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ABSTRACT

The paper obtains two principal results. First, using a new definition of
hi gher-order (>2) matrix derivatives, the paper derives a recursion for
conputing any Gaussian nultivariate nonent. Second, the paper uses this result
in a perturbation nethod to derive equations for conputing the 4th-order Tayl or-
series approximation of the objective function of the linear-quadratic
exponential Gaussian (LQEG optimal control problem Previously, Karp (1985)
formulated the 4th multivariate Gaussian nonment in ternms of MacRae’s definition
of a matrix derivative. His approach extends with difficulty to any higher (>4)
mul tivariate Gaussian nonent. The present recursion straightforwardly conputes
any multivariate Gaussian nonment. Karp used his fornulation of the Gaussian 4th
nonent to conpute a 2nd-order approxinmation of the finite-horizon LQEG objective
function. Using the sinmpler fornulation, the present paper applies the
perturbation nethod to derive equations for conputing a 4th-order approximtion
of the infinite-horizon LQEG objective function. By illustrating a convenient
definition of matrix derivatives in the numerical solution of the LQEG problem
with the perturbation nethod, the paper contributes to the conputationa

econonmist’s toolbox for solving stochastic nonlinear dynanic optinzation
probl ens.

*The paper represents the authors’ views and does not represent any official
positions of the U 'S. Bureau of Labor Statistics. W thank David Belsley and
Larry Karp for conments. Forthcoming in Conputational Econonics.




1. 1 NTRODUCTI ON.

Consi der the discrete-tine state equation and feedback control rule
(1.1) Xi = FoXi.1 + Quy + &,
(1.2) Uy = PoXi-1,

where X is an nx1 state vector, u is an nmxl control variable, and € is an nx1
di sturbance ~ NIID0,2%), F, and G are nxn and nxm paraneter nmatrices, and Py is

an nxn feedback control matrix. The discounted |linear-quadratic (LQ objective

function is
(1 3) V(Xt-lv N) = (l/ 2) ZKNZO 6k( X;r+k—1Q)Xt+k-l + 2u;r+k S0Xt+k-l + u;I—+k I:\)Out+k) '

where 0 < d <1 is the discount factor and Nis a finite or infinite horizon,

Q, So, and Ry are given nxn, mxn, and nxm preference paraneter matrices. W
assume that the quadratic formin (1.3) is non-negative definite overall and
positive definite with respect to u. Superscript T denotes vector or nmatrix
transposition.

The risk-avoiding |inear-quadratic-exponential-Gaussian (LQEG objective
function is

(1.4) J(X¢-1, N) = Eiexp[-Vv(X¢.1, N T,

where E ., denotes expectation conditioned on variables realized in period t-1.
The discrete-tinme LQEG problemis: given xi.1, N, and the paraneters F, &, Z,
Ry, So, and @, mnimze (1.4) with respect to Py, subject to (1.1) to (1.3).
Jacobson (1973) showed that, for finite N, the optimal Py, is obtained by
iterating on a discrete-tinme recursive Riccati equation. As N - o, the equation
converges to a nonrecursive or algebraic Riccati equation, which can be sol ved
qui ckly and accurately using the Schur-deconposition nethod (Laub, 1979). See
al so Hansen and Sargent (1995). Karp (1985) addressed the problem of determ ning
the contribution of higher noments (> 2) of € to the value of the LQEG objective
function, J(X.1,N). Expanding J(X;.1, N in a Taylor-series and using sonme matrix
differentiation rules of MacRae (1974), Karp derived an algorithm for conputing



a two-term approxi mati on of J(X(.;, N based on the 2nd and 4th nonments of & (odd

monents of € are zero). The conplexity of McRae's differentiation rules
apparently dissuaded Karp from attenpting to derive equations for conputing
hi gher-order (> 2) ternms based on higher nonments (> 4) of e.

The present paper extends Karp's results in tw ways. First, using a
simpler representation of matrix derivatives based on the total-differential
rather than on partial-derivative forns (Magnus and Neudecker, 1988), the paper
derives a sinple recursion for conputing any nonents of a Gaussian random
vector. Second, using this result, the paper applies the perturbation nethod
(Judd, 1998, chs. 13-14) to derive equations for conputing the 4th-order Tayl or-
series approximation of J(X{.1,®), based on the 2nd and 4th nonents of €& The
second result illustrates wusing higher Gaussian nmonments in a perturbation
solution of a nonlinear dynanic stochastic nodel. There is a growing interest in
econonmics in solving dynamc stochastic nodels with the perturbation nethod
(Anderson and Hansen, 1996; Chen and Zadrozny, 2000b; Collard and Juillard,
2000; Sins, 2000).

The paper proceeds as follows. Section 2 states and proves a theorem and
corollary that give the recursion for conmputing any nultivariate Gaussian
nonent. Section 3 derives linear, perturbation-solution equations for conputing
the 4th-order approxinmation of J(Xi.1,®) for the undiscounted problem Section
4 illustrates the results of Section 3 nunerically. Section 5 gives concl uding
remar ks. There are two technical appendices. Appendix A explains the definitions
and rules of matrix differentiation that are used in Sections 2 and 3. Appendi x

B explains how to conpute the 1st- to 4th-order derivatives of f(x)
exp[-(1/2)x'Qx], in the gradient forns defined in appendix A that are inputs in
the perturbation solution equations of Section 3.

2. RECURSI ON FOR COVPUTI NG ANY MJLTI VARI ATE GAUSSI AN MOVENT.

This section follows the definitions and rules of matrix differentiation
expl ai ned i n appendi x A, which the reader should read before proceedi ng.

Let x be a random n-vector distributed N(pu, X) and let m(z) = E[exp(x'2)],

for z O R", be its noment generating function given by

(2.1) mz) = exp[u'z + (1/2)z2'3z].



As expl ained in appendix A, [*n(z) is the kth-order gradient matrix of kth-order
partial derivatives of m(z). Let p be the kth uncentered nmoment of x defined as
W = E(MOx), where MgOx denotes k-1 successive Kronecker products of x (e.g.,
M,0x = x0Ox). Then, m = vec[*n(0)]. The followi ng theorem states a recursion

for conputing Om(z) for any finite k.

THEOREM 1: Suppose x O R' ~ N(p Z), with nonent generating function n(z) given
by (2.1). Then, for k =3, ..., K

(2.2) vec[ 0*m(z) ]

vec{[*'m(z)T O (pn + 22)] + (k-1D)[0?m(2)T O )]},

where O*m(z) is n“:xn, starting with Om(z) = mz)(W + z'2) and ?m(z) = (p +
>z)Om(z) + m(z)Z.

Theorem 1 inmediately inplies

CORCLLARY 1: For k =3, ..., K

(2.3) W = vec{[mat (Ww..)" O W + (k-1)[mat(w.)" O 2]},

starting with gy, = p and g = (P O P + vec(), where mat() denotes the

unvectorization of p to an n*!xn di mensional matrix.

There is a subtlety in the role of the vectorization operator in (2.3).
One nmight think we could unvectorize (2.3) and wite it as mat(p) = [mat (..’
Oy + (k-1)[mat(pe.2) " O 2], but this cannot be done because, whereas mat () is
n“ixn, [mat(ue1) " O W + (k-1)[mat (o) " O 2] is n?xn*2

Corollary 1 is the principal result of this section. For k = 4, (2.3)
corresponds to Karp’s (1985) equation (10), based on MacRae's (1974) definition
of a matrix derivative. Wereas (2.3) is valid for any k, it would be very
tedious to extend Karp's equation (10) correspondingly. W now prove theorem 1.

PROOF OF THEOREM 1:



We repeatedly vectorize and differentiate expressions by applying rules
(A3, (A 19, and (A 20), wthout referencing them explicitly. W also
repeatedly use the fact that m(z) is a scalar.

1. Derivation of Om(z): Differentiating (2.1), we obtain

(2. 4) dm(z) = m(z)(u" + z'%)dz.

Then, because dn(z) = Om(z)dz holds for all dz, we can drop dz and obtain 0Onmz)
= m(z) (u" + z273).

2. Derivation of [?m(z): Differentiating (2.4) and vectorizing terns, we
obtain

(2.5) d’m(z) = dm(z) (K" + z2'5)dz + m(z)dz"=dz

dz[(p + Zz)dm(z) + n(z)=dz]

dz[(p + 2z)Om(z) + n(z)3]dz.

Then, because d’m(z) = dz'Om(z)dz holds for all dz, we can drop dz and obtain

O’m(z) = (W + 2z)Om(z) + n(z)Z
3. Derivation of (2.2) for k = 3: Differentiating (2.5) and vectorizing
terns, we obtain

(2.6) d’m(z) = d’m(z) (4" + z'%)dz + 2dn(z)dz'>dz

dz[(p + Zz)d’m(z) + 2Xdzdn(z)]

dz(p + 2z)dz'0’m(z) + 23dz0On(z)]dz

(N,0dz") vec[ (K + Zz)dz'0Pm(z) + 23dz0n(z)]

(M,0dzN{[O'm(z)" O (p + 3z)] + 2[0m(z)" O 5]}dz.

Then, because d3n(z) = (N,0dz")O®n(z)dz holds for all dz, we can drop dz and
obtain *m(z) = [O'm(z)" O (p + 2z)] + 2[0m(z)" O 5].

4. Derivation of (2.2) for k = 4: Differentiating (2.6) and vectori zing
terns, we obtain



(2.7) d*m(z) = d®m(z) (W' + z'¥)dz + 3d°n(z)dz'Zdz

dz(p + Zz)d’m(z) + 33dzd’m(z)]

dz[(p + Zz)(N,0dz") @°m(z) + 33dzdz'0n(z)]dz

(N,0dz") vec[ (pn + 2z)(M,0dz") O°n(z) + 3=dzdz'0"n(z)]

(N,0dz){[T°'m(z)" 0 (u + 2z)] + 3[0'm(z)" O 2]} (M,0dz)

(N,0dz)vec{[Fm(z) "O(u + Zz)] + 3[FPm(z)" O =]}.

Then, because d*m(z) = (N,0dz")@Pm(z)dz = (N,0dz")vec[ #n(z)] holds for all dz,
we can drop dz and obtain vec[*m(z)] = vec{[m(z)" O (pu + 3z)] + 3[’m(z)" O
zZ]}.

5. Derivation of (2.2) for k 2 5: Continuing in this fashion,

(2.8) d“m(z) = d*'m(z) (K" + z'%)dz + (k-1)d“’m(z)dz'=dz

dz(p + Zz)d“'m(z) + (k-1)Zdzd“’m(z)]

dz'[(u + Zz)(N_,0dz") 0“'m(z) + (k-1)=dz(N,,0dz")0“’m(z)]dz

(N,0dz") vec[ (p + 2z)(M,,0dz") 0“'n(z) + (k-1)=dz(N, _,0dz") 0*n(z)]

(N,0dz) {[0"'m(2) "0 (p + 22)] + (k-1)[0"'m(2)" O 2]}(N,,0dz)

(N,0dz)vec{[0'mM(z) 'O (u + Zz)] + (k-1)[0m(z)" O 2]}.

Then, because d*m(z) = (N,0dz")vec[I*m(z)] holds for all dz, we can drop dz and
obtain vec[*m(z)] = vec{[T'm(z)" O (u + 2z)] + (k-1)[0’m(2z)" O %]}.

Thus, we have proved theorem 1.

The particular value here of the corollary is that it expresses Gaussian
monments in the same gradient form of matrix derivatives that is used in the
perturbation solution equations in Section 3. From an analytic standpoint, any
arrangenent of elenents of matrix derivatives is equally acceptable. However, in



order to derive useful matrix-algebraic solution equations, the disturbance
monment s nmust be expressed conpatibly with matrix derivatives in the perturbation
equati ons.

3. PERTURBATI ON SOLUTI ON OF THE | NFI NI TE- HORI ZON LQEG PROBLEM

We now focus exclusively on the N = o problem and express (1.1) to (1.4)
nore conpactly.
Usi ng the feedback-control rule (1.2) to elinnate the control vector u

and restating the disturbance as 6g, where 6 = 0 is a scalar paraneter, we

wite the state law of notion, (1.1), in the closed-1oop form

(3.1) X = ®xi.1 + 0Og,

where & = F; + GPy is the closed-loop matri x. The perturbation nethod produces
an approximate Taylor-series solution of the stochastic LQEG problem
(henceforth, "stochastic solution"), centered on the exact solution of the

nonst ochastic LQEG problem (henceforth, "nonstochastic solution"). \Wen 6 = O,
the LQEG problem is nonstochastic. In the perturbation nethod, as 6 goes from
zero to a positive value it "extrapolates" the nonstochastic solution to an
approxi mate stochastic solution. Wwen 6 > 0 but # 1, the original
paraneterization is maintained by rescaling  as /6.

For simplicity, we drop the tine subscript. Specifically, we wite X;.q,
&, and E.; as x, ¢ and E. Then, for N = o, we express (1.4) in the manner of

the Bel |l man equati on of dynami c proganmni ng, as

(3.2) g(x) = f(x)Eg(®dx + 6g)°

where f(x) = exp[-(1/2)x'Qx] and Q = P,'R\Py + Po'Sy + So'Py + Q, so that g(x) =
J(X, ). For given values of x and the paraneters, hence, for given f(x), &, 6,

and %/0, the g(x) function which solves (3.2) is the stochastic solution. Hansen
and Sargent (1995) consider a related logarithmc formof (3.2).

When 6 = 0, (3.2) reduces to

(3.3) go(x) = F(X) go( ®x).



Whereas the analytical expression of the stochastic solution is unknown, the
nonst ochastic solution, go(x), which solves (3.3) for given values of x and the
paraneters, is given by

(3. 4) go(x) = exp[-(1/2)x"Vx],

where V.= 37 8(®")Qok.

We assunmed that the quadratic form in (1.3) is non-negative definite
overall and positive definite with respect to u, which inplies that Q is
positive definite (Q > 0). W now also assunme that ® is a stable matrix, i.e.,
has all eigenvalues less than one in absolute value. The latter assunption is
concisely stated as p(®) < 1, where p(®) denotes the spectral radius of o,
i.e., the largest absol ute eigenval ue of ®.

Gven Q> 0 and 0 < 3 <1, p(®) < 1 is sufficient for V to exist (be
finite) and Q> 0 inplies V> 0. By witing V=0Q+ d[Q + 3d'QbP + &(P)°Qd* +
...]® and noting that the expression in brackets is the same as V, we see that

V = ®'V® + Q Then, vectorizing this equation using rule (A 3), we obtain

(3.5) vec(V) = [1 .- &M000] vec(Q),
where I 2 denotes the n 2xn? identity matrix. Because 0 < 0 < 1, the assumption
p( @) < 1 implies op( M,0®) < 1, hence, that 2 - &( M,0®T) is nonsingular.

Our objective is to compute the 4th-order approximate solution of the

infinite-horizon problem without discounting ( 0 =1),
(3.6) AN = go + Ogo(x=x o) + ( 1/2)(x=X o) "T?Go(X—X o)
+( 16)[ MaO(x—x o) T 0%go(xx o) + ( 1/24)[ Ma0(x—X o) 1 O*Go(xX o),
where x , is any value of the state vector and g 0=0(X o), ..y 0%ge = O%(x o). We

restrict the discussion to the undiscounted problem for the sake of brevity. The
discounted problem is treated in exactly the same way but involves considerably
more algebra.



Because the perturbation nethod treats 6 as a state variable, we define
the current and next period’ s augmented state vectors as z = (x',0)" and z' =

x™®" + 6", B)T, and wite (3.2) as

(3.7) g'(z) = f(x)Eg'(2")°

The 4t h-order approximation of g'(z) is

(3.8) 9@ = g0 + Ogo(z2 ) +( V2)(z-z o) PG, (22 o)
+ ( ve) My0(z-z o) %9, (z-2 o)+ ( 124) Ms0(z-z o) "1 Oy (z-2 o),
wherez o=(x o".0) Tand gy =g “(Z o), ... O'%g, = 0%G"(z o).
The perturbation method proceeds as follows: (1) we set 6 = 1 and

differentiate (3.7) four times in succession with respect to z; (2) we convert
the differential form equations into gradient form; (3) we match up coefficients

of like powers of elements of dz, which indicates solution equations for ga,

O'g,; (4) we set 0 = 1 in (3.8), and consolidate terms into the form of
(3.6).

In the following four subsections, we skip most steps in the derivations
because including them all would make the paper unbearably long. Full notes on
the derivations are available from the authors. However, most steps are
elementary, direct or inverse, applications of the vectorization rule (A.3). The
direct applications of (A.3) are based on the observations that a scalar is an
example of a column vector and that a column vector equals the vectorization of
itself. The steps rely mostly on rules (A.3), (A.19), and (A.20), and are used

without explicit referencing. The solution equations for Dga, Oy, derived

in this section require ofx), ..., Of 4(x) as input values. The equations for
computing these gradients are derived in appendix B. We use the fact that odd

moments of the normally distributed disturbance vector are zero. Finally, for

brevity, we write the undiscounted (3.7) as g " =fEg ", and its differentials

correspondingly.

3. 1. FIRST- ORDER PERTURBATI ON- SOLUTI ON EQUATI ONS.



Setting 6 = 1 and differentiating (3.7) with respect to z, we obtain

*

(3.9) dg" = df Eg"" + fEdg".
Corresponding to the partition dz = (dx', d@)', the colums of the
gradient of g partition as 0Og" = [ Og;, Og,]. Then, witing the differentials in

terms of their gradients and eval uati ng expectations, we obtain
(3.10) Og,dx + 0Og,d8 = [g"0Of + f Og, ®] dx + f Og,deé.
Because (3.10) holds for all dx and d6, we can drop dx and d6 and obtain
(3.11) Og, = Og,f® + g"0Of,
(3.12) Og, = f Og,.

Note that the [Og,’s on the left and right sides of (3.11) are identical
and evaluated at z, = (X0, 0), even though they, respectively, stemfromg and

g'. The reason is that applying the chain rule of differentiation and

eval uating the expectation in (3.9) inplements the prinme in dg’’, so that it can
be omitted from (3.10) to (3.12) and all derivatives of g are evaluated at z,.
The sanme thing happens in the higher-order perturbation equations. By contrast,

the prime stays on g”’, which is evaluated at z, as go( ®xo) = exp[-(1/2)x, PVdx,] .
The maintained assunptions, Q > 0 and p(®) < 1, inply that f < 1 and
fp(®)* < 1, hence, that Ink - f(MO®" is invertible, for k = 0, 1, 2,

Generalizing this section’s results, we would see that the invertibility of 1,
n

- f(MmOooe"), for k =0, 1, ..., K is sufficient and necessary for the existence
and uni queness of the coefficients gy, ..., 0O, of the Kth-order approxinate
sol uti on.

At this point, given that |,—f ®isinvertible, (3.11) and (3.12) imply

(3.13) Og, =g "Ofl .-f @,



10

and Dg; = O1x1.
3. 2. SECOND- ORDER PERTURBATI ON- SOLUTI ON EQUATI ONS.

Differentiating (3.9) with respect to z, we obtain
(3. 14) d?g” = d*fEQ” + 2df Edg” + fEd?g™.

Corresponding to the partition dz = (dx", dB)T, the rows and columms of

the 2nd-order gradient of g  partition as

ng*ll ng*lzg

(3.15) 02" = U .
E@jz . o O
921 09,0
Theoretically, 029" is symretric because cross-partial derivatives of g
are equal. However, practically, we require only that (z—z o) 10%g"(z—z ) is
correct regardless of the structure of [0%2g". That is, a quadratic form can be

defined variously, in terms of a symmetric matrix, an upper or lower triangular
matrix, or one with no particular pattern. The perturbation method produces n

linear restrictions for determining the 2n elements of [g,, and [Ig;,, so thatn
additional linear restrictions must be introduced to determine 0g,, and gy,
uniquely. The simplest restrictions are ng;1 =0 14 OF ng*lz =0 1. Arbitrarily,

we choose (1G5, =0 1.

Then, writing the differentials in (3.14) in terms of their gradients,

imposing the previous zero solution ( 0g, = 0 1) and the current zero
restriction ( [°g,, = 0 1.), Vectorizing terms, and evaluating expectations, we
obtain

(3.16) ( M,0dxvec( [Fg;,) +dx TdePg,, +(d 6) 20,

=( M,0dx") [vec(g "0 +2 OfTOg, ®) +f(  MN,00T)vec( [Fg;,)]

+ dx Tdef ®T g, + (d  6) [fvec( %) Tvec( %g;,) +f [Fgy1,
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where the first termin the second brackets on the right side of the equation is
obt ai ned from Ee"[°g;,e = Evec(e’ O €N vec( [Fgy,) = vec(Z) vec( [gy,).

Because (3.16) holds for all dx and d6, we can drop dx and d6 and obtain
(3.17) vec( [g;,) = f(M.00T) vec( [Fgy,) + vec(g™ D + 20f TOg, d),
(3.18) g, = fo"[y,,,
(3.19) g, = f [’g,, + fvec(Z) vec( [Fgy,).

Then, given that Ink - f(NO®d" is invertible for k = 0, 1, 2, (3.17) to

(3.19) inply
(3.20)  vec([Fgy,) = [1, —f( M,007] Tvec(g "DPf+2 Of O, @),

-1

(3.21) g,, = f(1 -f) vec( %) Tvec( [Fgy,).

and [°g;, =0 .
3. 3. THI RD- ORDER PERTURBATI ON- SOLUTI ON EQUATI ONS.
Differentiating (3.14) with respect to z, we obtain
(3.22) d 89" =d %fEg "' +3d Edg "' +3dfEd 2g"' +fEd °g".
Corresponding to the partitions N,0z" = ( M,Odx", dx Td6, dx Td6, (d 6)?2) and

dz=(dx T, d 8)T, the rows and columns of the 3rd-order gradient of g " partition

as



12

7°g, 0%g,,0

0 11 12D

. < O

. %]3921 |:|3922|]

(3.23) *g" = [ 0
|%‘fgal Dagszg

O pg D

B0 94208

Consi derations of redundancy that led us to set ng;l = Oixn NOW lead us to set

0 = D0 = Onny 00y = Oy and 0°Q3, = Opa.

Then, witing the differentials in (3.22) in terms of their gradients,
i mposi ng previous and current zero restrictions and zero sol utions, vectorizing
terns, and eval uating expectations, we obtain

(3.24) (Ms0dxT) vec( Cfgy,) + (M.0dx™)doCPg;, + dx7(de)2%g,, + (de)3’g,,

= (Ns0dxT) {f (Ns007) vec( [Pg;,) + vec[g” D3 + 3(®'Og; ™ O 0%)

+

3(®TFgy,® O Of )]} + (M,0dx") def (M,007) Py,

+

dxT(de) {f o7 [g,, + 30f 'vec(=) vec( gy,) + 30f T[FY,,

+

fo' g, vec(2) + flvec(2)T O (K , + 1 ;)vec( [gy,)}

+

(d6) °[f (g, + fvec(2) Igy,l.

The last termin (3.24), involving the pernutation matrix, K ,, is derived

using (A.5).
Because (3.24) holds for all dx and d6, we can drop dx and d6 and obtain

(3.25) vec( [gy,) = f(M;007) vec( (gy,) + vec[g"D% + 3(®'Og,™ O 0%)

+ 3(0 g, ® O OfT)],
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(3.26) g, = f(M,007 Fy,,,

(3.27) g, = foTFy,, + 30f 'vec(=) vec( 7gy,) + 30f T[Fy,, + f®TFg;, vec(s)
+ flvec(2)T 0 @N(K , + I ;)vec( °g.,) .

(3.28) g, = f g, + fvec(s)Tg,,.

Then, given that Ink - f(NO®d" is invertible for k = 0, 1, 2, 3, (3.25)

to (3.28) inply

(3.29) vec( (fgy;) = [1, —f( Ms00N) Lvec[g D} +3( o'Og,TO 0%

+3( o' g, ® O OfFT)],
(3.30) gy, =[I o-f @7 1{30f vec( ) vec( [Pg,,)+3 OfTCPG,, +f o' g, "vec( %)
+1 [vec( )T O @T(K .+ | )vec( g},

Dsg*lZ = Onz o and [%gs =0 1q.
3.4. FOURTH ORDER SCLUTI ON EQUATI ONS.
Differentiating (3.22) with respect to z, we obtain

(3.31) d ‘g"=d “Eg" +4d *Edg " +6d °fEd?g"’ +4dfEd 3g” +fEd “g".

Corresponding to the partitions N0z = ( N;0dxT, ( N,OdxN)d 6, ( N,Odx"d 8,
dxT(d 8)?, ( M,0dxNd B, dx "(dB8)2 dx "(d6)? (d 6)3 and dz = (dx T.d 8)7, the rows and
columns of the 4th-order gradient of g " partition as

(3.32) O%g'T =
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o T o T o T T o T o T A T . T
%]4911 D4921 D4931 |:|4941 |:|4951 D4961 |:|4971 D4981 E
O O
o T o T o T o T o T o T o T o T
@]4912 D4922 D4932 D4942 |:|4952 D4962 D4972 D4982 H

As before, considerations of redundancy lead us to set 0%, = [O%; = O =

0, D4921 = D4g:31 = |:lllg*n = Onun, DAQ;Z = D4g;2 = 0n2 ) D4g:32 = Ddg*?z = Onx, and

n=xn x1
DAQ;:L = leﬂ.
Then, witing the differentials in (3.31) in terns of their gradients,

i mposi ng previous and current zero restrictions and zero sol utions, vectorizing

terms, and eval uating expectations, we obtain

(3.33) (N,0dxT) vec( O%gy,) + (MsO0dxT)deO'g;, + (M,0dxT) (d6)2'g,,

+

dxT(de) 3 0%g,, + (d6)*'g;, = (N,0dx"){f (M,007) vec( Ogy,)

+ vec[g"'O% + 4(®0g,T 0 %) + 6(dT[Fg,,® O 07

+ 4(0Of T O vec((M,007) T3g,;®)) 1} + (Ms0dxT) déf (Ns007) O%g;,

+ (N,0dxT) (d6) %{f (M,0®7) O'g,, + 6[vec(Z) vec( [Fgy,) + [Fg,,Jvec( %)
+ 4[(vec(D)T O ®) (K ,+I ;) vec( *gy,) O Of 7

+ 4[®T(Pgy,'vec(s) O Of T + 4[0T°g,, O Of ]

+ fl(vec(D)T O (M®N) (K L +K, o+ ,)vec( 'g;)]

+ f[(®7 O vec(D)T 0 @) ((Ken O 1,)+(1, O Kyn)+l ,)vec( O'gy) 1}
+ dx'(de)*{f o'D'g,, + f(vec(x)T O @) (2K ,+I ;) 00}

+ (dB) {f O'gy, + 3fvec(Z O =) Tvec( Ogy,) + fvec(Z) g}
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In (3.33), ternms involving the pernutation matrices, K, are derived using (A 5).

Because (3.33) holds for all dx and dB, we can drop dx and d6 and obtain
(3.34) vec( ['gy,) = f(MuO00T) vec( Og;,) + vec{g D% + 4(®"Og,T O %)
+ 6(0TFg,® O 04T + 4[0f T O vec((M,007) 03gy;®) 1},
(3.35) 0%gy, = f(M;007) Oy,
(3.36) Mg, = f(N,007) Oy, + 6[vec(=) vec( [’g;,) + [Fg,,]vec( %)
+ 4[(vec(D)T O O (K ,+1 ;) vec( *gy,) O Of 7]
+ 4[®T[Pgy,'vec(s) O Of 1] + 4[0T%g,, O Of 7]

+ fl(vec(D)T O (M@N) (K +K, o+ ;)vec(T'gy)],
+ (@7 O vec(D)T 0 O ((Kon O 1,)+(1, O Kyn)+l ,)vec('gy)]
(3.37) 0'g,, = fo'D'g,, + f(vec(D)T O o7 (2K ,+1 ;) O'gy,,

(3.38) 0'gy, = f O'gy, + 3fvec(Z O =) Tvec( I'gy,) + fvec(Z)TOg,,.

Then, given that Ink - f(NO®") is invertible for kK = 0, 1, 2, 3,

(3.34) to (3.38) inply

(3.39) vec( 'g,) = [, - f(MO00N] Lvec{g" 0% + 4(o'0g." O 0%)

+ 6(0T g, ® O D47 + 4[0f T O vec((M,007) D3gy®) [},
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(3.40) g, = [I, - f(M00N] Y6[vec(z) vec( Ig;y) + Oy, Jvec( )

+

4l(vec(2)T O @ (K .+l 3)vec( [Pgy,) O Of7

4[®T[Pgy, 'vec(s) O Of 7] + 4[0" gy, O Of ]

+

+

fl(vec(D)T O (M@N) (K o +K, o+ ,)vec(Igy,)],

+

FI(O7 O vec()T O @) ((Kon O 1,)+(1, O Kyn)+l ,)vec( T'g;) ]}
(3.41) g, = (1 —) L avec( = O 5)Tvee( T'gl,) +vec( =) TO%GL,],
D4912 = On3x1' and DAQZz =0 .

3.5 SUMVARY OF SOLUTI ON EQUATI ONS.

After imposing zero restrictions and zero solutions, (3.8) reduces to

(3.42) 9°(x,8) = gy + 009y 0x o) +( 1/2){(xx o) TOgy, (x-x o)+ gy, 6%}
+( 1/6) {[M20(x—x o) T0°g;; (XX o) + (x-x o) "0, 6%
+( 1/ 24) {[Ma0(x—x o) TO'gy; (x-x o) + [M0(x—x o) 10'9,,67 +  [I'gy, 6%

Setting 6 =1 and consolidating terms in (3.42), writing the result in the

form of (3.6), and matching coefficients with those in (3.6), we obtain

(343) g o= gy +( U2 Uy, + ( 124) O'gg,,

(3.44) 0go= 0Og; +( 1/6) O%y5, T,

(3.45) 0%go = D%y, +( v24)mat( 0O%,,),
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(3. 46) *g, 0%95,,

(3.47) 0g, 09y,

where mat(0%g,,) denotes the unvectorization of [%g,, to an nxn matrix, g, =

exp[-(12)x,Vx,] and Og,, 0%, 0%, 0%, 0O%,,, 0O%,, 0%,, and O, are

given by (3.13), (3.20), (3.21), (3.29), (3.30), (3.39), (3.40), and (3.41).
Extending the solution to the 5th-order adds the equation [°g, = [°g;, and

the terms (1/120) O°g;s, and (1/120) 0°g,, to the right sides of (3.44) and (3.46).

In other words, extending a solution’s order not only adds new solution
equations for higher-order ternms but also adds terns to previous |ower-order
solution equations, that include the effects of higher-order disturbance
nmoments. Thus, there is a double infinity of possible approximte solutions: the
coefficients of a solution of any order may include the effects of disturbance
nonents up to any order.

In the above 4th-order solution, to consider non-Gaussian disturbance
distributions that are symmetric about zero, we would need only to replace the
2nd and 4th nmonents, vec(X) and vec(Z O X), with the relevant alternatives. For
exanpl e, without reference to any particular known distribution, we could fatten
the tails of the distribution by scaling up vec(Z O %) in (3.41), while keeping
vec(X) constant everywhere. The solution equations nust be rederived for

di stributions that are not symetric about zero.
4. NUMERI CAL EXAMPLE.

This section illustrates the 4th-order solution equations derived in
Section 3. The exanple represents the optinizing behavior of a representative
firmin an industry, which naximzes an LQ approxi mation of its expected present
val ue, subject to its production function, internal adjustnent costs, and output
demand and input supply conditions (Chen and Zadrozny, 2000a). The problem and
its linear feedback solution are given in the standard LQ form by the 2x2
matrices Fy, &, Ry, Sp, @, and P, specifically,
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(4.1)

n
o
1

H0000

[+. 4349

. 4351

which inply

(18912
O
O

H5189

(42) Q=

To conpute the 4th-order

assume that vec(Z)

= (

= (+5,45)T O (.7071

.00000]
5
. 4571§
- . 93380
0
D!
~ . 9350¢
518900
0 _
o ®=
2. 1648

1., .5, .5
.7071) 7.
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(16587 . 00000
_ O ad
- D |:|1 RO
20000 . 69350
1. 064 . 86880
_ O ad
% - 0O r
08689 2. 8653
14720 . 12920
O a V =
O o -
00695 . 58587

coefficients of 4th-order approximate solution

(4.3) go = .0043, [Og; = [.0021
+. 2663 . 0356
[Pge" = S
H. 0608 . 0608
(10390 . 0637 . 0642
0o’ = S
H0622 . 1185 . 1179

044. 43 - 44, 330

_ O ad

-0 r

H 44.33 44.43 H

(11008 . 19610

P = O O

0o - D |:|1

51002 . 18578
1.256 1.0370
O O
O )
3.037  3.5660

approxi mate solution of the LQEG problem we al so

1.)7T and eval uate the solution equations at X,

Thus, we obtain the follow ng values for the
(10049 . 01190
2, _ 0O O
.0059], Do = O
Hoo081 . 02418
. 0435 . 06100
d
D!
. 0784 .1213F
. 1110 . 0699 . 1196 . 1217 . 23410
O
|:|.
. 2334 . 1149 . 2233 . 2244 . 4988H

These results give sone sense of the sizes of the coefficients of the 4th-order

appr oxi mat e sol ution.

5. CONCLUSI ON
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The paper has derived and illustrated recursions for conputing any
mul tivariate Gaussian nonent and equations for conputing the 4th-order Tayl or-
series approximation of the objective function of the infinite-horizon LQEG
problem There are several possible extensions of the paper. W could optimnze
g(x) numerically with respect to the linear feedback matrix, P,. O course, we
could also do this follow ng Jacobson (1973), by solving an algebraic Riccat
equation. It would be interesting to derive and illustrate corresponding results
for a non-Gaussi an di sturbance distribution, say, the fatter-tailed nultivariate
t distribution. OF course, for a non-Gaussian distribution, the optiml decision
rule will usually be nonlinear. In such a case, we should derive and solve

equations for simultaneously conputing g(x) and the approxinmate optinal

nonl i near decision rule, P(x), although this possibility would be significantly
more conplicated than optimizing g(x) nunerically with respect to P,. In any of
these possibilities, we could consider the discounted problem

The present perturbation method is different from that of Collard and
Juillard (2000) and Sinms (2000), in which the stochastic problem is solved by
first perturbing the disturbance vector in the nonstochastic version of a
probl em and, then, accounting for stochastic variation of the disturbances by
taking expectations of the nonstochastic perturbation equations. In our
experience, this nethod produces identical 1st- and 2nd-order approximte
solutions of stochastic problens, with equivalent effort, but, for higher-order
solutions of nmultivariate stochastic problens, produces intractable solution
equations. For this reason, we follow Flem ng (1971) and Flem ng and Souganidis
(1986) and account for stochastic variation in terns of the perturbation
paranmeter 6. Flening’s nmethod is also applied by Anderson and Hansen (1996),
Judd (1998), and Chen and Zadrozny (2000b).
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APPENDI X A: DEFI NI TI ONS AND RULES OF MATRI X DI FFERENTI ATI ON.

A. 1. DEFIN TI ONS OF MATRI X DERI VATI VES.

Let A(x) O0D% R - R be a K-tinmes differentiable pxq matrix function of
the n-vector x. A(x) could be a function of the matrix X O R*™ such that x =
vec(X), where vec() is the columw se vectorization of a matrix. W consider
derivatives of elenents of Awith respect to elenments of x in three forns: the @

or partial derivative form the d or differential form and the O or gradient

form
For k =1, ..., Kand iy ..., i« O{1, ..., n}, we define 6!‘1_,_ikADR""qby
0 oA, Ay U
O
Xi, e 0X; ox;, - 0X;, O
O O
k —

(A1) 0 i A= E B,
O ‘ ‘ O
0o 0A; A, [
X, ---axik 6xil--6x,kg

as the partial derivative formof k-th order partial derivatives of the elements

of Awith respect to x;,, ..., X, .

The differential formassociated with (A1) is

(A 2) da= ST _ - 30 0., Adx, DNdX,,

where the dx;’s are small (strictly, infinitesimal) increnents to the elenents
of x = (X1, ..., Xn

The gradient form associated with (A1) and (A 2) can now be built up

recursively, starting with k = 1. Because there is no generally accepted
term nology for higher-order derivatives of matrix-valued functions, such as
gradi ent and Hessian for scalar-valued functions or Jacobian for vector-val ued
functions, we call the matrix representations of kth-order derivatives of matrix
functions "kth-order gradients."”
Three rul es are needed for vectorizing and pernmuting matrix el enents.
First,
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(A 3) vec(ABC) = [CT O A]vec(B),

where A, B, and C are matrices confornable to the matrix product ABC and O
denotes the Kronecker matrix product (Magnus and Neudecker, 1988, p. 30).
In sections 2 and 3, we apply (A 3) directly and inversely. "D rectly"

means applying (A 3) fromleft to right, i.e., expressing the vectorization of
ABC as [C' O Alvec(B). "lInversely" neans applying (A 3) from right to left,
i.e., expressing the unvectorization of [C' O Alvec(B) as a matrix whose

vectorization equals vec(ABC). W denote the inverse or "un" vectorization by

mat () and state its particul ar dinmensions al ongsi de.

Second,
(A 4) vec(AOB) =1[1,0 (KgymO 1p)(lmO vec(B))]vec(A)
= [(1n OKgm(vec(A) O 1g) O I ]vec(B),
where A and B are nmxn and pxgq natrices, |; denotes the jxj identity matrix, and

Ksm denotes the gnxgm pernutation matrix that maps the vectorization of a gxm
matrix to the vectorization of its transpose (Magnus and Neudecker, 1988, p.

48). The definition of Kynminplies Kym = (Kgm ™' = Kng
Third,

(A 5) (AODbNK,, = b" O A
where Ais nxn and b" is 1xp (Magnus and Neudecker, 1988, p. 47).

In B = KynA where A and B are mxp, K;,A can be viewed as a pernutation

operation on the elements of matrix A or as the matrix K,, that prenultiplies

the matrix A in the ordinary matrix product. In the first case, consider B =
KnnA as by = Kypna, for j =1, ..., p, where g and b; are mx1 colums of A and
B. For each j =1, ..., p, consider & as an nxn matrix, transpose this matrix,

and assign its colum vectorization to b;. Thus, we construct B = Ky,A In the
second case, consider Ky, = Kynlm, Wwhere I, is the mxm identity matrix. Kyp
on the right side of the equality is viewed as the pernutation operator, as in
the first case, and K,, on the left side is the result of permuting | Thus,

we construct K,, as a pernutation of | .
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W enphasize that throughout the paper a "vector" or the result of a

"vectorization" is a colum vector.

A. 2. REPRESENTATI ONS OF MATRI X DERI VATI VES.

For k =1, (A 1) and (A 2) becone

EBAll aAlq O
Elaxi 0X, B
o O
(A 6) OA = O : a,
O O
Au . Pwp
Hox ; ox; H
(A7) dA = Z”zl 0; Adx; .

Note that vectorization, summation, and differentiation operations are

commutative, i.e., can be applied in any order. Therefore, we vectorize (A7),
to obtain

(A 8) vec(dA) = [dvec(A), ..., dwvec(A)]dx,

where dx = (dx;, ..., dx, ', so that

(A.9) vec(dA) = DAMdXx,

(A 10) OA = [0vec(A), ..., odwvec(A].

Equations (A 9) and (A . 10) relate the 9, d, and 0O forms of first-order
derivatives of A to each other.

To obtain anal ogues of (A.9) and (A 10) for k = 2, we differentiate them
to obtain

(A 11) vec(d?a) = d(OA) dx,

(A 12) d(0A) = [d(vec(dA)), ..., d(vec(dA))]
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= Z_”:l [0;(vec(d:A)), ..., 0;(vec(0,A))]dx;.

Then, we vectorize (A 12) to obtain

g,—(vedalA))g Eﬁl(vedalA)) an(vedalA))g
(A 13) vec(d(DA)) = 57 E : dej = E : : gdx.
9(vedd,A )5 D(vedd,A) - dfvedd,A)E

@{vedA)D  veqd,A
O 0O O O

Then, because vec(OA) = U U=0 : 0 we obtain
0 0 0 0

WvedA)  Hedo,AH
(A 14) vec(d(OA)) = [0dvec(OA), ..., dyvec(DA)]dx.
Continuing in this manner for k =2, ..., K we obtain
(A 15) vec(d(O%1A)) = O*AMX,
(A 16) vec(d*A) = [ (My..0dxT) O I pq] O*A@dX,
where M,.,0dx" denotes k-1 successive Kronecker products of dx', and
(A 17) KA = [dvec(O°A), ..., dwvec(O<A)].

Applied for k =1, ..., K (A 17) recusively organi zes gradient formderivatives
of A up to order K as matrices. Basically, [OA is the Jacobian matrix of the
vectori zation of O¢!A

In this gradient representation of matrix derivatives, the K-term Tayl or-

series approximation of A(X) at X = Xp is
(A 18) vec( A(x)) = Z::o (k) vec( A (I MO(x-X0)] O I g},

such that OA, = OA(xe), for k =1, and 0°A = A(Xo) .
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A. 3. DI FFERENTI ATI ON RULES.

Let A(x) O D R - R and B(y) O D R - R be differentiable vector

functions (or vectorizations of matrix functions). Let C(x) O D0 R - RI be the
differentiable conposite vector function C(x) = B(A(x)). Then, the gradient form

of derivatives of C(x) is given by the chain rule of differentiation,

(A. 19) OC(x) = OB(A) MA(X).

Let A(x) OD R - R“and B(x) OD R - R be differentiable matrix

functions confornmable to the ordinary matrix product C(x) = A(x)B(x). Then, the

differential form of derivatives of C(x) is given by the product rule of

differentiation,

(A. 20) do(x) = dA(x) B(x) + A(x)@dB(x).

Rules (A.19) and (A 20) are quickly proved by elenentw se application of
the scalar chain rule of differentiation and the scalar product rule of

differentiation.
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APPENDI X B: | NPUT DERI VATI VES FOR PERTURBATI ON SOLUTI ON.

Thi s appendi x derives equations for conputing the first to fourth gradient
matrices Of(x), ..., O%(x) of f(x) = exp[-(1/2)x'QX], which are the inputs for
conmputing the 4t h-order approximation of the stochastic solution function, g(x).
As in Section 3, wthout further reference, we vectorize scalars, vectors, and
matrices using rule (A 3), differentiate expressions using the chain and product

rules of differentiation, (A 19) and (A 20), and repeatedly use the fact that
f(x) is scalar valued. However, we do reference vectorization rule (A 4) when we

use it. In the exanple in section 4, f(x), ..., O%(x) are evaluated at x,.
Differentiating f(x), we obtain

(B. 1) df (x) = -f(x)x'Qdx.

Then, noting that df (x) = Of (x)dx and droppi ng dx, we obtain

(B.2) Of (x) = -f(x)x'Q
Differentiating (B.2), we obtain

(B.3) d(Of (x)) = -df (x)x'™Q - f(x)dx'Q

Vectorizing (B.3) and elimnating df(x) using (B.1), we obtain vec[d(Of(x))] =

f(x)(Xx'™Q + Qdx. Then, noting that vec[d(Of(x))] = 0% (x)dx and dropping dx,
we obtain

(B. 4) 0% (x) = f(x)(-Q + xx'Q.
Differentiating (B.4), we obtain
(B. 5) d(02F (x)) = df (x)(-Q + Qx'Q + f(x) Qdxx" + xdx")Q
Vectorizing (B.5), we obtain vec[d(D%(x))] = vec(-Q + Qx'Qdf(x) + f(x)(Qx O
Qdx + f(x)(Q O Q)dx. Then, elininating df(x) using (B.1), noting that

vec[d( D% (x))] = % (x)dx, and dropping dx, we obtain

(B.6) O (x) = f(x)[vec(Q- Qx'QxQ+ (X 0 Q + (QU X)].
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Differentiating (B.6), we obtain
(B.7) d(%(x)) = df(x)[vec(Q- xx'™Qx'Q+ (x 0 Q + (QD Q)]
+ f(x){-vec[ QdxxT + xdx) Q] x'Q + vec(Q - xx'Q dx'Q
+ (Qx 0 Q + (QO Qdx)}.
Vectorizing (B.7), we obtain
(B.8) vec[d([Pf(x))] = vec[vec(Q- Qx'Qx'Q+ (X 0 Q + (QOI Q)]df(x)
- FO){(x O 1 2)[(x 0Q + (QO X)]dx
+ [Q O vec(Q - Qxx'Q]dx

+ vec(Qdx 0 Q + vec(Q O Qdx)},

wher e |n2 denotes the n?xn? identity matrix. Vectorization rule (A 4) inplies

(B.9) vec(Qdx O Q [Kin O 1][1n O vec(Q] Qx,

(B. 10) vec(Q O Qdx) [vec(Q O I,] Qdx,

because |; = scalar 1 and Ky, = Ky, = I,. Then, using (B.1), (B.9), and (B.10),
noting that vec[d([*f(x))] = O%(x)dx, and dropping dx, (B.8) becones

(B. 11) 0% (x) = f(x){vec[vec(Q - Xx™Qx™Q+ (X 0 Q + (QO X)]x'Q
- (X O 1) (X 0Q +(QO X)] +[QDO vec(Q - QAx'Q ]

+ [Kyn O 1o [1h 0 vec(Q]Q + [vec(Q O 1] Q.
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