day 120				day 180			
replicate	1	2	3	mean	1	2	3	mean	1	2	3	mean	1	2	3	mean
c+Se	0.87	1.21	0.95	1.01	6.30	5.49	5.76	5.85	8.36	7.31	7.85	7.84	7.53	8.01	8.19	7.91
w+Se	1.17	0.96	0.90	1.01	5.61	6.19	5.43	5.74	6.37	5.92	5.50	5.93	5.48	5.72	6.02	5.74
c-Se	0.89			0.89	0.97			0.97	1.01			1.01	1.10			1.10
w-Se	0.99			0.99	1.12			1.12	0.99			0.99	0.96			0.96

Replicate and Average Whole-body concentrations ($\mu g/g dry weight$) of selenium in juvenile bluegill*

* Each value is for a composite sample made from 5 fish.

The Kaplan-Meier estimator was used to calculate survival at time t

$$\hat{S}(t) = \frac{\prod r(t_i) - d_i}{r(t_i)}$$

where $r(t_i)$ is the number of fish alive just before time t_i , i.e. the number at risk, and d_i is the number of deaths in the interval $I_i = [t_i, t_{i+1}]$. The 95% confidence interval for such estimate (Venables and Ripley 2002) was computed as

$$\exp\!\left\{\!-\,\hat{H}(t)\exp\!\left[\pm\,k_{\omega}\,\frac{\mathrm{s.e.}\left(\hat{H}(t)\right)}{\hat{H}(t)}\right]\!\right\}$$

where

$$\hat{H}(t) = \sum \frac{d_j}{r(t_j)}$$
 and $j \le i$

The following table lists the estimates of survival in the cold + Se treatment at 60, 120 and 180 days. The term n.event is the number of deaths at a given interval; n.risk is the number of organisms alive at the beginning of the interval; survival is computed by the Kaplan-Meier estimator.

Time	n.risk	n.event	survival	std.err	lower 95% CI	upper 95% CI
60	210	15	0.929	0.0178	0.884	0.956
120	165	47	0.664	0.0350	0.590	0.728
180	88	9	0.596	0.0381	0.517	0.666

Warm Exposure	day 0		day 60		day 120		day 180		
blood parameter	warm-Se	warm+Se	warm-Se	warm+Se	warm-Se	warm+Se	warm-Se	warm+Se	
total erythrocyte, 10 ⁶ /ml	2.95	2.92	2.96	2.93	2.99	2.95	2.96	2.89	
% mature	85	86	86	93*	86	94*	85	94*	
nuclear shadows, 10 ⁴ /ml	0.95	0.86	0.97	2.05*	0.83	2.38*	0.91	2.30*	
total leucocytes, 10 ⁴ /ml	17.22	17.41	16.90	17.55	16.73	17.62	17.05	17.36	
% lymphocytes	23	25	20	23	19	26	21	22	
% neutrophils	15	13	14	15	17	19	17	16	
hematocrit, %	37	36	37	29*	36	29*	38	28*	
MCHC (mean corpuscular hemoglobin conc.)	23	25	25	19*	25	18*	25	17*	
Cold Exposure	day 0		day 60		day 120) day 180			
blood parameter	cold-Se	cold+Se	cold-Se	cold+Se	cold-Se	cold+Se	cold-Se	cold+Se	
total erythrocyte, 10 ⁶ /ml	2.91	2.93	2.97	2.90	3.01	2.95	3.00	2.99	
% mature	84	82	87	95*	85	96*	85	97*	
nuclear shadows, 10 ⁴ /ml	0.86	0.84	0.83	2.30*	0.89	2.49*	0.90	2.36	
total leucocytes, 10 ⁴ /ml	16.48	16.88	16.79	16.91	16.80	16.74	16.96	16.63	
% lymphocytes	17	16	16	17	19	15	19	18	
% neutrophils	13	12	15	11	15	12	12	14	
hematocrit, %	39	37	40	30*	41	28*	39	27*	
MCHC (mean corpuscular hemoglobin conc.)	26	25	25	18*	22	17*	23	17*	
MCV (mean corpuscular volume)	182	171	188	146*	180	135*	185	130*	

Hematological Measurements in Juvenile Bluegill Sunfish (*indicates significantly different from control)

Hermanutz et al. 1996. Exposure of bluegill (*Lepomis macrochirus*) to selenium in outdoor experimental streams. U.S. EPA Report. Mid-Continent Ecology Division. Duluth, MN.

Test Organism:Bluegill (Lepomis macrochirus; 3 to 4-year old adults)Exposure Route:Dietary and waterborne followed by dietary only
Dietary and waterborne
Selenite was added to artificial streams which entered the food web; thus, fish
were also exposed to selenium in the diet.
Dietary only
Recovering streams exposed bluegill to selenium in prey organisms. Selenite
addition to water was ceased (selenium in water was below detection level).

Study Design:Eight Monticello artificial streams were used for three separate studies between
1987 and 1990.

Stream	Study I	Study II	Study III
Dates BG ^a put in station 0-2 BG transferred to sta. 6 End of study	9-1-87 5-16-88 8-22-88	10-88 5-89 8-89	11-89 5-90 7-90
1	Unused	Control	Control
2	Unused	2.5 μg/L	Recovering
3	10 µg/L	10 µg/L	Recovering
4	30 µg/L	Recovering	Recovering
5	Control	Control	Control
6	30 µg/L	Recovering	Recovering
7	Control	2.5 μg/L	Recovering
8	10 µg/L	10 µg/L	Recovering

^a BG = Bluegill.

A schematic diagram of an artificial stream is provided below. For each study, a random sample of 22-50 adult bluegill were transferred from stations 0-2 (provided temperatures above 4°C during winter) to station 6 (most suitable for nests) during mid-May for spawning. Spawning activity was monitored in the streams. Embryo and larval observations were made *in situ* and in the laboratory from fertilized eggs taken from the streams and incubated in the lab.

Schematic Design of One of the Artificial Streams in the Monticello Study

Effects Data : Adult survival in Studies II and III was very low and will not be considered in the effects analysis. The percent hatch, percent larval survival, percent edema, percent lordosis and percent hemorrhaging in the 2.5 and 10 μ g/L streams for Study II are provided in the table below. The values presented in this table are corrected values for Study II as reported by Tao et al. (1999). The data from Study II (both egg cup and field nest) were not amenable for regression analysis. As reported by Tao et al. (1999), ANOVA was utilized to evaluate effects of elevated concentrations of selenium on percent hatch, percent survival, maximum percent edema, lordosis, and hemorrhage, and minimum percent healthy (egg cup data). Treatment effects were only significant for maximum percent edema and minimum percent healthy (see their Table 4-19), and in no instance were

differences between the $2.5 \,\mu g$ Se/L and control treatments significant (Dunnett's Means test, all probabilities > 0.1, see their Table 4-20). These results clearly suggest that the 2.5 µg Se/L treatment had no adverse impact on bluegill larvae. They are further supported by analysis of the field nest data (see table below). In this experiment, treatment had a significant effect on maximum percent edema (raw data and ranks) and maximum percent hemorrhage (ranks only). Probabilities of differences between the 2.5 µg Se/L and control treatments were >0.2 for all response variables except maximum percent hemorrhage, which had an estimated probability of 0.05 (raw data, P=0.022 for ranks; Dunnett's means test). Such values, though, were well above the adjusted experiment-wise error rate for multiple comparison ($\alpha'=0.0085$, $\alpha'=1-(1-\alpha)^{1/k}$; $\alpha=0.05$, k=6 comparisons; Sokal and Rohlf 1981), which takes into account the fact that selenium effects were tested on six different response variables. Therefore, the chronic value for this study, 12.12 µg Se/g dry weight, was calculated as the geometric mean of tissue concentrations of selenium in the 2.5 (NOAEC) and 10 µg Se/L (LOAEC) treatments (5.55 and 26.46 µg Se/g dw whole body tissue, respectively).

Chronic Value: 12.12 μ g Se/g dw whole-body tissue, calculated as the GM of the NOAEC, 5.55 μ g Se/g dw, and LOAEC, 26.46 μ g Se/g dw, based on percent larval survival and percent larvae exhibiting edema in the egg cup exposures. Note: the NOAEC value of >17.35 μ g Se/g dw was selected as the chronic value for Study III based on percent larval survival in egg cup exposures and percent larvae exhibiting edema in nest observations.

Effects on Progeny	- Study	$\mathbf{II}^{a,b}$
--------------------	---------	---------------------

	Egg cup observations												
		number of		% survival				whole-body Se					
treatment	stream	trials	% hatch	to 3rd day	% edema	% lordosis	% hemorr	$(\mu g/g dw)$					
control	1	6	93.0	75.2	0	0	0	2.05					
control	5	5	96.4	71.5	0	0	0	1.85					
2.5 μg/L	2	0	NA	NA	NA	NA	NA	6.8					
2.5 μg/L	7	4	81.4	71.6	0	0	3.6	5.55					
10 µg/L	3	3	83.3	57.7	100	11.1	49.3	20.75					
10 µg/L	8	2	91.1	57.1	100	18.2	41.1	33.75					
rec 30 µg/L	4	0	NA	NA	NA	NA	NA	NA					
rec 30 µg/L	6	6	92.9	73.0	17.4	0	11.5	30.6					

	Nest Observations													
		# active	# embryos	% dead	# larvae	% dead	#samples				whole-body Se			
treatment	stream	nests	collected	embryos	collected	larvae	w larvae	% edema	% lordosis	% hemorr	(µg/g dw)			
control	1	6	2458	0.94	3252	0.03	7	0	0	0	2.05			
control	5	9	1329	0	3435	1.05	13	0	0	0	1.85			
2.5 μg/L	2	1	0		2497	0.20	3	4.1	25	77.6	6.8			
2.5 μg/L	7	5	1462	0	4717	0.08	8	0	0	52	5.55			
10 µg/L	3	2	672	0	5376	0.50	9	81.4	5.0	55.5	20.75			
10 µg/L	8	3	931	0.32	750	0.40	4	50	14.7	26.7	33.75			
rec 30 µg/L	4	0	NA	NA	NA	NA	NA	NA	NA	NA	NA			
rec 30 µg/L	6	8	646	0	6782	7.8	16	27.3	0	17.1	30.6			

a Values in table were taken from Tao et al. (1999).

b The chronic value for the study was calculated as the GM of whole-body selenium concentrations in the 2.5 (NOAEC 5.55 µg Se/g dw; stream 7 only) and 10 µg Se/L (LOAEC of 26.46 µg Se/g dw; GM of streams 3 and 8, respectively) treatments in the egg cup exposures.

Effects on Progeny - Study III^a

Egg cup observations								
		number of		% survival to				whole-body
treatment	Stream	trials	% hatch	3rd day	% edema	% lordosis	% hemorr	Se ($\mu g/g dw$)
control	1	2	92	58.6	0	0	0	1.6
control	5	3	76.7	69.2	0	0.9	0.8	3.35
rec 2.5 µg/L	2	3	87.3	66	0	0	0	5.25
rec 2.5 µg/L	7	6	87.2	76.5	0	0	0	5.35
rec 10 µg/L	3							14.5
rec 10 µg/L	8	3	75.3	74.5	0	0	0	11.7
rec 30 µg/L	4	5	92	78				17.35
rec 30 µg/L	6							

Nest observations							
			# samples with				whole-body Se
treatment	stream	# active nests	larvae	% edema	% lordosis	% hemorr	$(\mu g/g dw)$
control	1	2	5	0	0	0	1.6
control	5	2	3	0	0	0	3.35
rec 2.5 µg/L	2	5	5	0	0	0	5.25
rec 2.5 µg/L	7	5	2	0	0	0	5.35
rec 10 µg/L	3	2	4	0	0	0	14.5
rec 10 µg/L	8	4	4	0	0	0	11.7
rec 30 µg/L	4	9	13	0	0	0	17.35
rec 30 µg/L	6						

a The chronic value for the study was selected as the NOAEC of >17.35 μ g Se/g dw from the recovering 30 μ g Se/L treatment.

Coughlan, D.J. and J.S. Velte. 1989. Dietary toxicity of selenium-contaminated red shiners to striped bass. Trans. Am. Fish Soc. 118:400-408.

Test Organism:	Striped bass (<i>Morone saxitilis</i> ; adults from Lake Norman, NC, approximately 250 g each)
Exposure Route:	dietary only Treated fish were fed selenium contaminated red shiners (1 g) from Belews Lake, NC (9.6 μ g Se/g ww or 38.6 μ g Se/g dw based on a mean reported moisture content of 75.1 percent). Control fish were fed golden shiners from a local bait dealer (0.3 μ g Se/g ww or 1.3 μ g Se/g dw based on a mean reported moisture content of 76.3 percent).
Test Treatments:	Test treatments were as described above. Two tanks contained treated fish (n = 20 fish total), and one tank of fish served as the control (n = 10 fish). Each tank received a continuous flow of soft well water (hardness and alkalinity approx. 30 mg/L as $CaCO_3$) throughout the exposure.
Test Duration:	80 days
Study Design:	During the experiment, all striped bass ($n = 10$ per tank) were fed to satiation three times per day. Pre-weighed rations of live red shiners (treated fish) and golden shiners (controls) were added to the tanks and allowed 5 hours to feed. Uneaten prey was removed and weighed. Composite whole-body samples of each prey fish were collected at regular intervals throughout the study for whole-body tissue selenium analysis. The final selenium concentration in epaxial white muscle was determined for surviving striped bass at the end of the test. Moribund striped bass were sacrificed so as to obtain muscle tissue samples for selenium analysis. Samples of liver and trunk kidney of these and the surviving striped bass were dissected for observations of histopathology.
Effects Data:	Striped bass fed selenium-laden red shiners exhibited changes in behavior (lethargy, reduced appetite), negligible weight gain, elevated selenium concentrations in muscle, histological damage, and death. Control fish ate and grew well, and behaved normally. Average selenium ingestion was between 60 and 140 μ g Se/fish per day until day 30. Appetite of the treated fish appeared to be significantly reduced beyond this point compared to the appetite of the control group. By day 78, all striped bass fed the Se-laden red shiners either had died or were moribund and sacrificed for analysis. The final selenium concentration in muscle of treated striped bass averaged from 3.5 (tank 1) and 4.0 (tank 2) μ g/g ww, or 17.5 and 20.0 μ g/g dw, respectively, assuming 80 percent moisture content in muscle tissue. The final selenium concentration in muscle of control striped bass fed uncontaminated golden shiners averaged 1.1 μ g/g ww, or 5.50 μ g/g dw (assuming 80 percent moisture content in muscle tissue).

Chronic Value:The chronic value for percent survival of striped bass relative to final selenium in
muscle tissue after being fed Se-laden red shiners is <17.50 μ g/g dw, or 14.75
 μ g/g dw whole body tissue converted using equation I.

An EC_{20} value could not be calculated for this data set because the data did not meet the assumptions required for analysis.

Lemly, A.D. 1993b. Teratogenic effects of selenium in natural populations of freshwater fish. Ecotoxicol. Environ. Safety. 26: 181-204.

Test Organism:	All possible fish species collected from Belews Lake and a reference site.
Exposure Route:	dietary and waterborne - field exposed
Study Design:	Surveys of external abnormalities in fish collected from Belews Lake and two reference lakes were done in 1975, 1978, 1982, and 1992. Five classifications of abnormalities were reported: (1) spinal deformities (lordosis, scoliosis, kyphosis); (2) accumulation of body fluid (edema, expothalmus or popeye); (3) missing or abnormal fins; (4) abnormally shaped head or mouth; and (5) cloudy eye lens or cornea (cataracts). Whole-body selenium was measured in each fish. The relationship between whole-body selenium and malformations was examined.
Effects Data :	The relationship between whole-body selenium and the frequency of malformations in all the fish species collected at Belews (n=22) did not follow a clear trend. When evaluating only fish from the family Centrarchidae using a polynomial regression (cubic model) an R ² value of 0.881 was obtained. Lemly reported that the inflection point where a rapid rise in deformities occurred was between 40 and 50 μ g Se/g dw in whole-body tissue. The EC ₂₀ value determined by regression analysis of percent normal fish versus whole-body tissue selenium concentration for the family Centrarchidae (most sensitive family or group of families) was 44.57 μ g Se/g dw. Centrarchidae was the most sensitive family or group of families of those collected during the survey.
Chronic Value:	The EC_{20} value determined by regression analysis of percent normal fish versus whole-body tissue selenium concentration for the family Centrarchidæ was 44.57 µg Se/g dw.

APPENDIX J

SELENIUM (μg/g dw WHOLE-BODY) IN FISH SAMPLES COLLECTED FROM 112 SITES AS PART OF U.S. FISH AND WILDLIFES NATIONAL BIOMONITORING PROGRAM, 1978-1981 (LOWE ET AL. 1985).

AND

SELENIUM (µg/g dw WHOLE-BODY) IN 322 AQUATIC LIFE TISSUE SAMPLES COLLECTED FROM 264 SITES AS PART OF USGS NATIONAL WATER QUALITY ASSESSMENT (NAWQA) PROGRAM (http://water.usgs.gov/nawqa/ as of May 11, 2004).

FCV Relative to Natural Background Levels of Selenium in Fish

As an essential element, selenium naturally occurs in all living things. Since selenium is found in all fish, two questions arise. 1) How close is the FCV of 7.91 μ g/g dw to natural background levels in fish, and 2) how frequently do natural selenium tissue concentrations exceed the FCV. The latter situation would pose problems in the implementation of the FCV as an ambient water quality criterion.

As part of the National Contaminant Biomonitoring Program, the U.S. Fish and Wildlife Service collected fish from 112 sites distributed evenly across the U.S. during 1979 through 1981, and measured several contaminants including selenium (Lowe et al. 1985). Selenium, measured in 591 fish samples representing 60 different species, ranged from 0.3 to 10.5 μ g/g dw and had an overall average and standard deviation of $1.9 \pm 1.4 \mu$ g/g dw.

A separate data set of selenium levels in 231 macroinvertebrate samples, 90 fish samples, and one plant sample collected from 25 different states across the United States was generated by USGS's National Water Quality Assessment (NAWQA) program. NAWQA is intended to measure water quality in a sampling of smaller watersheds having known land use. Among these sites, whole body tissue concentrations ranged from 0.3 to 22.37 μ g/g dw and had an overall average and standard deviation of 3.22 \pm 2.29 μ g/g dw. The distribution of both these data sets indicates that the FCV would not be exceeded by over 97 percent of aquatic tissue samples collected across the United States (Figure J-1). The FCV thus appears to be sufficiently greater than natural selenium levels that unavoidable exceedances of the criterion are unlikely.

Figure J-1. Cumulative distribution of selenium concentrations in aquatic organisms (whole-body, μg/g dw) collected by the National Contaminant Biomonitoring Program (NCBP) and the U.S. Geological Service National Water-Quality Assessment (NAWQA) Program. NCBP and NAWQA data from Lowe et al. (1985) and query results from NAWQA's database on contaminant concentrations in animal tissues (http://water.usgs.gov/nawqa/), respectively.

Year	Species	Mean total length, cm	Mean total weight, Kg	Se, ug/g dry wt.
		Station 1, Penobscot River at Old	Town, MA	
78	Smallmouth bass	12.9	1.2	0.8562
78	White sucker	13.7	1.1	1.2227
78	White sucker	14.4	1.3	0.9292
80	Smallmouth bass	12.8	1.1	0.6513
80	White sucker	15.2	1.3	0.8261
80	White sucker	15.3	1.4	0.7634
		Station 2, Connecticut River at Windso	or Locks, Conn.	
78	White catfish	16.6	2.3	0.4651
78	White catfish	16.5	2.3	0.6818
78	Yellow perch	8	0.3	0.9934
80	White catfish	14.5	0.9	0.6007
80 80	White catfish Yellow perch	13.3 9.5	0.9 0.4	0.9738 0.9811
		Station 3 Hudson Diver at Dough	zaansia NV	
78	Goldfish		1	0.9353
78	Goldfish	11.4	1.1	0.6545
78	Largemouth bass	11.1	0.8	1.0676
80	Goldfish	10.9	1	1.2333
80	Largemouth bass	14.8	2.2	1.0701
		Station 4, Delaware River at Trenton, N	VY- Yardley, Pa.	
79	White perch	7.3	0.2	4.6429
79	White sucker	12.8	0.8	1.1438
79	White sucker	14.3	1.2	0.8389
81	Largemouth bass	9.5	0.4	2.4206
81	White sucker	15	1.3	1.1864
81	White sucker	14.4	1.1	1.4423
70		Station 5, Susquehanna River at Conov	vingo Dam, Md.	2.0500
79 70	Common carp	12.9	2	2.0690
79	Common carp	16.9	2.3	5.5401
/9	White perch	7.0	0.3	5.5401
81	Common carp	14.4	1.0	2.5451
01	White north	14.1	1.7	2.4051
81	white perch	1.9	0.5	5.4951
79	Common carp	Station 6, Potomac River at Little Falls 18.7	Md McLean Va 3.1	1.5248
79	Common carp	17	2.5	1.1628
79	Smallmouth bass	10	0.5	2.6587
81	Largemouth bass	11.5	8	1.8474
81	Redhorse	17.2	2	1.2963
81	Redhorse	17.5	2.1	1.3208

Table J-1.Selenium (µg/g dw whole-body) in fish samples collected from 112 sites as part of U.S. Fish and
Wildlife's National Biomonitoring Program, 1978-1981. From Lowe et al. 1985

Station 7, Roanoke river at Roanoke Rapids, N.C.

Year	Species	Mean total length, cm	Mean total weight, Kg	Se, ug/g dry wt.
78	White catfish	12.7	0.7	1.2134
80	Striped bass	14.5	1.4	1.3665
80	White catfish	11.7	0.6	1.0473
80	White catfish	10.1	0.4	1.0164
		Station 8, Cape Fear River at Elizab	bethtown, NC	
78	Spotted sucker	16.3	2	2.5177
78	Spotted sucker	16	2	2.5263
80	Flathead catfish	19	2	1.0656
80	Quillback	15	1.7	1.6719
80	Quillback	14.9	1.1	1.6558
	~	Station 9, Cooper River at Lake Moultrie, I	Monck;s Coner, S.C	
78	Channel catfish	16.3	1.3	1.6078
78	Channel catfish	14.6	1	1.4563
80	Channel catfish	14.5	1	1.4497
80	Channel catfish	13.6	0.6	1.4917
80	Striped bass	20.6	3.3	1.4894
78	Channel catfich	Station 10, Savannah River at Sav	vannah, Ga	3 2444
78	White catfish	12 7	1	2 0248
80	White catfish	11.3	0.7	1 4592
80	White catfish	79	0.2	1 2319
80	Bowfin	21	3.6	2.2568
		Station 12 St Lucie Canal at India	antowm Fla	
78	Largemouth bass			1.0954
78	White catfish			1.0580
78	White catfish			0.7931
80	Largemouth bass			1.1837
80	White catfish			1.3208
80	White catfish			0.9690
		Satation 13, Appalachicola River at J. W	oodruff Dam, Fla.	
79	Largemouth bass			0.8803
79	Spotted sucker			1.8219
79	Spotted sucker			1.0980
81	Largemouth bass			0.9402
81	Spotted sucker			1.3060
81	Spotted sucker			1.5600
79	Smallmouth buffalo	Station 14, Tombigbee Tiver at Mo	cIntosh, Ala.	0.7325
79	Smallmouth buffalo			1 1513
81	Black crappie			1.1515
81	Blue catfish			0.8765
81	Blue catfish			0.0705
01	Dide cattion			0.7762

Station 15, Mississippi Tiver at Luling, La.

Year	Species	Mean total length, cm	Mean total weight, Kg	Se, ug/g dry wt.
79	Common carp			1.6667
79	Common carp			1.7162
79	Largemouth bass			1.7200
81	Channel catfish			0.6599
81	Channel catfish			0.7561
81	Largemouth bass			1.8147
		Station 16, Rio Grande at Missie	on, Tex	
80	Gizzard shad			2.4638
80	Gizzard shad			2.4719
80	Largemouth bass			2.2800
81	Common carp			2.1858
81	Gizzard shad			2.6190
81	Gizzard shad			2.8125
		Station 17, Genessee River at Scott	tsville, NY	
80	Pumpkinseed			0.9901
80	Redhorse			0.7692
80	Redhorse			0.7328
81	Pumpkinseed			2.1186
81	Redhorse			1.2450
81	Redhorse			1.3853
-		Station 18,, Lake Ontario at Prot Or	ntario, NY	1 1055
78	Rock bass			1.1355
79	Yellow perch			1.3306
79	Yellow perch			1.1719
81	Rock bass			1.4886
81	Yellow perch			1.7293
81	Yellow perch			1.3383
80	Dadharaa	Station 19, Lake Erie at Erie	e, Pa	1 7625
80	Redhorse			1.7025
80	Yellow perch			2,4576
00	Teno a peren			211070
79	Common carp	Station 20, Lake Huron (Saginaw Bay) at	Bay port, Mich.	1.8237
79	Common carp			1.9113
79	Yellow perch			1.9196
81	Common carp			2.3355
81	Common carp			2.5776
81	Yellow perch			2.1723
			W.:-	
79	Bloater	Station 21, Lake Michigan at Shebo	oygan, wis.	0.8060
79	Bloater			0.6897
79	Lake trout			1.1730
81	Bloater			0.7104

Year	Species	Mean total length, cm	Mean total weight, Kg	Se, ug/g dry wt.
81	Bloater			0.9687
81	Lake trout			1.2828
		Station 22 Laka Superior at Paufi	old Wie	
79	Lake trout	Station 22, Lake Superior at Bayin	eiu, wis.	0.8911
79	Lake whitefish			1.3278
79	Lake whitefish			1.5058
81	Bloater			1.1304
81	Bloater			1.3419
81	Lake trout			1.4741
		Station 23. Kanawha River at Winfi	eld. W.VA	
78	Channel catfish	······	,	0.9091
78	Channel catfish			0.8841
78	Sauger			1.4334
80	Channel catfish			0.9508
80	Channel catfish			1.2635
80	Sauger			2.3651
		Station 24, Ohio River at marietta, Ohio-Wi	lliamstown, W VA	
78	Channel catfish			1.1871
78	Sauger			1.4716
80	Common carp			2.2819
80	Common carp			1.7687
80	Sauger			2.2511
		Station 25, Cumberland River at Clark	xsville, Tenn.	
78	Common carp			1.3793
78	common carp			1.8077
78	White catfish			1.2203
80	Common carp			1.3514
80	Common carp			1.5909
80	Largemouth bass			1.7669
70		Station 26, Illinois River at Beards	town, Ill.	0.0620
/8				0.8638
/8	Common carp			2.0438
/8	Common carp			2.0700
80	Баск старріе			1.3751
80	Common carp			1.8051
80	Common carp			2.1087
78	Common carp	Station 27, Mississippi River at Gutenburg, Iov	va- Glen Haven, Wis.	1 7628
78	Common carp			1 3907
78	Largemouth bass			2 2742
80	Common carp			1 3231
80	Common carp			0 9064
80	Largemouth bass			1 1885
00	La gonoun ouss			1.1005

Year	Species	Mean total length, cm	Mean total weight, Kg	Se, ug/g dry wt.
		Station 28, Arkansas River at Pine B	luff, Ark.	
79	Bluegill			0.8936
79	Common carp			1.2453
79	Common carp			1.0357
81	Common carp			1.7931
81	Common carp			1.3937
81	Largemouth bass			1.3011
		Station 29 Arkansas River at Keystone R	eservoir Okla	
79	Common carp			1.3974
79	Common carp			1.6509
79	White bass			2.2167
81	Common carp			2.2394
81	Common carp			1.3410
81	White crappie			1.0738
		Station 20 White Biver at Do Valle F	Duff Asl	
79	Freshwater drum	Station 50, white River at De Valis I	Juli, Aik.	0.8874
79	Freshwater drum			0.9091
79	Largemouth bass			0.8696
81	Common carp			2.2857
81	Common carp			1.7472
		Station 21 Missouri Divar at Nabraska City, No	shr. Homburg Jowa	
79	Common carp	Station 51, Wissouri River at Neoraska City, Ne	.or Hamburg, Iowa	1.8774
79	Common carp			2.8163
79	Goldeye			1.2712
81	Common carp			3.0189
81	Common carp			3.2051
81	Goldeye			3.1803
		Station 32 Missouri River at Garrison D	am N Dak	
79	Northern pike	Sution 52, wissouri River at Garison E	uni, n. Duk.	1.4884
79	Redhorse			0.9600
81	Walleye			1.6041
81	White sucker			2.4883
81	White sucker			3.9252
		Station 33 Missouri River at Great E	alls Mont	
79	Brown trout			2.3432
79	White sucker			1.3333
79	White sucker			1.3158
81	Brown trout			2.1591
81	White sucker			1.9617
		Station 34. Red River of the Norh at Noves Mini	n. Pembina. N. Dak	
78	Common carp			2.3166
78	Common carp			2.0629
78	Sauger			0.4682
80	Mooneye			3.3754

Year	Species	Mean total length, cm	Mean total weight, Kg	Se, ug/g dry wt.
80	Sauger			0.9328
80	Sauger			0.8117
		Station 35, Green River at Vern	al, Utah	
78	Common carp			3.7410
78	Common carp			3.9286
78	Smallmouth bass			3.6076
80	Common carp			3.2537
80	Common carp			2.7811
80	Smallmouth bass			3.1500
		Station 36, Colorado River at Imperial Res	servoir, Ariz Calif.	
78	Common carp			6.5552
78	Common carp			8.0364
78	Largemouth bass			10.5204
80	Common carp			7.5210
80	Common carp			6.4783
80	Largemouth bass			8.6531
		Station 37, Truckee River at Ferr	nley, Nev.	
80	Green sunfish			1.0794
80	Tahoe sucker			0.9211
80	Tahoe sucker			1.1401
81	Green sunfish			0.8835
		Station 38, Utah lake at Provo	, Utah	
78	Common carp			2.9333
78	Common carp			3.1741
78	White bass			3.4799
80	Common carp			9.6863
80	Common carp			2.1633
80	White bass			3.5246
		Station 39, Sacramento River at Sacra	amento, Calif.	
79	Brown bullhead			0.7035
79	Largemouth bass			1.2644
79	largescale sucker			1.0811
81	largescale sucker			1.2454
81	Largemouth bass			1.4286
	.	Station	40, San Joaquin River at Los Banos, C	Calif.
79	Black bullhead			3.3333
79	Black bullhead			3.3871
79	Green sunfish			6.0748
81	Sacramento blackfish			5.3425
81	Sacramento blackfish			5.7407
-		Station 41, Snake River at Hagern	nan, Idaho	
78	Largescale sucker			1.2431
78	Largescale sucker			1.4126

Year	Species	Mean total length, cm	Mean total weight, Kg	Se, ug/g dry wt.
78	Rainbow trout			2.3630
80	Largescale sucker			1.3913
80	Largescale sucker			1.5447
80	Rainbow trout			1.9495
78	Largescale sucker	Station 42, Snake River at Lewiston, Idaho	- Clarkston, Wash.	0.9325
78	Largescale sucker			1.3636
78	Smallmouth bass			1.4765
80	Largescale sucker			0.8861
80	Largescale sucker			0.9746
80	White crappie			1.0870
79	Dridgalin quakar	Station 43, Salmon River at Riggi	ns, Idaho	1 5710
78	Bridgelip sucker			0.8494
70	Northern squawfish			1 1020
70 80	Bridgelin sucker			0.9016
80	Bridgelin sucker			0.9010
80	Northern squawfish			2 9897
00	i torulerii squuwrisii			2.5057
		Station 44, Yakima Riv	ver at Granger, Wash.	
78	Common carp			2.3026
78	Common carp			1.4047
80	Black crappie			1.6716
80	Largescale sucker			1.7742
80	Largescale sucker			1.6508
		Station 45 Willamette River at Orego	on City Oreg	
78	Northern squawfish	Station 45, Winanche River at Oreg	Sir City, Oleg	0.5078
78	Chiselmouth			0.6615
78	Chiselmouth			0.4082
80	Largescale sucker			0.5479
80	Largescale sucker			0.6907
80	Northern squawfish			1.4286
78	Largescale sucker	Station 46, Columbia River at Cascade Lo	cks, WashOreg.	1.2684
78	Largescale sucker			1.3712
78	Northern squawfish			1.7818
80	Largescale sucker			0.9236
80	Largescale sucker			0.6765
80	Northern squawfish			0.7025
		Station 47, Klamath River at	br k, Calif.	
79	Klamath largescale sucker			0.3409
79	Klamath largescale sucker			0.3774
79	Yellow perch			0.6693
81	Klamath largescale sucker			1.0121

Year	Species	Mean total length, cm	Mean total weight, Kg	Se, ug/g dry wt.
81	Yellow perch			0.9016
		Station 48, Rogue River at G)Id, y Da	Oreg.	
79	Black crappie			0.3836
79	Redside shine			0.4887
81	Black crappie			0.3158
81	Brown bullhead			0.7805
81	Brown bullhead			0.7692
		Station 49, (,hena River at rks,	aska	
79	Burbot			2.3005
79	Longnose sucker			1.2903
81	Longnose sucker			1.7757
81	Longnose sucker			1.8519
81	Northern pike			1.8026
-		Station 50, Kenai River at SDidatna,	laska	2 0 2 0 1
78	Rainbow trout			2.0391
78	Round whitefish			2.9538
78	Dolly Varden			1.6992
80	Rainbow trout			1.8910
80	Round whitensh			1.8954
80	Dony varden			1.0910
		Station 51, Kennebec Rive at iiic	, Maine	
78	White sucker			1.1060
78	White sucker			0.9692
78	Yellow perch			1.2549
80	White sucker			1.0046
80	White sucker			0.9459
80	Yellow perch			0.7011
70	Northam aite	Station 52 Lake Champlain Burlie	c gton, Vt.	0.7451
70 70	White sucker			0.7431
70	White sucker			0.8400
70 80	Northern nike			1 1163
80	Notitieni pike			1.1105
78	Largemouth bass	Station 53, Menimack River t Low	@ll, Mass.	0.8070
78	White sucker			1.0357
78	White sucker			1.0676
80	Smallmouth bass			0.7343
80	White sucker			0.8230
80	White sucker			1.2389
		Station 54, Raritan River at Highland Pa	urk, N.J.	
78	Largemouth bass	,	,	1.8060
78	White sucker			1.9454
Year	Species	Mean total length, cm	Mean total weight, Kg	Se, ug/g dry wt.
----------	--------------------	---	-----------------------	------------------
78	White sucker			1.8301
80	White sucker			1.5126
80	White sucker			2.3348
80	Redfin pickerel			1.6450
		Station 55. James River a	t Richmond, Va.	
79	Redhorse	······	,	1.2877
79	Redhorse			1.4194
79	Smallnouth bass			1.8657
81	Redhorse			1.9243
81	Redhorse			1.0658
81	Smallnouth bass			1.0359
		Station 56, Pee Dee River at Johnsonvil	le, S.C.	
80	Gizzard shad			1.1170
80	Gizzard shad			1.0000
80	Largemouth bass			1.5235
		Station 57, Altamaha River at Doctortov	vn, Ga.	
78	Black crappie			1.2857
78	Carpsucker			1.2342
80	Largemouth bass			1.7094
80	Spotted sucker			2.0408
80	Spotted sucker			1.5574
		Station 59, Alabama Rive'r at Chrysle	r, Ala.	
79	Smallmouth buffalo		,	1.0035
79	Smallmouth buffalo			1.0175
79	Bowfin			1.2203
81	Largemouth bass			1.1538
81	Blue catfish			0.6716
81	Blue catfish			0.7326
		Station 60, Brazos River a@ Richmon	d, Tex.	
79	Longnose gar			1.2681
79	Smallmouth buffalo			1.0320
79	Smallmouth buffalo			1.3693
70	Channel astfield	Station 61, Colorado River at Wharton	, Tex.	0.0662
79 70	Channel cattish			0.9662
79	Freshwater drum			1.7844
79	Freshwater drum			1.4943
78	Common carn	Station 63, Rio Grande at Elephant Butte, I	N. Mex.	2 1514
78	Common carp			1 9028
78	Largemouth bass			1 9310
80	Common carr			1.7597
80	Common carp			1.5830
	•			

90 Lagenon hass 1.579 71 White scker 0.742 72 White scker 0.742 73 White scker 0.741 74 White scker 0.741 75 White scker 0.611 76 Karow noat 1.2775 78 Karow noat 0.741 78 Grazad skaf 2.715 78 Gizzad skaf 2.715 79 Gizzad skaf 2.715 70 Gizzad skaf 2.616 71 Mite base 2.901 72 Karow noat 2.803 73 Karow noat 1.0783 74 Karow noat 1.0783 75 Karow noat 1.0783 76 Karow noat 1.0783 77 Karow noat 1.0783 78 Karow noat 1.0783 79 Karow noat 1.0783 70 Karow noat 1.0783 71 Karow noat 1.0783 72 Karow noat 1.0783 73 Karow noat 1.0783 74 Karow noat 1.0783 75 Karow noat 1.0783 76	Year	Species	Mean total length, cm	Mean total weight, Kg	Se, ug/g dry wt.
Station 64, Rio Grande at Alamona, Colo. 0.742 78 White sucker 0.721 80 Borow mout 1.2775 80 White sucker 0.6911 80 White sucker 0.6911 80 White sucker 0.2715 81 Gitzard atad 6.2715 82 Gitzard atad 3.857 83 Gitzard atad 3.857 84 Gitzard atad 3.857 85 Gitzard atad 3.857 80 Gitzard atad 3.857 80 Gitzard atad 3.857 81 Gitzard atad 3.857 82 Gitzard atad 3.857 83 Gitzard atad 3.857 84 Gitzard atad 3.857 84 Gitzard atad 3.857 85 Gitzard atad 1.765 84 Gitzard atad 1.756 85 Gitzard atad 1.4144 81 Statcher 2.055	80	Largemouth bass			1.5709
78White sucker0.74/280Rown trout0.23180Rown trout0.23180White sucker0.691180White sucker0.691181Sucker0.691182Station 65, Pecos River at Red Blilf (Lake, Tex.2.271583Mite sucker9.501684Gizzard shad3.85985Gizzard shad3.689186Gizzard shad6.068187Station 66, St. Lawrence River at Massena, N.Y.1.176579Mite sucker1.176570White sucker1.272471White sucker1.272472Smallmouth bass1.176573White sucker1.272474Redhorse1.272475Redhorse2.015576Redhorse2.015577Redhorse2.015578Redhorse2.015579Redhorse2.015770Largemouth bass2.025671Redhorse2.015772Redhorse2.015773Redhorse2.015774Redhorse2.015775Redhorse2.015776Redhorse2.015777Station 67, Allegheny River at Natrona, Pa.2.015778Redhorse2.015779Redhorse2.015770Largemouth bas2.015771Redhorse2.015772Redhorse2.0157<			Station 64, Rio Grande at Alamosa	a, Colo.	
78White sucker0.923180Bown trout1.277580White sucker0.691581White sucker0.895582Station 65, Pecos River at Red Bhiff Lake, Tex.4.271578Øizzard shad4.271580Gizzard shad4.271580Gizzard shad5.067380Gizzard shad5.067380Gizzard shad5.067380White bass6.088181Station 66, St. Lawrence River at Massens, N.Y.1.178571White sucker1.128572White sucker1.282073Kerlows1.218374Kerlows1.218375Station 67, Alleghery River at Narona, Pa.2.015578Redhorse2.015579Kardonach bass2.209470Redhorse1.900571Lagenoach bass2.219472Lagenoach bass2.219473Common carp2.015574Common carp2.015775Augenoach bass2.219476Common carp2.021577Lagenoach bass2.219478Common carp2.015779Salation 69, White at New Harmony, Closville, III2.219470Common carp2.021571Common carp2.021572Common carp2.021573Common carp2.021674Common carp2.021675 <td< td=""><td>78</td><td>White sucker</td><td></td><td></td><td>0.7442</td></td<>	78	White sucker			0.7442
8080 wont tout1.27580White sacker0.603180Kite sacker0.803671Gizzard shad4.271578White bass9.501680Gizzard shad3.855980Gizzard shad3.607380Gizzard shad6.068171White bass6.068172Smallmouth bass1.176573White sacker1.176574White sacker1.203275Smallmouth bass1.176576White sacker1.203277Kachorse1.235278Redhorse1.235279Station 67, Allegheny River at Natrona, Pa.2.015570Redhorse1.235371Redhorse1.257472Jargemouth bass1.257873Redhorse2.511174Redhorse2.615575Redhorse2.615776Redhorse2.615777Redhorse2.615778Redhorse2.615779Redhorse2.615770Redhorse2.615771Redhorse2.615772Redhorse2.615773Redhorse2.615774Redhorse2.615775Redhorse2.615776Redhorse2.615777Redhorse2.615778Redhorse2.615779Redhorse2.615770<	78	White sucker			0.9231
80 White sucker 0.6911 80 White sucker 0.8036 81 Gitzard shad 4.215 78 White bass 9.5016 80 Gitzard shad 3.859 80 Gitzard shad 3.0073 80 White bass 0.0013 80 Gitzard shad 3.0073 80 Gitzard shad 0.001 80 Gitzard shad 3.0073 80 White sucker 0.0081 79 Smallmouth bass 1.1765 79 Smallmouth bass 1.1765 70 Smallmouth bass 1.1765 71 White sucker 1.0300 72 White sucker 1.0300 73 White sucker 1.0300 74 Redhorse 1.0300 75 Station 67, Allegheny River at Narona, Pa. 2.0155 76 Redhorse 1.3031 77 Redhorse 2.0155 78 Redhorse 1.3031 79 Redhorse 2.511 80 Redhorse 2.511 80 Redhorse 2.511 81 Common carp 2.3025 78 Common carp	80	Brown trout			1.2775
80 White sucker 0.8036 Station 65, Pecos River at Red Bhiff Lake, Tex. 4.2715 78 Gizzard shad 4.2715 80 Gizzard shad 9.0016 80 Gizzard shad 5.0673 80 Gizzard shad 5.0673 80 Gizzard shad 5.0673 80 Gizzard shad 5.0673 81 White bass 6.0681 71 Smallmouth bass 1.7265 72 Smallmouth bass 1.0280 73 Redhorse 1.4141 81 Northern pike 1.3592 74 Redhorse 1.4125 75 Redhorse 1.4125 76 Redhorse 1.4125 77 Redhorse 1.4125 78 Redhorse 1.4215 79 Ingemouth bass 1.4393 79 Redhorse 1.4215 70 Redhorse 1.4313 71 Redhorse 1.4313 72 Redhorse 2.7511 73 Redhorse 2.4313 74 Redhorse 2.4313 75 Redhorse 2.4313 74 Common cap 2.4313	80	White sucker			0.6911
Station 65, Pecos River at Red Bliff Lake, Tex. 4.715 78 Gizzard shaf 9.016 80 Gizzard shaf 3.859 80 Gizzard shaf 3.073 81 White bass 6.061 82 White bass 6.061 83 White bass 1.0765 84 White sacker 1.026 94 White sacker 1.0261 95 White sacker 1.0261 94 White sacker 1.0261 94 Norher pike 1.0261 95 Redhorse 2.0261 96 Redhorse 1.0263 97 Redhorse 1.0263 98 Redhorse 1.0263 99 Redhorse 1.0263 90 Redhorse 2.0261 91 Redhorse 2.0261 92 Redhorse 2.0261 93 Redhorse 2.0261 94 Redhorse 2.0261 94	80	White sucker			0.8036
78Gizzard shad4.271578White bass9.501680Gizzard shad3.859980Gizzard shad5.0673180White bass6.0681Station 66, St. Lawrence River at Massenn, N.Y.79S mallmouth bass1.176579White sucker1.028070White sucker1.028071White sucker1.028072White sucker1.028173Redhorse2.015574Redhorse2.015575Redhorse2.015576Redhorse2.015577Redhorse2.015578Redhorse2.015579Redhorse2.015579Redhorse2.015579Redhorse2.015570Redhorse2.015571Guragenouth bass2.015572Redhorse2.015573Redhorse2.015574Redhorse2.015575Guragenouth bass2.025576Common carp2.015677Station 68, Wabash River at New Harmony, -Crossville, III2.025578Common carp2.015779Station 69, Otho River at Chromatil, Otho2.025579Common carp2.015770Common carp2.015771Common carp2.015773Common carp2.015774Common carp2.015775Common carp <td></td> <td></td> <td>Station 65, Pecos River at Red Bltiff</td> <td>Lake, Tex.</td> <td></td>			Station 65, Pecos River at Red Bltiff	Lake, Tex.	
78White bass9,501680Gizzard shad3,855980White bass6,0681Station 66, St. Lawrence River at Massena, N.Y.79Malmouth bass1,07579White sucker1,028079White sucker1,414181Northern pike2,0155Station 67, Allegheny River at Natrona, Pa.ReflorseColspan="2">Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2" <tr< td=""><td>78</td><td>Gizzard shad</td><td></td><td></td><td>4.2715</td></tr<>	78	Gizzard shad			4.2715
80 fizzard shad 3.859 80 Gizzard shad 5.0673 80 White bas 6.068 Station 66, St. Lawrence River at Massena, N.Y. 79 Sinallmouth bass 1.1765 70 White sucker 1.4102 71 White sucker 1.4141 81 Northern pike 1.4141 81 Northern pike 2.0155 73 Redhorse 2.0155 74 Redhorse 2.0155 75 Redhorse 2.0155 76 Redhorse 2.0155 77 Redhorse 2.0155 78 Redhorse 2.0151 79 Redhorse 2.0151 70 Redhorse 2.0151 71 Redhorse 2.0151 72 Redhorse 2.0151 73 Redhorse 2.0151 74 Redhorse 2.0151 75 Quinon cap 2.0151 74 Common cap 2.0251 75 Common cap 2.0251 75 Common cap 2.0251 75 Common cap 2.0251 75 Common cap 2.0251 <t< td=""><td>78</td><td>White bass</td><td></td><td></td><td>9.5016</td></t<>	78	White bass			9.5016
80 fizzard shad 5,0073 80 White bas 6,0681 7 Smallmouth bass 1,1765 70 White sucker 1,2020 71 White sucker 1,4414 72 White sucker 1,4414 73 White sucker 2,0155 74 Rednorse 2,0155 75 Rednorse 2,0155 76 Rednorse 2,0155 77 Rednorse 2,0155 78 Rednorse 2,0155 79 Rednorse 2,0155 78 Rednorse 2,0155 79 Rednorse 2,0155 70 Rednorse 2,0155 71 Rednorse 2,0155 72 Rednorse 2,0155 73 Rednorse 2,055 74 Rednorse 2,551 75 Rednorse 2,551 74 Rednorse 2,551 75 Rednorse 2,	80	Gizzard shad			3.8559
80 White bass 6.0681 79 Smallmouth bass 1.1765 79 White sucker 1.0280 79 White sucker 1.4414 70 White sucker 1.4414 71 White sucker 2.0155 72 Rednore 2.0155 73 Rednore 2.0157 74 Rednore 2.0157 75 Rednore 2.0157 76 Rednore 2.0157 77 Rednore 2.0157 78 Rednore 2.0157 79 Rednore 2.0157 70 Largemouth bass 2.0157 71 Rednore 2.0157 72 Rednore 2.0157 73 Rednore 2.0157 74 Rednore 2.0157 75 Rednore 2.021 76 Rednore 2.021 77 Rednore 2.021 78 Rednore 2.021 74 Common carp 2.021 75 Common carp 2.021 76 Common carp 2.021 77 Common carp 2.021 78 Common carp <	80	Gizzard shad			5.0673
Station 66, St. Lawrence River at Massena, N.Y. 1.1765 9 Milnouth bass 1.0200 9 Mike sucker 1.4141 10 Northen pike 1.4141 11 Northen pike 1.4141 12 Northen pike 1.4151 7 Redforse 2.020 7 Redforse 2.021 8 Redforse 2.021 9 Redforse 2.021 10 Redforse 2.021 10 R	80	White bass			6.0681
9Mailmouth bass1.176579White sucker1.02809White sucker1.43209White sucker1.43207Station 67, Allegheny River at Nartona, Pa.1.432178Reflorse1.432278Reflorse1.232379Reflorse2.279479Lagremouth bass1.309379Reflorse1.309379Reflorse2.751180Reflorse2.751180Reflorse2.813981Roflorse2.813982Smallmouth bass2.813984Roflorse2.813980Roflorse2.813981Common carp2.813982Common carp2.302184Common carp2.302184Common carp2.303184Common carp2.303185Common carp1.303380Common carp2.303181Common carp2.303182Common carp2.303183Common carp2.303184Common carp2.303184Common carp2.303185Common carp2.303186Common carp2.303187GargeCommon carp88Common carp2.503189Common carp2.503180Common carp2.503181Common carp2.503182Common carp2.5031 </td <td></td> <td></td> <td>Station 66, St. Lawrence River at Mas</td> <td>ssena, N.Y.</td> <td></td>			Station 66, St. Lawrence River at Mas	ssena, N.Y.	
9Mike sacker1.028079Mike sacker1.441481Norther pike1.441481Norther pike2.015578Redhorse2.015578Redhorse2.015179Redhorse2.036170Redhorse2.036171Lagernouth bass2.036172Redhorse2.036173Redhorse2.036174Redhorse2.036175Redhorse2.036176Redhorse2.036177Redhorse2.036178Rednorse2.036179Rednorse2.036170Rednorse2.036171Rednorse2.036172Rednorse2.036173Common carp2.036274Commor carp2.036275Cumon carp2.036176Gunnon carp2.036177Saige2.036178Gunno carp2.036179Cumon carp2.036170Saige2.036171Saige2.036172Saige2.036173Saige2.036174Gunno carp2.036175Saige2.036176Saige2.036177Saige3.036178Saige3.036179Saige3.036179Saige3.036179Saige3.03617	79	Smallmouth bass			1.1765
94 White sacker 1.4414 81 Northen pike 1.3592 78 Redhorse 2.0155 78 Redhorse 2.0155 78 Redhorse 2.0254 79 Rednorse 2.0274 79 Regmouth bass 2.02744 79 Redhorse 1.3693 70 Redhorse 1.3092 71 Redhorse 2.0151 72 Redhorse 2.0151 73 Redhorse 2.0151 74 Redhorse 2.0101 75 Redhorse 2.02561 76 Redhorse 2.0101 77 Redhorse 2.0101 78 Redhorse 2.0101 79 Redhorse 2.0101 70 Redhorse 2.0101 71 Redhorse 2.0101 72 Redhorse 2.0101 73 Redhorse 2.0101 74 Common carp 2.0201 75 Common carp 2.0201 76 Common carp 2.0201 77 Station 69.010 River at Christing Other at Christi	79	White sucker			1.0280
81 Norhen pike 1.359 84 Rehorse 2.015 75 Rehorse 2.015 78 Rehorse 2.021 79 Station 67, Allegheny River at Natrona, Pa. 2.023 79 Rehorse 2.031 79 Rehorse 2.031 79 Redorse 2.031 79 Redorse 1.6303 79 Rehorse 2.031 70 Rehorse 2.031 71 Rehorse 2.031 72 Rehorse 2.031 73 Rehorse 2.031 74 Rehorse 2.031 75 Rehorse 2.0305 76 Rehorse 2.0305 77 Station 68, Wabash River at New Harmony, Crossville, III 2.0305 78 Commo carp 2.0301 79 Commo carp 2.0301 70 Commo carp 2.0301 71 Commo carp 2.0301 78 Commo carp 2.5901 79 Commo carp 2.5901 79 Commo carp 2.5901 70 Commo carp 2.5901 79 Commo carp 2.5901 <td>79</td> <td>White sucker</td> <td></td> <td></td> <td>1.4414</td>	79	White sucker			1.4414
Station 67, Allegheny River at Natrona, Pa. 2.015 78 Redhorse 2.015 78 Redhorse 1.4232 79 Isargemouth bass 2.0794 79 Largemouth bass 1.6033 79 Redhorse 1.6034 79 Redhorse 2.051 80 Redhorse 2.7511 80 Redhorse 2.2656 90 Station 68, Wabsh River at New Harmony, -Crossville, III 2.055 91 Common carp 2.0513 92 Common carp 2.0513 93 Common carp 2.0513 94 Common carp 2.0513 95 Largenouth bass 2.0513 96 Common carp 2.0513 97 Gommon carp 2.0513 98 Largenouth bass 1.0133 99 Common carp 2.0513 90 Common carp 2.0513 91 Largenouth bass 2.0513 92 Common carp 2.0513 93 Gomona carp 2.0513 <td>81</td> <td>Northern pike</td> <td></td> <td></td> <td>1.3592</td>	81	Northern pike			1.3592
78 Rednorse 2.0155 78 Rednorse 1.4232 78 Smallmouth bass 2.2794 79 Largemouth bass 1.3693 79 Rednorse 1.9005 79 Rednorse 2.5711 80 Rednorse 2.5151 80 Rednorse 2.5151 80 Rednorse 2.5151 80 Rednorse 2.5151 80 Rednorse 2.555 80 Rednorse 2.555 81 Common carp 2.302 82 Common carp 2.313 80 Common carp 2.302 80 Common carp 2.3413 81 Argemouth bass 2.3413 82 Common carp 2.3413 83 Common carp 2.3590 84 Common carp 2.3590 84 Gommon carp 2.3590 8			Station 67, Allegheny River at Nati	rona, Pa.	
78 Redhorse 1.4232 78 Snallmouth bass 2.2794 79 Largemouth bass 1.3693 79 Redhorse 1.9005 79 Redhorse 2.5711 80 Redhorse 2.5111 80 Redhorse 2.8139 80 Snallmouth bass 2.2656 Totation 68, Wabash River at New Harmony, -Crossville, III 78 Common carp Station 68, Wabash River at New Harmony, -Crossville, III 78 Common carp 2.302 78 Common carp Station 69, Wabash River at New Harmony, -Crossville, III 78 Common carp 2.302 78 Common carp Station 69, Ohio River at Cincinnati, Ohio 78 Common carp 5 78 Common carp 5 78 Common carp 2.800 78 Common carp 2.800 78 Common carp 2.800 78 Common carp	78	Redhorse			2.0155
78 Smallmouth bass 2.2794 79 Largemouth bass 1.3693 79 Redhorse 1.9005 79 Redhorse 1.5789 80 Redhorse 2.7511 80 Redhorse 2.8139 80 Smallmouth bass 2.866 7 Station 68, Wabash River at New Harmony, -Crossville, III 7 78 Common carp 2.0505 78 Common carp 2.3413 80 Common carp 1.3043 80 Common carp 2.3413 80 Common carp 1.3043 80 Common carp 2.5890 78 Common carp 2.5890 78 Common carp 2.5890 78 Common carp 2.5890 78 Sager 1.5031 80 Common carp 2.5890 78 Sager 1.5031 80 Common carp 2.5890 78 Sager 1.5031 80 Common carp 2.5890 78 Common carp 2.5890 78 Sager 1.5031 80 Common carp 2.5890 80 Sager 1.5	78	Redhorse			1.4232
79 Largemouth bass 1.3693 79 Redhorse 1.9005 79 Redhorse 1.5789 80 Redhorse 2.7511 80 Redhorse 2.8139 80 Smallmouth bass 2.850 Station 68, Wabash River at New Harmony, -Crossville, III 78 Common carp 2.0505 78 Common carp 2.3012 78 Largemouth bass 2.3413 80 Common carp 1.3043 80 Common carp 1.3043 80 Common carp 2.3413 80 Common carp 2.5890 78 Common carp 2.5890 78 Common carp 2.5890 78 Sauger 1.5031 80 Gonmon carp 2.5890 78 Sauger 1.5031 80 Gonmon carp 2.5890 78 Sauger 1.5031	78	Smallmouth bass			2.2794
79 Redhorse 1.9005 79 Redhorse 1.5789 80 Redhorse 2.7511 80 Redhorse 2.8139 80 Smallmouth bass 2.2656 Station 68, Wabash River at New Harmony, -Crossville, III 78 Common carp 2.0505 78 Common carp 2.0505 78 Common carp 2.3413 80 Common carp 2.3413 80 Common carp 1.3043 80 Common carp 1.3043 80 Common carp 1.3043 80 Common carp 1.3043 80 Common carp 2.5890 78 Station 69, Ohio River at Cincinnati, Ohio 2.5890 78 Common carp 2.5890 78 Common carp 2.5890 78 Common carp 2.5890 78 Sauger 1.5031 80 Common carp 1.5031 80 Common carp 2.6070 80 Common carp 2.6070 80 Sauger 1.5031 80 Common carp 2.6070 80 Sauger 1.5113	79	Largemouth bass			1.3693
79 Redhorse 1.5789 80 Redhorse 2.7511 80 Redhorse 2.8139 80 Smallmouth bass 2.2656 Station 68, Wabash River at New Harmony, -Crossville, III 78 Common carp 2.0505 78 Common carp 2.0302 78 Largemouth bass 2.3413 80 Common carp 2.3413 80 Common carp 1.3433 80 Common carp 1.3433 80 Common carp 1.3433 80 Common carp 1.3453 80 Common carp 1.3453 80 Common carp 1.3453 80 Common carp 1.3453 80 Common carp 1.5175 81 Sauger 1.5113 82 Common carp 2.5890 78 Sauger 1.5031 80 Common carp 1.5031 80 Common carp 2.6070 80 Common carp 2.6070 80 Gommon carp 2.6070 80 Gommon carp 2.6070	79	Redhorse			1.9005
80 Rednorse 2.7511 80 Rednorse 2.8139 80 Smallmouth bass 2.2556 Station 68, Wabash River at New Harmony, -Crossville, III 78 Common carp 2.0505 78 Common carp 2.0505 78 Common carp 2.302 78 Largemouth bass 2.3413 80 Common carp 1.3043 80 Common carp 1.3043 80 Common carp 1.3043 80 Common carp 1.5175 80 Common carp 1.5175 80 Common carp 2.5890 81 Auger 4.0333 82 Sauger 1.5031 83 Gommon carp 2.5890 84 Sauger 1.5031 80 Gommon carp 2.5070 81 Gommon carp 2.5890 82 Common carp 1.5031 83 Sauger 1.5031 84 Gommon carp 2.6070 80 Gommon carp 2.6070	79	Redhorse			1.5789
80 Redhorse 2.81.39 80 Smallmouth bass 2.2656 Station 68, Wabash River at New Harmony, -Crossville, III 78 Common carp 2.0505 78 Common carp 2.2302 78 Largemouth bass 2.3413 80 Common carp 2.3413 80 Common carp 1.3043 80 Common carp 1.3433 80 Common carp 1.3433 80 Common carp 1.4873 80 Common carp 1.5175 Station 69, Ohio River at Cincinnati, Ohio 78 Common carp 2.5890 78 Common carp 2.5890 78 Suger 1.5031 80 Suger 1.5031 80 Common carp 2.0711 80 Suger 1.5031	80	Redhorse			2.7511
80 Smallmouth bass 2.2656 Station 68, Wabash River at New Harmony, -Crossville, III 78 Common carp 2.2302 78 Largemouth bass 2.3413 80 Common carp 1.3043 80 Common carp 1.3043 80 Common carp 1.4873 80 Common carp 1.5175 Station 69, Ohio River at Cincinnati, Ohio Train of 9, Ohio River at Cincinnati, Ohio 78 Common carp 2.5890 78 Common carp 2.5890 78 Common carp 2.5890 78 Common carp 1.5031 80 Common carp 1.5031 80 Common carp 2.6070 80 Common carp 2.6070 80 Sauger 1.5113	80	Redhorse			2.8139
Station 68, Wabash River at New Harmony, Crossville, III 2,000 78 Common carp 2,301 78 Largemouth bass 2,3413 80 Common carp 1,3043 80 Common carp 1,4873 80 Largemouth bass 1,5175 80 Largemouth bass 1,5175 80 Largemouth bass 1,5175 80 Largemouth bass 1,5175 80 Common carp 2,5890 78 Common carp 2,5890 78 Common carp 2,5890 78 Salger 1,5031 78 Common carp 2,5890 78 Common carp 2,5890 78 Common carp 2,5890 78 Gonmon carp 2,5890 78 Salger 1,5031 80 Common carp 2,1071 80 Common carp 2,1071 80 Gonmon carp 2,6070 80 Salger 1,5113	80	Smallmouth bass			2.2656
70 Common cap 2.000 78 Common cap 2.2302 78 Largemouth bass 2.3413 80 Common cap 1.3043 80 Common cap 1.4873 80 Largemouth bass 1.5175 80 Common cap 2.5890 78 Common cap 2.5890 78 Common cap 2.5890 78 Common cap 4.0333 78 Sauger 1.5031 80 Common cap 2.1071 80 Common cap 2.6070 80 Sauger 2.6070 80 Sauger 1.5113	78	Common carp	Station 68, Wabash River at New Harmony	y, -Crossville, III	2 0505
78 Common cap 2.202 78 Largemouth bass 2.3413 80 Common cap 1.3043 80 Common cap 1.4873 80 Largemouth bass 1.5175 Station 69, Ohio River at Cincinnati, Ohio 78 Common cap 2.5890 78 Common cap 2.5890 78 Common cap 4.0333 78 Sauger 1.5031 80 Common cap 2.1071 80 Common cap 2.6070 80 Sauger 1.5113	78	Common carp			2.0303
10 Largenouth bass L.5415 80 Common carp 1.3043 80 Common carp 1.4873 80 Largemouth bass 1.5175 Station 69, Ohio River at Cincinnati, Ohio 78 Common carp Station 69, Ohio River at Cincinnati, Ohio 78 Common carp Station 69, Ohio River at Cincinnati, Ohio 78 Common carp 2.5890 2.5890 78 Common carp 4.0333 78 Sauger 1.5031 80 Common carp 2.1071 80 Common carp 2.6070 80 Sauger 1.5113	78	L argemouth bass			2.2502
80 Common carp 1.4873 80 Largemouth bass 1.5175 78 Common carp 2.5890 78 Common carp 4.0333 78 Common carp 2.5890 78 Sauger 1.5031 80 Common carp 2.071 80 Sauger 2.6070 80 Sauger 1.5113	80	Common carp			1 3043
80Largemouth bass1.517580Largemouth bass1.517578Common carp2.589078Common carp4.033378Sauger1.503180Common carp2.107180Common carp2.607080Sauger1.5113	80	Common carp			1.4873
Station 69, Ohio River at Cincinnati, Ohio 78 Common carp 2.5890 78 Common carp 4.0333 78 Sauger 1.5031 80 Common carp 2.1071 80 Common carp 2.6070 80 Sauger 1.5113	80	Largemouth bass			1.5175
78Common carp2.589078Common carp4.033378Sauger1.503180Common carp2.107180Common carp2.607080Sauger1.5113			Station 69 Ohio River at Cincinna	ti Ohio	
78 Common carp 4.0333 78 Sauger 1.5031 80 Common carp 2.1071 80 Common carp 2.6070 80 Sauger 1.5113	78	Common carp	Statish 67, Onlo River at Chiefinia		2.5890
78 Sauger 1.5031 80 Common carp 2.1071 80 Common carp 2.6070 80 Sauger 1.5113	78	Common carp			4.0333
80 Common carp 2.1071 80 Common carp 2.6070 80 Sauger 1.5113	78	Sauger			1.5031
80 Common carp 2.6070 80 Sauger 1.5113	80	Common carp			2.1071
80 Sauger 1.5113	80	Common carp			2.6070
	80	Sauger			1.5113

Year	Species	Mean total length, cm	Mean total weight, Kg	Se, ug/g dry wt.
		Station 70, Ohio River at Metropolis Ill	Paducah, Ky.	
78	Common carp	· · · ·	· •	2.2222
78	Common carp			1.4067
78	Largemouth bass			1.3514
80	Common carp			2.2118
80	Common carp			2.0599
80	Largemouth bass			1.7770
		Station 71 Tennessee iver at Savan	nah Tenn	
78	White bass	Station / 1, Tennessee Iver at Savan	nun, ronn.	1.4610
79	Common carp			2.3790
79	Carpsucker			1.3333
80	Common carp			2.1973
80	Common carp			1.8103
80	Largemouth bass			1.9178
		Station 72, Wisconsin River at Woo	dman, Wis.	
80	Common carp			1.4107
80	Common carp			1.1688
80	Largemouth bass			1.1538
		Station 72 Day Maines Diver at Kasa	anana Tama	
78	Common carp	Station 73, Des Monies River at Reos	auqua, 10wa	3.5986
78	Common carp			4.0956
78	Sauger			2.4706
80	Common carp			3.8462
80	Common carp			2.3221
80	Channel catfish			1.7883
		Station 74 Mississippi Diver at Little	Falle Minn	
78	White sucker	Station 74, Mississippi River at Little	rans, Minni.	1 4340
78	Vellow perch			1.5825
80	rock bass			1.5025
80	Vellow bullbead			2.0155
80	Yellow bullhead			1 9149
00	Tenow bullicad			1.7147
78	Common carn	Station 75, Mississippi River at Cape Gi	rardeau, MoIll	2 3511
78	Common carp			2.5511
78	White crappie			1 2360
80	Common carn			1.2300
80	Common carp			1.8077
80	White bass			2 8820
80	winte bass			2.8859
70	Phac:11	Station 76, Mississippi River		1 0000
70	Smallmouth buffels			1.8000
79				0.0818
/9 01	Smallmouth buffs1-			0.6140
ð1 01	Smallmouth buffalo			1.09/9
81	Smallmouth burralo			0.9884

Year	Species	Mean total length, cm	Mean total weight, Kg	Se, ug/g dry wt.
81	White crappie			0.9343
		Station 78, Verdigris River at Oolo	ogah Okla.	
79	Common carp			1.0268
79	Common carp			1.4218
79	White bass			1.9907
81	Bluegill			1.7063
81	Common carp			2.1223
81	Common carp			2.1456
		Station 79, Canadian River at Eufa	aula, Okl.	
79	Common carp			2.4324
79	Common carp			1.4113
79	Largemouth bass			1.6318
81	Common carp			1.8382
81	Common carp			1.9403
81	Largemouth bass			2.3789
70	Common com	Station 80, Yazoo River at Redwo	ood, Miss	1 1620
79	Common carp			1.1620
/9 01	Common carp			2./350
81	Smallmouth buffalo			1.18/5
81				1.3559
81	white crapple			1.4444
79	Smallmouth buffalo	Station 81, Red River at Alexa	ndria.	0 8929
79	Smallmouth buffalo			0.9667
79	White bass			1 3043
81	Freshwater drum			1.4103
81	Freshwater drum			1 2500
81	Spotted gar			0.7353
79	Black crappie	Station 82, Red River at Lake Texon	na, OklaTex.	1.2955
79	River carpsucker			1.3366
79	River carpsucker			1.7617
81	Common carp			1.8280
81	Common carp			2.4627
81	Largemouth bass			2.3043
79	River carpsucker	Station 83, Missoun River at Hern	nann, Mo.	0.9121
79	River carpsucker			1.1350
79	Smallmouth buffalo			1.4706
		Clation 04 Distance Discussion 1	in Mont	
79	Common carp	Station 84, Bignorn Kiver at Hardi	in, mont.	5.6522
79	Goldeye			9.4118
79	White sucker			6.9466

Year	Species	Mean total length, cm	Mean total weight, Kg	Se, ug/g dry wt.
81	Brown trout			5.0896
81	Longnose sucker			3.0717
70	Common com	Station 85, Yellowstone River at Sid	dney,Mont.	1 4772
79	Common carp			1.4773
79	Sauger			1.7257
81	Redhorse			1 8919
81	Redhorse			2.4832
81	Sauger			1.6832
		Station 86, James River at Olivet, S. Dak	vet, S. ak.	
79	Carpsucker			1.7188
79	Carpsucker			1.9184
79	Goldeye			1.7302
81	Carpsucker			1.0154
81	Carpsucker			1.2805
81	Goldeye			2.5185
79	Common carp	Station 87, North Platte River at Lak McC	Conaughy, Nebr.	3.7288
79	Common carp			4.8918
79	Walleve			1.4907
81	Common carp			3.0488
81	Common carp			2.6601
81	Walleve			2.0077
79	Black crappie			2.7881
79	Common carp			4.3902
79	Common carp			4.3590
	I I I I I I I I I I I I I I I I I I I			
		Station 88, South Platte River at Br	ule, Nebr.	
81	White sucker			4.6538
81	Orangespotted sunfish			8.6786
79	Carpsucker	Station 89, Platte River at Lduisv	ille Nebr.	2.2549
79	Carpsucker			1.6514
79	Goldeve			3.2335
81	Carpsucker			2.5207
81	Carpsucker			2.8270
81	Goldeye			4.0972
	·			
		Station 90, Kansas River at	onner prings, Kans.	
79	Common carp			2.4615
79	River carpsucker			1.0676
81	Common carp			1.5858
81	Channel catfish			2.1635
81	River carpsucker			0.9859

Station 91 Colorado River at Lake Havasu, Ariz.-Calif.

Year	Species	Mean total length, cm	Mean total weight, Kg	Se, ug/g dry wt.
78	Common carp			7.6490
78	Largemouth bass			5.1449
80	Common carp			3.6494
80	Common carp			5.6944
80	Largemouth bass			2.7666
		Station 92, Colorado River at Lake Mead	ArizNev.	
79	Channel catfish			4.6441
79	Channel catfish			3.0169
79	Striped bass			0.8182
81	Common carp			3.3735
81	Channel catfish			3.2707
81	Striped bass			3.7109
70	0	Station 93, Colorado v" t La	ke 11, Ariz.	0.4010
78	Common carp			9.4218
78	Largemouth bass			9.8990
80	Common carp			4.3922
80	Common carp			3.9574
80	Largemouth bass			2.3759
78	Common carn	Station 94, Gfla River at Sa "III	DI servoir, Ariz.	1 9231
78	Common carp			1 5918
78	Largemouth bass			1.7466
80	Common carp			1 9588
80	Common carp			1 4079
80	Largemouth bass			1.1524
70	Lanaaaala ayahan	Station 96, Snake River at I H @b	, 'D.@'oWash	1 0000
70	Largescale sucker			1.0000
78	Northern squawfish			0.8970
70 80	L argescale sucker			0.8370
80	Largescale sucker			0.8456
80	Northern squawfish			1 7316
00	ronien squawnsh			1.7510
70	Vallaurmansh	Station 97, Columbia River Pa,	,O, sh.	2.9677
78	Yellow perch			3.8667
/8	Chiselmouth			1.6242
/8	Chiseimouth			1.2375
80	Common carp			4.0244
80	Common carp			2.6923
80	Y enow perch			3.3002
78	Largescale sucker	Station 98, Columbia i,er G @,n 'G	C,uloee, Wash.	0.8300
78	Largescale sucker			0.9266
78	Yellow perch			1 1847
80	Largescale sucker			0.7692
	Beerer Success			0.1072

Year	Species	Mean total length, cm	Mean total weight, Kg	Se, ug/g dry wt.
80	Largescale sucker			0.7519
80	Walleye			0.8108
70		tation 99, Waikele Stea, Wa	aipah Hawaii	4.0755
79	Cuban limia			4.0755
		Station 100 Manoa Stream at Honol	Hawai	
79	Cuban limia			3.5577
79	Mazambique tilapia			1.6502
78	White sucker	Station 101, Androscoggin iver at	wiston, Main	0.9426
78	White sucker			0.7059
78	Yellow perch			0.7042
80	White sucker			0.6299
80	White sucker			0.5691
80	Yellow perch			0.8961
79	Bloater	Station 102, Laice Superior at@Keewe	e@naw Point, Mich.	1 2798
79	Bloater			0.9385
79	Lake trout			0.7339
81	Bloater			1.3354
81	Bloater			1.6961
81	Lake trout			1.4286
70	T also desced	Station 103, Lake Superior at White	efish Point, Mich.	0.7427
79	Lake trout			0.7427
79	Lake whitefish			1.1379
81				1.8051
81	Lake whitefish			1.0017
01				1.7777
		104, Lake Michigan at Beavei	,lsland,Mich.	
79	Bloater			0.8537
79	Bloater			0.4963
79	Lake trout			1.3483
		Station 105 Lake Michigan at Sa	ugat@ck_Mich	
79	Bloater	Station 105. Lake whenigan at 5a	lugat@ck, wich	0 4948
79	Bloater			0.6651
79	Lake trout			0.8310
81	Bloater			0.8696
81	Bloater			0.8939
81	Lake trout			1.1480
		Station 106, Lake Huron at Al	pena Mich.	
79	White sucker			1.6596
79	White sucker			1.3793
79	Y ellow perch			2.5556

Year	Species	Mean total length, cm	Mean total weight, Kg	Se, ug/g dry wt.
81	Lake trout			1.2808
81	White sucker			2.3293
81	White sucker			2.2403
79	Common carp	Station 107, Lake St. Clair at Mount Cle	ements. Mich.	1.2030
79	Common carp			1.6418
79	Walleve			1.7731
81	Common carp			1.8182
81	Common carp			2.0861
81	Walleye			1.9101
79	Common carn	Station 108, Lake Erie	at Port Clinton. Ohio	1.4696
79	Common carp			1.4483
79	Walleve			0.6329
81	Common carp			2 1951
81	Common carp			1 6992
81	Walleve			1.0811
70	D	Station 109, Lake Ontario at Roosevelt	Beach, N.Y.	1 1104
79	Brown trout			1.1184
79	ROCK Dass			1.7626
79 91	Laka trout			1.4179
01 91	Pack here			1.1310
81	Rock bass			2.0949
01	NOEK 0455			2.0747
70	William and an	Station I I 1. Mississippi River at Lake City	, MinnPepin. Wis.	1,0007
/8	white sucker			1.6867
/8	White sucker			1.5203
80	White sucker			1.2102
80	White sucker			1.4231
80	white sucker			1.1020
		Station 112, Mississippi River at Dub	ouque, Iowa	
78	Common carp	12.9	1.1	1.8868
78	Common carp	14.4	1.5	1.4462
78	Largemouth bass	11.2	1.1	1.5901
80	Black crappic	10.2	0.7	1.6000
80	Common carp	17	2.6	2.2018
80	Common carp	17.8	3	1.4789
		Station 113. San Antonio River at Mcl	Fadden, Tex.	
79	Longnose gar	28.5	2.3	0.7767
		Station 114 Boar Divor at Drichard	City Utah	
78	Common carp		0.8	1.5625
78	Common carp	10.2	0.6	0.9957
78	Channel catfish	17.9	2.3	1.3109

J-19

Year	Species	Mean total length, cm	Mean total weight, Kg	Se, ug/g dry wt
80	Common carp	17	2.3	1.6667
80	Common carp	12	0.9	1.4583
80	Channel catfish	22.7	4.7	1.2551
		Station 115, Colorado River at Yuma, Ariz.	- Winterhaven, Calif.	
78	Common carp	16	2.7	6.4815
78	Striped mullet	20.3	3.4	3.5958
		Station 116, Souris River at Upha	m, N. Dak.	
78	White sucker	16.5	2.3	1.0526
80	Northem pike	19.6	1.9	0.9709
80	White sucker	15.3	1.7	1.1161
80	White sucker	13.8	1.3	1.0331
		Station 117, Flathead River at Cre	ston, Mont.	
78	Northem squawfish	19.1	2.7	0.7925
80	Largescale sucker	15.4	1.3	0.7589
80	Largescale sucker	15.5	1.3	0.9237
80	Northem squawfish	15.8	1.3	0.9091
			Average	1.8836
			Std	1.4373
			max	10.5204
			min	0.3158
			count	591

Table J-2.Selenium concentration (µg/g dw whole-body) in fish and invertebrate samples collected at sites
of the USGS National Water Quality Assessment (NAWQA) Program, 1992-1997.

[Se]	Scientific Name	Common Name	Place Name
0.30	Odonata	-	GOOSE LAKE WMA
0.30	Hydropsyche	-	SF PALOUSE R. AT ARMSTRONG RD NR PULLMAN, WA
0.30	Hydropsyche	-	PALOUSE R. AT ENDICOTT-ST. JOHN RD NR COLFAX, WA
0.40	Odonata	-	JOHNSON WPA
0.40	Odonata	-	WOOD DUCK WMA
0.40	Corbicula	-	SALUDA RIVER NEAR COLUMBIA, SC
0.50	Pacifastacus leniusculus	signal crayfish	TRUCKEE R AT FARAD, CA
0.50	Odonata	-	DEPARTMENT OF ROADS - ONEILL
0.50	Odonata	-	TODD VALLEY - MEDUNA SITE
0.50	Micropterus salmoides	largemouth bass	TRINITY RV BL DALLAS, TX
0.60	Hydropsyche	-	ROCK CREEK BLW US HWY 30/93 AT TWIN FALLS ID
0.60	Pacifastacus leniusculus	signal crayfish	TRUCKEE R AT CLARK, NV
0.60	Hydropsyche	-	WOLF RIVER AT TURTLE LAKE ROAD AT POST LAKE, WI
0.60	Potamogeton pectinatus	sago pondweed	NORTH BRANCH MILWAUKEE RIVER NR RANDOM LAKE, WI
0.69	Tilapia melanotheron	blackchin tilapia	ALA WAI CANAL AT HONOLULU, HI
0.70	Hydropsyche	-	CRAB CREEK AT MORGAN LAKE ROAD NEAR OTHELLO, WA
0.70	Cottus sp.	freshwater sculpins	MILLER CREEK NEAR DES MOINES, WA
0.70	Cheumatopsyche	-	WOLF RIVER NEAR POST LAKE, WI
0.70	Hydropsyche	-	WOLF RIVER NEAR POST LAKE, WI
0.80	Hydropsyche	-	PESHEKEE RIVER NEAR MARTINS LANDING, MI
0.90	Catostomus clarki	desert sucker	PINTO CREEK NEAR MIAMI, AZ.
0.90	Odonata	-	SABATKA SALINE WETLAND
0.90	Corbicula	-	SYCAMORE CK AT SYCAMORE PK, FT WORTH, TX
0.90	Hydropsychidae	net-spinning caddisflies	WOLF RIVER AT HIGHWAY M NEAR LANGLADE, WI
1.00	Hydropsyche	-	SNAKE RIVER AT KING HILL ID
1.00	Cottus sp.	freshwater sculpins	BIG SOOS CREEK ABOVE HATCHERY NEAR AUBURN, WA
1.00	Orconectes	-	EAST RIVER AT MIDWAY ROAD NEAR DE PERE, WI
1.00	Hydropsyche	-	PENSAUKEE RIVER NEAR KRAKOW, WI
1.08	Poecilia sphenops	black molly	KANEOHE STR BLW KAMEHAMEHA HWY, OAHU, HI
1.10	Acroneuria	-	WEST BRANCH WHITEFISH RIVER NEAR DIFFIN, MI
1.10	Pacifastacus leniusculus	signal crayfish	EAST FORK CARSON RIVER NEAR GARDNERVILLE, NV
1.10	Pacifastacus leniusculus	signal crayfish	EAST FORK CARSON RIVER NEAR DRESSLERVILLE, NV
1.10	Cottus sp.	freshwater sculpins	SANDY RIVER NEAR TROUTDALE, OR
1.10	Cottus sp.	freshwater sculpins	GALES CREEK NEAR GLENWOOD, OR
1.10	Cottus sp.	freshwater sculpins	
1.10	Hydropsyche	-	PALOUSE RIVER AT HOOPER, WA
1.10	Hydropsyche	-	
1.10		-	
1.10		- rod chinor	CDANITE CREEK AT DRESCOTT AZ
1.20		reu sniner	CRANITE CREEK AT PRESCOTT, AZ.
1.20	Catostomus occidentalia	- Sacramento sucker	
1.20	Xinhonhorus hallari	areen swordtail	
1.20	Hydronsyche	-	HENRYS FORK NR REXBURG ID
1 20	Hydropsyche	_	
1 20	Cottus so	freshwater sculpins	
1.20	Contro op.	noonwater ocupino	CONDICINAL AND ENVIRONMENT OF ENVIRONMENT

[Se]	Scientific Name	Common Name	Place Name
1.20 1.20	Cottus sp. Cottus sp.	freshwater sculpins freshwater sculpins	DENNIS C BL BLACK BUTTE MINE, NR COTTAGE GROVE LK WEST BRANCH KELSEY CREEK AT BELLEVUE, WA
1.20	Cottus sp.	freshwater sculpins	BERTRAND CREEK NEAR LYNDEN, WA
1.20	Cheumatopsyche	-	TOMORROW RIVER NEAR NELSONVILLE, WI
1.20 1.30	Hydropsyche Pacifastacus leniusculus	- signal crayfish	SNAKE RIVER AB JACKSON LAKE AT FLAGG RANCH WY TRUCKEE R AT FARAD, CA
1.30	Cottidae	sculpins	JOHNSON CREEK AT MILWAUKIE, OR
1.30	Micropterus salmoides	largemouth bass	WHITE ROCK LK IN DALLAS, TX
1.30 1.30	Cottus sp. Hydropsyche	freshwater sculpins	DUWAMISH RIVER AT GOLF COURSE AT TUKWILA, WA DUCK CREEK AT SEMINARY ROAD NEAR ONEIDA, WI
1.39	Cottus cognatus	slimy sculpin	NINILCHIK R AT NINILCHIK AK
1.40	Hydropsyche	-	PORTNEUF RIVER AT POCATELLO ID
1.40	Odonata	-	TRUST - WILD ROSE SLOUGH
1.40	Pacifastacus leniusculus	signal crayfish	TRUCKEE R AT HWY 447 AT NIXON, NV
1.40	Cottus sp.	freshwater sculpins	MARYS RIVER AT CORVALLIS, OR
1.40	Cottus sp.	freshwater sculpins	FIR CREEK NEAR BRIGHTWOOD, OR
1.40	Cottus sp.	freshwater sculpins	FANNO CREEK AT DURHAM, OR
1.40	Collus sp. Cheumatonsyche		DUCK CREEK AT SEMINARY ROAD NEAR ONEIDA WI
1.40	Hydropsyche	-	NORTH BRANCH MILWAUKEE RIVER NR RANDOM LAKE. WI
1.50	Catostomus clarki	desert sucker	SAN PEDRO RIVER AT CHARLESTON, AZ.
1.50	Hvdropsvche	-	ROCK CREEK AB DAYDREAM RANCH NR TWIN FALLS ID
1.50	Brachycentrus	-	ROCK CREEK AB HWY 30/93 XING AT TWIN FALLS ID
1.50	Odonata	-	TRUST - MORMON ISLAND CRANE MEADOW, EAST SLOUGH
1.50	Pacifastacus leniusculus	signal crayfish	CARSON RIVER AT DEER RUN ROAD NEAR CARSON CITY, NV
1.50	Pacifastacus leniusculus	signal crayfish	CARSON RIVER NEAR FORT CHURCHILL, NV
1.50	Cottidae	sculpins	MUDDY CREEK NEAR PEORIA, OR
1.50	Hydropsyche	-	PALOUSE RIVER NEAR COLFAX, WA
1.50	Cottus sp.	freshwater sculpins	THORNTON CREEK NEAR SEATTLE, WA
1.50	Hydropsyche	-	IOMORROW RIVER NEAR NELSONVILLE, WI
1.50	Hydropsyche	-	SALT RIVER AB RESERVOIR NR ETNA WY
1.50	Hydropsyche	-	SALT RIVER AB RESERVOIR NR ETNA WY
1.53	Cyprinus carpio	common carp	BEAR RIVER NEAR CORINNE, UT
1.60	Catostomus clarki	desert sucker	GILA RIVER AT KELVIN, AZ.
1.60	Hydropsyche	-	BARK RIVER NEAR BARK RIVER, MI
1.60	Cottidae	sculpins	FANNO CREEK AT DURHAM, OR
1.60	Elliptio	-	CEDAR CREEK BELOW MYERS CREEK NR HOPKINS, SC
1.60	Hydropsyche	-	PINE CREEK AT PINE CITY ROAD AT PINE CITY, WA
1.62	Corbicula	-	
1.70	Hydropsyche	-	
1.70	Hydropsyche	-	
1.70	Corbicula	-	IRENT RIVER NEAR TRENTON, NC
1.70	Elliptio	-	MCTIER CREEK (RD 209) NEAR MONETTA, SC
1.70	Corbicula	-	GILLS CREEK NEAR HOPKINS,SC
1.70	Hydropsyche	-	SHEBOYGAN RIVER AT DOTYVILLE, WI
1.79	Cottidae	sculpins	LITTLE ABIQUA CREEK NEAR SCOTTS MILLS, OR
1.80	Hydropsychidae	net-spinning caddisflies	TRUCKEE R AT FARAD, CA
1.80	Hydropsyche	-	TETON RIVER NR ST ANTHONY ID
1.80	Hydropsyche	-	SNAKE R NR MINIDOKA ID (AT HOWELLS FERRY)
1.90	Corbicula manilensis	asian clam	CHATTAHOOCHEE R AT SR 253 NEAR CHATTAHOOCHEE, FL
1.90	Hydropsyche	-	PALOUSE RIVER AT LAIRD PARK NR HARVARD, ID
1.90	Brachycentrus	-	ROCK CREEK AB HWY 30/93 XING AT TWIN FALLS ID
1.90	Hydropsyche	- block mally	DUCK CREEK AT SEMINARY ROAD NEAR ONEIDA, WI
1.95	Fuecilia sphenops Hydronsyche		
2.00	Acroneuria	-	
2.00	Cheumatopsyche	-	DUCK CREEK AT SEMINARY ROAD NEAR ONEIDA, WI

[Se]	Scientific Name	Common Name	Place Name
2.03	Ameiurus natalis	yellow bullhead	SANTA ANA R A HAMNER RD NR NORCO CA
2.05 2.10	Richardsonius balteatus Catostomus clarki	redside shiner desert sucker	BEAR RIVER ABOVE RESERVOIR, NEAR WOODRUFF, UT VERDE RIVER ABV W. CLEAR CREEK, NR CAMP VERDE, AZ
2.10	Hydropsyche	-	SNAKE R NR MINIDOKA ID (AT HOWELLS FERRY)
2.10	Hydropsyche	-	ROCK CK AT USFS FOOTBRIDGE, NR ROCK CREEK
2.10 2.10	Hydropsyche Pacifastacus leniusculus	- signal crayfish	ROCK CREEK AB HWY 30/93 XING AT TWIN FALLS ID TRUCKEE R AT LOCKWOOD, NV
2.10	Hydropsyche	-	TUALATIN RIVER AT WEST LINN, OR
2.10	Hydropsyche	-	ESQUATZEL COULEE AT MESA, WA
2.10	Cottus sp.	freshwater sculpins	FISHTRAP CREEK AT FLYNN ROAD AT LYNDEN, WA
2.17	Corbicula fluminea	Asian clam	CONTENTNEA CREEK AT HOOKERTON, NC
2.18	Corbicula	-	TENNESSEE RIVER AT CHATTANOOGA, TN
2.20	Brachycentrus	-	BITCH CREEK NR LAMONT ID
2.20	Hydropsyche	-	SOUTH BRANCH PAINT RIVER NEAR ELMWOOD, MI
2.20	Cottus sp.	freshwater sculpins	LITTLE ABIQUA CREEK NEAR SCOTTS MILLS, OR
2.20	Brochycoptruc	-	EAST RIVER @ CTH PP IN BROWN COUNTY NR DE PERE, WI
2.20	Agosia chrysogaster	- Ionafin dace	SALT RIVERVING FISH OK ABOVE SMOOT
2.30	Catostomus clarki	desert sucker	WEST CLEAR CREEK NEAR CAMP VERDE AZ
2.30	Hydropsyche	-	PORTNEUE RIVER AT TOPAZ ID
2.37	Ameiurus natalis	vellow bullhead	SANTA ANA R A MWD CROSSING CA
2.40	Xiphophorus helleri	green swordtail	WAIKELE STR AT WAIPAHU, OAHU, HI
2.40	Hydropsyche	-	MALAD RIVER NR GOODING ID
2.40	Corbicula	-	CRABTREE CREEK AT US 1 AT RALEIGH, NC
2.40	Corbicula	-	BLACKWATER RIVER NEAR FRANKLIN, VA
2.40	Cottus sp.	freshwater sculpins	ROCK CREEK AT CEDAR FALLS ROAD NEAR LANDSBURG, WA
2.40	Cottus sp.	freshwater sculpins	JUANITA CREEK AT JUANITA, WA
2.50	Agosia chrysogaster	longfin dace	SALT RIVER NEAR ROOSEVELT, AZ.
2.50	Hydropsyche	-	
2.50	Hydropsyche	-	SNAKE RIVER NR BLACKFOOT ID
2.50	Anaspidacea	-	
2.50	Corbicula		TAYLOR FLAT CREEK ABY BIRCH RD NR PASCO WA
2.52	Xiphophorus helleri	areen swordtail	MANOA STR AT KANEWAI FIELD. HONOLULU. OAHU. HI
2.60	Cottus sp.	freshwater sculpins	PALMER C AT DAYTON, OR
2.60	Elliptio	-	SHAWS CREEK NR TRENTON, SC ON CNTY RD 149
2.60	Corbicula	-	PIGEON RIVER AT NEWPORT, TN
2.60	Corbicula	- frachwater equipine	RUSH CK AT WOODLAND PARK BLVD, ARLINGTON, TX
2.60	Collus sp. Cyprinus carpio		SAN JACINTO R NR ELSINORE CA
2.04	Corbicula	-	
2.70	Corbicula	_	
2.70	Corbicula		
2.70	Cottus sp	- freshwater sculpins	GREEN RIVER ABOVE TWIN CAMP CREEK NEAR LESTER WA
2.70	Cottus sp.	freshwater sculpins	LEACH CREEK NEAR STEILACOOM, WA
2.70	Cottus sp.	freshwater sculpins	NORTH CREEK BELOW PENNY CREEK NEAR BOTHELL, WA
2.77	Gambusia affinis	western mosquitofish	MANOA STR AT KANEWAI FIELD, HONOLULU, OAHU, HI
2.79	Cottus sp. Corbicula manilensis	treshwater sculpins	WEBER RIVER NEAR COALVILLE, UI MUCKALEE CREEK AT GA 195 NEAR LEESBURG, GA
2.00	Corbicula	-	TAR RIVER NEAR TAR RIVER NC
2.80	Decapoda	crabs	PLATTE RIVER AT BRADY. NE (TOTFLO)
2.80	Corbicula	-	COPPER CREEK NEAR GATE CITY. VA
2.80	Brachycentrus	-	SECOND SOUTH BRANCH OCONTO RIVER NR MOUNTAIN, WI
2.80	Hydropsyche	-	TOMORROW RIVER NEAR NELSONVILLE, WI
2.80	Hydropsyche	-	NORTH BRANCH MILWAUKEE RIVER NR RANDOM LAKE, WI
2.80	Hydropsyche	-	SNAKE RIVER AB JACKSON LAKE AT FLAGG RANCH WY
2.01	Saivennus iontinalis	DIOOK LIOUL	WOOD RIVER ADOVE WIDDLE FORK NEAR MEETEETSE, WY

[Se]	Scientific Name	Common Name	Place Name
2.85	Cottus cognatus	slimy sculpin	KENAI R AT JIMS LANDING NR COOPER LANDING AK
2.88	Salvelinus fontinalis	brook trout	CROW CREEK AT MOUTH, AT PAHASKA, WY
2.90	Corbicula manilensis	asian clam	APALACHICOLA RIVER AT CHATTAHOOCHEE FLA
2.90	Corbicula manilensis	asian clam	FLINT RIVER AT NEWTON, GA
2.90	Corbicula manilensis	asian clam	ICHAWAYNOCHAWAY CREEK BELOW NEWTON, GA
2.90	Corbicula manilensis	asian clam	FLINT RIVER AT LAKE BLACKSHEAR NEAR WARWICK. GA.
2.90	Corbicula manilensis	asian clam	CHATTAHOOCHEE RIVER AT COLUMBUS, GA
2.90	Hydropsyche	-	SNAKE RIVER AT KING HILL ID
2.90	Corbicula	-	TRUCKEE R AT CLARK, NV
2.96	Cottus cognatus	slimy sculpin	CHESTER C AT ARCTIC BOULEVARD AT ANCHORAGE AK
2.96	Gambusia affinis	western mosquitofish	KANEOHE STR BLW KAMEHAMEHA HWY, OAHU, HI
3.00	Cottus cognatus	slimy sculpin	KENAI R BL RUSSIAN R NR COOPER LANDING AK
3.00	Hydropsyche	-	PORTNEUF RIVER AT TOPAZ ID
3.00	Brachycentrus	-	TETON RIVER AB SOUTH LEIGH CREEK NR DRIGGS ID
3.00	Corbicula fluminea	Asian clam	BIG BLUE RIVER AT SHELBYVILLE, IN
3.00	Corbicula	-	TAR RIVER AT TARBORO, NC
3.00	Corbicula	-	NORTH FLAT RIVER AT TIMBERLAKE, NC
3.00	Corbicula	-	GILLS CREEK AT COLUMBIA, SC
3.10	Perlidae	common stoneflies	BIG WOOD RIVER BLW BOULDER CK NR KETCHUM
3.10	Corbicula	-	NEUSE RIVER NEAR COX MILL, NC
3.10	Corbicula	-	SOUTH FORK CATAWBA RIVER AT MCADENVILLE, NC
3.10	Corbicula	-	INDIAN CREEK NEAR LABORATORY, NC
3.18	Corbicula manilensis	asian clam	SNAKE CREEK NEAR WHITESBURG, GA
3.20	Corbicula	-	ROANOKE RIVER AT ROANOKE RAPIDS NO
2 20	Corbicula		
3.20	Corbicula manilensis	- asian clam	BUIL CREEK AT US 27 AT COLUMBUS GEORGIA
3.30	Corbicula	-	CONOCOCHEAGUE CREEK AT FAIRVIEW, MD
3.30	Decapoda	crabs	WOOD RIVER NEAR GRAND ISI AND NEBR
3.30	Corbicula	-	NOLICHUCKY RIVER NEAR LOWLAND
3.40	Corbicula fluminea	Asian clam	SUGAR CREEK AT CO RD 400 S AT NEW PALESTINE. IN
3.40	Ceratopsyche	-	WEST BRANCH WHITEFISH RIVER NEAR DIFFIN, MI
3.40	Cheumatopsyche	-	JOHNSON CREEK AT MILWAUKIE, OR
3.40	Corbicula	-	POWELL RIVER NEAR ARTHUR, TN
3.40	Hydropsyche	-	PARADISE CREEK AT PULLMAN, WA
3.40	Hydropsyche	-	SALT RIVER AB RESERVOIR NR ETNA WY
3.50	Corbicula manilensis	asian clam	FLINT R @ 10-MI STILL LANDING NR CHATTAHOOCHEE, FL
3.50	Corbicula manilensis	asian clam	PEACHTREE CREEK AT ATLANTA, GA
3.50	Corbicula	-	NEUSE RIVER AT KINSTON, NC
3.50	Corbicula fluminea	Asian clam	NEUSE RIVER AT KINSTON, NC
3.50	Corbicula	-	SANTEE R AT TREZESVANTS LANDING NR FT MOTTE, SC
3.50	Corbicula	-	NOLICHUCKY RIVER AT EMBREEVILLE, TN
3.50	Corbicula	-	SAN MARCOS RV ABV BLANCO RV BL SAN MARCOS, TX
3.60		red shiner	SALT RIVER NEAR ROUSEVELT, AZ.
3.00	Agusia chi ysugasiei	river correctekor	AGUA FRIA RIVER NEAR ROOK SFRINGS, AZ.
3.00	Carpioues carpio		
3.60		- asian clam	
3.60	Corbicula manilensis	asian clam	CHATTAHOOCHEE R AT SR 369 NR FLOWERY BRANCH. GA.
3.60	Corbicula	-	SWIFT CREEK AT HILLIARDSTON, NC
3.60	Corbicula	-	CHICOD CR AT SR1760 NEAR SIMPSON. NC
3.60	Corbicula	-	LITTLE RIVER NEAR MARYVILLE. TN
3.60	Hydropsyche	-	CRAB CREEK AT ROCKY FORD ROAD NEAR RITZVILLE. WA
3.60	Cottus sp.	freshwater sculpins	ROCK CREEK NEAR MAPLE VALLEY, WA
3.60	Cottus sp.	freshwater sculpins	NOOKSACK RIVER AT BRENNAN, WA

[Se]	Scientific Name	Common Name	Place Name
3.66	Corbicula	-	CONGAREE RIVER AT COLUMBIA, SC
3.70	Corbicula manilensis	asian clam	KINCHAFOONEE CREEK NEAR DAWSON, GA
3.70	Hydropsyche	-	BLACKFOOT RIVER AB RESERVOIR NR HENRY ID
3.70	Corbicula fluminea	Asian clam	WHITE RIVER AT RAYMOND STREET AT INDIANAPOLIS, IN
3.70	Corbicula manilensis	asian clam	CURRENT RIVER AT VAN BUREN, MO
3.77	Corbicula	-	HOLSTON RIVER AT SURGOINSVILLE, TN
3.80	Corbicula manilensis	asian clam	APALACHICOLA RIVER NR SUMATRA, FLA.
3.80	Corbicula	-	SWIFT CREEK NEAR APEX, NC
3.80	Cottus sp.	freshwater sculpins	LUCKIAMUTE RIVER NEAR SUVER, OR
3.80	Corbicula	-	CATOCTIN CREEK AT TAYLORSTOWN, VA
3.85	Corbicula manilensis	asian clam	SOPE CREEK NEAR MARIETTA, GA
3.90	Corbicula manilensis	asian clam	NICKAJACK CR AT COOPER LAKE DR NR MABLETON, GA.
3.90	Corbicula manilensis	asian clam	CHATTAHOOCHEE RIVER NEAR COLUMBIA, ALA.
4.00	Elliptio	-	GEORGES CREEK NEAR OLAR, SC ON SC 64
4.00	Corbicula	-	WATEREE RIVER NR. CAMDEN, SC
4.01	Cyprinus carpio	common carp	LEON CK AT IH 35 AT SAN ANTONIO, TX
4.10	Corbicula manilensis	asian clam	WILLEO CREEK AT ST RT 120 NEAR ROSWELL, GA.
4.10	Hydropsyche	-	MALAD RIVER NR GOODING ID
4.10	Corbicula	-	CARSON RIVER AT TARZYN ROAD NR FALLON, NV
4.10	Corbicula	-	FRENCH BROAD RIVER NEAR NEWPORT, TN
4.10	Corbicula	-	MIDDLE FORK HOLSTON RIVER AT SEVEN MILE FORD, VA
4.16	Corbicula	-	OBED RIVER NEAR LANCING, TN
4.20	Corbicula manilensis	asian clam	SEWELL MILL CR AT SEWELL MILL RD NEAR MARIETTA
4.20	Arctopsyche	-	BIG LOST RIVER AT HOWELL RANCH NR CHILLY ID
4.20	Corbicula	-	CONGAREE RIVER AT U.S. HWY 601 NR. FORT MOTTE, SC
4.20	Corbicula	-	GUADALUPE RV NR SPRING BRANCH, TX
4.30	Agosia chrysogaster	longfin dace	GILA RIVER AT KELVIN, AZ.
4.30	Corbicula manilensis	asian clam	SOPE CREEK NEAR MARIETTA, GA
4.30		asian ciam	ATCOURS CREEK NEAR BOTKIN, GA.
4.30	Carbiaula	-	NORTH FORK HOLSTON RIVER NEAR CLOUD FORD. TH
4.30		-	NORTH FORK HOLSTON RIVER NEAR GLOUD FORD, IN
4.40	Cottus cognatus	siimy scuipin	
4.40	Corbicula manilensis	asian clam	COULEEWAHEE CREEK NEAR NEWTON, GA.
4.40	Corbicula manilensis	asian clam	FUNT RIVER NEAR CULLODEN GA
4 40	Corbicula fluminea	Asian clam	
4 40	Pacifastacus leniusculus	signal cravfish	CARSON RIVER NEAR FORT CHURCHUL NV
4.47	Corbicula manilensis	asian clam	CHATTAHOOCHEE RIVER NEAR WHITESBURG, GA
4.50	Agosia chrysogaster	longfin dace	SAN PEDRO RIVER AT CHARLESTON, AZ.
4.50	Corbicula manilensis	asian clam	CHATTAHOOCHEE RIVER NEAR NORCROSS, GA
4.50	Arctopsyche	-	BIG LOST RIVER AT HOWELL RANCH NR CHILLY ID
4.50	Corbicula fluminea	Asian clam	LOST RIVER NEAR LEIPSIC, IN
4.50	Corbicula	-	CLINCH RIVER ABOVE TAZEWELL, TN
4.50	Corbicula	-	ESQUATZEL COULEE AT SAGEMOOR RD NEAR PASCO, WA
4.57	Corbicula	-	CHAMBERS CK NR RICE, TX
4.60	Corbicula manilensis	asian clam	FLAT SHOAL CREEK AT STOVALL RD NEAR STOVALL, GA
4.60	Corbicula	-	BIG LIMESTONE CREEK NEAR LIMESTONE, TN
4.60	Corbicula	-	SALADO CK AT LOOP 13 AT SAN ANTONIO, TX
4.64	Corbicula	-	CONGAREE RIVER AT COLUMBIA, SC
4.76	Catostomus commersoni	white sucker	SADDLE RIVER AT RIDGEWOOD NJ
4.80	Agosia chrysogaster	longfin dace	PINTO CREEK NEAR MIAMI, AZ.
4.80	Corbicula manilensis	asian clam	SNAKE CREEK NEAR WHITESBURG, GA
4.80	Corbicula	-	BEAVER CREEK BELOW LIBERTY HILL, SC
4.80	Cottus sp.	freshwater sculpins	NF SKOKOMISH R BL STAIRCASE RPDS NR HOODSPORT, WA
4.80	Cottus sp.	freshwater sculpins	NOOKSACK RIVER AT NORTH CEDARVILLE, WA
4.81		- climy couloin	NUKTH FUKK HULSTUN KIVEK NEAK HAYTEK GAP, VA CHESTER C AT ARCTIC ROLLEVARD AT ANCHORACE AV
4.00	Corbicula	Sinny Sculpin	
5.09	COIDICUIA	-	WENARD ON ING FUQUA, IA

5.10	Corbicula manilensis	asian clam	LIME CREEK NEAR COBB, GA
[Se]	Scientific Name	Common Name	Place Name
5.10	Corbicula fluminea	Asian clam	KESSINGER DITCH NEAR MONROE CITY, IN
5.10	Corbicula fluminea	Asian clam	SALT CREEK AT HOOSIER AVENUE AT OOLITIC, IN
5.10	Cottus sp.	freshwater sculpins	SKOKOMISH RIVER NEAR POTLATCH, WA
5.13	Cottus sp.	treshwater sculpins	KAMISHAK D ND KAMISHAK AK
5.19			
5.20	Cyprinella lutrensis	red shiner	AGUA FRIA RIVER NEAR ROCK SPRINGS, AZ.
5.20	Corbicula	-	SOUTH BRANCH POTOMAC RIVER NEAR SPRINGFIELD, WV
5.30	Corbicula fluminea	Asian clam	EAST FORK WHITE RIVER AT SHOALS, IN
5.30	Corbicula	-	EDISTO RIVER NEAR COTTAGEVILLE,SC
5.40	Corbicula manilensis	asian clam	CHATTAHOOCHEE RIVER NEAR CORNELIA, GA
5.40	Corbicula manilensis	asian clam	WEST FORK LITTLE RIVER NEAR GAINESVILLE, GA.
5.40	Corbicula	-	TRUCKEE R AT LOCKWOOD, NV
5.40	Corbicula	-	BRUSHY CREEK NEAR PELHAM, SC
5.40	Corbicula	-	BIG CREEK ABOVE SALUDA, SC
5.70	Corbicula	-	AHOSKIE CR NEAR POORTOWN, NC
5.70	Corbicula	-	CLINCH RIVER AT SPEERS FERRY, VA
5.78	Hemichromis	jewelfishes	POAMOHO STREAM NR WAIALUA, OAHU, HI
5.79	Corbicula	-	KNOB CREEK AT AUSTIN SPRINGS
5.80	Corbicula manilensis	asian clam	FLINT RIVER NEAR LOVEJOY, GA
5.80	Corbicula	-	SABINAL RV NR SABINAL, TX
5.81	Cottus cognatus	slimy sculpin	MOOSE C NR PALMER AK
6.00	Corbicula fluminea	Asian clam	MUSCATATUCK RIVER NEAR DEPUTY, IN
6.00	Corbicula	-	LICK CREEK NEAR HOLLAND MILL, TN
6.00	Hydropsyche	-	CHAFFEE CREEK AT NESHKORO, WI
6.20	Corbicula	-	MEDINA RV AT LA COSTE, TX
6.30	Corbicula	-	INDIAN CREEK ABOVE NEWBERRY, SC
6.35	Cottus cognatus	slimy sculpin	SF CAMPBELL C NR ANCHORAGE AK
6.68	Cottus cognatus	slimy sculpin	COSTELLO C AB CAMP C NR COLORADO AK
6.70	Agosia chrysogaster	longfin dace	AGUA FRIA RIVER NEAR MAYER, AZ.
6.70	Agosia chrysogaster	longfin dace	AGUA FRIA RIVER AT BLOODY BASIN ROAD
6.70	Corbicula manifensis	asian ciam	DI ANCO DV AT MIMBEDI EV TY
7.00	Corbicula	-	LONG CREEK ON SPENCER MTN RD NR SPENCER MTN NC
7.30	Corbicula	-	GUEST RIVER AT COEBURN, VA
7 70	Corbicula	-	FRIO RV AT CONCAN TX
8.10	Corbicula	-	VERDE R BLW TANGLE CREEK, ABV HORSESHOE DAM, AZ,
8.40	Corbicula	-	COMAL RV AT NEW BRAUNFELS, TX
8.47	Cottus cognatus	slimy sculpin	COSTELLO C NR COLORADO AK
9.10	Corbicula	-	NUECES RV BL UVALDE, TX
9.40	Cyprinella lutrensis	red shiner	VERDE R BLW TANGLE CREEK, ABV HORSESHOE DAM, AZ.
9.56	Cottus cognatus	slimy sculpin	CAMP C AT MOUTH NR COLORADO AK
9.83	Ictalurus punctatus	channel catfish	SABINAL RV NR SABINAL, TX
10.47	Cottus cognatus	slimy sculpin	COSTELLO C BL CAMP C NR COLORADO AK
12.83	Corbicula	-	GERUNIMU CKAI HWY 90A NR SEGUIN, TX
22.37	Salmo trutta	- brown trout	TONGUE RIVER NEAR DAYTON, WY
-			· ·