The Density Behaviour of Heavy Oils in Freshwater

Merv Fingas, Bruce Hollebone and Ben Fieldhouse Environment Canada - Ottawa

Overview

Review of basics
The Wabamun spill
Mechanisms by which oil becomes heavier
Mechanisms by which oil becomes lighter

Definitions

- Sinking oil moves to at least 1 metre depth – usually to bottom or pycnocline (salinity phase)
- Over-washing a thin layer of water covers the oil, generally under some wave conditions – oil may not be visible except at oblique angles

What causes Sinking or Overwashing?

- Increase in oil density or a high initial density
- Oceanographic conditions especially vertical mixing and density differences
- But in freshwater, the concerns become largely sinking

The Wabamun Spill – An Example of Heavy Oil in a Freshwater Lake

 At 10:00 August 6 Canadian National Railways had a derailment on their main east-west line through the town of Wabamun, on Lake Wabamun, spilling a total of about 800,000 litres of heavy fuel oil (Bunker C) and about 90,000 litres of lube oil (then stated) (11 + 1 cars out of about 15 tankers, about 70 total)

Lake Wabamun

- Is close to Edmonton and several persons with cottages (houses) work in Edmonton
- Has 4 huge power plants nearby 2 directly on lake
- Is complicated by having a village, two power plants, an Indian reservation, a rail line and public beaches all in close proximity
- Is about 8 miles long and about 2 miles wide

Heavy Oil Behaviour - Overview

- As oil was heavy fuel oil and flowed over land to get to the water, some of it picked up sediment
- Several phenomena observed: oil resurfacing, neutrally-buoyant tar balls, oil on bottom, daily re-oiling of shoreline – even after bulk oil skimmed

Specific Observations

- Sometimes very big lumps of tar called tar logs here
- These objects range from 6 to 20 cm in diameter and from 1 to 5 m in length (for USA about 2 to 10 in in diameter and from 4 to about 15 feet in length)

Specific – 2

- Often a lot of tar balls were present in near-shore areas
- Tar balls typically were 2 to 10 cm in diameter
- With wind, positions of these changed

Specific - 3

 Many of the tar balls were mobile and would move around and change location around the various beaches
 Many of the tar balls were almost neutrally buoyant

Specific 4

Extensive oil in the reed beds

- Some of this oil rose during the day
- Oil in the reed beds did not appear to be as mobile as other tar balls

Specific 5 - curiosity

- Tar balls re-surfacing would sometimes shed oil in a strange way
- Oil would come from several openings in the tar ball
- Appeared like a new strange creature

Specifics - 6

- Tar mats were often on the bottom in near-shore areas
- Some of the material became mixed with rubble and organic material
- Tar mats seemed to be immobile and were largely removed manually during the cleanup operation

Specifics - 7

There was oil on the bottom in deeper areas – particularly near the spill site
Sheens appeared above this area daily
During an ice survey in winter, small tar balls were found under the ice in this area

Mechanisms that make oil more dense

- Evaporation loss of lighter material can make the oil more dense
- Temperature change oil changes density faster than water with temperature change

More sinking mechanisms

Uptake of solid material

- Many historic spills showed at 2 to 3% uptake of sediment is sufficient to sink oil
- A 'new' mechanism noted at Wabamun uptake of lighter material (grass, insects) that lose air and uptake oil to become heavier and thus this change may be sufficient to sink oil

Mechanisms by Which Oil Resurfaces

 Loss of solid matter

 break up of mat/log – break occurs along less-viscous areas and oil flows out
 downward movement of particles
 sloughing-off of surface
 Break-through of oil through cracks

Mechanisms that resurface oil

- Changes in temperature or water hardness (must have oil very near floating to have this happen)
- Uptake of lighter material could actually decrease density – given that this material does not lose air or become wetted

Summary

- Interesting bahaviour of oils in freshwater systems can be explained
- Major effect is uptake of sediment, sand and material more dense than water
- Major re-surfacing is due to the loss of this material – or oil escaping from the adsorbed mass

