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ABSTRACT
Let A be a population sub-domain of interest and assume that the elemmiznofot be
identified on the sampling frame and the number of elemeitssmot known. Further
assume that a sample of fixed size (9ays selected from the entire frame and the
resulting sub-domain sample size (say is random. The problem addressed is the
construction of a confidence interval for a sub-domain parameter such as the sub-domain
aggregatel, =» _ x . The usual approach to this problem is to redefjnby setting
x; =0 ifie A. Thus, the construction of a confidence interval for the sub-domain total is

recast as the construction of a confidence interval for a population total which can be
addressed (at least asymptotically)jrby normal theory. As an alternative, we condition
onn, and construct confidence intervals which have approximately nominal coverage
under certain assumptions regarding the sub-domain population. We evaluate the new
approach empirically using data from the Bureau of Labor Statistics (BLS) Occupational
Compensation Survey.

KEY WORDS: Bayes Method, Conditioning, Establishment Surveys, Simple Random
Sampling, Stratification, Survey Methods

1. INTRODUCTION

Let x, be the value of the characteristic of interest forithé =1,2,..., N) element of
the population and led be a sub-domain of interest. The elemen® cannot be
identified on the frame and the number of elements(say N ,) is not known; however,
it is assumed that any elementfoincluded in a sample can be identified. The problem is
to construct a confidence interval for the sub-domain toja#, ZieA X; ,basedona
sample oh elements selected from the entire frame.

The usual approach to this problesrio redefinex;, by settingx, =0 if i ¢ A, which

forces the population totdl = 2:11 X; to be equal td,. Thus, the construction of a
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confidence interval for the sub-domain total is recast as the construction of a confidence
interval for a population total. In what follows it is assumed thaktlse have been
redefined as above. An overview of domain estimation can be found in Chapter 10 of
Sarndal et.al. (1992). If we assume a simple random sample with replacement, the
standard approach to this problem is along the following line:
Define the additional population parameters,

X =T/N = population mean,

S? = ZL(Xi - )T)Z/N = population variance, and

p, = N,/N = proportion of population iA.
Then

@) T=(N/MY %, x= 2::1xi/n =T/N,s*=" (x - Y)z/(n—l), and

p, =n,/n (wheren, is the number of sample element&)rare unbiased for

the corresponding population parameters,
(2) E(T)=T =T,, so, we define the sub-domain estimape T,

3) var(T,) =N?s%/n |
(4) Vn(f,-T,) /(Ns)—>N(0,1), and

(5) s* is consistent foB>.

It follows that\/ﬁ('fA —TA)/(NS)L) N(0,1), so, whem is "sufficiently large",

appropriate values from the normal distribution can be used to construct confidence
intervals forT,.
However, the proportion of the's that are equal to zero is at leasp,l-therefore,

when p, is small and the values of thi¢ s for i< A are concentrated away from zero,
the convergence in distribution in (4) can be extremely slow. Consequently, the

\/ﬁ(fA - TA)

distribution ofN— can be far from normal even for what are usually considered
S

to be moderate to large valuesofDorfman and Valliant (1993) noted this problem in



their study of wage distributions for sub-domains consisting of workers in specific
occupational groups. Preliminary empirical work by the authors indicated that supposed
95% confidence intervals for total workers and total wages for occupation based
sub-domains typically provided only 75% to 85% coverage even for a large total sample
size £=353 establishments). Furthermore, this work indicated that the distribution of

'fA —T, was strongly dependent on the realized valug, ofvhich suggested that some

type of "conditional” confidence interval should be considered. Thus, the formal goal of
our research was to establish methodology for the construction of conditiomgl ¢on
equivalentlyp,) confidence intervals fof,, which provide nominal, or near nominal,
coverage regardless of the realized value of the sub-domain sample size.

In this paper we propose several methods of conditional confidence interval
construction. These methods result from a Bayes based analysis of the conditional
distribution of a random variable of the fotn= ('fA -T, )/sz , wheresz IS a
standardizing random variable. The cases of simple random sampling and stratified
random sampling are considered in Sections 2 and 3, respectively. The results of an
empirical evaluation of the methods are discussed in Section 4. Section 5 provides a

summary and concluding remarks.

2. THE CASE OF SIMPLE RANDOM SAMPLING
2.1 Definitions and Notation
We define the following parameters and estimators:

Sub-domain parameters:

U, =T,/N, =sub-domain mean,

oi=Y (x—m) /N, =variance of population elementsAn



Sub-domain estimators:
I\AlA = f)AN
fa=>" x./nA =T,/N, (only defined fom, >1), and
G2 = 2”“ (%, f2,)° /(n, =1) (only defined fom, > 2).

In what follows it is understood thaf, > 2 (or equivalentlyp, >2/n) unless specifically

stated otherwise. The relationships given below follow directly from the definitions:
Tp = Np, t, andT, = Np, 4,
X'=papa andx = Py,
S = pa(L-pa) i+ pao

a2+ adge (1)

-1 n-1 *

Also, it is straightforward to verify that
(‘/ﬁ/N)(fA_TA):‘/ﬁ(‘u (ﬁ _pA)"'f)A(li _.UA))
no 7 —
\/F)Ai p +\/ﬁ_AO-A A NPA (C/:A .UA) (2)
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pA(l_ pA)Zl + pAO-AZZ!

‘/ﬁ(pA_ pA) 7 = \/E(IjA_‘uA)
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2.2 General Methodology for Confidence Intervals

Let é _ (TA _TA)

and assume that the conditional (@y) distribution function ob,
S.

TA
say H( . ||6A; pA,uA,o"’A), is known. In order to construct a conditional equal tailed

(1-0)x100% ClI for T,, we define an upper critical value
c, = (c, P P)=— inf{* H X n)= a/z}: - H(o/2, "% B)

wherep, is considered fixed and the dependenceiQrand ¢, is temporarily
suppressed; a lower critical value, sayis defined in a similar manner. A conditional,

equal tailed1—a)x100% ClI for T, is then given byCl(1— ) =(¢,u), where

u

T, + C,S;, and

3)

(=T, +C/S; -

At this point the obvious practical problem is that the critical vatyesidc, depend
not only onp, but also on the unknown paramepgr. One approach to this problem is

to take a Bayesian tack and assume the pararpgterthe realization of a random

variable. Adjusting the notation for this assumption, we Ha{® p,, p,)= H(%X 1 n).

and it follows that

(4)

=ti5y) HOdBa P (Bl pa)ol(pa)dps,

whereh(ﬁA):J' f(pa|pa)o(pa)dp, andg(p,) is the pdf ofp,. It should be noted that as

a consequence of our sampling scheme the distributiop,otonditional onp,,, is



Binomial (n, p,) so thatf(p,|p,) is known. Under the Bayesian approach, the critical
values arec, = (o, p,)=—F (/2 b,) and ¢, = ¢ (e, p)=-F*(1-/2 p,) so the

upper and lower limits for a condition@d!- o ) x100% ClI for T, are

u=T,+cs. and
(5)

K:TA+cisTAA.

For the purposes of our current research, we are assuming that the prior distribution
g(pA) IS N(upA ,of,A) with g, andof)A to be specified. For an empirical Bayes approach,

we usedu, = p, and considered several possible alternativesngwvhich we discuss in

detail below. Our experience indicates that the normality assumption is not crucial, rather,
it is primarily a matter of convenience. On the other hand, the choice of values for the
mean and variance is relatively more important. This will also be discussed in more detall

at later point.

2.3 Confidence Intervals Under Normal Assumptions
Assume that within the sub-domairthe x, are distributed\l(uA,o,ﬁ). Then

(8) [V(T, = T,) /N[y, pa] is distributedN (v, (b, - p,). Buo?).
B 22
(b) (nf)A—l)%mA, pA} is distributedy *(np, —1),

A

(c) _(Zz +,/n|6A}’A)2| Pas DA} is distributed non-centragy2(1; ") with A" =np,y 2, and

(d) the conditional random variable in (b) is stochastically independent of the

conditional random variables in (a) and (c).



(f.-)

(N6 ./ P. /1)

standardizing term. It follows immediately from (a), (b) and (d) that, conditional on

Consideré1 =

which utilizes the conditional variance f as the

(Ps, ps), the random variablé1 is distributed as a non-centtakith np, —1 degrees of
(ﬁA B pA)
JBa

conditional distribution functiorh-l( | Pa, pA) of él. As f(f)A|pA) andg(p,) have been

freedom and non-centrality paramefes \/ny , . Thus, we have specified the

previously specified, it follows tha?i(-| f)A) in (4) is well-defined although extremely

cumbersome to calculate. The dependencg pandc?, throughy ,, should be noted.

Although F(| f)A) as given above can be used to determine the critical values, they are

extremely difficult to calculate. A relatively simple approach, given in the next paragraph,
provides a close approximation to the critical values. We have verified the closeness of
the approximation by computing the exact values for selected cases using large scale

simulations.
Under the assumption thgj, is distributed as al(f)A,ojA), it follows from Appendix

A that[2|p,] is distributed approximately as a normal with mean zero and variance

2 _A A A
e pA)’WherewA: pa( sz)/n

. It then follows from the result in Appendix B
1+y, o

Pa

that, conditional or,,

(TAA _TA)
NCfA\/f)—A 7/-2\(1_ ﬁA)+l
Jn l+y,

is distributed as a centrialith np, —1 degrees of freedom. The upper confidence limit



u, defined in (5), is given (approximately) by

= NG,/h, (y2(a- ﬁA)+1+va)mt ©
n (l+l// )1/2 1-0/2,n,-1"
A

As 62 is conditionally unbiased fas% and 1% —6%/n, is conditionally unbiased for

1’ we usey? = (fi3 - 6%/n,)/67 to estimatey ; and approximate with

NG, Pn (721~ B+ 14y )"

TR TR @y e
A
.~ n 2
NERLRL
it Ns[n—l)]/2 n-1 5
= Is \/ﬁ n (1+WA)]/2 1-a/2,np-1

A necessary condition for the results in Appendix A to hold isrtthet large enough to

ignore the terms with ord@(nfl), in which case

~-|’> Ns [ pA Al// )/(1+ ) ]/2'[ (7)
= T e Ya 1-a/2na-1 "

It should be noted thai is strictly decreasing ag, increases and

0T+ T s = U, @Sy, becomes small,

CLNs(, 4 (p-pE)) . - 4

u=1, +ﬁ[1_ 4+nA[ < j) tl—a/z,nA—l_ u,, for VA _n_A (8)
A A 2

0= AA+ﬁ pTGZA/SZ)V tyojz0ps =0, fOr Y, =1, and

>

_ »~ Ns|[p.0, s
u—->T,+ t, oonss=U, asy, becomes large.
s :



In each case the lower critical value can be dealt with in an analogous manner resulting in
four competing confidence intervals; nameBj, (1-or)= (7,7 ), i=1---,4 , with 7,

defined similarly tai; in (8) witht, ,,, , replaced by, ,, ;. In general the competing
confidence intervals are labeled in order by decreasing length, except that the length of
Cl, is longer tharCl, for n,=2 or 3.

The first case is equivalent to assuming thétis “large” relative tovar( |©A) and
leads to using the usual unconditional variance but with degrees of freedom equal to
n,—1. In most practical problems this seems reasonablecsij]de an unknown

constant and/ar(ﬁ)A) is O(p,/ n). It is interesting to note that the heuristic development

in Appendix C also yields Cls with critical values dependerst ofhe second case is
motivated by empirical evidence for its advantage,a2 and 3, and the consistency to

the standard normal methodrgsbecomes large. For this case,
2 _ Ny ﬁA(l_ ﬁA)
Ph g n

Bayes assumption regarding the prior variance, namélys p,(1- p,)/n. The last

A2
o = pi (1-p,). The third interval is based on the standard empirical

confidence interval is based on the assumptionghiatessentially degenerate fa.

A small empirical study, using an artificial population, suggested that

1. Standard confidence intervals using the usual variance estimate and normal
guantiles can give very low coverage. The worst cases occurred/wiasma half,

for several values g

2. The strictly conditional intervals (i.€Cl, ) using the conditional variance can

give abominable coverage, especially whénlarge. That is, confidence intervals

based on “large” values af , gave very poor results.
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3. The use of the standard variance estimate with degrees of freedom based on the

number of sample units in the domain (i€l,) give conservative coverage.

4. The Empirical Bayes estimates corresponding je=1 andy , = ni give

A

conservative coverage with narrower mean interval length tha@ltheHowever,

the differences were not very great and in proceeding to the more complex stratified

random sampling case, we focus our attention on variar@$, of

3. THE CASE OF STRATIFIED RANDOM SAMPLING
3.1 Definitions and Notation

Assume there ai¢ strata and, where appropriate, terms previously defined have

corresponding stratum level definitions. For examples the sample size amd, is the

number of sample elementsArfor thek™ stratum. Thus, a natural estimator for the sub-
. K K .
domain totall, = >~ > X = N, Py Ly iS

K

A K A
T =20 Tae = 2 Nic P Mg 9)

It is straightforward to verify that

E[(TAA _TA)|f)A’ pA] = 2::1 Nk(ﬁAk - pAk).uAk = .aA and

2
a2 O p

2
var[(TA _TA)|f)A’ pA] = ZkeBl N DA o = ZkeBl N P %
Ak

Al EO~'/§,
nk

wherep,, :[ﬁAl Pao "'pAK]’ Pa :[pAl Paz "'pAK] andB, :{k|nAk >2land1l<ks< K}-
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3.2 General Methodology for Confidence Intervals

@ - TAI L . .
As before gb= s has a distribution functlom{( ®,:p.,m,,s ZA) , where,
) a2 a

is the known realization of a random vector and m, ands % are unknown vectors of

parameters. Thapper critical value required to construct a conditional equal tailed
a a |- 100% Cl for T,, is denoted by, ” CUQ,ﬁA,pAS and the lower critical value is

denoted by, " ¢ Q,ﬁA,pAs; the dependence oﬁands_i being suppressed. As in the
previous section, the problem is that the critical values depend on the unknown vector of
parameterp, so the situation is basically the same as for simple random sampling,
although as we shall note, there are complications of a new sort in dealing with the

stratified case.

Analogous to the approach in Section 2.2, if it is assumegbthiatthe realization of
a random vector, then we can erl&|§A, Pa R prPe X|§,, pAt and

f@A;pAgf A|pAl. It follows that

prs x|§At: FmﬁAg
=hJéA—gZZbﬁA,pAgGAIDA|abAQDA,

whereh@Ag ZZ@A|pA EBA goA anngAS is the joint pdf ofp,. The upper and
lower critical values for an equal tailed a |- 100% conditional (ond,) Cl for T, are
¢ c@B)=" F'l(a/2||$A) andc " ¢(a,B,)=" F'l(l' a/qﬁA).

Because the samples are selected independently from each stratum we have

@.Jp. 1}
schemen, §,, has a binomial distributioBBK, P S It is reasonable to assume that the

Ip,.[1£ k £ K Care jointly independent so thald, g ‘o e (which implies

f A|pAIaBAg sz1 fi Ak|pAk@mAkSandhmAg :leQAk|pAkBmAkgpAk-

K - .
et Tk Ak|pAk | and, as a consequence of our within stratum sampling
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In what follows, we assume that the prior distributiorpgfis N th ,S gAk | and for the

empirical Bayes approach, we useg = g, and, analogously to the case of simple
5. 5,
2

Pak

random sampling, we defiye,, =

3.3 Confidence Intervals Under Normal Assumptions

Assume that within sub-domaffor thek™ stratum thex,, are distributed

NGLk,s [ and thex,, are distributed independently from stratum to stratum, then
[@ - A||§A,pA] is distributedN %, 94 1. 1t follows that[@ - A|/s°/;9||$A,pA] is

distributedN mﬁ)/s"/g,ls. Furthermore, based on the empirical Bayes approach specified

in the previous section, it is straightforward to extend the result in Appendix A to the case

of stratified random sampling and it then follows & /S%|8, | is distributed

nad var®§|§A m% ! wherevar@ﬂﬁA h - NZ e Wé

k Ak

LetB, = mAk t2 and 1£ k £ K[ and assume th&, , ~ . Then, fork, B,, the

terms Mlbm - 18, g/s N pAt are distributed independently a< Id,, - ls. Next,

. Qi_ r$Akg
o Wi >0 ands§, == :
< e~ 1

Then, based on the usual Satterthwaite (1946) two moment approximation, the

conditional random variable

K BZWkDAk_ 1 Ak/S f\kn
: - [N

is distributed approximately ascaza] wherec= | w; B, - 19 o Wy D, - 1(

andn =€ s wk ) - 1@/ wk ), - 1( It follows that, conditional o, , th

random variable
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= d&'TAI \/V&r%|§Ah@/§ _ @'TJ/\/var@ﬂﬁAhS%
\/ «. 8, Vk Ak-l@/-z\k/sl-z\kﬁ \/ kLBZWkﬁAk-l Ak/Sf\km kLBZWkﬁAk_lg

is distributed as a centrialithn degrees of freedom. Analogous to the conditional

upper confidence limit defined in (6), we define

w (- D@5 N Gull Bu)rliy

3 k B we Ne b 1+y ) }
U(W) - -ﬁ + e w, (nAk i 1) tl— a/2n (10)

t t

with the lower confidence limit defined in a similar manner. Wherytheare near zero

we have (approximately)

2 2 N : ﬁ S ’ 2 v
) Bng (nAk - 1)(§BAk/S Ak)k Bl% (g Ak (1' ﬁAk) + ])
u(w) @® + oW (n, - 1) te  (11)
L +

. N2, S? . .
We temporarily letQ = m( 2 (1- ,,)+1) and consider two alternatives for
n

k, By K
specifying thew, :
. B N2 S 2 3 N2 ﬁ
Alternative 1 Let W = ﬁ (g ik(l- ﬁAk)+ 1) - ﬁ (mik (1_ ﬁAk)+S 2Ak) )

Then, from equation (11),

u(w)="8+Q"t ... (12)
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where the parametay is referred to as the weighted degrees of freedom.

Fork, B,, we use®, to estimates? , ¥ - %’ /n, to estimatent, and

_ N?B, ) ) . .
B, = m((ﬁ $,/n,)1- B,)+$2) to estimatav,. We can then estimate the

weighted degrees of freedom with= e B, 1] bAk - 1@/ \A‘if ), - 1( We will

delay dealing withQ until after specifying the second alternative.

Alternative 2 Let w, =1 then from equation (11)

(nAk - 1)(§B 2Ak/ S 2Ak) v

u(w)=B+Qr nm tyajons (13)
b k. B (nAk - 1) 1
with unweighted degrees of freedam= " B, - 1S- If we estimates 2 with S&,
then equation (13) simplifies to
u2 (W) = ﬁ + Qj/ztl a/2np (14)

It is straightforward to show thaj $r§, hence, for any specified value @Qf, the length

of the confidence intervals under alternative 2 is less than or equal the length under
alternative 1. Using a different approach, Kott (1994) also recommends lowering degrees
of freedom using the Satterthwaite approximation. Similarly, Johnson and Rust (1993)
use the Satterthwaite approximation to get degrees of freedom corresponding to a

resampling variance estimator.
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Addressing the problem of estimatiqy, we have

Q= n‘\ NP2 @2 1- 6,)+1)
k. B
= kzﬁ ( Ak(l' ﬁAk)+S 2Ak)
ke N
= NP g yesi)s NP g esy).
k, Bi- Bp nk k, By nk

Fork, B, - B, the estimatof¥, is not defined, however, it is straightforward to verify

that k) &kg[rﬁk|nAk]£s§k+nﬁkm 5.3 E[ 1%, |n, ]. Therefore,

g2 = Nkzg;Akm ﬁAkgik + N/ ﬂ;Ak dﬁkﬁ_ b ﬁAk%Akhlﬁikb ﬁAk

k. B;- B, Ny k, (15)
Ng ﬁ Ny ﬁ
NeB D g, G, + Aks$§kb+1/n g
k. B k. B,
is an "under-estimate” fap and
NZ&Z NZ& NZ
sz Nbhg, NBPg g NPy, s
k. B;- B, Ny k, B, Ny k. B, Ny

is an "over-estimate". Clearly; £ s with equality only wherB, = B, .
It can also be verified that in the case of stratified sampling, the standard variance

estimator for estimated population totals is

Nzi

Std T -
(17)
N ﬁAk (1 ) N ﬁAk $2 (1 ]’/nAk) )

kBln- k8 N -
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Note thats?, ands’ are equal to terms of ordef*, however;s’ will tend to be smaller in

most practical situations.
These results imply that Cls of the for(lﬂ -st a/m) will provide the highest level

of coverage while Cls of the fon(rﬁ - Saﬁ.a/z,nz) will provide the lowest level. Also, Cls

of the form (ﬁi —s,t. /m) and (especially( b—s,t. /2,n2) have obvious computational

advantages. Several of these competing forms of Cl were evaluated in an empirical study

which is reported in detail in Section 3.5.

3.4 The Case of Population Means and Medians

The results in the preceding sections can easily be extended to ratio estimators by the
standard linearization approach. By way of example, suppose we are interested in
estimating the average wage for workers in a particular occupation via a sample of
business establishments; here we\lebnsist of establishments with employees in the

occupation of interest. Léﬁ(V\l) and fﬁ( M) be estimators of total wagesa/\ for

employees in occupatiohand total number of employedd)(in occupatiorA as in
equation (9). We can write these estimatorﬁiv\l) = “¢yand fﬁ( M)= “cm,

where for the" establishmentg is the sampling “weight’m is the total number of
employees in occupatiohand y is total wages for employees in occupa#ort he ratio

estimatorw, = B(W)/ $( M) is used to estimate the average wagje£ W/ M) for

employees in occupatioh It is straightforward to verify that the usual linear
approximation for the differencéﬁA - V_\/A) iS given by

I (V_VA - WA) = |n:1 G7 (18)

wherez = M"(y - W X). For stratified random sampling, we can re-label the sample
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establishments to reflect stratification and then equation (18) can be written as
- YV K Nak — K
I (WA ) WA) = k=1( Nk/ n<) i=1 &= k=1 %k :

This is of the same form as equation (9), so the results of Section 3.3 ap(iy, toW,)

under the appropriate normality assumptions orethe

Preliminary analytical invegation indicates that these results can also be extended
to the construction of Cls for population medians, or other percentiles, by the use of either
the Woodruff (1952) or the Francisco and Fuller (1991) techniques. Detailed

investigation of this extension is beyond the scope of the current paper.

3.5The Empirical Study For Stratified Random Sampling

Results on coverage and mean interval length, from two simulation studies, both on
populations derived from a test sample of the Occupational Compensation Survey
Program (OCSP) conducted in 1991, are included in Tables 1-4. One population (the
"Small Population™) took the sample itself as the population, with six non-certainty strata,
and one certainty stratum of 12 establishments. Repeated samples were taken from this
population at sizes n=36 and 60, corresponding to the chajedsandn, =8. The
second population (the "Large Population") was constructed by expanding the sample data
through replication of establishments to achieve a population the size of the original
population; again there were six noncertainty and 1 certainty strata; for each stratum
samples were of the size of the actual sample. Domains are defined by the different
occupations of interest; only a fraction of establishments have workers in a particular
occupation, and lie in the corresponding domain.

In both cases sampling was without replacement, so finite population correction
factors were included (as appropriate) in the construction of the Cls. Also, the study was

limited to a concern with 95% coverage.
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SMALL POPULATION: Table 1 for total wages and Table 2 for mean wages give

coverage and interval length, at two sample sizesl andn, =8, for 8 occupations, and

4 variance-degrees of freedom combinations: the standard variance estifpatath

the standard normalquantile, and with the unweighted and weighted degrees of

freedom. Results are based on 500 runs. Occupations are ordered by increasing values of
the average value over runsrof. We note:

(1) Almost universally, coverage using the standard variance estimator and the standard
normal quantiles (infinitelf) is poor.

(2) Coverage for the other interval types is far more satisfactory, in the main matching
nominal or conservative for the weighted degrees of freedom; as expected the unweighted
degrees of freedom tends to yield coverage a few points below the weighted degrees of
freedom coverage.

(3) Confidence intervals for means are better behaved on the whole than for totals. Two
occupations (1122, 4021) yield seriously low coverage for totals even with the improved

procedures; only 4021 gives poor coverage for means.

Interval lengths are taken relative2o z 4, » 4 times the root mean square erroﬂ%f

calculated over runs; when the distributiorifois actually normal this ratio is 1.
(4) The relative interval length of the standard interval tends to be too small, that is, less
than 1.

(5) Interval length among the other variance-degrees of freedom combinations is largest

for s2, with I, and smallest fos’, with n,. These differences can be appreciable; there

is a tradeoff between coverage and interval size.

(6) For a given interval type, the relative interval length tends tonl asreases.

LARGE POPULATION. Tables 3-4 give coverage and interval length for totals workers

and mean wage for the same four interval types, and a wider range of occupations,
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ordered by average,. Results are based on 5000 runs. Here the interval lengths are

taken relative to the median interval length for the standard normal confidence interval.
We note:

(1) Results are consistent with those on the Small Population, in terms of the relative
coverage and interval sizes of the several interval types. The standard normal is
unsatisfactory for many occupations.

(2) Coverage usin®, is less than 90% only in a small fraction of cases.

(3) There can be marked differences in interval length for the different interval types;
however, all ratios of interval length toe #oot mean square error tend to 1ngsgets

large.

(4) There are some differences in problem occupations from the Small Population Study;
for example, the coverage for 4021 is much improved, but 2911 has poor coverage,
especially for the mean, even with the non-standard intervals. These differences are
probably due to some differences in the way the populations were structured; in particular,
all certainty establishments in the original sample were treated as certainties in the Large
Population; this was not the case in the Small Population.

(5) In the main, coverage is better for means than for totals, but there are some obvious

exceptions, especially at low valuesmf.

4. SUMMARY AND CONCLUSIONS
From our theoretical investigation and the two simulation studies relying on OCSP data,

we draw the following conclusions:

1. Standard 95% confidence intervals for domain means or totals, when based on the
standard normal distribution and standard methods of variance estimation, tend to yield

less than actual 95% coverage. The extent of the deviance will vary with domain
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(occupation in the simulation study), but can be quite considerable even when the sample

is large.

2. New nonstandard methods offer a sharp improvement, giving intervals with better
coverage, typically at or close to the nominal 95% coverage. These intervals tend to be
longer than the standard intervals. The increase in length will vary with domain, and will
depend on the particular method for CI construction that is adopted among those we have
considered. "Asymptotically”, that is for "large sample domains”, there will be little

difference from standard intervals.

3. The basic ideas behind these intervals are (1) conditioning on the amount of
information on the particular occupation, which, roughly speaking, is measured in terms of
the number of units in the sample that belong to the domain, and (2) An important
unknown is the fraction within each stratum of such units, and to handle this we put a
prior distribution on this unknown, reflective of the degree of our ignorance of it, an idea

we borrow from the Bayesians. However, the bottom line here is coverage probabilities.

4. The principal effect of these ideas is the abandonment, for purposes of Cl construction,
of the standard normal quantilesi (96 for 95% coverage). These are replaced by

guantiles from the Studentslistribution, with degrees of freedom determined from the
sample and varying with domain. If because of publication requirements or for other
reasons, there is need to report standard deviations rather than confidence intervals, then
we recommend reporting &ffectivestandard deviation given by the length of the 95%

interval divided by twice 1.96.

5. The most likely candidate for estimate of variance, accompanying thequantile, is

the standard estimate of variance. In most instances this should be quite satisfactory, so
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that the only change will be in the introduction of the new degrees of freedom
methodology. However, we have considered alternatives to the standard variance
estimator, which in some instances may improve coverage or reduce the length of

confidence intervals.

6. An open question concerns what degree and type of collapsing of strata (if any) should
be used in the estimation of variances and of the degrees of freedom for the purpose of
confidence interval construction. In general, there will be a tradeoff: as strata are reduced
in number, the estimate of variance will tend to increase, but so will the degrees of

freedom (reducing the size gf or t, .) The answer to this question may well be

population specific, and experience of the population from past surveys useful.
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Appendix A
From the discussion in Section 2.2 we know tifthas a binomial distribution

BilD pAs, hence, for®, =0, In, 2/n,L , 1

(8 pA):G(nﬁA+1c);(Gr&:(i)_ 8)+1 (- p) ™

n+1 n+2 +1)- 1 n(- Ba)+1)- 1
_Gn+) Gn+2) p{PA (1 pA)((M)

~ gn+2) B, +1)G(r(1— $)+ ])

1
:n—ﬂksA(pA)-

For each (fixed) value b, , the functionkg, [BA( is the pdf of a Beta distribution with
parametersv, = nf, +1 andw, =nk) ﬂBAgl. As bothw, andw, will be larger than

unity with high probability (at least in most real world situations), it is reasonable to
approximatek s [BA( with a normal pdf having equivalent mean and variance. For the

Beta distribution in question the mean and variance are

n$, *1
niz @g, and

lasm@rﬁ} @?1 6,10 g.(
+oFat3 n

Thus, the approximation lg; bA @)\/2_\/5 lﬁ) 5 g e
P+ P A

1 D‘ﬁA
ZﬁAbﬁAg

Assuming thatp, is distributedN Gns 2[ it follows from the Bayes formula that the

posterior distribution is
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h(p8.)= f(8/p)d n)/ . (%l n) 60 de

1 (pa- Ba)? +(PA-m)2
2, Ba(L- Ba)/n s2

@ce :

(8a-m)?

-% (pAl gﬁg/n+('3§-2rn)2.d \/('$ (L- )/n)+s : ? (onlw ) is the

&
wherec = CE

& Roe sv2p,/B,(1- B /n

normalizing constant.

Under the "empirical Bayes" assumption that i, ands > = &D &gw we have

1 ER.-89 L
G5 — Rb28s

V20 (5.0 5.0

If we drop the specific assumption regarding and lety = %m &\gﬁﬂs ? then
kL g, (
[pA||$A] is distributed normal with mean equ#| and variancé%r%\ Under the
y

empirical Bayes variance assumption we havel.
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Appendix B

Result: AssumeW is distributedN G, c? | and, conditional oV = w, the random

variableT is distributed as a non-centtakithn degrees of freedom and non-centrality

parametew. Then, the unconditional distribution 'ﬁf\/ c? +1 is centrak withn degrees

of freedom.

Proof: First notice thal can be written as

X +W

s’

where X is distributed aN(0,1), S* is distributed ax?, and X, W, andS are
mutually independent. Therefor¢= (X +W)/+/1+ ¢ is distributed adN(0,2). As

X¢andS* are independent, it follows by definition that

T X¢

Te= =
Ji+c*  |/SYn

is distributed ag, .
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Appendix C

We here make some observations on the usg 61 degrees of freedom with the

Y2 @ 11
standard statistic#, corresponding to the empirical Bayes format with=0,

from a frequentist standpoint.

The question is why thiedistribution withn, - 1 degrees of freedom, which would
seem appropriate for use with a conditional distribution based on the domam) size
the within domain variance estima® , yields generally sound confidence intervals in
conjunction with the above unconditional statistic based on sample aimmesample
variances’. We focus on 95% coverage andttet tBA —1;.9755. Also, assumen, is

positive and, to abbreviate notation, fat m,, s*”"s%,g"g,, p” p, and " f,.

Consider Figure 1, which, for 500 samples of size 300 selected with replacement from

a population of size 3000 havipg0.03 andy = 9, graphs the ratiR=
(B —7,)/MAt*/n*>l againstn, ; if the ratioR is less than 1, the, is in the

corresponding interval estimate. We note (i) the intervals are well behaved, in fact

conservative in that more than 95%Rs¥alues are less than 1, (ii) thatgsincreasesR

increases from relatively large negative to relatively large positive, seeming to reflect
changes in the bias ﬁ -T, asn, changes. Furthermore, there is a "withj"i

variation, which in the main seems to increase,adecreases.

We proceed to analyZin light of this figure, attempting to get a handle on the bias

and spread, for eact) =2 (or, equivalently, the "acrosg " and "withinn," variation
respectively.). Conditional om,, the bias of the numerat&n@ =T, =N a— pTuE bg.
R-T,-b, "6, b

ThenR= .
t*N$?&/n"> s t*Ns/n"?

We suggest that, for givem, the first term

reflects the spread &, the second the bias.
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For moderate or large, we have by (1) thats? = $@- ﬁf@z +nAT_1<$2, and

-ﬁ_TA_bﬁ n,—pn
t* Nﬁl/z@/nl/z t*nAl/Z
1

|$f$29f1—1/n gfor ¥= /& and

substituting this in both terms, we deriRe= g, where

i=l@ §T$2 +|C1)—1/nA(y1/2 andg :%(

$=1/8.
. . . . ﬁ _T/.\ - bﬁ .
Consider the first factor in each term. By Section 2:3;- is a standard
NB26/n"2
studentized statistic and so, dividedtbywill lie between -1 and 1, 95% of the time (this
would not be so if we used the conventianatatistic, in place of or t with larger
degrees of freedom). The first factor of the second term is fixed for gjveRor given

n,pwe ask how oftem, will be such that this value will be large. The expression

N — PN :a- p'V\/E Is bounded above by the conventional binomial statistic, which for

12
r]A

np moderate has an approximatdistribution. But in the situation we are concerned
with, np is typically small, and the division Ity instead ofz .., is an important safety

—-pn__ . n,—pn
factor. Values of 52 and—2 Fi,z
t*n

A 975" 'A

and the probabilities with which they arise, were

tabulated fon = 50, 100, 500, and 1000 and for a range of valupsfof example, for
n=50,p= 0.01, .02, .04, .06, .12, .18. It was found that large (absolute) Va|gé5;—£f2
A

(say bigger than 0.8) have extremely small probability, with the most vulnerable situation
being the possibility of getting,=3, 4, or 5, whemp s about 12 or 15. In particular, the

case whem,=2 is not worrisome because of the large value of t*. By contrast, large
pn

N, —
values of 7

975" 'A

were not so improbable.

These considerations suggest the bias will be lesgytfarD.8g) with extremely high
probability, and the withim, variation will be less thahwith probability 95%. Note that

for givenn,, f andg are functions ofp, feboth estimating. For the moment consider

them as functions ofitself, ignoring their stochastic variation. Then it is easy to see that

f is monotonic down, with a maximum\atO of -1/ n, gz and asymptoting to zero as
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y increases [for example wt3 (the approximate practical lower bound we found in wage
data), forn,=2 (worst case) anfb negligibly smallf=0.32]. On the other hand,s

monotonic increasing, with a value of Oyad and asymptoting t@- Bl “* =1. Thus
the largery, the more pronounced the acrogsvariation and the less the within
variation, and vice versa. At0, the bias term is zero. Cleafg is bounded by a small

number, achieved whenis between 0 and 1. In fact, squaritig and taking the

derivative, one finds that to maximifeg, we haveg » 1- 1/n,. Table 1 gives values of
y yielding maximum value df+g, and the values so yielded, for small values of Table

C-1 suggests the worst case for coverage occuysafoout 0.65.
Table C-1. Maximum Values off+g, for giveny

Ny 2 3 4 5 6 7 8 9 10

\ 5 .67 75 .8 .83 .86 .88 .89 9
f 1.15 .95 .87 .83 .81 .79 .78 q7 .76
g .58 .63 .65 .67 .67 .68 .68 .69 .69

f+fg | 1.73 158 153 150 148 147 146 146 145

Note: Asn, increases, both f and g approath/ 2

This discussion ignored the fact that pobut § andg appear ihandg. Note that
were it not for the fact that there d@vweo estimators oY, the above argument goes
through, with same bounds brg, etc., withy for example replacing However $oand
¥ should typically be close. In particular, it is easy to seefntis distributed as

t/n}?, where t has a t-distribution withy -1 degrees of freedom.
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An incidental observation is that for largéhe withinn, distribution is clearly skewed
downward (see Figure 2). The distribution of the régtis skewed positive, so thais

skewed negatively, accounting for the effect.



