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There are two approaches to finite population esti-
mation. One assumes the finite population elements
are fixed quantities. The randomness associated
with estimators comes from the random selection of
samples. Each sampled element has a weight deter-
mined by the sample design, see Cochran (1977) [2].
Most Bureau of Labor Statistics surveys rely on this
theory, for example, the Occupational Employment
Statistics program which was discussed in depth in
Li (2002) [10] about methods used in small area es-
timation. The other approach assumes the popu-
lation elements are a random draw from a larger
population or “super-population”, in a way similar
to taking random samples from a random variable.
The random variable has its own mean and vari-
ance structure, usually expressed in terms of linear
models. Finite population summaries of the vari-
able under investigation, such as mean, total are
estimated through fitting sample data to the linear
model. The design of the sample selection is relevant
only to the selection of a suitable linear model un-
der the “super-population”, but is irrelevant to how
the estimates are derived from the model. The first
approach is known as “design-based”, the second
“model-based”. Séarndal, Swensson and Wretman
(1992) [14] discusses this distinction in greater de-
tail. Table 1 lists some familiar design-based estima-
tors and their model-based equivalents. A broader
review on this connection is in Li (2001) [9]. Since
least squares linear estimators are very vulnerable
to outlying observations, that is, a small variation
in outlying observation produces larger variation in
the estimate than non-outlying observations, we de-
sire a model-based estimator that is less responsive
to outliers while being efficient. This is especially
necessary for survey data since processing error oc-
cur prominently in surveys. This study aims to
investigate the statistical quality of such a model-
based, outlier insensitive finite population estimator
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we propose. Limited simulation result shows that
this estimator is as efficient as other model-based es-
timators when there is no significant violation from
model assumptions and is more efficient than least
squares types of estimators when there are contam-
inating symmetrical outlying observations.

1. Oulier-Insensitive Linear Regres-
sion

In the past several decades, research on influence
of outlying observations on linear model estimates
yielded classes of estimators with controllable lev-
els of reaction to outlying observations. We briefly
summarize some of them here, in particularly the
ones that are implemented in popular statistical soft-
ware packages such as R, S-plus and SAS. These are
the M-estimator, least median of squares estimator
(LMS), the least trimmed means estimator (LTS).
Also included are other methods that are applicable
to more complex linear model structures, the Mal-
lows’, Schweppe’s methods, and the broader class of
the Generalized M-estimator (GM).

e Huber M-Estimator for Regression: Estimator
3,, for the regression parameter 8 (location) is
defined by
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for some symmetric function p : R — R* and
for a fixed o. (t) is the derivative of p(t).
Examples of p(t) are probability density func-
tion f(t), t2, |t| etc. defined within certain dis-
tance from 0. Optimal ﬁ is selected to mini-
mize asymptotic variance while allowing as high
a breakdown points as it could be possible, see
Huber (1981) [7] for more details.
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Table 1: Finite population estimators and their model-based equivalents

o Least Median of Squares Regression (LMS): Re-
gression parameters 3 are implicitly defined by
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where only the median of the squared resid-
uals are relevant in defining the best 3, see
Rousseeuw and Leroy (1987) [13] for details.
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Least Trimmed Squares Regression(LTS): Sim-
ilar to least squares estimators, but only the
smallest h residuals are taken to minimize
summed squared residuals,
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) where (TQ)ln < < (T )hn < - <
(r%).n, are the ordered squared residuals, see
Rousseeuw and Leroy (1987) [13] for more de-
tails on this.

Mallows’ Method: A weight w(x;) is part of
the estimating equation in Huber M-estimator
which limits the influence of outlying x rows,

n
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see Mallows (1975) [11].
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Schweppe’s Method: Weights w(x;) depending
on x; are as well attached to scale the residual
in response to outlying influential observation
in x:

, see Hill (1982) [6].

Generalized M-estimator for Mixed Models: Es-
timating equations written in matrix form to
accommodating more complex covariance struc-
ture and weight matrices V, W and U. This is

2.

the method we used to obtain outlier-insensitive
model] parameter estimates,
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see Krasker and Welsch (1982) [8]. Solutions for
B and V need numerical algorithm similar to
that for ML and REML, see Harville (1977) [5]
and Searle, Casella and McCulloch (1992) [15]
for methods to obtain ML and REML.
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Outlier-Resistant Best Linear Un-
biased Estimation

Linear model with mixed-effects is gradually popu-
larizing with survey data usage, for example Battese,

Hater and Fuller (1987) [1].

We propose a super-

population structure incorporates mixed-effects:
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and Y; and x; are populatlon and auxiliary infor-
mation vectors. v; is random (can be constant)

stratum-specific effects.
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€; is independent random
r vector. If we rearrange the Y by observed (s)
non-observed (1) population elements:
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best linear unbiased predictor (BLUP) of

} ,  then
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which could be the mean, total or contrasts, is

XSBLS)} .
(2)

Valliant (2000) [17] provides detailed derivation and
proofs of unbiasedness and variance minimization of
T. We propose an outlier resistant RBLUP, based
on above formulation:

T=1y,+1, (X, Brs + Vi Vs
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where ﬂ( ), V) are any bounded influence esti-
mators from the mixed-effects linear model; W are
weight functions depend on Xg, 9 is the Huber -

function. In practice, ﬁ(R), V®) are generalized
M-estimators given in section 1. Strictly speaking
RBLUP is neither “best” in the sense of minimiz-
ing variance nor unbiased with respect to the model
among all linear unbiased estimators. The name
given simply indicates its predecessor.

Influence of RBLUP is necessarily bounded. By
definition, influence function of a statistical func-
tional T(F) € R¥ is the first derivative of T'(F):
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where F, := (1—¢)F +¢6,, e € R!, with §, the point
mass at z. IFp p(z) reflects the influence on T of an
infinitesimal change occurred at z. Bounded influ-
ence estimators retain finite influence from outlying
observations as well as any other observations. A
sample version of the influence function is

IF; = (n — 1) {T(F) = T(F)}

where F(i) is the sample functional without ith ob-
servation. Cook’s Distance is another form that
expresses the magnitude of IF; by calculating a
weighted norm:

D; = (IF;) M(IF;) /¢

where M is k x k positive or semipositive definite
matrix and c is a scalar to be defined, see Ham-
pel, Ronchetti, Rousseeuw, and Stahel (1986) [4] for
greater details.

The influence function of RBLUP, IFrprLup,r
is then necessarily bounded. Now if we rewrite
RBLUP as

T =),

where 7 is the bounded influence estimator (with
IF;+ p < 00) of the vector of all unknown parameters
in the model,

T = (,6/, Vily «« ’Uij, ey UNN)I.

then 7 is asymptotically normally distributed,
Maronna and Yohai (1981) [12] discusses its asymp-
totic mean and variance; 7 is a finite projection from
# to T,  Given such projection exists, by the
Chain Rule defined on Gateaux differentials, the in-
fluence function of RBLUP is

IFreLup,r = N'IF4 p.
Since both IF+ r and 7’ are finite, IFgpLup,F is nec-

essarily bounded.

3. Simulation Study

We study the statistical quality of proposed RBLUP
through a simulation. First we produce an artificial
popoulation according to the model:
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Then contamination is introduced into this population
in four ways: no contamination, contamination in the
random effects, in the error term and in both. Contam-
ination of percentage \ are taken from normal distribu-
tion with large variance (40 vs. 1 of clean data). Notice
in this case the contamination is symmetrically centered
at the central location of clean data. This approach is
similar to de Jongh, Wet and Welsh (1988) [3].

‘ Yk ©i

0.0 0.0 : no contamination
)\ 0.1 0.0 : only random effect contamination
0.0 0.1 : only error contamination
0.1 0.1 : both random effect and error contamination

B and V are estimated through Generalized M-
Estimator, as those used by Krasker and Welsch
(1982) [8] and Stahel and Welsh (1992) [16].
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Figure 1: Fitted super-population models under three estimation methods (Contamination Patter: 0.1:0.1)

We then repeatedly draw stratified random samples
of size 100 from this artificial population, 100 times to-
tal. Sample sizes are allocated to four strata first by the
method of sample proportional to size then the Neyman
allocation. Results show little difference between the
two methods therefore all results listed later are based
on Neyman allocation method. For each draw, we calcu-
late an estimate of the population total using RBLUP. In
addition we also calculate estimates using the following
alternative estimators:

1. Stratified Direct estimator (SD),

Tsp = 1/NZN /n,Zy”

Jj=1

with standard deviation
i

O (Ni/NYP(A = f2) i)/
, where S? is the stratum variance and f; the sam-
pling fraction in stratum 3.
2. Stratified Linear Regression estimator (SLR),
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, with standard deviation
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pi = Sggyl/ngS'yz is the population correlation in
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stratum i, S'y27 Szi, and S3,,; are variance of y, x

and covariances between y and x in stratum ¢, and

3. Best Linear Unbiased estimator (BLUP) (2).

The estimates were then compared to the actual popu-
lation total yielding values of root mean squared error, a
measure for deviation from the true value. Spread of the
deviation were estimated through the estimates spread
based on the 100 independent repetitions. The median
root mean square errors and a nominal 95% confidence
region based on the 100 independent samples are listed
in Table 2. Figure 1 displays the model fits from one
of the random draws. Different dash lines indicate the
method used. Notice both the SD and BLU are “pulled”
in larger degree than RBLUP by the outliers in the sam-
ple. RBLUP tend to stay closer to the majority of the
population in all four strata when outlier in y directions
is mild, as in stratum IV where all estimates produces
similar model fits.

SD(Tsrr) =

4. Conclusion

v' Outlier-resistant predictor RBLUP under linear
mixed-effects model is less influenced by outliers (in
y or rows of X) than LS predictors such as BLUP.

v" When there is no significant deviations from model
assumptions and/or there are not outlying y or rows
of X, RBLUP is relatively efficient.

v" Given there is no contamination and presence of
asymmetric outlying observations, RBLUP is bi-
ased. However it is reduces variability as compared
to other estimators.



Contamination

Root Mean Squared Error

Pattern T SD SLR BLUP RBLUP
0.0:0.0 95.2 0.65 1.30 1.31 1.31
(0.61-0.68)  (0.54-1.61) (0.79-1.78)  (0.79-1.78)
0.1:0.0 95.2 1.23 0.97 1.18 1.18
(0.59-7.83)  (0.12-1.79)  (.05-2.31)  (.05-2.31)
0.0:0.1 95.2 5.41 2.68 2.72 1.61
(3.29-7.97) (1.12-3.62) (1.25-3.25) (0.81-2.76)
0.1:0.1 95.2 5.12 3.20 2.89 1.52
(1.98-7.25) (1.75-4.21) (1.60-4.25) (0.16-2.86)

Under contamination and presence of outlying ob-
servations, RBLUP reduces bias and standard er-
ror.

Differences between RBLUP and BLUP decrease as
the sampling rate increases.

Effect of the outlying observation on the RBLUP
depends on the outlier resistant estimators used.

Computation is slow, algorithm complex, solution
is not guaranteed especially with large datasets.
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