Use of Trajectory Modeling To Analyze Variations On the Response Strategies for Inland Spills

Dagmar Schmidt Etkin, PhD Environmental Research Consulting

Deborah French McCay, PhD Jill Rowe Applied Science Associates, Inc.

Freshwater Spills Symposium 2006

Key Response Questions

- How can we maximize effectiveness of oil removal operations for specific types of spill situations in inland areas?
- How might the outcomes have been different with a variation on the response employed?
- What is the optimal response strategy for a particular location and situation?
- How can we better train responders to think strategically to minimize spill impacts when there are fewer real spills?

One approach:

SIMAP

 ASA developed Natural Resource Damage Assessment Models for CERCLA and OPA NRDA Regulations (1984-1996)

 ASA has continued development as SIMAP (Spill Impact Model Application Package)

Scenario Specifications

User-specified or based on actual historic spill

- Date, time, duration
- Location
- Fuel/oil type and characteristics
- Amount
- Environmental conditions
 - Winds
 - Currents
 - Temperature
 - Salinity
- Geographical data
 - Shoreline and habitat type
 - Depth

Case Study

Why this spill is instructive:

- Caused extensive impacts to wetlands after failures to follow through on directives set forth by the FOSC
- Involved the deployment of defective, poorlymaintained boom that broke
- Arrival of a storm on the second day after the spill created challenges for responders.

Impacts to Sensitive Wetlands

Impacts to Property

Response: Swanson Creek Booming

Patuxent River Booming

Oil Removal

Scenarios Modeled

- Actual Swanson Creek response (booms breaking) plus Patuxent River booming as per actual response
- Actual Swanson Creek response (booms in good condition, properly anchored) plus Patuxent River booming as per actual response
- Actual Swanson Creek response (booms breaking) with additional booms deployed as ordered by FOSC plus Patuxent River booming as per actual response
- No response (no booms or removal)

Actual response ("ACTUAL")

Actual response with good booming ("A-GOOD")

Actual response plus FOSC booming ("FOSC")

■ No response ("NO RESP")

No Response

No Response Shoreline Impact

Actual Response

Actual Response Shoreline Oiling

A-Good Response

A-Good Response Shoreline Impact

FOSC Response

FOSC Response Shoreline Impact

Zones of Impact

Shoreline Impact (m²)

Scenario	Total	Zone 1	Zone 2	Zone 3	Zone 4	Outside Swanson Creek
NO RESP	23,029	4,919	6,055	5,178	6,877	18,110
ACTUAL	16,277	5,026	5,947	1,118	4,185	11,250
A- GOOD	9,543	6,573	2,808	9	152	2,969
FOSC	10,285	5,339	4,570	36	340	4,946

Reductions in Shoreline Impact Compared with No Response

Reductions in Shoreline Impact Compared with Actual Response

Reduction in Shoreline Oiling

Lower response costs

Less shoreline response required

Less impact on sensitive wetlands by oil and by response operations

Fewer wildlife impacts

Evaluating Response Strategies With Modeling

After a spill to derive "lessons learned"

Training of spill responders and strategists

Contingency planning