Tennessee Valley Authority Annual Report on Energy Management FY 2005

(Including Department of Energy Reporting Guidance and Outline)

John E. Long, TVA Senior Energy Official Stephen L. Brothers, Manager, TVA Internal Energy Management Program (IEMP)

OUTLINE AND INSTRUCTIONS FOR THE ANNUAL REPORT

I. Management and Administration. This section will describe (1) the agency's establishment of an energy management infrastructure and (2) the agency's use of management tools to implement Executive Order 13123.

A. Energy Management Infrastructure

1. Senior Agency Official. Identify the agency's senior energy official and describe the official's role and responsibilities.

John E. Long is the designated Senior Energy Official and Executive Vice President of Administrative Services.

Stephen L. Brothers is the designated Chief Energy Manager and manages the TVA Internal Energy Management Program (IEMP) under Administrative Services.

David R. Zimmerman is the manager of Sustainable Design under Administrative Services.

2. Agency Energy Team. Identify the members of the team and describe the team's responsibilities.

TVA formed the Agency Energy Management Committee (AEMC) to facilitate compliance with federal statutes, Executive Orders, federal regulations, TVA energy and related environmental management objectives, and obligations under the Environmental Protection Agency's (EPA) Green Lights Program (GL), EPA's Energy Star Buildings Program (ESB) and EPA's Energy Star Program (ESP). The AEMC serves as the agency energy team. This committee is comprised of representatives from each TVA organization responsible for energy management and associated environmental considerations in facility and general operations inside the agency. The AEMC provides an avenue for sharing lessons learned and replicating success. The members are:

- Stephen L. Brothers, chairperson for the AEMC;
- Kathryn E. Ellis, Transportation;
- David R. Zimmerman, Sustainable Design;
- David W. Stewart, Fossil;
- Aaron B. Nix, Facilities Management Environmental;
- William R. McNabb, Facilities Management O&M;
- Jay T. Grafton, Nuclear;
- Teresa S. Wampler, River System Operations and Environment;
- David R. Dinse, Research and Technology Applications;
- Bryan H. Jones, Information Services;
- Jonnie A. Cox, Facilities Management Projects;
- David A. Gordon, Heavy Equipment;
- Judy G. Driggans, Chief Financial Officer representative;

- Barry M. Gore, Power Systems Operations;
- V. Edward Hudson, Demand Side Management Program;
- Cicely Simpson, Federal Affairs;
- David R. Chamberlain, Customer Service and Marketing;
- Tina I. Broyles, Power Systems Operations alternate; and
- Sherri R. Collins, Office of General Counsel.

B. Management Tools

1. Awards (Employee Incentive Programs). Describe the agency's use of employee incentive programs to reward exceptional performance in implementing Executive Order (E.O.) 13123.

TVA uses a "Winning Performance" process as a method to reward employees' efforts toward meeting agency goals. Examples of pay for performance goals include reduction in cost per square foot for building operations. Energy efficiency and sustainable improvements are contributors to reduced cost per square foot goals.

2. Performance Evaluations. Describe agency efforts to include successful implementation of provisions of E.O.13123 in the position descriptions and performance evaluations of senior energy officials, members of the agency energy team, heads of field offices, and facility/energy managers.

To the extent to which employees are responsible for activities that are related to the objectives of E.O. 13123, their job descriptions contain reflective line items and their performance is evaluated in terms of the level to which they accomplish such goals.

3. Training and Education. Describe activities undertaken to ensure that all appropriate personnel receive training for energy management requirements. (Note: The number of employees trained will be reported on the agency's Data Report and Energy Scorecard. Expenditures on training will also be reported on the Data Report). Describe agency outreach programs that include education, training, and promotion of ENERGY STAR[®] and other energy efficient and low standby power products for Federal purchase card users.

TVA utilizes various methods of training to educate employees on the objectives of the IEMP which includes energy management requirements. Staff is educated on energy and environmental related topics through the TVA Employee Technical Training and Organizational Effectiveness (ETT&OE) group. The TVA Intranet and employee awareness programs are also used as tools to educate employees on how they impact energy use and efficiency both at work and home. Energy efficiency and information updates are provided on current federal requirements and regulations to employees, managers, and TVA customers upon request. Energy management and associated environmental training is provided to managers and employees as needed.

4. Showcase Facilities. Highlight exemplary new or existing facilities that the agency has designated Showcase Facilities in FY 2005. Describe why the facilities are considered Showcase Facilities (i.e., discuss the facility design, the improvements made in energy or water efficiency, the use of renewable energy, etc.).

The TVA Chattanooga Office Complex (COC) continued to be TVA's designated Showcase Facility for FY 2005. The COC, completed in 1986, encloses approximately 1.2 million square feet of floor area, and is made up of five interconnected buildings (Signal Place, Lookout Place, Blue Ridge, Missionary Ridge, and Monteagle Place). It integrates the use of passive energy strategies, energy management practices, and environmental programs and activities. Occupants' daily activities have been recognized as a major component in facility performance. Energy and environmental awareness programs have been established to inform the occupants of the impacts their actions have on this performance. The combinations of original design elements, energy and environmental activities, and aggressive energy reduction operation and maintenance efforts have resulted in the COC becoming a model facility.

During FY 2005, TVA continued to consolidate space to reduce cost. This resulted in an increase in the occupancy density of the COC. To offset the increased energy demand from this increased density, TVA continues to investigate energy efficiency measures and have implemented measures which include:

- Better placement of task lights resulting in reduction of numbers used;
- Use of digital lighting controls which can be operated from the users PCs;
- Orienting offices to better utilize daylighting over mechanical lighting;
- Use of more efficient T5 lighting in place of existing T8 and T12;
- Use of more efficient flat panel displays in place of conventional cathode ray tube displays; and
- Use of occupancy sensors in individual office spaces.

ENERGY MANAGEMENT AND ASSOCIATED ENVIRONMENTAL EFFORTS

The COC performed better than TVA's target for facility design and the FY 2010 building energy reduction goal established in E.O. 13123. The COC's low energy consumption rate supports the reduction of CO_2 and other environmental impacts at the source.

Since initial construction, additional energy and environmental improvements have been implemented in the COC. One of these improvements was the design and installation of a chilled and hot water storage system for the COC and Monteagle Place (MP) buildings. The system allows the two buildings, through a symbiotic relationship, to better use site energy and reduce the need for source energy.

COC Original Design Features:

- VAV air handlers with full economizer capabilities;
- Energy Management and Control System (HVAC, Lighting, Fire);
- Heat recovery from MP chillers;
- Approximately 30 footcandles of ambient lighting supplemented with daylighting and task lighting;
- Renewable energy attributes such as daylighting; and
- Thermal storage through structural and fluid mass.

Additional Improvements:

- Chilled water crossover piping allows the COC and adjacent facility to share chilled water and run the most efficient mix of chillers;
- Water fountains are heated and cooled through heat exchangers to better manage temperature and humidity in the building;
- Motion sensors and timers have been installed in the COC (i.e., conference rooms, restrooms, enclosed offices, closets, etc.);
- LED exit lights have been installed;
- Energy efficient lighting has been added;
- COC storage tanks are used for chilled and hot water storage (3 x 19,000 gallons);
- Heat exchangers and chilled water were used to cool the secondary water loop allowing the abandonment of rooftop evaporative coolers and associated fans, motors, and sump heaters;
- Equipment (i.e., fixtures, motors, ballasts, chillers etc.) was upgraded to energy efficient models as failures occurred;
- Variable Frequency Drives (VFDs) and energy efficient motors have been installed on all large air-handling units;
- The energy management system has been upgraded to be more user friendly;
- Chiller efficiencies have been evaluated so the most energy efficient mix of chillers can be run for operating conditions;
- Upgrading to more energy efficient equipment is evaluated during modifications (fixtures with T-8 lamps and electronic ballasts, etc.);
- Energy efficient motors are installed where applicable;
- During purchase of replacement parts, energy efficient and environmentally friendly materials were ordered and stocked;
- Chillers have been retrofitted to accept non-CFC refrigerant;
- Energy Star equipment was installed where applicable; and
- Building entry air locks with automated doors have been installed to reduce the infiltration of outside air.

ENVIRONMENTAL PROGRAMS AND ACTIVITIES

TVA demonstrates a commitment to environmental stewardship through the implementation of its environmental programs and activities at the COC. Examples of these efforts include, but are not limited to, toxic reduction, affirmative procurement, waste minimization, and recycling.

Toxic Reduction:

TVA continues its efforts to reduce the amount of toxic chemicals used in its operation and maintenance activities for the building. The volume of toxic chemicals purchased in corporate office buildings has been reduced by over ninety percent since 1995. The COC is the largest single contributor to this effort.

Affirmative Procurement:

TVA reduces environmental impacts at the COC and other facilities through affirmative procurement of materials with recycled content. In FY 2005, TVA supported its Corporation-wide Affirmative Procurement Policy through the implementation of the revised Agency Affirmative Procurement Plan. During FY 2005, TVA purchased \$5.54 million of materials meeting guidelines established under the Resource Conservation and Recovery Act (RCRA) out of \$10.1 million (fifty five percent), and \$48.17 million of other recycled content materials.

Waste Minimization and Recycling Programs:

TVA is a Federal Charter Partner in the EPA "WasteWise Program." Through this program, TVA has made a commitment to achieve results in three areas:

- 1) Waste prevention;
- 2) Collection of recyclables; and
- 3) Use of recycled materials.

This aligns with TVA's mission of stimulating economic growth by protecting the Tennessee Valley's natural resources and building partnerships for the public good. TVA has established the Solid Waste Leverage Team and a Solid & Hazardous Waste Regulatory Policy Team to support the "WasteWise Program."

During FY 2005, TVA generated 23,705 tons of solid waste which includes corporate facilities such as the COC. TVA partners with a nonprofit organization which trains and develops work skills in mentally and physically challenged clients. These clients, in conjunction with their respective organizations, collect, sort, and market the recycled material from the COC. In addition to the typical office waste recycling, TVA continues its efforts in recycling fluorescent light tubes, oil, scrap metals, building materials, wood waste, and ballasts. TVA also utilizes a redeployment program which collects and redeploys used equipment and materials. During FY 2005, TVA deployed 12,512 tons of material and equipment through scrap contracts, auctions and sales, and donations.

Sustainable carpet is used throughout the COC. This carpet contains and uses high performance backing made from one hundred percent recycled content. TVA has an agreement with the carpet manufacturer to recycle carpet removed from the COC, which has kept used TVA facility carpet out of the landfill while saving an equivalent amount in raw materials. 5. **Other Energy and Related Environmental Initiatives:** Highlight new or existing energy and related environmental initiatives that the agency has accomplished in FY 2005. Provide a brief description of these initiatives.

INDUSTRIAL INITIATIVES

TVA provides end use technical assistance to their direct-served and distributor-served industrial and institutional customers. TVA works with these clients to help them identify and solve problems related to their use of energy in areas such as: manufacturing processes; environmental issues; and plant operations. The targeted segments, such as the automotive, machinery, forest products and food processing industries, as well as local water and wastewater treatment systems, are selected because of the large presence of such industries in the TVA service area, their high energy usage, or the availability of solutions for their existing problems. The TVA industrial marketing managers rely primarily on in-house expertise, but sometimes bring in consultants to assist these industrial clients.

The following are two examples of TVA energy assistance to industrial customers:

- 1. TVA representatives developed and co-chaired an in-house energy conservation team to identify and implement energy cost savings opportunities at the GM Spring Hill (Saturn) automobile assembly plant. The team achieved savings in excess of \$2 million in FY 2004 and over \$7 million since the beginning of the initiative six years ago. This includes electricity savings of over 44 million kWh in FY 2005.
- 2. Additionally in FY 2005, TVA's plant optimizations studies in the plastics products manufacturing and wastewater treatment sectors resulted in identifying and implementing energy conservation opportunities in excess of 1.4 million kWh per year.

COMMERCIAL INITIATIVES

TVA works with Tennessee Valley commercial and institutional customers to provide solutions to their energy-related problems and to encourage the selection of energy efficient equipment. For example, TVA is working with schools, governments, offices, retail, healthcare, and other commercial segments to provide information on the various energy options available to them. As part of that effort, TVA provides feasibility studies conducted by independent private sector professional engineers to compare different types of systems on a life-cycle-cost basis. Also, if the customer is interested in closed loop geothermal heat pumps, TVA will provide test bores and thermal conductivity tests at the proposed project site to assist with the design of the ground heat exchanger. Furthermore, TVA sponsors continuing education for Tennessee Valley architects and engineers on the proper design and application of geothermal heat pumps. In the TVA service area, there are approximately 252 geothermal systems installed or in design as the result of TVA's promotion of this energy efficient technology. Demand for TVA assistance to commercial customers on energy-related problems continues to grow.

ENERGY SERVICES COMPANY (ESCO)

Since 1997, TVA's Energy Services Company has worked with customers to achieve 28,390,000 kWh of energy efficiency savings and 13.5 MW of cumulative peak demand reduction through performance contracting projects. More than \$42 million in improvements have been made at four military installations in the Valley; at one base the energy savings now exceed \$1 million per year. Under these performance contracts, the equipment cost is funded through the resulting savings on the energy bills.

RESIDENTIAL INITIATIVES

TVA and its 158 public power distributors have a long history of residential energy-efficiency programs for the Valley. These programs are marketed under the brand name *energy right*[®].

About 150 distributors participate in the various initiatives from the *energy* right[®] Program. These initiatives are described below:

<u>New Homes Plan</u> promotes all-electric, energy-efficient new homes. All homes built *energy right*[®] must meet a minimum rating in overall energy efficiency. Homes built at least 15 percent better than the minimum rating qualify as *energy right*[®] Gold while those built 30 percent better qualify as *energy right*[®] Platinum. During the summer of 2005, TVA began an ENERGY STAR certification promotion. To date, one hundred fifty six homes have been certified through 20 participating distributors.

<u>Heat Pump Plan</u> promotes the installation of high efficiency heat pumps greater than 12 Seasonal Energy Efficiency Rating (SEER) in homes and small businesses. Installation, performance, and weatherization standards have been established to ensure the comfort of the customer and the proper operation of the system. A Quality Contractor Network has been established for maintaining high installation standards. Through a third-party lender, TVA provides ten year financing for residential heat pumps with repayment through the consumer's electric bill.

<u>Water Heater Plan</u> promotes the installation of energy-efficient electric water heaters in homes and small businesses.

<u>New Manufactured Homes Plan</u> promotes the installation of high efficiency heat pumps in new manufactured homes.

<u>In Concert With The Environment</u> (in partnership with Nexus Energy Software) is a comprehensive environmental and energy education program directed to middle school and junior high school students. Student participants receive an energy survey to complete for their households. Results from the survey indicate the home's estimated annual and monthly energy usage by appliance and gives a number of energy, environmental and water recommendations for the student and their family to implement. <u>energy right Home e-valuation</u>[®] (in partnership with Nexus Energy Software) allows residential customers to play an active role in saving energy in their homes. After completing an energy survey, customers receive a personalized report that breaks down the home's annual and monthly energy usage by appliance, and gives a number of energy recommendations as well as information about distributor products and services.

<u>Energy Depot for Homes</u> (in partnership with Enercom) is a web-based home energy audit for residential customers to complete interactively. Customers complete the survey and receive a detailed analysis of their energy use based on their answers and local electric and average gas rates.

<u>Energy Depot for Business</u> (in partnership with Enercom) is a web-based home energy audit for small business customers to complete interactively via the Web. Customers complete the survey and receive a detailed analysis of their energy use based on their answers and local electric and average gas rates.

<u>Energy Depot for Homes Comparison Tool</u> (in partnership with Enercom) provides residential customers with a way to compare energy use, costs, potential savings and paybacks for replacing existing heating and air conditioning systems, water heating and lighting.

More information is available at the *energy right*[®] website (www.energyright.com)

These industrial, commercial, ESCO, and residential programs accounted for an estimated 45.4 MW of demand reduction in FY 2005.

DIRECT LOAD CONTROL (DLC)

TVA and 13 of its power distributors are involved in a Direct Load Control program. This program involves power distributors installing radio controlled switches on their customers' air-conditioners and water heaters. During peak demand periods, TVA is allowed to curtail the power to this equipment. The power distributors receive a bill credit from TVA for each operable switch. The participating power distributors are allowed to determine the type of incentive given to their customers. Currently, TVA can curtail approximately 30 MW of load upon demand.

GREEN POWER SWITCH® (GPS)

TVA and 12 public power companies launched GPS on Earth Day, April 22, 2000. GPS was the first program of its kind offered in the Southeast and provided consumers with an economical opportunity to participate in TVA's development of renewable energy resources. The program originally included supply from wind and solar energy sources. The program was expanded in FY 2001 to include electricity generated from a waste water treatment plant in Memphis, Tennessee. (For more details see Section II Energy Efficiency Performance, subsection B. Renewable Energy). The Generation Partners program supports GPS by providing additional green power supply to the Valley. The program provides support and incentives for homeowners and small businesses to install solar and wind generation. TVA will purchase 100 percent of the green power output at a rate of 15 cents per kWh.

RESEARCH AND TECHNOLOGY APPLICATIONS

In support of TVA's efforts to continually improve its operations, Research and Technology Applications (R&TA) provides scientific and technological solutions to problems in the areas of generation, transmission and environmental compliance and evaluates emerging technologies that could benefit TVA and its customers in the future. TVA also works with partners in industry and academia to help bring technologies to the marketplace for the benefit of TVA's operations and its customers. Efforts in these areas are included in this report.

R&TA promotes sustainability by partnering with TVA Facilities Management to test and showcase sustainable technologies.

R&TA helps TVA fulfill its commitment to provide competitively-priced and reliable power while promoting environmental stewardship and economic development. **R&TA** works to help develop, demonstrate, and deploy new energy-related technologies for a better tomorrow.

R&TA RECENT HIGHLIGHTS/ACCOMPLISHMENTS

New Technologies Demonstrated – R&TA's Technologies Demonstrated Indicator is a measure of the number of research and development technologies which are demonstrated for the first time at TVA facilities, at customer sites (distributor, directly served, and consumer), and through partnerships and collaborations.

1. Hybrid Solar Lighting:

The Hybrid Solar Light (HSL) demonstration addressed key scientific hurdles associated with adaptive, full-spectrum solar energy systems and their associated applications in commercial buildings. Adaptive, full-spectrum solar energy systems represent a new, systems-level approach to solar energy that holds the promise of dramatically improving its end-use efficiency and affordability in two ways. First, it more efficiently uses different portions of the solar spectrum simultaneously for multiple end-use applications such as solar lighting and distributed power generation, e.g., combined solar light and power. Second, it continually optimizes solar energy end-use efficiency by adapting to real-time changes in end-use needs and external factors such as real-time electricity prices, solar availability, and ancillary services. The project goal was to validate the hypothesis that full-spectrum solar energy systems can improve by several-fold the nonrenewable energy displacement efficiency and affordability of solar energy in buildings. The demonstration culminated with the installation of an operational system at the American Museum of Science & Energy in Oak Ridge, Tennessee.

- 2. Ozonation at Northwest Mississippi Regional Medical Center Laundry: This project demonstrated an ozone system in a major hospital in Tupelo, Mississippi. A full size ozone unit was installed in the hospital's laundry. Benefits documented from the technology included reduced energy costs, reduced drying time, reduced chemical and detergent costs, reduced water and sewer costs, reduced labor and reduced linen replacement costs. Also, ozonation showed no deterioration in biological and biohazard levels when compared to conventional hospital laundry processes.
- 3. Electronic Bill Presentment:

National accounts that are served regionally by distributors of TVA power have requested the ability to view and pay bills electronically. Example: Lowe's has 56 locations in 35 distributor service areas and energy payments to our distributors are made from the corporate office. The ability to view and pay these bills electronically would reduce their administrative burden, reduce late fees, and allow them to easily compare energy usages between facilities. This project was an initial effort by TVA to develop such a program that crosses distribution boundaries for this customer class.

4. Breakaway Link:

A prototype of the electro-mechanical fuse (Breakaway Link) has been designed, manufactured and is being tested/demonstrated by EPRI, TVA and the Tullahoma Board of Public Utilities and Cookeville Electric Department served by TVA. The device limits storm damage to structures and service equipment by acting as a mechanical fuse that allows the connection to be severed both mechanically and electrically before the tension increases enough to damage the structure. It also assures that the service is electrically interrupted prior to complete separation. **Other Current Activities:**

- TVA currently has an intensive green roof installed above the auditorium of the Chattanooga Office Complex, which is an Energy Star Building. Testing of a small green roof is underway at the Edney Building in Chattanooga to validate potential benefits of more extensive green roof systems. The systems used in the demonstration are geared toward the retrofit of existing structures and are designed to provide the storm water mitigation and thermal load leveling benefits to both building owners and communities. The demonstration will be tracked to determine if there is any significant carbon sequestration benefit in addition to energy and storm water benefits;
- Completed the installation of a Membrane Energy Recovery Ventilator (MERV) project at the Edney Building in Chattanooga. R&TA and Facilities Management partnered on this project using a TVA facility to demonstrate the new technology. The MERV unit preconditions the incoming fresh air to the building by using the exiting exhaust air stream. Monitoring indicated a membrane leakage problem which was corrected by the manufacturer. Project monitoring continues and will be completed in FY 2006;
- A project to measure the effect of installing motion sensors in individual work stations to save plug load energy used for task lights, computer monitors, and other in-office devices began in FY 05. Facilities Management will continue work on the project in FY 06. Preliminary results show that the energy use in the work stations has been reduced by around 50 percent;
- Completing a 20-year performance evaluation and a survey of passive TVA constructed wetlands technologies for acid drainage treatment;
- Working with McMinnville Electric System, TVA conducted test runs using biodiesel in place of petroleum diesel in reciprocating generators. Project includes testing a new NOx removal system. The system shows promise; it has reduced NOx by more than 90 percent;
- Received patent for new advanced low temperature power cycle. Plans are to seek partners in getting the new power cycle implemented with new gasification technologies;
- Continued a joint DOE, EPRI, and TVA project, the Carbon Capture and Water Emissions Treatment System (CCWESTRS), which will demonstrate integration of fossil power plant operations with terrestrial carbon sequestration technologies;
- Evaluating and demonstrating Demand Side Management (DSM) initiatives to prepare for future changes in the energy market place. Demonstrations underway include:
 - Net-Zero Energy House Kit
 - Smart Thermostat Load Management Demonstration
 - Three-Tier Energy Star Energy Efficiency Program
 - Renewable Energy and Job Creation in the TVA Region and;
- Continuing the "Energy Efficiency Education" market transformation initiative with the State of Tennessee.

II. Energy Efficiency Performance. This section will highlight data calculated for reporting on the Data Report and the Energy Scorecard. The purpose of the section is to provide narrative information in support of these data.

A. Energy Reduction Performance

Site-Delivered vs. Source Energy—The factors used for converting the reporting units to Btu have a significant impact on how performance toward the energy efficiency goals and other goals of E.O. 13123 are measured. "Energy use" is defined as the energy that is used at a building or facility and measured in terms of energy delivered to the building or facility. Recognizing this, OMB and DOE will use Btu based on the site conversion factors for both electricity and steam as the primary measure of performance. However, because carbon emissions are generally proportional to source energy use, reductions in source Btu will also be considered more seriously than in the past.

The conversion factor for electricity of 3,412 Btu per kilowatt hour, the rate of consumption by the end-user on site, will be used for measuring performance. The difference between the site conversion rate and the estimated source conversion rate of 11,850 Btu per kilowatt hour is attributable to conversion losses associated with electric generation, as well as losses from transmission and power plant use. The site conversion factor for purchased steam is 1,000 Btu per pound. Generation inefficiencies and distribution losses are included in the source conversion factor of 1,390 Btu per pound.

TVA's facility inventory and the type of activities for which these facilities are used continues to evolve as the agency faces new challenges. Facility information is updated through the AEMC. The AEMC remains the focal point for disseminating energy and related environmental information to TVA organizations and employees and implementing TVA's Energy Plan (see Attachment 8). The AEMC is also responsible for the development of TVA's Implementation Plan (see Attachment 6). To benchmark success, the AEMC utilizes many tools including the Energy Scorecard (see Attachment 2). The AEMC allows representatives to voice problems in meeting regulations and goals and share success stories which can then be applied throughout TVA. To benchmark success, the AEMC uses many tools including:

TVA NEW BUILDING DESIGN

TVA is designing new buildings to incorporate sustainable practices and to meet energy efficiency standards. New building designs are incorporating technologies such as daylighting, passive solar heating, geothermal heat pumps, advanced controls and non-toxic, recycle-content building materials.

TVA FACILITY IMPROVEMENTS

TVA implements various energy efficiency improvements in its facilities. Some examples of typical energy reduction improvements are as follows:

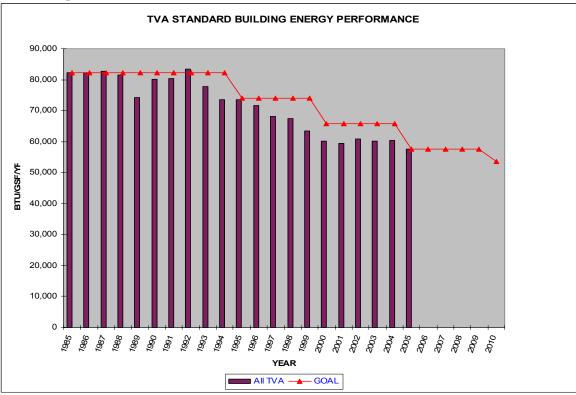
- New lighting systems using T-8 lamps, electronic ballasts and motion sensors have been installed in many existing buildings;
- New lighting systems using T-5 lamps, electronic ballasts, and varied control systems have been installed in existing buildings;
- Incandescent lights have been replaced with compact fluorescents in many facilities;

- Occupancy sensors are being installed to control lighting and equipment in individual spaces, open offices and personal work stations;
- Old mercury vapor lighting and incandescent lighting was upgraded to metal halide and high pressure sodium lighting at various fossil sites and switch yards;
- Heating, ventilating, air conditioning, and exhaust hood systems have been added to TVA's Energy Management and Control System;
- Energy Management Control Systems have been added to control heat pump heating and cooling systems;
- Variable Frequency Drives have been added to building heating, ventilating, and air conditioning units;
- New high efficiency heat pump systems have been installed in many buildings to replace old window units and out of date package units;
- Existing air handlers have been rebuilt to improve efficiency;
- Existing chillers have been replaced and/or rebuilt to improve efficiency;
- Old, inefficient cooling towers were updated to a high efficiency system on one facility with a reduction in energy use of 33 percent;
- Old inefficient single glazed windows were replaced with double glazed windows;
- Motorized shades were installed to reduce solar heat gain and cooling loads;
- Renovated buildings had insulation installed in the ceiling and walls where applicable; and
- Older emergency generators were replaced with smaller ones which reduces fuel use and cost.

OPERATION AND MAINTENANCE ACTIVITIES FOR BUILDINGS

TVA continues to improve its energy efficiency and environmental stewardship through operation and maintenance activities. The following is a list of operation and maintenance practices and activities for FY 2005:

- Recycle scrap metals, used oil, substation and communication station service batteries, and storm damaged or deteriorating steel structures;
- Recycle expired fluorescent lamps;
- Recycle or reuse waste material when feasible;
- Educate employees on energy efficiency;
- Encourage employees to implement energy efficient ideas and practices;
- Turn off equipment when not needed;
- Have custodians turn off building equipment after cleaning;
- Clean lamps, fixtures, and diffusers;
- Use the most efficient lamps available (i.e., screw-in fluorescent, screw-in halogen, screw-in high pressure sodium, energy efficient fluorescent lamps, etc.);
- Reduce lighting levels where light output exceeds requirements for the space;
- Install motion sensors to control lighting in rooms where economical (offices, restrooms, conference rooms, etc.);
- Install light switches or motion sensors in areas not currently controlled;
- Disconnect unnecessary lamps and ballasts;
- Disconnect unnecessary transformers;
- Install energy efficient electronic ballasts;


- Perform group relamping;
- Install photocell control on outdoor lighting;
- Rewire lamps to permit shutoff of unneeded lights;
- Minimize the number of ballasts installed (use a four-lamp ballast, for two adjacent two-lamp fixtures);
- Revise building operating procedures for efficiency and cost;
- Install programmable thermostats and use the night and weekend setback features to reduce energy use during unoccupied periods;
- Set thermostats in mechanical rooms and unoccupied areas so the least amount of energy will be used without causing the equipment to deteriorate;
- Verify and calibrate all controls periodically, including time clocks;
- Keep all outside doors and windows closed when heating or cooling, using vestibules properly;
- Keep garage and warehouse doors closed as much as possible while heating or cooling;
- Replace broken windows;
- Replace missing insulation;
- Add caulking where necessary;
- Replace worn weather-stripping on windows and doors;
- Reduce the amount of infiltration air where possible but always meet fresh air requirements;
- Eliminate ventilation during unoccupied hours;
- Operate exhaust fans only when required;
- Verify that all outside air dampers are operating properly;
- Operate HVAC in economizer mode when conditions are favorable;
- Eliminate ductwork leaks;
- Reduce ductwork and piping resistance where possible;
- Avoid heating and cooling at the same time;
- Change filters as recommended;
- Clean HVAC coils;
- Test and balance HVAC systems;
- Optimize chiller operation;
- Recycle waste heat when feasible;
- Lower domestic hot water temperature;
- Repair hot, chilled, or domestic water leaks;
- Cut off nonessential gas to buildings during the summer;
- When replacing motors, use properly sized energy efficient motors;
- Balance three-phase loads;
- Use cog-type belts for higher efficiency;
- Eliminate steam trap leaks; and
- Properly insulate hot water and steam lines to reduce energy loss.
- 1. Standard Buildings: Report energy use for standard buildings in units of Btu-pergross-square-foot (Btu/GSF) for FY 1985 (the base year) and FY 2005. Report the percent change from FY 1985 and from the FY 2004. (Note: This information will be reported on the agency's Energy Scorecard). Discuss any extenuating factors that may be skewing the accuracy of this performance measure.

Leased Spaced—Each agency that controls its Federally-owned building space or directly pays the utilities in its leased space will report to DOE the agency's aggregate energy consumption for various fuel types (see Data Report instructions). Reporting on leased buildings may pose some difficulty depending on the nature of the lease (partially serviced, fully serviced). In cases where an agency is responsible for paying utility bills for space that is leased, the agency is expected to report energy consumption for the leased space to DOE. If an agency is leasing from the General Services Administration, GSA is responsible for reporting.

Delegated Space—Agencies that have been delegated responsibility by GSA for operation and maintenance of buildings they occupy are required to report, to DOE, energy consumption for these buildings during the years the buildings are under their control. An agency should *not* adjust the FY 1985 baseline to reflect the addition of buildings delegated by GSA if those buildings were not under the agency's control during the base year period. The FY 1985 consumption and square footage of any building delegated after FY 1985 is included in GSA's FY 1985 baseline. To also include this square footage and consumption in the agency's baseline would result in double reporting. The impact of delegation activity on the Btu/GSF rates of most agencies should be minimal. In cases where building delegations account for a large increase in the percentage of an agency's building inventory and its Btu/GSF is greatly impacted, this situation will be documented in the text of DOE's Annual Report to Congress.

Lack of Base Year Data—Comparisons to a FY 1985 base year will not be possible for agencies that had no buildings under their control during the base year. Where comparisons to the FY 1985 base year are not possible, that specific item in the data table will be footnoted as "not applicable" in the report. In order to maintain accurate data and comply with the legislation, FEMP will work with relevant agencies to determine alternative approaches that would minimize double counting, but provide comparative information on Btu/GSF consumption.

TVA continues to reduce energy use in its facilities through the coordination of energy management efforts and implementation of energy efficiency improvements. TVA has ended FY 2005 with a Btu/GSF/Yr of 57,618 (including the renewable energy credit), which is a 30.04 percent reduction from FY 1985 and a four percent reduction from FY 2004.

Industrial and Laboratory Facilities: Identify the facility inventory subject to this goal, referencing Section IV, Part D that lists the buildings included. Describe the performance measure(s) used (Btu/square foot, Btu/production unit, etc.). (Refer to FEMP web site for the guidance document *Section 203 Performance Goals for Industrial, Laboratory, Research, and Other Energy-Intensive Facilities* www.eere.energy.gov/femp/pdfs/ecoguidancedoc.pdf).

Report energy use (in the designated performance measure) for industrial and laboratory facilities for FY 1990 (the base year) and FY 2005. Report the percent change from FY 1990 and from the FY 2004. (Note: This information will be reported on the agency's Energy Scorecard). Discuss any extenuating factors that may be skewing the accuracy of this performance measure.

²⁰⁰⁰

YEAR All TVA — GOAL ²004

TVA has ended FY 2005 with a Btu/GSF/Yr of 185,799, which is a 20 percent reduction from FY 1990 and a three percent reduction from FY 2004.

 2. Exempt Facilities: Refer to Section IV E—a list of exempt facilities and an explanation of why they were exempted. (Refer to DOE's *Criteria for Exempting Facilities from the Goals of Executive Order 13123 and Guidance for Reporting Exemptions* www.eere.energy.gov/femp/pdfs/eoguidancedoc.pdf).

Although buildings found exempt according to the criteria are not subject to the requirements of Sections 202 and 203 of Executive Order 13123, DOE will continue to collect energy consumption data for these buildings under the new reporting category of "Exempt Buildings." This ensures that accurate reporting on overall Federal energy consumption is maintained.

TVA has a long history of demonstrating stewardship toward energy reduction and will continue to work toward reducing energy use in its generation, transmission and related energy intensive buildings. Energy reduction in these buildings has become increasingly more difficult given the majority of the energy consumption in these buildings is largely attributed to process energy (generation and transmission of electricity). In recognition of the above and the fact that only so much can be done to make these buildings more efficient in a cost effective manner, TVA, in discussion with DOE, has decided to exempt these buildings. Attachment 5 contains a list of TVA's exempt facilities.

The following is a list of projects implemented in FY 2005 or planned for future implementation related to energy/water efficiency and sustainability in these exempt facilities.

POWER SYSTEM OPERATIONS EFFICIENCY

TVA's Power Systems Operations' staff considers energy efficiency and environmental impacts for each project and activity. Following is a list of activities which have been completed in FY 2005 or planned for future implementation:

- The Power System Optimization and New State Estimator Projects will improve TVA's ability to operate the power system confidently with decreased margin as a result of increased wide-area awareness of current state and contingency options;
- Reactive Power: Optimizing the power factor of electrical supply helps minimize losses associated with the transmission of electricity. TVA has installed new capacitors at the Tazewell Substation;
- Reactive Power: The PSO Optimal Power Flow Initiative gives promise for future minimization of losses using an optimized voltage schedule and minimizing new construction of reactive devices through optimal placement. This project is still in its initial phase of implementation;
- Construction of New Lines: New lines help to ensure that electricity can be delivered reliably for the minimum transmission loss. The environmental impact of new lines is minimized through careful design and route selection, study of all possible alternatives including new technologies, and realizing the best performance from existing resources, as well as a detailed process for public involvement. A new 161-kV line was constructed from Pandora-Shouns;

- Alternatives exercised to avoid or delay new construction included:
 - An operating guide was implemented for Kingston Fossil Plant that avoided construction of a Kingston-Rockwood transmission line due to maintenance outages;
 - A Kingston operating guide also delayed the need for the Kingston-Oak Ridge National Lab new transmission line;
 - A Kemper operating guide was implemented February 16, 2005, to allow units to remain stable for system faults without a new transmission line being required;
 - A Paradise operating guide along with a re-evaluation of system planning criteria resulted in a revision of the ambient temperature assumed for transmission line maintenance outage contingencies. These refinements allowed upgrade of the Lost City-Bowling Green line to be deferred; and
 - Line upgrades were completed for New Albany-Northwest New Albany, Gallatin-Lafayette, and Norris-Lafollette transmission lines. This allowed for additional transmission capacity in these areas without any new right-of-ways.
- Line Loops: Like new lines, designing a system with sufficient connections to the transmission system enables supply to consumers to be achieved most directly while enhancing reliability and minimizing losses. New construction includes delivery points at Fordtown, Clinton (newly looped line), Culleoka, Hickory Withe, New Providence, Galloway, Wolftever, Screaming Eagles, Battlefield, North Haven, Georgia Mountain, South Hollywood, Compton Lane, Hopewell (South Waverly and Bulls Gap converted to 161), and Mimms;
- Replaced obsolete relays with more efficient solid-state relays on the Davidson, Tennessee-Johnsonville Fossil Plant transmission line and at the Leighton, AL, 46kV Substation;
- Replaced environmentally hazardous breakers at Nance (1 oil), Paradise (5 gas), Norris (1 oil), Oxford (1 oil), Ardmore (1 oil), Browns Ferry (4 gas), and Farley (3 oil), Alcoa (1 oil), and Centerville (1 oil);
- Tertiary shunt reactors were replaced at Sullivan with air core units;
- Bus voltage transformers were replaced at Centerville to reduce pcb threat to nearby water;
- Early generation SF6 gas bus at Maury 500-kV Substation was replaced to reduce SF6 leaking into the environment;
- Continued installing steel poles instead of wood reducing the number of trees cut; replacing 1,734 existing wood poles with steel poles;
- Installed over 2,408 steel cross arms for failing wooden cross arms;
- Continued yearly repair or replacement of a significant number of HVAC units as they were determined to no longer provide a high level of reliability. High efficiency electric heat pumps were used exclusively. Each through wall and window heat pump unit and central system heat pumps was required to have a SEER rating of 10 or higher;
- Smaller modular switchouses which are more energy efficient are now being installed instead of the old block switchouses of the past; and
- Replaced 23 obsolete compressors for air blast breakers with more efficient units.

HYDRO EFFICIENCY

The table below accounts for both completed and on-going projects at TVA hydro plants in FY 2005. These projects are aimed at increasing overall hydro efficiency by reducing energy consumption, maintaining plant availability, lowering maintenance costs, and increasing megawatt capacity. They also support environmental stewardship in that environmental impacts are included as part of the project development process. In addition, by maximizing hydro efficiency, TVA is able to burn less fossil fuel, reducing the amount of carbon released into the atmosphere.

TVA's hydro modernization is of particular importance in terms of energy management. This initiative, designed to ensure the availability of reliable hydroelectric generation in the future, has improved the facilities' efficiency by an average of approximately five percent since its inception in 1992. When completed around 2015, TVA's modernization program will have increased the hydro system's power output by more than 700 MW. TVA's automation program, another key energy management initiative, also is reducing operating costs and increasing hydro efficiency.

Plant Name	Project Name	Cost (\$000's) 20,097	
Hydro System	Modernization Program		
Hydro System	Asset Preservation/Recovery Projects	24,810	
Hydro System	Remoting and Automation	2,957	
Hydro System	Safety/Fire Protection/Regulatory Projects	19,449	
Hydro System	Miscellaneous Small O&M Projects	13,807	
Hydro System	Miscellaneous Small Capital Projects	4,219	
	Total All Projects	85,339	

NUCLEAR EFFICIENCY

TVA Nuclear considers energy efficiency and environmental impacts for each project and activity. Many projects were initiated or completed in FY 2005 to maintain plant availability, increase electrical generation, or reduce environmental effects from equipment failure. The following is a list of energy management and sustainability projects completed in FY 2005 or planned for future implementation at TVA Nuclear plants.

NUCLEAR ENERGY PROJECTS COMPLETED IN FY 2005

Plant Name	Project Name	Cost (000's)	
Browns Ferry	Installed a spent reactor fuel storage facility. Permits continued Browns Ferry Nuclear Plant operation long term.	30,121	
Sequoyah	Rebuilt an essential raw cooling water pump. Improved pump efficiency.	690	
Sequoyah	Replaced the Unit 2 high pressure turbine rotor. Gained 8.3 MWe in additional generation.	9,378	
	Total All Projects	40,027	

NUCLEAR ENERGY PROJECTS IN PROGRESS IN FY 2005 OR PLANNED FOR FUTURE IMPLEMENTATION

Plant Name	Project Name	Cost (000's) 18,209	
Browns Ferry	Extend the NRC operating license expiration date for all three reactors by 20 years.		
Browns Ferry	Increase Unit 2 and 3 electrical output by 110 MW/hr per Unit.	185,561	
Browns Ferry	Restart the Unit 1 reactor, 1280 Mwe/hr	1,800,000	
Browns Ferry	Install a condenser cooling water monitoring system. Permits identification of steam cycle condenser thermal efficiency (heat rate) losses.	682	
Brown Ferry	Replace portions of the U2 condenser tube cleaning system. Improves steam cycle efficiency (heat rate).	1,400	
Brown Ferry	Replace portions of the U3 condenser tube cleaning system. Improves steam cycle efficiency (heat rate).	1,350	
Browns Ferry	Replace Unit 3 control bay chillers. Removes ozone depleting refrigerant.	6,855	
Sequoyah	Improve Unit 2 heat rate by replacing the steam generators	296,512	
Sequoyah	Rebuild 6 essential raw cooling water pumps. Improves pump efficiency.	5,672	

Watts Bar	Improve Unit 1 heat rate by	216,662
	replacing the steam generators	
Watts Bar	Increase annual Watts Bar Dam	893
	electrical generation 3 MW/hr by	
	raising Watts Bar Nuclear Plant	
	design and license basis ultimate	
	heat sink temperature.	
Watts Bar	Rebuild 4 essential raw cooling	3,356
	water pumps. Improves pump	
	efficiency.	
Watts Bar	Replace safety related chillers.	28,557
	Removes ozone depleting	
	refrigerant.	
Watts Bar	Convert non-safety related chillers	2,214
	non-ozone depleting refrigerants.	
Browns Ferry	Install oil containment and other oil	4,002
Sequoyah	spill prevention measures required	
Watts Bar	by the recent change to 40CFR112.	
	Total All Projects	2,571,925
	-	

FOSSIL EFFICIENCY

Fossil Power Group (FPG) has made significant improvements in reducing the number of forced outages and load reductions at its fossil power plants since the implementation of the Failure Prevention Initiative in June 2000 and the Human Performance Initiative in the Spring of 2001. In FY 2005, FPG reduced the Equivalent Forced Outage Rate (EFOR) to its lowest level in history since all 59 generating units have been in operation. This improvement in system-wide performance means fewer generating unit startups which improves unit operational efficiency and helps reduce the delivered cost of power.

Two additional Selective Catalytic Reduction (SCR) systems were brought online to remove nitrogen oxide (NOx) during the 2005 summer ozone season. This brings the total number of operating SCRs on TVA's fossil system to 20. In total, these SCRs and other removal equipment reduced summer system-wide NOx emissions by about 80 percent compared to 1995 levels. TVA's environmental efforts are continuing via ongoing and future projects and include the addition of SCRs or alternative technologies to achieve further reductions in nitrogen oxide emissions; fuel switch changes and the addition of scrubbers to achieve further reductions in SO2 emissions; and the addition of equipment to mitigate SO3 and improve opacity.

Many energy management and related environmental projects were completed at TVA Fossil plants during FY 2005. These projects included heat rate improvements, maintaining plant availability, reducing energy consumption, lowering maintenance costs, environmental stewardship, and increasing overall efficiency.

Plant	Project Name	Cost (000's)
Cumberland	CUFU1 Replace Row 11 Blades on	258
	BFPT 1A	
Cumberland	CUFU1 Replace Row 11 Blades on	367
	BFPT 1B	
Cumberland	CUFUpgrade Spare HP Rotor to	2,317
	High Capacity Blades	
Gallatin	GAFU3 IP Turbine Replace Nozzle	703
	Block	
Gallatin	GAFU2 North Main Condenser	473
	Retube	
John Sevier	JSFU3 Replace Long & Rotary	1,281
	Sootblowers	
Kingston	KIFU5 Replace Economizer	307
Kingston	KIFU6 Replace Economizer	428
Kingston	KIFU5 Replace Air Preheaters	304
Kingston	KIFU6 Replace Air Preheaters	317
Shawnee	SHFU1-4 Replace Sootblowers and	2,690
	Controls	
Widows Creek	WCFReplace PCB Containing	816
	Transformers	
	Total All Projects	10,261

The following is a representative list of projects completed in FY 2005:

The following is a representative list of ongoing and/or future projects:

Plant	Project Name	Budget (000's)
Allen	ALFU1-3 Combustion Optimization	1,847
Allen	ALFU2 Retube #8 Feedwater Heater	1,448
Bull Run	BRFU1 Replace Economizer Tubes	11,865
Colbert	COFU5 Combustion Improvement Project	12,905
Colbert	COFReplace PCB Containing Transformers	1,168
Cumberland	CUFU2 Replace HP Feedwater Heaters 2A & 2B	5,454
Cumberland	CUFU2 Replace Row 11 Blades on BFPT 2A	466
Cumberland	CUFU2 Replace Row 11 Blades on BFPT 2B	487
Gallatin	GAFU3 Retube #3 HP Feedwater Heater	492
Gallatin	GAFU1 Main Condenser Retube	954

Gallatin	GAFU4 IP Nozzle Block and Rateau	592
	Blade Replacement	
John Sevier	JSFU1-4 Replace Main Steam Flow	1,145
	Nozzles	
John Sevier	JSFU3 Replace Sootblowers	1,159
John Sevier	JSFU1 Retube #5 LP Feedwater	279
	Heater	
John Sevier	JSFU2 Retube #6 LP Feedwater	302
	Heater	
Johnsonville	JOFU5 Economizer Replacement	2,215
Johnsonville	JOFU5 Combustion Controls	3,022
	Replacement	
Johnsonville	JOFU9 Combustion Controls	2,275
	Replacement	
Kingston	KIFU9 Replace Air Preheaters	444
Kingston	KIFU9 Replace Economizer	650
Paradise	PAFU3 Replace 4A & 4B HP	3,119
	Heaters	,
Widows Creek	WCFU7 Upgrade Boiler Feed Pump	5,570
	Turbines	,
	Total All Projects	57,858

3. Non-Fleet Vehicle and Equipment Fuel Use: Refer to the Data Report to identify the fuel use for non-fleet vehicles and other equipment not captured by the Federal Automotive Statistical Tool (FAST) reporting system. Discuss trends in the use of each type of fuel and methods employed to reduce fuel use.

Vehicle Fleet Consumption—In the past, GSA's Agency Report of Motor Vehicle Data (Form SF-82) collected acquisition, fuel consumption, and fuel cost data for motor vehicles directly from vehicle fleet managers. The SF-82 was replaced by the Federal Automotive Statistical Tool (FAST), an internet based reporting platform. FAST eliminates the need to report fuel consumption data for fleet motor vehicles to FEMP on the Data Report. FAST now collects this data, including alternative fuel consumption data reported under Sections 303 and 308 of EPACT, and this information is forwarded to FEMP for inclusion in the Annual Report to Congress. For more information on FAST, please contact Shab Fardanesh of DOE's Vehicle Technologies Program at (202) 586-7011.

FLEET FUEL EFFICIENCY

TVA's fleet strategy is to examine current vehicle use and replacement and where feasible, choose replacement vehicles that are most efficient. TVA, as a major provider of electricity, will continue to make use of alternative fueled vehicles (AFVs), including those that use electric power, and acquire additional vehicles to meet requirements under EPAct92. TVA has recognized the value of hybrid electric vehicle technology in reducing fuel consumption, increasing versatility, and promoting electric propulsion and has included these vehicles in its fleet. TVA created a hybrid-fleet program in FY 2002 which is a partnership effort between TVA's Energy Management and Fleet Management organizations. In FY 2005, TVA added five hybrid gas/electric vehicles and 20 AFV's to its fleet bringing the total number of hybrid vehicles to 25 and AFV's to 54. During FY 2005, TVA gasoline fuel usage was reduced by nine percent compared to FY 2004 while diesel fuel use decreased by 15 percent compared to FY 2004.

VEHICLE FUEL EFFICIENCY OUTREACH PROGRAMS

TVA encourages employees to use mass transit systems, vans for group travel, and car pools, when available and feasible. The use of coordinated TVA and vendor delivery, pickup routing schedules, and just-in-time delivery is utilized throughout TVA. This coordinated effort reduces deadheading and avoids double handling and, multiple trips to the same sites.

The TVA service area covers all of Tennessee and portions of six other states; therefore, employees are widely dispersed and often travel significant distances to attend meetings and presentations. TVA continues to install technologies which enable employees to travel less and conduct more meetings from their remote work sites. The reduction of required travel realized through telecommunication improvements has resulted in a savings of fuel and related expenses.

- Meeting Place This technology enables audio conferencing, real-time online document collaboration, and remote presentations among employees at different locations. Employees can participate in audio conferencing without operator assistance, simultaneously share, view, and edit documents from computers, and conduct and participate in remote presentations without having to travel. On average, over 2,150 such meetings are held monthly using this system;
- Video Conference Rooms TVA has 53 video conference rooms throughout the Tennessee Valley service area. Approximately 1,311 video conferences were held in FY 2005, eliminating the need for travel to these meetings;
- PC Efficiency TVA replaced approximately 2,500 computers in FY 2005 with new units that have the latest energy savings features. It is policy to enable all energy saving features available in new computers so the maximum possible energy savings can be realized; and
- Monitor Efficiency TVA Information Services, TVA Facilities Management, and the Environmental Protection Agency worked cooperatively to significantly enhance TVA enterprise-wide computer monitor efficiency during FY 2004 which led to an estimated savings of \$190,000 in FY 2005. In late FY 2005, Information Services also standardized on newer LCD monitor technology that uses less power than standard CRT monitors.

HEAVY EQUIPMENT

TVA continued the utilization of the Total Base Number (TBN - measure of oil's alkaline) value as an oil indicator. This effort has resulted in a reduction in TVA's oil consumption due to extended oil drain intervals. Accordingly, the oil change interval in some of the smaller diesel engines has changed to 320 hours or 10,000 miles to protect TVA's equipment. Turbo pre-cleaners are being used on tractor scrapers and dozers to lengthen air filter life and extend oil change intervals. Air filter indicators used on TVA's equipment have reduced filter changes (especially oil bath type), and have additionally provided better engine protection. TVA also used turbo pre-cleaners to reduce contaminants entering the engines along with air filter indicators to insure dirty filters are identified and changed resulting in increased engine efficiency.

TVA continued using Fuel Mag with small compressors to kill bacteria and spores that grow in fuel that is stored for long periods of time. Its use should decrease the amount of contaminated fuel that has to be disposed. These units can also eliminate down time due to filter and fuel injector plugging.

TVA's maintenance shops use filter crushers to get all possible oil out of filters before disposal. Three maintenance facilities are using oil burners to heat their facilities using TVA's generated used oil.

These projects provide TVA with the benefits of reduced potential of adverse environmental impacts from spillage of waste oil and fuel, increased operational efficiency, increased availability of units, and decreased cost due to reduction in oil consumption.

TVA incorporates EPA emission standards in specifications for both onroad and off-road trucks. TVA also is in constant communication with equipment providers on their emission standards and latest engine components to insure the best and most economical equipment is used.

FEDERAL VEHICLE FUEL EFFICIENCY

The following tables show a comparison of TVA's annual mileage and miles per gallon (mpg) performance for sedans and light trucks from FY 1975 through FY 2005.

FY	Miles Driven		Percent Increase/(Decrease)		
	Sedans	Trucks*	Sedans	Trucks*	
			Base Yr. 75	Base Yr.79	
75	12,222,850	N/A	0	N/A	
76	14,698,600	N/A	20	N/A	
77	14,331,650	N/A	17	N/A	
78	14,101,300	N/A	15	N/A	
79	13,779,900	25,947,000	13	0.0	
80	14,788,300	25,989,000	21	0.2	
81	14,922,450	27,655,000	22	7	
82	24,714,480	24,878,000	4	(4)	
83	12,125,848	25,122,699	(1)	(3)	
84	11,760,288	24,947,558	(4)	(4)	
85	11,958,251	21,237,202	(2)	(18)	
86	12,359,000	24,954,488	1	(4)	
87	12,905,706	24,064,000	6	(7)	
88	12,650,124	24,008,436	3	(7)	
89	11,312,417	22,599,061	(7)	(13)	
90	15,665,480	23,516,512	28	(9)	
91	19,175,027	24,120,233	57	(7)	
92	23,264,550	24,318,622	91	(6)	
93	25,557,833	25,702,300	109	(1)	
94	29,766,173	23,947,797	144	(8)	
95	30,096,968	23,996,720	146	(8)	
96	28,388,572	24,998,289	132	(4)	
9 7	20,298,902	24,343,292	66	(6)	
98	7,124,589	26,623,769	(42)	3	
99	7,939,345	21,335,796	· · · · ·		
00	9,723,679	27,701,582	(20)	5	
01	9,290,949	25,242,686	(24)	(3)	
02	10,793,620	23,520,150	(12)	(9)	
03	11,788,288	26,175,474	(4)	1	
04	10,689,531	29,911,323	(13)	15	
05	9,215,499	29,575,499	(25)	14	

ANNUAL MILEAGE

*Figures for Trucks include both light duty (<8500 lbs GVWR) & medium duty (8501 – 16000 lbs GVWR).

MPG PERFORMANCE

FY	Annual MPG			Percent Incr	ease/(Deo	crease)
	Sedans	Trucks*		Sedans	Trucks*	
	Base Yr. 75	Base Yr. 79		Base Yr. 75	Base Yr. 79	
		4 x 2	4 x 4		4 x 2	4 x 4
75	15.1	N/A	N/A	0	N/A	N/A
76	15.0	N/A	N/A	(1)	N/A	N/A
77	15.6	N/A	N/A	3	N/A	N/A
78	16.2	N/A	N/A	7	N/A	N/A
79	16.3	11.6	8.2	8	0	0
80	17.9	12.0	8.3	19	3	1
81	19.2	13.2	7.9	27	14	(4)
82	22.7	14.2	8.5	50	22	4
83	26.2	16.0	9.8	74	38	20
84	27.5	16.4	9.5	82	41	16
85	26.9	16.1	10.2	78	39	24
86	27.6	18.2	10.8	83	57	32
87	26.6	17.5	11.4	76	51	39
88	24.6	15.3	11.0	63	32	34
89	28.3	15.9	13.1	87	37	60
90	28.4	15.7	11.6	88	35	41
91	29.6	18.2	15.7	96	57	91
92	27.7	21.2	12.4	84	83	52
93	31.9	17.3	13.6	105	49	66
94	29.8	15.5	12.9	97	34	57
95	31.2	14.5	13.4	107	25	63
96	29.1	13.2	12.7	66	14	44
97	28.3	14.2	12.7	87	22	44
98	26.6	15.4	14.4	76	33	76
99	25.4	12.8	11.9	68	10	45
00	26.3	13.7	12.8	74	18	56
01	26.6	13.9	13.2	76	20	61
02	26.0	14.1	12.9	72	22	57
03	27.4	14.0	12.7	81	21	55
04	28.2	15.2	13.4	87	31	63
05	27.3	14.8	13.4	81	28	63

*Figures for Trucks include both light duty (<8500 lbs gross vehicular weight rating (GVWR)) & medium duty (8501 - 16000 lbs GVWR).

PROCUREMENT OF ALTERNATIVE FUELED VEHICLES

As a major supplier of electricity, TVA is particularly interested in supporting the use of electric vehicles (EVs). TVA has incorporated EVs into its fleet operations and supports power distributors and local communities with EV technology demonstrations. TVA is also utilizing electric vehicles at its plant sites to reduce fuel consumption and emissions.

TVA currently has the following EVs:

- 1 U.S. Electricar Prism sedans
- 1 Solectria Ford sedans
- 5 GEM electric cars
- 44 EZGOs electric vehicles
- **B. Renewable Energy:** Discuss agency's policy and efforts to encourage purchase and generation of electricity and thermal energy from renewable energy sources. (Note: The quantitative information related to this section [see below] will be reported on the agency's Data Report and Energy Scorecard. On the Energy Scorecard, self-generated renewable energy use and purchased renewable energy use will be aggregated into a single value). The Federal Renewable Energy Working Group recently released three clarifying guidance documents related to the renewable energy goal:
 - Clarifications to E.O. 13123 Reporting Guidance for 2005 Annual Reporting on Renewable Energy
 - E.O. 13123 Renewable Power/REC Procurement Guidance
 - FY05 Renewable Power/REC Procurement Guidance: Third Party Verification

These documents are available at

www.eere.energy.gov/femp/about/legislation.cfm .

GREEN POWER SWITCH® (GPS)

TVA and 12 public power companies launched GPS on Earth Day, April 22, 2000. GPS was the first program of its kind offered in the Southeast and provided consumers with an economical opportunity to participate in TVA's development of renewable energy resources. The program originally included supply from wind and solar energy sources. The program was expanded in FY 2001 to include electricity generated from methane gas at a waste water treatment plant in Memphis, Tennessee.

Sixteen solar generating facilities are presently operating in Tennessee, Kentucky, Alabama, Virginia and Mississippi. One commercial scale wind power generation site has been operational since November 2000. TVA has agreed to purchase, from a new project developer, Invenergy TN LLC, 27 megawatts of new wind energy for the next 20 years. Fifteen 1.8 megawatt wind turbines were added to the existing three wind turbines currently located on Buffalo Mountain in Anderson County, Tennessee. These units became operational December 2004. GPS also benefits from generation produced from an eight megawatt waste water treatment methane gas project located at TVA's Allen Fossil plant near Memphis, Tennessee. The GPS program is managed through TVA's Marketing Organization. Under the GPS program, residential customers can purchase green power blocks of 150 kWh each, at a cost of \$4.00 per block. These blocks represent approximately 12 percent of a typical home's monthly energy use. Commercial and industrial customers can sign up for the 150 kWh blocks based on the amount of energy they use each month. When two blocks of GPS are purchased each month for one year, the associated reduction of atmospheric carbon dioxide is equivalent to planting an acre of trees in the Tennessee Valley. As of September 30, 2005, there were 8,318 residential customers purchasing 14,860 blocks and 433 business customers purchasing 15,301 blocks for a total of 30,161 purchased blocks of green power.

Today there are 90 TVA power distributors and one direct-served customer participating in the GPS program throughout the Tennessee Valley. TVA plans to continue expanding the GPS program by offering it to additional power distributors as renewable energy supplies allow.

TVA launched the Generation Partners Program in support of Green Power Switch. The Generation Partners program pays participants for 100 percent of their green power output at a rate of 15 cents per kWh for the generation produced from solar and wind installations on participants' home or small business. The energy from Generation Partners is used to supply renewable energy for Green Power Switch.

TVA's GPS and Generation Partners programs were awarded the State of Tennessee Energy Leadership Award in 2005.

RENEWABLE ENERGY TECHNOLOGY MONITORING

TVA identifies and evaluates emerging renewable energy technologies in support of its strategic needs. The renewable energy program provides data to support debate on renewable energy policy; monitors advancements in renewables to keep TVA organizations and customers informed on technology issues; and demonstrates and develops the most viable technologies in the areas of bio-energy, waste-to-energy, wind, solar, and other renewable resources.

TVA's Green Power Switch program is the primary driver for renewable energy technologies at TVA. However the potential for national Renewable Portfolio Standards (RPS) and carbon constraint legislation still exists and could become drivers in the future. Renewable energy portfolios are currently mandated in 18 states and although it was defeated, an amendment for a national RPS was proposed during the 2005 energy bill conference hearings. In anticipation of renewable portfolio mandates and in response to customer needs, TVA continues to assess and evaluate new and advanced renewable technologies. Project plans include developing and demonstrating large scale biomass gasification for production of electricity and value-added products from regional biomass, and evaluating other advanced renewable energy supply options in wind and solar. 1. Self-generated renewable energy: Identify/estimate energy use from electricity self-generated from renewable sources (photovoltaics, wind turbines) and renewable energy thermal projects (solar thermal, biomass, geothermal). Also report energy generated on Federal lands or by projects facilitated by your agency, but which may be sold to other parties. Agencies should report the annual energy generated from all renewable energy systems installed after 1990 and in place during FY 2005.

Through TVA's GPS program, TVA utilizes photovoltaics, wind, and methane as part of its mix to provide renewable energy to its customers (for more information see Section II. B. Renewable Energy, Green Power Switch and see Attachment 1).

2. Purchased renewable energy: Identify the renewable (i.e., wind, solar, geothermal, biomass) energy component of power purchases under competitive contract in megawatt hours. Agencies should report what portion of total purchased renewable energy should be applied to standard buildings, energy intensive facilities, or exempt facilities. (Note: Guidelines for counting renewable energy projects and purchases of electricity from renewable energy sources toward agency progress in reaching their goals and information on the Federal renewable energy goal are available on the FEMP web site www.eere.energy.gov/femp/pdfs/eoguidancedoc.pdf.)

Through the TVA GPS program, TVA purchased 1,170 MWh for use in its Knoxville Office Complex, Chattanooga Office Complex, and Huntsville office.

TVA committed to a 20 year Power Purchase Agreement with Invenergy TN, LLC, for 27 additional megawatts of large scale wind power. The expansion consists of 15, 1.8 megawatt wind turbines at the existing Buffalo Mountain wind site in east Tennessee.

The Green Power Switch Generation Partners demonstration continued to allow residential and small commercial customers to install solar/wind generation and sell their power to TVA's Green Power Switch program. In FY 2004, GPS Generation Partners was expanded to allow larger, demandmetered customers to participate with solar generation only. More information on the demonstration may be found at www.gpsgenpartners.com.

C. Petroleum: Identify petroleum-based fuels (fuel oil, LPG/propane) used in buildings in FY 1985 and in FY 2005 and the percentage change from FY 1985. (Note: The FY 2005 data will be reported on the Data Report and the Energy Scorecard).

TVA consumed 10,700 gallons of petroleum in building operations in FY 2005, which is a decrease of 51 percent from the FY 1985 baseline of 21,920 gallons.

D. Water Conservation: Identify/estimate water consumption and cost by the agency in FY 2005 and outline any agency-specific issues related to collection of water consumption data. (Note: This information will be reported on the Data Report and the Energy Scorecard.)

<u>http://www.eere.energy.gov/femp/about/legislation.cfm</u> Also in this section, highlight activities undertaken to improve water efficiency. Discuss progress in developing Water Management Plans and implementing Best Management Practices for efficient use of water. For more information, refer to DOE's *Guidance to Establish Water Efficiency Improvement Goal for Federal Agencies* on the FEMP web site www.eere.energy.gov/femp/pdfs/eoguidancedoc.pdf.

During FY 2005, energy surveys including water were conducted at multiple TVA sites.

TVA consumed 158,100,000 gallons of potable water in FY 2005 with an estimated cost of \$331,600. These numbers exclude the water consumption of the exempt buildings.

TVA considers water management plans as part of its operation and maintenance activities. As part of these activities, more than 271 facilities have been covered, representing over 4.3 million GSF.

To date, TVA has implemented the Best Management Practices (BMPs) in more than 11 percent of its gross square footage.

- III. Implementation Strategies: The purpose of this section is to identify and describe the use of strategies to reduce energy consumption and improve energy efficiency. It is not expected that each agency will have employed every strategy; rather, each strategy identified in E.O. 13123 is listed below to remind agency officials of the existence of these strategies and to encourage their use where practical and life-cycle cost effective. Agencies should provide highlights of the following strategies their energy management programs employed during FY 2005:
 - Life-Cycle Cost Analysis
 - Facility Energy Audits
 - Financing Mechanisms
 - Energy-Savings Performance Contracts (ESPCs)
 - Utility Energy Services Contracts (UESCs).
 - Use of ENERGY STAR[®] and Other Energy-Efficient Products
 - ENERGY STAR[®] Buildings
 - Sustainable Building Design
 - Energy Efficiency in Lease Provisions
 - Industrial Facility Efficiency Improvements
 - Highly Efficient Systems, i.e., combined cooling, heating, and power
 - Distributed Generation
 - Electrical Load Reduction Measures

TVA implements many energy management measures through a number of strategies which include the following:

AGENCY ENERGY MANAGEMENT COMMITTEE

TVA Agency Energy Management Committee is a forum for sharing of information and success stories on energy efficiency efforts for application across the agency.

NEW CONSTRUCTION

TVA combines teams of designers to incorporate energy efficiency and sustainability at the start of new building designs.

RENOVATION

TVA takes advantage of renovation activities by incorporating energy efficiency and sustainability into its spaces that are being reconfigured for change.

OPERATIONS & MAINTENANCE

Operation and maintenance (O&M) personnel are the front line, used to identify potential energy and sustainable problems and opportunities on a daily basis. O&M staff take corrective action where needed and seek help from engineering, energy and sustainable staff to resolve technical issues when necessary.

Examples of O&M activities are the efficient operation of building EMCS systems, the placement of controls on lighting and other energy consuming equipment, addition of insulation in buildings, replacement of old glazing with newer high efficiency glazing, and replacement of inefficient lighting when actions are determined to be life-cycle cost effective. In addition TVA considers efficiency improvements in its industrial, power plant and transmission operations when life-cycle cost effective.

As part of its operation and maintenance function, TVA has an emergency curtailment procedure which reduces energy use in its buildings during energy emergencies.

VEHICLE FUEL

TVA looks at its overall fleet and business needs on a continuous basis to match the work needs of each individual to the most efficient vehicle. TVA investigates efficient vehicles such as hybrid cars and adds these vehicles to its fleet to meet business needs. TVA also investigates ways to extend the life cycle of vehicles, especially special purpose vehicles. TVA's detailed Fleet Strategy is provided as Attachment 9. A. Life-Cycle Cost Analysis:

TVA's Energy Plan provides that life-cycle analysis will be used in making investment decisions regarding energy/water efficiency and sustainable practices.

B. Facility Energy Audits:

TVA has evaluated building inventory for potential energy conservation measures. These facilities are being re-evaluated in accordance with E.O. 13123 and TVA's Memorandum of Understanding with the EPA. During FY 2005, TVA surveyed its facilities located at 28 hydro plant sites.

C. Financing Mechanisms:

Projects for facilities are primarily funded through renovation, operation, maintenance, and modernization efforts. Projects covered under general operations are ranked for economic benefit compared to other TVA projects to determine funding availability and implementation status and are funded mainly through the capital budgeting process. TVA considers the use of ESPCs and UESCs where cost effective and in the best interest of the agency and its customers. During FY 2005, TVA did not utilize these financing mechanisms.

D. ENERGY STAR[®] and Other Energy-Efficient Products:

TVA's Energy Plan provides that TVA will strive, where cost-effective, to meet the Energy Star Building criteria for energy performance and indoor environmental quality in eligible facilities to the maximum extent practicable as described by Section 403(c) of E.O. 13123. This includes purchasing Energy Star and other energy efficient products when feasible.

TVA continues its efforts to buy materials that have positive environmental qualities including soy ink, rechargeable batteries, low mercury lamps, and non-toxic supplies. TVA also purchases materials that meet sustainable architecture criteria. These are non-toxic building materials that have recycled content, and their creation, use, and disposal does not damage the environment.

E. Energy Star® Buildings:

TVA currently has two facilities that meet the ENERGY STAR[®] Buildings criteria. These are the Chattanooga Office Complex and the Edney building, which represent 11 percent of TVA's overall corporate square footage.

F. Sustainable Building Design:

TVA is incorporating sustainable design criteria into renovation and new construction efforts. TVA is in the process of reviewing its building inventory in an effort to reduce inefficient, high cost, underutilized space. This consolidation effort provides an opportunity to further practice sustainable efforts such as:

- Renovate space using removable, reusable wall systems;
- Recycle and recondition office furniture and panel systems;
- Install recyclable carpet tiles and low VOC finishes; and
- Upgrade lighting systems using T-5 and T-8 lamps, room and personal work station occupancy sensors, and internet based digital lighting control systems.

All of these efforts are being done as part of an agency sustainable program under TVA's IEMP.

TVA continues to buy materials that have positive environmental qualities and include those that meet RCRA requirements and other recycled content materials. Examples of environmental products purchased include soy ink, rechargeable batteries, low mercury lamps, and non-toxic supplies and movable/reusable wall systems in place of drywall. TVA also purchases materials that meet sustainable architecture criteria. These non-toxic building materials have recycled content, and their creation, use, and disposal minimize environmental impacts.

G. Energy Efficiency in Lease Provisions:

Where applicable, TVA uses model lease provisions based on those recommended by the General Services Administration (GSA) and such provisions will be incorporated into new and renewed leases provided they are cost-effective. The model lease provisions address energy, sustainability and water efficiency.

H. Industrial Facility Efficiency Improvements:

TVA looks for opportunities to improve energy efficiency in its industrial facilities. Energy savings opportunities include lighting, HVAC, motor, and building control. For more information see also Section II. Energy Efficiency Performance, A. Energy Reduction Performance, 2. Exempt Facilities.

I. Highly Efficient Systems: TVA considers the implementation of high efficiency systems as mentioned above when it is life-cycle cost effective.

J. Distributed Generation: TVA is a utility; however, the use of distributed generation, where applicable, is considered.

- K. Electrical Load Reduction Measures: As part of its operation and maintenance function, TVA has an emergency curtailment procedure which reduces energy use in its buildings during energy emergencies.
- IV. Data Tables and Inventories. Include the items listed below:
 - FY 2005 Annual Energy Management Data Report: A Data Report is included as Attachment 1. No Data Report for revisions to past years' energy data has been included.
 - Energy Scorecard for FY 2005: A Scorecard is included as Attachment 2.
 - **Goals of Executive Order 13123 and NECPA/EPACT** (optional): This table was prepared by OMB/DOE and is attached (see Attachment 3).
 - **Industrial and Laboratory Facilities Inventory:** This inventory list includes the following information: building name and building location (city and state) (see Attachment 4).

- **Exempt Facilities Inventory:** This inventory includes the following information: building name, building location (city and state), and justification for exempt status (see Attachment 5).
- V. Attachment. Attach a FY 2006 Implementation Plan to this FY 2005 Annual Report. Consult Attachment 6, *Guidance for Preparing the Federal Agency Implementation Plan for FY 2006*.
 - 1) FY 2005 Annual Energy Management Data Report (electronic file "Attachment 1_DataReport_12-05.xls")
 - 2) Energy Scorecard for FY 2005 (electronic file "Attachment 2_Scorecard_12-05.doc")
 - 3) Goals of Executive Order 13123 and NECPA/EPACT (electronic file "Attachment 3_E.O._13123_Goals_12-05.doc")
 - 4) Industrial & Lab Buildings (electronic file "Attachment 4_Industrial_Lab_12-05.xls")
 - 5) Exempt Facilities Inventory (electronic file "Attachment 5_Exempt Facilities_12-05.xls")
 - 6) Implementation Plan including Guidance for Preparing the Federal Agency Energy Management Implementation Plan for FY 2006 (electronic file "Attachment 6_Implementation_Plan_12-05.doc")
 - 7) Reporting Units and Conversion Factors for Federal Energy Management Reporting (electronic file "Attachment 7_Conversion_Factors_12-05.doc")
 - 8) TVA Energy Plan 12-2-05 (electronic file "Attachment 8_TVA Energy Plan_12-05.doc")
 - 9) TVA Fleet Strategy FY 2005 (electronic file "Attachment 9_Fleet Strategy_12-05.doc")

Attachment 1 FY 2005 ENERGY MANAGEMENT DATA REPORT

Agency: Tennessee Valley Authority

Prepared by: Phone: Stephen L. Brothers

Sec. 502(e) Credit:

Btu/GSF w/ RE & Sec. 502(e) Credit:

423-751-7369

57,618

185,799

199,556

645,286

PART 1: ENERGY CONSUMPTION AND COST DATA

12/23/2005

1-1. Standard Buildings/Facilities

Date:

								Est. Carbon
Energy	Consumption	Annual	Annual Cost			Site-Delivered Btu	Est. Source Btu	Emissions
Туре	Units	Consumption	(Thou. \$)	Unit C	ost (\$)	(Billion)	(Billion)	(Metric Tons)
Electricity	MWH	156991.9	\$9,824.4	\$0.06	/kWh	535.7	1,860.4	26,804
Fuel Oil	Thou. Gal.	10.7	\$20.4	\$1.90	/gallon	1.5	1.5	30
Natural Gas	Thou. Cubic Ft.	4,463.9	\$39.1	\$8.76	/Thou Cu Ft	4.6	4.6	67
LPG/Propane	Thou. Gal.	0.0	\$0.0	#DIV/0!	/gallon	0.0	0.0	0
Coal	S. Ton	0.0	\$0.0	#DIV/0!	/S. Ton	0.0	0.0	0
Purch. Steam	BBtu	0.0	\$0.0	#DIV/0!	/MMBtu	0.0	0.0	0
Other	BBtu	0.0	\$0.0	#DIV/0!	/MMBtu	0.0	0.0	
		Total Costs:	\$9,883.9		Total:	541.7	1,866.4	26,900
Standard Buildin	gs/Facilities (Thou.			-				
Gross So	quare Feet)	9,333.0			Btu/GSF:	58,046	199,983	
					Btu/GSF w/ RE Purchase Credit:	57,618	199,556	
					Btu/GSF w/ RE &			

1-2. Industrial, Laboratory, Research, and Other Energy-Intensive Facilities

								Est. Carbon
Energy	Consumption	Annual	Annual Cost			Site-Delivered Btu	Est. Source Btu	Emissions
Туре	Units	Consumption	(Thou. \$)	Unit C	ost (\$)	(Billion)	(Billion)	(Metric Tons)
Electricity	MWH	22,050.4	\$0.0	\$0.00	/kWh	75.2	261.3	3,765
Fuel Oil	Thou. Gal.	0.0	\$0.0	#DIV/0!	/gallon	0.0	0.0	0
Natural Gas	Thou. Cubic Ft.	0.0	\$0.0	#DIV/0!	/Thou Cu Ft	0.0	0.0	0
LPG/Propane	Thou. Gal.	0.0	\$0.0	#DIV/0!	/gallon	0.0	0.0	0
Coal	S. Ton	0.0	\$0.0	#DIV/0!	/S. Ton	0.0	0.0	0
Purch. Steam	BBtu	0.0	\$0.0	#DIV/0!	/MMBtu	0.0	0.0	0
Other	BBtu	0.0	\$0.0	#DIV/0!	/MMBtu	0.0	0.0	
		Total Costs:	\$0.0		Total:	75.2	261.3	3,765
Energy-Intensiv	ve Facilities (Thou.			•				
Gross S	quare Feet)	404.9			Btu/GSF:	185,799	645,286	
					Btu/GSF w/ RE Purchase Credit:	185,799	645,286	

1-3. Exempt Facilities

								Est. Carbon
Energy	Consumption	Annual	Annual Cost			Site-Delivered Btu	Est. Source Btu	Emissions
Туре	Units	Consumption	(Thou. \$)	Unit Co	ost (\$)	(Billion)	(Billion)	(Metric Tons)
Electricity	MWH	370,891.1	\$0.0	\$0.00	/kWh	1,265.5	4,395.1	63,325
Fuel Oil	Thou. Gal.	0.0	\$0.0	#DIV/0!	/gallon	0.0	0.0	0
Natural Gas	Thou. Cubic Ft.	0.0	\$0.0	#DIV/0!	/Thou Cu Ft	0.0	0.0	0
LPG/Propane	Thou. Gal.	0.0	\$0.0	#DIV/0!	/gallon	0.0	0.0	0
Coal	S. Ton	0.0	\$0.0	#DIV/0!	/S. Ton	0.0	0.0	0
Purch. Steam	BBtu	0.0	\$0.0	#DIV/0!	/MMBtu	0.0	0.0	0
Other	BBtu	0.0	\$0.0	#DIV/0!	/MMBtu	0.0	0.0	
		Total Costs:	\$0.0		Total:	1,265.5	4,395.1	63,325
Exempt Faciliti	es (Thou. Gross							
Squar	e Feet)	18,646.7			Btu/GSF:	67,866	235,702	
					Btu/GSF w/ RE Purchase Credit:		235,702	
					Btu/GSF w/ RE & Sec. 502(e) Credit:		235,702	

1-4. Non-Fleet Vehicles and Other Equipment

	Consumption Units	Annual Consumption	Annual Cost (Thou. \$)	Unit Cost (\$)	Btu (Billion)	Est. Carbon Emissions (Metric Tons)
Auto Gasoline	Thou. Gal.	2,412.9	\$4,494.0	\$1.86 /gallon	301.6	5,836
Diesel-Distillate	Thou. Gal.	807.1	\$1,598.1	\$1.98 /gallon	111.9	2,233
LPG/Propane	Thou. Gal.	0.0	\$0.0	#DIV/0! /gallon	0.0	0
Aviation Gasoline	Thou. Gal.	72.5	\$194.2	\$2.68 /gallon	9.1	171
Jet Fuel	Thou. Gal.	45.9	\$115.0	\$2.51 /gallon	6.0	115
Navy Special	Thou. Gal.	0.0	\$0.0	#DIV/0! /gallon	0.0	0
Other	BBtu	0.0	\$0.0	#DIV/0! /MMBtu	0.0	
		Total Costs	\$6,401.3		428.6	8,356

1-5. WATER CONSUMPTION, COST AND EFFICIENCY MEASURES

	Consumption	Annual	Annual Cost			
	Units	Consumption	(Thou. \$)			
Water	Million Gal.	158.1	\$331.6			
Best Mana	Best Management Practice Implementation Tracking Data					
Number of facilities	1,000					
Number of facilities	ater management					
plans	70					
Number of facilities						
implemented	3					
*number in the agency inventory, can be buildings, bases, or campuses						

1-6. RENEWABLE ENERGY/RENEWABLE ENERGY CERTIFICATE PURCHASES IN FY 2005

(Only include renewable energy purchases from resources developed after 1990)

Description of <i>Each</i> Renewable Energy Purchase	Amount	Amount	State or Region	End Use Category
(examples below, insert additional rows as necessary	Purchased or	Purchased	of Generation or	(Standard, EI, or
for each separate purchase)	(MWH)	(Million Btu)	Source	Exempt)
Electricity from Renewable Source	1,170.0	0.0	TN valley	Standard
Renewable Energy Certificates	0.0	0.0		EI
Natural Gas from Landfill/Biomass	0.0	0.0		Exempt
Renewable Thermal Energy	0.0	0.0		
Other Renewable Energy (describe)	0.0	0.0		
Total All Purchases	1,170.0	0.0		
Total Purchases for Standard Buildings	1,170.0	0.0		
Total Purchases for Energy Intensive Facilities	0.0	0.0		
Total Purchases for Exempt Facilities	0.0	0.0		

1-7. SELF-GENERATED RENEWABLE ENERGY INSTALLED AFTER 1990

	Consumption Units	Total Annual Energy	Energy Used by Agency*
Electricity from			
Renewables	MWH	3,630.0	30.0
Natural Gas from			
Landfill/Biomass	MMBtu	0.0	0.0
Renewable			
Thermal Energy**	MMBtu	0.0	0.0
Other Renewable			
Energy_HMOD***			
(1)	MMBtu	37,030.4	0.0

1-8. TOTAL RENEWABLE ENERGY USE AS A PERCENTAGE OF FACILITY ELECTRICITY USE

Renewable		RE as a
Energy Use	Facility Electricity	Percentage of
(BBtu)	Use (BBtu)	Electricity Use
53.4	1,876.4	2.8%

*Energy used by agency equals total annual generation unless a project sells a portion of the energy it produces to another agency or the private sector. It can equal zero in the case of non-Federal energy projects developed on Federal land.

**Examples are geothermal, solar thermal, and geothermal heat pumps, and the thermal portion of combined heat and power projects. Energy savings from geothermal heat pumps should be based on energy savings compared to conventional alternatives like air-to-air heat pumps. If only electricity savings are known, multiply kWh savings by 3,412 to estimate renewable energy BTUs.

***For other renewable energy that does not fit any category, fill in the type, units used, annual consumption and cost, and include any additional information in your narrative submission. For example energy displaced by daylighting technology or passive solar design.

(1) - This value represents TVA hydro modernization (HMOD) for FY2005 facility use.

PART 2: ENERGY EFFICIENCY IMPROVEMENTS

2-1. DIRECT AGENCY OBLIGATIONS

(Agencies may attach their final OMB Circular A-11 Energy and Transportation Efficiency Management Exhibit in lieu of completing Table 2-1.)

	FY 2	2005	Projected FY 2006	
	(MMBTU)	(Thou. \$)	(MMBTU)	(Thou. \$)
Direct obligations for facility energy				
efficiency improvements, including				
facility surveys/audits		\$278.0		\$300.0
Estimated annual savings				
anticipated from obligations	2,231.0	\$40.0	2,500.0	\$45.0

2-2. ENERGY SAVINGS PERFORMANCE CONTRACTS (ESPC)

	Annual savings (MMBTU)	(number/Thou. \$)
Number of ESPC Task/Delivery		(number/mou. \$)
5		
Orders awarded in fiscal year &		
annual energy (MMBTU) savings.	0.0	0
Investment value of ESPC Task/Deliv	ery Orders	
awarded in fiscal year.		\$0.0
Amount privately financed under ESP	C Task/Delivery	
Orders awarded in fiscal year.	\$0.0	
Cumulative guaranteed cost savings of	of ESPCs	
awarded in fiscal year relative to the b	\$0.0	
Total contract award value of ESPCs	awarded in fiscal	
year (sum of contractor payments for	debt repayment,	
M&V, and other negotiated performan		
services).	\$0.0	
Total payments made to all ESP conti	actors in fiscal	
year.		\$0.0

2-3. UTILITY ENERGY SERVICES CONTRACTS (UESC)

	Annual savings	() — ()
	(MMBTU)	(number/Thou. \$)
Number of UESC Task/Delivery		
Orders awarded in fiscal year &		
annual energy (MMBTU) savings.	0.0	0
Investment value of UESC Task/Deliv	ery Orders	
awarded in fiscal year.	\$0.0	
Amount privately financed under UES		
Orders awarded in fiscal year.	\$0.0	
Cumulative cost savings of UESCs av	varded in fiscal	
year relative to the baseline spending		\$0.0
Total contract award value of UESCs	awarded in fiscal	
year (sum of payments for debt repay		
negotiated performance period servic	\$0.0	
Total payments made to all UESC cor	ntractors in fiscal	
year.		\$0.0

2-4. UTILITY INCENTIVES (REBATES)

	Annual savings (MMBTU)	(Thou. \$)
Incentives received and estimated		
energy savings	0.0	\$0.0
Funds spent in order to receive		
incentives		\$0.0

2-5. TRAINING

	(number)	(Thou. \$)
Number of personnel		
trained/Expenditure	191	\$28.7

FY 2005 Federal Agency Energy Scorecard

Department/Agency Name Contact Name and Phone	
Tennessee Valley Authority	Steve Brothers (423) 751-7369
Name of Senior Energy Official	Signature of Senior Energy Official
John E. Long	

Did your agency	Yes	No	Anticipated Submittal Date
 Submit its FY 2005 energy report to OMB and DOE by January 1, 2006 (Sec. 303)? 	х		12-23-2005
 Submit a FY 2006 Implementation Plan by January 1, 2006 (Sec. 302)? 	х		12-23-2005
Did your agency	Yes	No	Comments
 Implement or continue to use renewable energy projects at Federal installations or facilitate the siting of renewable generation on Federal land in FY 2005 (Sec. 204)? (Report all self-generated renewable energy from projects installed after 1990; refer to Table 1-7 on the Energy Management Data Report) 	X		$\begin{array}{c c} \mbox{If yes, how many projects and how} \\ \mbox{much energy generated? (Specify unit: MWH or MMBtu)} \\ & & \ \ \ \ \ \ \ \ \ \ \ \ $
 Purchase energy generated from new renewable energy sources in FY 2005 (Sec. 204)?² (Refer to Table 1-6 on the Energy Management Data Report) 	х		If yes, how much: <u>1170</u> MWH or MMBtu
 Invest direct FY 2005 appropriations in projects contributing to the goals of the Order (Sec. 301)? (B) 		х	If yes, how much: <u>\$</u>
 Specifically request funding necessary to achieve the goals of the Order in its FY 2007 budget request to OMB (Sec. 301)? (Refer to OMB Circular A-11, Section 25.5, Table 2) (B) 		х	If yes, how much: <u>\$</u>
 Perform energy audits of 10% of its facility space during the fiscal year (Sec. 402)? (C) 	Х		What percentage of facility space was audited during the FY? <u>8</u> % How much facility space has been audited since 1992? ³ <u>131</u> %
8. Issue to private-sector energy service companies (ESCOs) any energy savings performance contract (ESPC) delivery orders (Sec. 403(a))? (Refer to Table 2-2 on the Energy Management Data Report) (D)		х	How many? Annual savings (MMBtu): Total investment value ⁴ : <u>\$</u> Cumulative guaranteed cost savings: <u>\$</u> Award value: <u>\$</u>

¹ Examples are geothermal, solar thermal, and geothermal heat pumps. Thermal energy from geothermal heat pumps should be determined as follows: Thermal energy = Total geothermal heat transferred – electrical energy used.

^{2 &}quot;New" renewable energy means sources developed after 1990.

³ Should be greater than 100% if all facility space has been audited at least once since 1992.

⁴ Investment value includes design, materials, labor, overhead, and profit but excludes contractor's financing costs and government's administration costs. Using investment value allows comparison with other traditional execution methods such as appropriated and working capital funded projects.

Did your agency	Yes	No	Comments
 Issue any utility energy services contract (UESC) delivery orders (Sec. 403(a))? (Refer to Table 2-3 on the Energy Management Data Report) (E) 		×	How many? Annual savings (MMBtu): Total investment value ⁴ : <u>\$</u> Cumulative cost savings: <u>\$</u> Award value: <u>\$</u>
 Incorporate energy efficiency requirements into relevant acquisitions (Sec. 403(b)(3))? (F) 	Х		See TVA Energy Plan
11. Adopt and apply the sustainable design principles (e.g., Whole Building Design Guide, Leadership in Energy and Environmental Design (LEED)) to the siting, design, and construction of new facilities or major (budget line item) renovations begun in FY 2005 (Sec. 403(d))? (G)	Х		Number of new building (or major renovation) design/construction projects in FY 2005 ⁵ : <u>1</u> Number of these projects that can or will be certified under LEED ⁵ : <u>0</u>
12. Provide training to appropriate personnel ⁶ on energy management (Sec. 406(d))? (H)	х		Number of appropriate personnel trained: <u>191</u> Total number of appropriate personnel: <u>191</u>
13. Implement any additional management tools (Sec. 406)?	х		Check all that apply: Awards: X Performance Evaluations: X Showcase Facilities: X Number of Showcase Facilities designated in fiscal year: 1
14. Establish Water Management Plans (WMPs) and implement at least 4 Best Management Practices (BMPs) in at least 20% of agency facilities (Sec. 207, 503(f))? (I)	х		Number of facilities with WMPs and 4 BMPs:3 Number of facilities in agency inventory:1,000

NOTE: Provide additional information below if a "No" reply is used for any of the questions above.

⁵ Count projects only once, regardless of phase. For example, if in FY 2005, your agency had 10 new building or major renovation projects, of which 2 can be LEED certified, then report 10 and 2, respectively, in the spaces provided. If the project was designed and reported on in response to this question in a previous year, do not report it as a new project in FY 2005, even if construction commenced or continued in FY 2005.

⁶ Appropriate personnel include the agency energy management team as well as Federal employees and on-site contractors who are energy or facility managers, operations and maintenance workers, design personnel, procurement and budget staff, and legal counsel.

Please enter data from annual energy report pertinent to performance toward the goals of Executive Order 13123	Base Year	Previous Year (2004)	Current Year (2005)	% Change (Current vs. Base)
15. Site Energy Efficiency Improvement Goals (Sec. 202). 1985 Base Year	82,357 Btu/Ft ²	60,448 Btu/Ft ²	58,418 Btu/Ft ²	(29)%
16. Industrial/Energy Intensive Facilities Goals (Sec. 203). 1990 Base Year	232,662 Btu/unit	191,732 Btu/unit	185,799 Btu/unit	(20)%
17. Source Energy Use (Sec. 206). 1985 Base Year (J)	N/A	1,918.6 BBtu	1,842.1 BBtu	N/A
18. Water Conservation Goal (Sec. 207). 2000 Base Year	173.1 MGal	169.2 MGal	158.1 MGal	(9)%
19. Renewable Energy (Sec. 204) Energy used from self-generation and RE purchases (К)	N/A	125.3 BBtu	125.3 BBtu	N/A

Abbreviation Key: Btu/Ft^2 = British thermal units per gross square foot

Btu/unit = British thermal units per unit of productivity (or gross square foot when such a unit is inappropriate or unavailable) MGal = Million gallons MMBtu = Million British Thermal Units

BBtu = Billion British Thermal Units

RE = Renewable energy

N/A = Not applicable

- (A) This value represents a very small percentage of renewable power from hydro modernization and is based on projects covering multiple units and the number of effected facilities.
- (B) TVA is self funded through its power operations and does not request appropriations to support its statutory mission; therefore, TVA has not submitted any such requests.

(C) Since FY 1992, TVA has evaluated 100-percent of its buildings, and plans to reevaluate facilities as needed to implement cost effective energy management objectives and/or update portfolio information.

(D) TVA considers the use of ESCOs where cost effective and in the best interest of the agency and its customers.

(E) TVA is a utility.

(F) TVA incorporates energy efficiency language where appropriate.

- (G) TVA has a sustainable design program which applies to new construction and renovation.
- (H) This includes employees not specified under sec. 406(d) since all employees play an important part in energy management.
- (I) TVA has developed an agency wide water plan. TVA has implemented 4+ BMPs in three of its facilities accounting for 20% of TVA's total facility square footage.
- (J) 1985 source data is unavailable since a large portion of these facilities were under the "General Operations Plan" from 1985-1990.

(K) The source conversion factor was used for this value (11,600 Btu/kWh).

Attachment 3 Goals of Executive Order 13123 and NECPA/EPACT

Category	Goal	Comments
Greenhouse Gas Emissions	30% reduction by 2010	Base year is 1990. DOE will calculate agencies' progress toward this goal and report it on agencies' annual energy scorecards
Energy Efficiency		
Standard Buildings	 30% improvement by 2005 35% improvement by 2010 	Base year is 1985
Industrial and Laboratory Facilities	 20% improvement by 2005 25% improvement by 2010	Base year is 1990
Exempt Facilities	N/A	Despite lack of quantitative goal, agencies should implement strategies to improve energy efficiency at these facilities.
Renewable Energy	 Implement renewable energy projects Purchase electricity from renewable energy sources Install 2,000 solar energy systems at Federal facilities by 2000 Install 20,000 solar energy systems at Federal facilities by 2010 	Installation of Federal solar energy systems will help support the Million Solar Roofs initiative
Petroleum	Reduce petroleum use	Switches to alternative energy sources should be life- cycle cost effective
Source Energy	Reduce use of source energy	Accomplish by undertaking projects that are life-cycle cost effective
Water Conservation	Reduce water consumption*	Accomplish via life-cycle cost effective measures, energy-savings performance contracts, or other financing mechanism

Executive Order 13123

NECPA/EPACT

Energy Efficiency	20% improvement by 2000	Base year is 1985
Financing	Undertake all energy efficiency improvement projects that have a simple payback period of 10 years or less by 2005	E.O. 13123 expands this goal by mandating that any energy efficiency project that is life-cycle cost effective be undertaken
Audits	Conduct audits for energy efficiency on 10% of facilities annually	E.O. 13123 includes language supporting this goal

* FEMP has established water efficiency improvement goals as directed by the Executive Order. Agencies must implement Water Management Plans and Best Management Practices according to the following schedule:

05% of facilities by 2002

15% of facilities by 2004

30% of facilities by 2006

50% of facilities by 2008

80% of facilities by 2010

For more detail, see the FEMP guidance document Water Efficiency Improvement Goal for Federal Agencies

TVA Industrial & Laboratory Buildings - FY 2005

Building Name	City	State
BFN BIOTHERMAL RESEARCH	Decatur	AL
BFN LOW LVL RDWST BLDG. (E-32)	Decatur	AL
BST BIG SANDY PUMPHOUSE - HEAT/LTG	Big Sandy	TN
BST BIG SANDY PUMPHOUSE - MOTOR	Big Sandy	TN
CHH CHL/DC/MSC COAL LABORATORY	Chattanooga	TN
CHH CHL/DC/MSC LABORATORY BLDG/POWER STORES	Chattanooga	TN
DNT DANDRIDGE PUMP STA. (DOUG DAM)	Dandridge	TN
GOT DUCK RIVER LTG/HEAT	Johnsonville	TN
GOT MONTEAGLE PLACE	Chattanooga	TN
GOT WELLHOUSE	Grainger Co.	TN
GPR WELL HOUSES	Golden Pond	KY
GVA BACKWATER PROTECTION	Guntersville	TN
LXK LEXINGTON WATER PUMP (TEMPORARY)	Lexington	KY
MFK MARSHALL PUMP HOUSE	Calvert City	KY
MFK MARTIN PUMP HOUSE	Martin	TN
MSL CATALYZER # 1 - MINERAL LAB	Shoals	AL
MSL CATALYZER # 2 - NITRO FERTILIZATION LAB	Shoals	AL
MSL CATALYZER # 3 - PLANT	Shoals	AL
MSL CATALYZER # 4 - RADIO/HIGH PRESSURE LAB	Shoals	AL
MSL CATALYZER # 5 - PLANT	Shoals	AL
MSL CATALYZER # 6 - NITRO FERTILIZATION OFFIC	Shoals	AL
MSL CHEMICAL FEED HOUSE	Shoals	AL
MSL ENGINEERING LAB ANNEX	Shoals	AL
MSL FERMENTATION BLDG (PILOT PLANT)	Shoals	AL
MSL FLEET HARBOR PUMPING STATION	Shoals	AL
MSL PDW PUMPING STATION	Shoals	AL
MSL PROTOTYPE OPERS BLDG (PILOT PLANT)	Shoals	AL
N AQUATIC BIOLOGY LAB (MAIN)	Norris	TN
N ENGINEERING LAB BLDG B	Norris	TN
N ENGINEERING LAB BLDG H	Norris	TN
N ENGINEERING LAB BLDG N	Norris	TN
N MAINTENANCE BUILDING	Norris	TN
NSC PUMP HOUSE	Nashville	TN
SPA WEST SANDY PUMP HOUSE	Springville	TN
SPA WEST SANDY PUMP HOUSE (LTS/HT)	Springville	TN
TPU CAMDEN 161 KV PUMP HOUSE	Camden	TN
TPU PUMP STATION (WATTS BAR RES)	Kingston	TN

TVA Exempt Buildings - FY2005

Following is a list of TVA's exempt buildings which include generation, transmission and related energy intensive activities. Energy reduction in these buildings has become increasingly more difficult given that the majority of the energy consumption in these buildings is largely attributed to process energy (generation and transmission of electricity). In recognition of the above and the fact that only so much can be done to make these buildings more efficient in a cost effective manner, TVA, in discussion with DOE, has exempted these buildings.

Building Name	City	State
ALF ALLEN FOSSIL PLANT	Memphis	TN
APH APALACHIA HYDRO PLANT	Ducktown	NC
APU ROCKHOUSE, BUCKEYE, BAGWELL PUMP HOUSE	Decatur	AL
APU WHITESIDE PUMP HOUSE	Decatur	AL
BLN BELLEFONT NUCLEAR PLANT	Hollywood	AL
BGK ADAIRVILLE 69 KV SWITCH HOUSE	Adairville	AL
BGK BOWLING GREEN MICROWAVE	Bowling Green	KY
BGK BRISTOW	Bowling Green	KY
BGK BRISTOW 161 KV SWITCH HOUSE	Bristow	AL
BGK BURKESVILLE 69 KV SWITCH HOUSE	Burkesville	AL
BGK CADIZ 161 KV SWITCH HOUSE	Cadiz	KY
BGK CANEYVILLE 69 KV SWITCH HOUSE	Caneyville	AL
BGK CASKY 161 KV SWITCH HOUSE	Hopkinsville	KY
BGK CELINA 69 KV SWITCH HOUSE	Celina	AL
BGK EAST BOWLING GREEN 161 KV SWITCH HOUSE	Bowling Green	AL
BGK ELKTON 69 KV SWITCH HOUSE	Elkton	KY
BGK FOUNTAIN RUN 69 KV SWITCH HOUSE	Fountain Run	AL
BGK FRANKLIN 161 KV SWITCH HOUSE	Franklin	KY
BGK GLASGOW 161 KV SWITCH HOUSE	Glasgow	AL
BGK HARTSVILLE NUC PLANT CONST 69 KV SWITCH H	Hartsville	AL
BGK HOLLIS CHAPEL MICROWAVE	Hollis Chapel	KY
BGK HOPKINSVILLE 161 KV SWITCH HOUSE	Hopkinsville	KY
BGK HOPSON 69 KV SWITCH HOUSE	Hopson	KY
BGK LAFAYETTE DISTRICT SWITCH HOUSES	Lafayette	AL
BGK LOGAN ALUMINUM 161 KV SWITCHOUSE	Russellville	KY
BGK MONTICELLO 69 KV SWITCH HOUSE	Monticello	AL
BGK ORLINDA 69 KV SWITCH HOUSE	Orlinda	AL
BGK PENCHEM 69 KV SWITCH HOUSE	Pencham	KY
BGK PORTLAND 161 KV SWITCH HOUSE	Portland	AL
BGK PORTLAND 161 KV SWITCH HOUSE	Portland	TN
BGK ROSINE 69 KV SWITCH HOUSE	Rosine	AL
BGK RUSSELLVILLE SWITCH HOUSES	Russellville	AL
BGK SCOTTSVILLE 161 KV SWITCH HOUSE	Scottsville	AL
BGK SOUTH BOWLING GREEN 161 KV SWITCH HOUSE	Bowling Green	AL
BGK SUMMER SHADE 161 KV SWITCH HOUSE	Summer Shade	KY

BGK TOMPKINSVILLE 69 KV SWITCH HOUSE	Tompkinsville	AL
BGK WESTMORELAND 161 KV SWITCH HOUSE	Westmoreland	AL
BRH BLUE RIDGE HYDRO PLANT	Blue Ridge	GA
BOH BOONE HYDRO PLANT	Spurgeon	TN
BFN BROWNS FERRY NUCLEAR PLANT	Decatur	AL
BRF BULL RUN FOSSIL PLANT	Clinton	TN
CBT BELFAST 161 KV PUMP HOUSE	Columbia	TN
CBT BELFAST 161 KV SWITCH HOUSE	Belfast	TN
CBT CENTERVILLE SWITCH HOUSE	Centerville	TN
CBT CLIFTON CITY 69 KV SWITCH HOUSE	Clifton City	TN
CBT COLLINWOOD 69 KV SWITCH HOUSE	Collinwood	TN
CBT COLUMBIA SWITCH HOUSES & PUMP HOUSE	Columbia	TN
CBT CORNERSVILLE 46 KV SWITCH HOUSE	Cornersville	TN
CBT CULLEOKA 46 KV SWITCH HOUSE	Culleoka	TN
CBT ELKTON 46 KV SWITCH HOUSE	Elkton	TN
CBT ETHRIDGE - VHF RADIO	Ethridge	TN
CBT HOHENWALD 161 KV SWITCH HOUSE	Hohenwald	TN
CBT JINGO 161 KV SWITCH HOUSE	Jingo	TN
CBT LAWRENCEBURG SWITCH HOUSES	Lawrenceburg	TN
CBT LEWISBURG SWITCH HOUSES	Lewsburg	TN
CBT LINDEN 69 KV SWITCH HOUSE	Linden	TN
CBT LORETTO 46 KV SWITCH HOUSE	Loretto	TN
CBT MAURY 500 KV SWITCH HOUSE	Maury	TN
CBT MONSANTO 161 KV SWITCH HOUSE	N/A	TN
CBT MONSANTO 46 KV SWITCH HOUSE	N/A	TN
CBT MOUNT PLEASANT SWITCH HOUSES	Mount Pleasant	TN
CBT NORTH COLUMBIA 46 KV SWITCH HOUSE	North Columbia	TN
CBT ONLY 161 KV SWITCH HOUSE	Only	TN
CBT PULASKI SWITCH HOUSES	Pulaski	TN
CBT SATURN 161 KV SWITCH HOUSE	Spring Hill	TN
CBT SPRING HILL MICROWAVE	Spring Hill	TN
CBT VICTOR SWITCH HOUSE	N/A	TN
CBT WAYNESBORO SWITCH HOUSES	Waynesboro	TN
CBT WEST COLUMBIA SWITCH HOUSES	Columbia	TN
CBT WILLIAMSPORT 46 KV SWITCH HOUSE	Williamsport	TN
CBT WRIGLEY 69 KV SWITCH HOUSE	Wrigley	TN
CCK GILBERTSVILLE SWITCH HOUSES	Gilbertsville	KY
CTH CHATUGE HYDRO PLANT	Jefferson City	TN
CHC CAPACITORS AND OTHER	Chickmauga	TN
CHC CATOOSA 161 KV SWITCH HOUSE	Catoosa	TN
CHC CHATTANOOGA SWITCH HOUSES & MICROWAVE	Chattanooga	TN
CHC COALMONT SWITCH HOUSE & COMMUNICATION	Coalmont	TN
CHC COOPER HEIGHTS	Cooper Heights	TN
CHC DAYTON 161 KV SWITCH HOUSE	Dayton	TN
CHC DAYTON DISTRICT 69 KV SWITCH HOUSE	Dayton	TN
CHC HALETOWN 69 KV SWITCH HOUSE	Haletown	TN
CHC JASPER TELE	Jasper	TN
CHC LOOKOUT MOUNTAIN RADIO	Lookout Mountain	TN
CHC MOBILE & PORTABLE CAP. & GRD	Chattanooga	TN
	Signal Mountain	TN
CHC MONTLAKE MICROWAVE	Signal Mountain	
CHC MONTLAKE MICROWAVE CHC OGLETHORPE 161 KV SWITCH HOUSE	Oglethorpe	GA

CHC SEQUOYAH TRAINING RADIO	Soddy Daisy	TN
CHC SIGNAL MOUNTAIN MICROWAVE	Signal Mountain	TN
CHC STEPHENSVILLE MICROWAVE	Stephensville	GA
CHC TAYLORS RIDGE	N/A	TN
CHC TILTON 115 KV	Tilton	TN
CHC TRENTON MICROWAVE	Trenton	TN
CHC VOLTAGE/CURRENT TRANSFORMERS	Chattanooga	TN
CHH CHICKAMAUGA HYDRO PLANT	Chattanooga	TN
COF COLBER FOSSIL PLANT	Tuscumbia	AL
CUF CUMBERLAND FOSSIL PLANT	Cumberland City	TN
CVT ANDERSON MICROWAVE	Anderson	TN
CVT APH 161 KV SWITCH HOUSE	Ducktown	NC
CVT ATHENS 161 KV SWITCH HOUSE	Athens	TN
CVT BENTON 69 KV SWITCH HOUSE	Benton	TN
CVT BLAIRSVILLE 69 KV SWITCH HOUSE	Blairsville	TN
CVT BLUE RIDGE HYDRO PLANT 69 KV SWITCH HOUSE	Blue Ridge	TN
CVT BOWATER 161 KV SWITCH HOUSE	N/A	TN
CVT BRAWLEY MTN MICROWAVE/RADIO	Brawley	TN
CVT BYRDSTOWN 69 KV SWITCH HOUSE	Byrdstown	TN
CVT CHARLESTON SWITCH HOUSES	Charleston	TN
CVT CHATUGE HYDRO PLANT 69 KV SWITCH HOUSE	N/A	TN
CVT COPPER BASIN 161 KV SWITCH HOUSE	Hayesville	NC
CVT COPPER BASIN COMM	Copper Basin	TN
CVT COTTONPORT RADIO	Cottonport	TN
CVT CRAB ORCHARD 69 KV SWITCH HOUSE	Crab Orchard	TN
CVT CROSSVILLE SWITCH HOUSE & RADIO	Crossville	TN
CVT DECATUR 69 KV SWITCH HOUSE	Decatur	TN
CVT DELANO 26 KV SWITCH HOUSE	Delano	TN
	Cleveland	TN
CVT EAVES BLUFF MICROWAVE/RADIO	Decatur	TN
CVT ELLIS MOUNTAIN MICROWAVE	N/A	TN
CVT ENGLEWOOD 69 KV SWITCH HOUSE	Englewood	TN
CVT EPWORTH 69 KV SWITCH HOUSE	Epworth	TN
CVT ETOWAH SWITCH HOUSE 69 KV SWITCH HOUSE	Etowah	TN
CVT FRIENDSVILLE 69 KV SWITCH HOUSE	Briendsville	TN
CVT GEORGETOWN 69 KV SWITCH HOUSE	Georgetown	TN
CVT GRANDVIEW RADIO/MICROWAVE	Grandview	TN
CVT GRIMSLEY 69 KV SWITCH HOUSE	Grimsley	TN
CVT HARRISON BAY 161 KV SWITCH HOUSE	N/A	TN
CVT HAYESVILLE 69 KV SWITCH HOUSE	Hayesville	TN
CVT HIWASSEE HYDRO PLANT 161 KV SWITCH HOUSE	N/A	TN
CVT HIWASSEE MICROWAVE	N/A	TN
CVT HOPEWELL 69 KV SWITCH HOUSE	Hopewell	TN
CVT JAMESTOWN 69 KV SWITCH HOUSE	Jamestown	TN
CVT JENA 69 KV SWITCH HOUSE	N/A	TN
CVT KIE 238 RADIO	N/A	TN
CVT LANG STREET 69 KV SWITCH HOUSE	N/A	TN
CVT LOUDON SWITCH HOUSES	Loudon	TN
CVT MADISONVILLE 69 KV SWITCH HOUSE	Madisonville	TN
CVT MARBLE 69 KV SWITCH HOUSE	Marble	TN
CVT MAYLAND 69 KV SWITCH HOUSE	Mayland	TN
CVT MCDONALD 69 KV SWITCH HOUSE	McDonald	TN

CVT MONTEREY 161 KV SWITCH HOUSE	Monterey	TN
CVT MURPHY 161 KV SWITCH HOUSE	Murphy	NC
CVT NIOTA 69 KV SWITCH HOUSE	Niota	TN
CVT NOTTELY HYDRO PLANT 69 KV SWITCH HOUSE	Blairsville	GA
CVT OCOEE SWITCH HOUSES	Ocoee	TN
CVT OSWALD DOME MICROWAVE	Reliance	TN
CVT POND CREEK - FIBRE OPTIC	N/A	TN
CVT RICEVILLE 69 KV SWITCH HOUSE	Riceville	TN
CVT ROCKWOOD SWITCH HOUSES	Rockwood	TN
CVT ROOSEVELT MT MICROWAVE	Rosevelt Mt	TN
CVT SOUTH ATHENS 69 KV SWITCH HOUSE	Athens	TN
CVT SOUTH CLEVELAND 161 KV SWITCH HOUSE	Cleveland	TN
CVT SPRING CITY 161 KV SWITCH HOUSE	Spring City	TN
CVT STALEY 161 KV SWITCH HOUSE	Staley	TN
CVT SWEETWATER SWITCH HOUSES	Sweetwater	TN
CVT TELLICO DISTRICT 69 KV SWITCH HOUSE	Tellico	TN
CVT TEN MILE 161 KV SWITCH HOUSE	Ten Mile	TN
CVT WAUCHECHA BALD RADIO	N/A	TN
CVT SPRING CITY SWITCH HOUSES	Spring City	TN
CVT WHITE OAK MOUNTAIN RADIO	White Oak	TN
CVT WOOD GROVE 69 KV SWITCH HOUSE	Wood Grove	TN
DGH DOUGLAS HYDRO PLANT	Dandridge	TN
EST ANDERSON 46 KV SWITCH HOUSE	Anderson	TN
EST BLANCHE 46 KV SWITCH HOUSE	Blanche	TN
EST COWAN 46 KV SWITCH HOUSE	Cowan	TN
EST FAYETTEVILLE SWITCH HOUSES	Fayetteville	TN
EST FLINTVILLE 46 KV SWITCH HOUSE	Flintville	TN
EST HILLSBORO 46 KV SWITCH HOUSE	Hillsboro	TN
EST LYNCHBURG 46 KV SWITCH HOUSE	Lynchburg	TN
EST NORTH TULLAHOMA 161 KV SWITCH HOUSE	Tullahoma	TN
EST ORME MOUNTAIN MICROWAVE	N/A	TN
EST PARK CITY 46 KV SWITCH HOUSE	Park City	TN
EST PETERSBURG 46 KV SWITCH HOUSE	Petersburg	TN
EST SEWANEE SWITCH HOUSE & MICROWAVE	Sewanee	TN
EST SHERWOOD 46 KV SWITCH HOUSE	Sherwood	TN
EST WINCHESTER SWITCH HOUSES	Winchester	TN
ESTILL SPRINGS 46 KV SWITCH HOUSE	Estill Springs	TN
EZT WELLHOUSE (WATAUGA DAM)	Elizabethton	TN
FNH FONTANA HYDRO PLANT	Fontana Village	NC
FTL FORT LOUDON HYDRO PLANT	Lenoir City	TN
FPH FORT PATRICK HENRY	Kingsport	TN
GAF GALLATIN FOSSIL PLANT	Gallatin	TN
GEK CADIZ DISTRICT 69 KV SWITCH HOUSE	Cadiz	KY
GEK CERULEAN 69 KV SWITCH HOUSE	Cerulean	KY
GEK DUNMOR 69 KV SWITCH HOUSE	Dunmor	KY
GEK EDGOTEN 161 KV SWITCH HOUSE	Edgoton	KY
GEK ELKTON HILL RADIO/MICROWAVE	Elkton Hill	KY
GEK GREENVILLE RADIO	Greenville	KY
	Hopkinsville	KY
GEK HOPKINSVILLE SWITCH HOUSE & MICROWAVE	1.100.00000	
GEK HOPKINSVILLE SWITCH HOUSE & MICROWAVE	Kirkmansville	ΚY
GEK HOPKINSVILLE SWITCH HOUSE & MICROWAVE GEK KIRKMANSVILLE 69 KV SWITCH HOUSE GEK LYON 69 KV SWITCH HOUSE	Kirkmansville Lyon	KY KY

GEK PEEDEE 69 KV SWITCH HOUSE	Peedee	KY
GEK PEMBROKE 69 KV SWITCH HOUSE	Pembroke	KY
GEK PRINCETON 161 KV SWITCH HOUSE	Princeton	KY
GFH GREAT FALLS HYDRO PLANT	Great Falls	TN
GUH GUNTERSVILLE HYDRO PLANT	Guntersville	AL
HDC HARTSVILLE N.P. 161KV SWITCH HOUSE	Hartsville	TN
HIH HIWASSEE HYDRO PLANT	Murphy	NC
HTA ADDISON 161 KV SWITCH HOUSE	Addison	AL
HTA ALBERTVILLE SWITCH HOUSES	Albertville	AL
HTA ALPHA 69 KV SWITCH HOUSE	Ft. Payne	AL
HTA ARAB SWITCH HOUSES & TELE	Arab	AL
HTA ARDMORE 161 KV SWITCH HOUSE	Ardmore	AL
HTA ASBURY RADIO	Asbury	AL
HTA ATHENS SWITCH HOUSES & TELE	Athens	AL
HTA BELLE MINA 46 KV SWITCH HOUSE	Belle Mina	AL
HTA BOAZ 46 KV SWITCH HOUSE	Boaz	AL
HTA BREMEN 46 KV SWITCH HOUSE	Bremen	AL
HTA BRINDLEY 46 KV SWITCH HOUSE	Brindley	AL
HTA BRYANT 161 KV SWITCH HOUSE	Bryant	AL
HTA COLLINSVILLE 161 KV SWITCH HOUSE	Collinsville	AL
HTA COURTLAND 46 KV SWITCH HOUSE	Courtland	AL
HTA CULLMAN SWITCH HOUSE & RADIO	Cullman	AL
HTA DANVILLE 46 KV SWITCH HOUSE	Danville	AL
HTA DECATUR 161 KV SWITCH HOUSE	Decatur	AL
HTA FABIUS MICROWAVE	Jackson Co.	AL
HTA FAIRVIEW 46 KV SWITCH HOUSE	Fairview	AL
HTA FALKVILLE 46 KV SWITCH HOUSE	Falkville	AL
HTA FARLEY SWITCH HOUSE & TELE	Farley	AL
HTA FINLEY 161 KV SWITCH HOUSE	Finley	AL
HTA FLINT 46 KV SWITCH HOUSE	Flint	AL
HTA FULTONDALE 115 KV SWITCH HOUSE	Fultondale	AL
HTA GERALDINE 46 KV SWITCH HOUSE	Geraldine	AL
HTA GOOSE POND 161 KV SWITCH HOUSE	Scottsboro	AL
HTA GROVE OAK 46 KV SWITCH HOUSE	Grove Oak	AL
HTA GUNTERSVILLE 161 KV SWITCH HOUSE	Guntersville	AL
HTA HANCEVILLE SWITCH HOUSES	Hanceville	AL
HTA HANEY 161 KV SWITCH HOUSE	Haney	AL
HTA HARTSELLE SWITCH HOUSES	Hartselle	AL
HTA HENEGAR 161 KV SWITCH HOUSE	Henegar	AL
HTA HOLLY POND 46 KV SWITCH HOUSE	Holly Pond	AL
HTA HUNTSVILLE 161 KV SWITCH HOUSE	Huntsville	AL
HTA JONES CHAPEL 46 KV SWITCH HOUSE	Jones Chapel	AL
HTA LAMBERT CHAPEL MICROWAVE	Jackson Co.	AL
HTA LIMESTONE 500 KV SWITCH HOUSE	Limestone	AL
HTA MADISON 500 KV PUMP HOUSE	Madison	AL
HTA HUNTSVILLE SWITCH HOUSES & MICROWAVES	Huntsville	AL
HTA MONSANTO CHEMICAL 161 KV SWITCH HOUSE	Madison	AL
HTA MORGAN 46 KV SWITCH HOUSE	Morgan	AL
HTA MOULTON 161 KV SWITCH HOUSE	Moulton	AL
HTA MOULTON DISTRICT 46 KV SWITCH HOUSE	Moulton	AL
HTA MOUNT HOPE 46 KV SWITCH HOUSE	Mount Hope	AL
	Mount Roszell	AL

HTA NANCE 161 KV SWITCH HOUSE	Courtland	AL
HTA PENCE 46 KV SWITCH HOUSE	Pence	AL
HTA POPLAR CREEK 46 KV SWITCH HOUSE	Poplar Creek	AL
HTA PRICEVILLE 161 KV SWITCH HOUSE	Priceville	AL
HTA PRICEVILLE 46 KV SWITCH HOUSE	Priceville	AL
HTA RED BAY 161 KV SWITCH HOUSE	Red Bay	AL
HTA REYNOLDS 161 KV SWITCH HOUSE	Lister Hill	AL
HTA SCOTTSBORO 161 KV SWITCH HOUSE	Scottsboro	AL
HTA SECTION 46 KV SWITCH HOUSE	Section	AL
HTA SHOALS 161 KV SWITCH HOUSE	Sheffield	AL
HTA SOUTH CULLMAN 46 KV SWITCH HOUSE	South Cullman	AL
HTA STEVENSON 161 KV SWITCH HOUSE	Stevenson	AL
HTA THORTON TOWN MICROWAVE	Rogersville	AL
HTA TOWN CREEK 46 KV SWITCH HOUSE	Town Creek	AL
HTA TRINITY 500 KV PUMP HOUSE	Trinity	AL
HTA TRINITY 500 KV SWITCH HOUSE	Decatur	AL
HTA TRINITY TELE	Trinity	AL
HTA UNION GROVE 46 KV SWITCH HOUSE	Union Grove	AL
HTA VALLEY CREEK 115 KV SWITCH HOUSE	Bessemer	AL
HTA WHEELER HYDRO PLANT 161 KV SWITCH HOUSE	Town Creek	AL
HTA WILSON MOUNTAIN RADIO	Muscle Shoals	AL
JCT FINGER	Finger	TN
JCT JACKSON 500 KV SWITCH HOUSE	Oakfield	TN
JCT LIGHTFOOT 69 KV SWITCH HOUSE	Lightfoot	TN
JCT NEW CASTLE MICROWAVE	New Castle	TN
JCT ROCK SPRINGS MICROWAVE	Rock Springs	TN
JCT SAVANNAH 161 KV SWITCH HOUSE	Savannah	TN
JCT SELMER 161KV SWITCH HOUSE	Selmer	TN
JCT SOUTH JACKSON	Jackson	TN
JCT TRACE PARK MICROWAVE	Trace Park	TN
JKT ADAMSVILLE 69 KV SWITCH HOUSE	Adamsville	TN
JKT ALAMO 161 KV SWITCH HOUSE	Alamo	TN
JKT BELLS 69 KV SWITCH HOUSE	Bells	TN
JKT BETHEL SPRINGS 69 KV SWITCH HOUSE	Bethel Springs	TN
JKT BOLIVAR SWITCH HOUSES	Bolivar	TN
JKT BROADVIEW MICROWAVE	Broadview	TN
JKT BROWNSVILLE 161 KV SWITCH HOUSE	Brownsville	TN
JKT CHESTERFIELD TELE	Chesterfield	TN
JKT DOUBLE BRIDGES 161 KV SWITCH HOUSE	N/A	TN
JKT DYERSBURG 161 KV SWITCH HOUSE	Dyersburg	TN
JKT HALLS 69 KV SWITCH HOUSE	Halls	TN
JKT HENDERSON 161 KV SWITCH HOUSE	Henderson	TN
JKT HUMBOLDT 161 KV SWITCH HOUSE	Humboldt	TN
JKT JACKS CREEK 46 KV SWITCH HOUSE	Jacks Creek	TN
JKT JACKSON SWITCH HOUSE	Jackson	TN
JKT LEXINGTON 69 KV SWITCH HOUSE	Lexington	TN
JKT MIDDALE 69 KV SWITCH HOUSE	Middale	TN
JKT MILAN SWITCH HOUSES	Milan	TN
JKT MILLEDGEVILLE 69 KV SWITCH HOUSE	Milledgeville	TN
JKT MONTGOMERY DISTRICT 69 KV SWITCH HOUSE	Montgomery	TN
JKT MORRIS 69 KV SWITCH HOUSE	Morris	TN
JKT MORRIS 69 KV SWITCH HOUSE	N/A	TN
	11//7	LIN

JKT NATIONAL GUARD	N/A	TN
JKT NEWCASTLE MICROWAVE	Newcastle	TN
JKT NIXON 69 KV SWITCH HOUSE	Nixson	TN
JKT NORTON HILL MICROWAVE	Norton Hill	TN
JKT PARSONS 69 KV SWITCH HOUSE	Parsons	TN
JKT LUKA SWITCH HOUSE & MICROWAVE	Luka	TN
JKT RAMER 161 KV SWITCH HOUSE	Ramer	TN
JKT RIPLEY 161 KV SWITCH HOUSE	Ripley	TN
JKT ROLLINS 46 KV SWITCH HOUSE	Rollins	TN
JKT SAULSBURY 46 KV SWITCH HOUSE	Saulsbury	TN
JKT SELMER SWITCH HOUSE & TELE	Selmer	TN
JKT SOUTH JACKSON SWITCH HOUSE & MICROWAVE	Jackson	TN
JKT TOONE 46 KV SWITCH HOUSE	Toone	TN
JKT TRENTON 69 KV SWITCH HOUSE	Trenton	TN
JKT TULU 69 KV SWITCH HOUSE	Tulu	TN
JKT WHITEVILLE 46 KV SWITCH HOUSE	Whiteville	TN
JSF JOHN SEVIER FOSSIL PLANT	Rogersville	TN
JOF JOHNSONVILLE FOSSIL PLANT	New Johnsonville	TN
JOT BANNER ELK 69 KV SWITCH HOUSE	Banner Elk	TN
JOT BEAN STATION 69 KV SWITCH HOUSE	Bean Station	TN
JOT BLUFF CITY PUMP & SWITCH HOUSE	Bluff City	TN
JOT BOONE HYDRO PLANT 161 KV	Surgeon	TN
JOT BULLS GAP 69 KV SWITCH HOUSE	Bulls Gap	TN
JOT BUNKER HILL - GEN	Bunker Hill	TN
JOT BUNKER HILL MICROWAVE	Rogersville	TN
JOT CHURCH HILL SWITCH HOUSE & MICROWAVE	Church Hill	TN
JOT COLONIAL HEIGHTS 69 KV SWITCH HOUSE	Colonial Heights	TN
JOT COSBY 161 KV SWITCH HOUSE	Cosby	TN
JOT CRANBERRY 161 KV SWITCH HOUSE	Cranberry	TN
JOT DANDRIDGE 69 KV SWITCH HOUSE	Dandridge	TN
JOT EAST NEWPORT 69 KV SWITCH HOUSE	Newport	TN
JOT ELIZABETHTON SWITCH HOUSES & TELE	Elizabethton	TN
JOT ERWIN 69 KV SWITCH HOUSE	Erwin	TN
JOT FITTS GAP 69 KV SWITCH HOUSE	Fitts Gap	TN
JOT FPH 69 KV SWITCH HOUSE	Kingsport	TN
JOT GRAY 69 KV SWITCH HOUSE	Gray	TN
JOT GREENEVILLE IND PARK 161 KV SWITCH HOUSE	Greeneville	TN
JOT GREENLAND 69 KV SWITCH HOUSE	Greenland	TN
JOT HAMPTON 161 KV SWITCH HOUSE	Hampton	TN
JOT HOLSTON RADIOS	Carter County	TN
JOT JOHN SEVIER FOSSIL PLANT 161 KV SWITCH HO	Rogersville	TN
JOT JONESBORO 69 KV SWITCH HOUSE	Jonesboro	TN
JOT JUG 69 KV SWITCH HOUSE	N/A	TN
JOT LOCUST SPRINGS 69 KV SWITCH HOUSE	Locust Springs	TN
JOT LOWLAND 69 KV SWITCH HOUSE	Lowland	TN
JOT MILLIGAN COLLEGE 69 KV SWITCH HOUSE	Milligan	TN
JOT MITCHELL 69 KV SWITCH HOUSE	Mitchell	TN
JOT MORRISTOWN SWITCH HOUSES & MICROWAVE	Morristown	TN
JOT MOUNTAIN CITY 69 KV SWITCH HOUSE	Mountain City	TN
JOT NEWLAND 69 KV SWITCH HOUSE	Newland	TN
JOT NEWPORT SWITCH HOUSES	Newport	TN
JOT NOLICHUCKY HYDRO PLANT 69 KV SWITCH HOUSE	N/A	TN

JOT NORTH BRISTOL 161 KV SWITCH HOUSE	Bristol	TN
JOT JOHNSON CITY SWITCH HOUSES	Johnson City	TN
JOT OAK GROVE 69 KV SWITCH HOUSE	Oak Grove	TN
JOT PANDORA 69 KV SWITCH HOUSE	Pandora	TN
JOT SURGIONSVILLE SWITCH HOUSES	Surgoinsville	TN
JOT PINEY FLATS 69 KV SWITCH HOUSE	Piney Flats	TN
JOT POWER STORES - JCTY	N/A	TN
JOT ROGERSVILLE SWITCH HOUSE & MICROWAVE	Rogersville	TN
JOT RUTHTON 69 KV SWITCH HOUSE	Ruthton	TN
JOT RUTLEDGE 69 KV SWITCH HOUSE	Rutledge	TN
JOT SOUTH HOLSTON HYDRO PLANT 69 KV SWITCH HO	Bristol	TN
JOT SOUTHEAST JOHNSON CITY 69 KV SWITCH HOUSE	Johnson City	TN
JOT SULLIVAN 500 KV PUMP HOUSE	Piney Flats	TN
JOT SULLIVAN SWITCH HOUSE & COMMUNICATION	Sullivan	TN
JOT TANGLEWOOD 69 KV SWITCH HOUSE	Tanglewood	TN
JOT TUSCULUM SWITCH HOUSE & TELE	Tusculum	TN
JOT WASHINGTON COLLEGE 69 KV SWITCH HOUSE	Jonesborough	TN
JOT ELIZABETHTON SWITCH HOUSES	Elizabethton	TN
JOT WHITE PINE 161 KV SWITCH HOUSE	White Pine	TN
JOT WINNER 69 KV SWITCH HOUSE	Winner	TN
JTN ATOKA 161 KV SWITCH HOUSE	Atoka	TN
JTN CORDOVA 500 KV PUMP HOUSE	Cordova	TN
JTN COVINGTON COMM	Covington	TN
JTN DANCYVILLE 161 KV SWITCH HOUSE	Dancyville	TN
JTN FREEPORT 500 KV SWITCH HOUSE	Freeport	TN
JTN MASON 69 KV SWITCH HOUSE	Mason	TN
JTN MILLER SWITCH HOUSES	Miller	TN
JTN MEMPHIS PUMP & SWITCH HOUSES & TELE	Memphis	TN
KCT KEMPER CUMBUSTION TURBINE	Scooba	MS
KYH KENTUCKY HYDRO PLANT	Gilbertsville	KY
KIF KINGSTON FOSSIL PLANT	Kingston	TN
KXT ALCOA TELE	Alcoa	TN
KXT ANDERSONVILLE SWITCH HOUSE & MICROWAVE	Andersonville	TN
KXT BLOCKHOUSE 69 KV SWITCH HOUSE	N/A	TN
KXT CARYVILLE 161 KV SWITCH HOUSE	Caryville	TN
KXT CHANDLER 161 KV SWITCH HOUSE	Chandler	TN
KXT CHEROKEE HYDRO PLANT 161 KV SWITCH HOUSE	Jefferson City	TN
KXT COMBS KNOB MICROWAVE	Combs Knob	TN
KXT DOUGLAS HYDRO PLANT 161 KV SWITCH HOUSE	Dandridge	TN
KXT DUNCAN 69 KV SWITCH HOUSE	Duncan	TN
KXT FNH SWITCH HOUSE & RADIO	Fontana Village	NC
KXT FTL PLANT 161 KV SWITCH HOUSE	N/A	TN
KXT GREEN TOP MOUNTAIN MICROWAVE	N/A	TN
KXT HARRIMAN SWITCH HOUSES & MICROWAVE	Harriman	TN
KXT HUNTSVILLE 161 KV STORAGE	Huntsville	TN
KXT JEFFERSON CITY 69 KV SWITCH HOUSE	Jefferson City	TN
KXT KINGSTON SWITCH HOUSES	Kingston	TN
KXT KNOXVILLE SWITCH HOUSES & MICROWAVE	Knoxville	TN
KXT LAFOLLETTE SWITCH HOUSES & TELE	Lafollette	TN
		-
KXT LENOIR CITY 69 KV SWITCH HOUSE	Lenoir City	TN
KXT LENOIR CITY 69 KV SWITCH HOUSE KXT LONSDALE COMM	Lenoir City Lonsdale	TN TN

Norrio	TN
	TN
	KY
	TN
	KY
Paducah	KY
	TN
McMinnville	TN
Murfreesboro	TN
	TN
	TN
	TN
Great Falls	
Great Falls Lebanon	TN
	Pilot Oak West Paducah Calvert City Murray Beech Grove McMinnville

MFT MANCHESTER 161 KV SWITCH HOUSE	Manchester	TN
MFT MCMINNVILLE 161 KV SWITCH HOUSE	Mcminnville	TN
MFT MOBILE TRANSFORMER NO. 6 69 KV SWITCH HOU	N/A	TN
MFT MORRISON 161 KV SWITCH HOUSE	Morrison	TN
MFT MURFREESBORO SWITCH HOUSE & RADIO	Murfreesboro	TN
MFT RUSSELL HILL MICROWAVE	Russell Hill	TN
MFT SHELBYVILLE 46 KV SWITCH HOUSE	Shelbyville	TN
MFT SMITHVILLE SWITCH HOUSE & RADIO	Smithville	TN
MFT SMYRNA SWITCH HOUSE & TELE	Smyrna	TN
MFT SOUTH JACKSON 161 KV GENERATOR BLDG	Jackson	TN
MFT SPARTA SWITCH HOUSES	Sparta	TN
MFT TRIUNE 161 KV SWITCH HOUSE	Tuiune	TN
MFT TULLAHOMA 46 KV SWITCH HOUSE	Tullahoma	TN
MFT UNIONVILLE 46 KV SWITCH HOUSE	Unionville	TN
MFT WARTRACE 161 KV SWITCH HOUSE	Wartrace	TN
MFT WATERTOWN 161 KV SWITCH HOUSE	Watertown	TN
MFT WEST COOKEVILLE TELE	Cookeville	TN
MFT WILSON 500 KV SWITCH HOUSE	Mt. Juliet	TN
MFT WINCHESTER 161 KV SWITCH HOUSE	Winchester	TN
MFT WOODBURY 161 KV SWITCH HOUSE	Woodbury	TN
NJH NICKAJACK HYDRO PLANT	So. Pittsburg	TN
NLC HYDRO PLANT	Greeneville	TN
NOH NORRIS HYDRO PLANT	Norris	TN
NHD NOTTELY HYDRO PLANT	Blairsville	GA
NSC ADAMS 69 KV SWITCH HOUSE	Adams	TN
NSC ASHLAND CITY 69 KV SWITCH HOUSE	Ashland City	TN
NSC BOGOTA 69 KV SWITCH HOUSE	Bogota	KY
NSC BRUCETON 69 KV SWITCH HOUSE	Bruceton	KY
NSC CAMDEN 161 KV SWITCH HOUSE	Camden	KY
NSC CENTRAL PIKE 161 KV SWITCH HOUSE	Central Pike	TN
NSC CHARLOTTE 69 KV SWITCH HOUSE	Charlotte	TN
NSC CLARKSVILLE SWITCH HOUSES & COMMUNICATION	Clarksville	TN
NSC CUMBERLAND CITY SWITCH HOUSES	Cumberland City	TN
NSC DICKSON SWITCH HOUSES & TELE	Dickson	TN
NSC NASHVILLE SWITCH HOUSES & MICROWAVES	Nashville	TN
NSC DOVER 69 KV SWITCH HOUSE	Dover	TN
NSC DRESDEN 69 KV SWITCH HOUSE	Dresden	KY
NSC ERIN 161 KV SWITCH HOUSE	Erin	TN
NSC FRANKLIN 161 KV SWITCH HOUSE	Franklin	TN
NSC GLEASON 69 KV SWITCH HOUSE	Gleason	KY
NSC GREEN BRIER 69 KV SWITCH HOUSE	Green Brier	TN
NSC GREENFIELD 69 KV SWITCH HOUSE	Greenfield	KY
NSC HENDERSONVILLE 161 KV SWITCH HOUSE	H'Ville	TN
NSC HUNTINGDON SWITCH HOUSES	Huntingdon	KY
NSC KENTON 69 KV SWITCH HOUSE	Kenton	KY
NSC KINGSTON SPRINGS 161 KV SWITCH HOUSE	Kingston	TN
		TN
INSC LONE OAK 69 KV SWITCH HOUSE	Loan Oak	
NSC LONE OAK 69 KV SWITCH HOUSE	Loan Oak McKenzie	
NSC MCKENZIE 69 KV SWITCH HOUSE	McKenzie	KY
NSC MCKENZIE 69 KV SWITCH HOUSE NSC MODEL MICROWAVE	McKenzie N/A	KY TN
NSC MCKENZIE 69 KV SWITCH HOUSE	McKenzie	KY

NSC ORLINDA	Orlinda	TN
NSC PARIS 161 KV SWITCH HOUSE	Paris	KY
NSC PIN HOOK 500 KV SWITCH HOUSE	Pin Hook	TN
NSC PIN HOOK COMM	Pin Hook	TN
NSC PLEASANT VIEW 69 KV SWITCH HOUSE	Pleasant View	TN
NSC POMONA 161 KV SWITCH HOUSE	Pomona	TN
NSC RIDGELY 69 KV SWITCH HOUSE	Ridgely	KY
NSC RUTHERFORD 161 KV SWITCH HOUSE	Rutherford	KY
NSC SHADY GROVE 69 KV SWITCH HOUSE	Shady Grove	TN
NSC SPRINGFIELD SWITCH HOUSES & COMM	Springfield	TN
NSC TREZEVANT 69 KV SWITCH HOUSE	Trezevant	KY
NSC TROY 69 KV SWITCH HOUSE	Troy	KY
NSC UNION CITY SWITCH HOUSE & MICROWAVE	Union City	KY
NSC VANLEER MICROWAVE	Vanleer	TN
NSC WEAKLEY SWITCH HOUSE & MICROWAVE	Weakley	KY
NSC WHITE BLUFF 69 KV SWITCH HOUSE	White Bluff	TN
NSC WHITE HOUSE 69 KV SWITCH HOUSE	N/A	TN
OC1 HYDRO PLANT	Parksville	TN
OC2 HYDRO PLANT	Copperhill	TN
OC3 HYDRO PLANT	Copperhill	TN
PAF PARADISE FOSSIL PLANT	Drakesboro	KY
PHM ACKERMAN 69 KV SWITCH HOUSE	Ackerman	MS
PHM HANDLE 46 KV SWITCH HOUSE	Handle	MS
PHM LOUISVILLE 161 KV SWITCH HOUSE	Louisville	MS
PHM MACON 161 KV SWITCH HOUSE	Macon	MS
PHM NOXAPATER 161 KV SWITCH HOUSE	Noxapater	MS
PHM PHILADELPHIA SWITCH HOUSE & MICROWAVES	Philadelphia	MS
PHM SEBASTOPOLE 161 KV SWITCH HOUSE	Sebastopole	MS
PHM STURGIS DISTRICT 69 KV SWITCH HOUSE	Sturgis	MS
PKH PICKWICK HYDRO PLANT	Luka	TN
RAC ALTAMONT 69 KV SWITCH HOUSE	Altamont	TN
RAC COALMONT 161 KV SWITCH HOUSE	Coalmont	TN
RAC DUNLAP 69 KV SWITCH HOUSE	Dunlap	TN
RAC JASPER 161 KV SWITCH HOUSE	Jasper	TN
RAC KIMBALL 161 KV SWITCH HOUSE	Kimball	TN
RAC MONTEAGLE 69 KV SWITCH HOUSE	Monteagle	TN
RAC NICKAJACK HYDRO PLANT 161 KV SWITCH HOUSE	South Pittsburg	TN
RAC PALMER 69 KV SWITCH HOUSE	Palmer	TN
RAC PIKEVILLE 161 KV SWITCH HOUSE	Pikeville	TN
RAC RACCOON MOUNTAIN PUMPED STORAGE PLANT	Tiftonia	TN
SQN SEQUOYAH NUCLEAR PLANT	Soddy Daisy	TN
SHF SHAWNEE FOSSIL PLANT	West Paducah	KY
SHH SOUTH HOLSTON HYDRO PLANT	Bristol	TN
TFH TIMS FORD HYDRO PLANT	Winchester	TN
TPM AMORY SWITCH HOUSES	Amory	MS
TPM ASHLAND 46 KV SWITCH HOUSE	Ashland	MS
TPM BALDWYN 161 KV SWITCH HOUSE	Baldwyn	MS
TPM BATESVILLE 161 KV SWITCH HOUSE	Batesville	MS
TPM BELDEN 46 KV SWITCH HOUSE	Belden	MS
TPM BELMONT 46 KV SWITCH HOUSE	Belmont	MS
	Blue Mountain	MS
TPM BOONEVILLE SWITCH HOUSES	Booneville	MS

TPM BRUCE SWITCH HOUSES & MICROWAVE	Bruce	MS
TPM BURNSVILLE 161 KV SWITCH HOUSE	Burnsville	MS
TPM CHARLESTON 26 KV SWITCH HOUSE	Charleston	MS
TPM COFFEEVILLE 161 KV SWITCH HOUSE	Coffeeville	MS
TPM CORINTH SWITCH HOUSES	Corinth	MS
TPM CORNERSVILLE 46 KV SWITCH HOUSE	Ecru	MS
TPM ENTERPRISE 46 KV SWITCH HOUSE	Enterprise	MS
TPM FULTON SWITCH HOUSES	Fulton	MS
TPM GRAHAM - KIE 255	Graham	MS
TPM GRAHAM MICROWAVE	Union County	MS
TPM GUNTOWN 161 KV SWITCH HOUSE	Guntown	MS
TPM HICKORY FLAT 46 KV SWITCH HOUSE	Hickory Flat	MS
TPM HOLLY SPRINGS SWITCH HOUSE, MICRO. & TELE	Holly Springs	MS
TPM KIRKVILLE 46 KV SWITCH HOUSE	Kirkville	MS
TPM LAMAR ENG GEN	Lamar	MS
TPM LAMAR KIE 241	Lamar	MS
TPM NASA 161 KV SWITCH HOUSE	luka	MS
TPM NEW ALBANY SWITCH HOUSE & TELE	New Albany	MS
TPM NORTH SARDIS 161 KV SWITCH HOUSE	Sardis	MS
TPM NORTHEAST CORINTH 161 KV SWITCH HOUSE	Corinth	MS
TPM NORTHWEST TUPELO 46 KV SWITCH HOUSE	Tupelo	MS
TPM OKOLONA SWITCH HOUSES	Okolona	MS
TPM OXFORD 161 KV SWITCH HOUSE	Oxford	MS
TPM OXFORD TELE	Oxford	MS
TPM PONTOTOC 161 KV SWITCH HOUSE	Pontotoc	MS
TPM RIENZI 46 SWITCH HOUSE	Rienzi	MS
TPM RIPLEY 161 KV SWITCH HOUSE	Ripley	MS
TPM SARDIS 161 KV SWITCH HOUSE	Sardis	MS
TPM SHANNON 46 KV SWITCH HOUSE	Shannon	MS
TPM TUPELO SWITCH HOUSES & COMMUNICATION	Tupelo	MS
TPM TERRAPIN MTN RADIO	Sardis	MS
TPM TISHOMINGO 46 KV SWITCH HOUSE	Tishomingo	MS
TPM UNION SWITCH HOUSE & COMM	Union	MS
TPM WALNUT 46 KV SWITCH HOUSE	Walnut	MS
TPM WATER VALLEY 161 KV SWITCH HOUSE	Water Valley	MS
TPM WOODALL MOUNTAIN MICROWAVE	luka	MS
TPM YELLOW CREEK NP CONST 161 KV SWITCH HOUSE	N/A	MS
WAH WATAUGA HYDRO PLANT	Elizabethton	TN
WBF WATTS BAR FOSSIL PLANT	Spring City	TN
WBN WATTS BAR NUCLEAR PLANT	Spring City	TN
WEH WHEELER HYDRO PLANT	Town Creek	TN
WCF WIDOWS CREEK FOSSIL PLANT	Bridgeport	AL
WIH WILBUR HYDRO PLANT	Leighton	AL
WLH CHEMICAL PLANT PS 46 KV SWITCH HOUSE	Lexington	AL
WLH LEIGHTON SWITCH HOUSES & RADIO	Muscle Shoals	AL
WLH TUSCUMBIA SWITCH HOUSES	Tuscumbia	AL
WLH ABERDEEN SWITCH HOUSES & MICROWAVES	Aberdeen	MS
WPM ARTESIA 46 KV SWITCH HOUSE	Bonicord	MS
WPM BOLIVAR	Caledonia	MS
WPM BONICORD	Calhoun	TN
WPM CALEDONIA 46 KV SWITCH HOUSE	Chesterfield	TN
WPM CALHOUN CITY 161 KV SWITCH HOUSE	Clarksburg	MS

WPM COLUMBUS SWITCH HOUSES & MICROWAVES	Columbus	MS
WPM COLUMBUS AIR FORCE BASE 46 KV SWITCH HOUS	Counce	TN
WPM COLUMBUS DISTRICT 46 KV SWITCH HOUSE	Covington	MS
WPM COUNCE 161 KV SWITCH HOUSE	Dekalb	MS
WPM DEKALB 161 KV SWITCH HOUSE	Eupora	MS
WPM EAST COLUMBUS 161 KV SWITCH HOUSE	Handle	TN
WPM EUPORA 161 KV SWITCH HOUSE	Hickory Valley	MS
WPM HANDLE 161 KV SWITCH HOUSE	Louisville	MS
WPM HICKORY VALLEY 161KV SWITCH HOUSE	Hooker	MS
WPM HINZE RADIO/MICROWAVE	Houstan	MS
WPM HOOKER 46 KV SWITCH HOUSE	Carthage	MS
WPM HOUSTON 161 KV SWITCH HOUSE	Lena	MS
WPM LEAKE 161 KV SWITCH HOUSE	Louisville	MS
WPM LENA RADIO/MICROWAVE	Lowndes	MS
WPM LOUISVILLE 161 KV SWITCH HOUSE	Ludlow	MS
WPM LOWNDES 500 KV SWITCH HOUSE	Maben	MS
WPM LUDLOW 46 KV SWITCH HOUSE	Louisville	MS
WPM MABEN 46 KV SWITCH HOUSE	Monroe	MS
WPM MIDWAY 161 KV SWITCH HOUSE	Olive Branch	MS
WPM MONROE COUNTY 46 KV SWITCH HOUSE	Philadelphia	MS
WPM OLIVE BRANCH 161 KV SWITCH HOUSE	Prairie	MS
WPM PHILADELPHIA	Sand Hill	MS
WPM PRAIRIE 46 KV SWITCH HOUSE	Ludlow	MS
WPM SAND HILL MICROWAVE	Smithville	MS
WPM SCOTT 115 KV SWITCH HOUSE	Macon	MS
WPM STARKVILLE SWITCH HOUSES	Starkville	MS
WPM WESTPOINT SWITCH HOUSES & MICROWAVES	Westpoint	MS

Implementation Plan including Guidance for Preparing the Federal Agency Energy Management Implementation Plan for FY 2006

The Implementation Plan should be formatted as described below. The format generally follows the outline for the Annual Report. Although the Implementation Plan will be submitted as an attachment to the Annual Report, the Plan should be considered a stand-alone document. Therefore, please do not refer to the Annual Report for Section I, Part A, or for any other part of the Plan that you feel may be redundant with the Annual Report. This Plan should be brief and should describe only activities planned for the next fiscal year.

I. Management and Administration. This section will describe (1) the agency's establishment of an energy management infrastructure and (2) the agency's plans to use management tools in implementing Executive Order (E.O.) 13123.

The TVA Energy Policy (Policy) was approved by the TVA Board on April 19, 1995. The Policy describes TVA's commitment to achieving leadership in efficient and environmentally sound energy management. The Policy also facilitates TVA's compliance with legal and regulatory energy use reduction policies and associated environmental goals and procedures. TVA's Energy Plan (Attachment 8) was written to implement the Policy. TVA develops, evaluates, and updates performance goals and measures in strategic plans such as the Energy Plan.

TVA formed the Agency Energy Management Committee (AEMC) to facilitate compliance with Federal statutes, E.O., Federal regulations, TVA energy and related environmental management objectives, and obligations under the Environmental Protection Agency (EPA) Green Lights Program (GL), EPA Energy Star Buildings Program (ESB), and Energy Star Program (ES). The AEMC is comprised of representatives from each TVA organization responsible for energy management and associated environmental considerations in facility and general operations inside the agency. The AEMC will continue to provide an avenue for sharing lessons learned and replicating success. The AEMC will continue to meet every other month during FY 2006.

TVA will continue to evaluate energy efficiency in its facilities through assessments and surveys carried out through each responsible organization and under the strategy of the Energy Plan. TVA has developed an evaluation sheet to record energy conservation measures. These measures are then loaded into the agency energy management database for automated retrieval and analysis. During FY 2006 TVA plans to evaluate facilities, when necessary, in accordance with E.O. 13123.

A. Energy Management Infrastructure

1. Senior Agency Official: Identify the agency's senior energy official and describe the official's role and responsibilities.

John E. Long is the TVA senior energy official and Executive Vice President of Administrative Services.

Stephen L. Brothers is the TVA chief energy manger and manages the TVA Internal Energy Management Program (IEMP) under Administrative Services.

David R. Zimmerman is the manager of Sustainable Design located under Administrative Services.

2. Agency Energy Team: Identify the members of the team and describe the team's responsibilities.

TVA formed the AEMC to facilitate compliance with federal statutes, E.O., federal regulations, TVA energy and related environmental management objectives, and obligations under the EPA's GL program, EPA's ESB program and EPA's ES program. The AEMC serves as the agency energy team. This committee is comprised of representatives from each TVA organization responsible for energy management and associated environmental considerations in facility and general operations inside the agency. The AEMC provides an avenue for sharing lessons learned and replicating success. The members are:

- Stephen L. Brothers, chairperson for the AEMC;
- Kathryn E. Ellis, Fleet Management;
- David R. Zimmerman, Sustainable Design;
- David W. Stewart, Fossil;
- Aaron B. Nix, Facilities Management Environmental;
- William R. McNabb, Facilities Management O&M;
- Jay T. Grafton, Nuclear;
- Teresa S. Wampler, River System Operations and Environment;
- David R. Dinse, Research and Technology Applications;
- Bryan H. Jones, Information Services;
- Jonnie A. Cox, Facilities Management Projects;
- David A. Gordon, Heavy Equipment;
- Judy G. Driggans, Chief Financial Officer representative;
- Barry M. Gore, Power Systems Operations;
- V. Edward Hudson, Demand Side Management Program;
- Cicely Simpson, Federal Affairs;
- David R. Chamberlain, Customer Service and Marketing;
- Tina I. Broyles, Power Systems Operations alternate; and
- Sherri R. Collins, Office of General Counsel.

B. Management Tools

1. Awards (Employee Incentive Programs): Describe the agency's plans to use employee incentive programs to reward exceptional performance in implementing E.O. 13123.

TVA uses a "Winning Performance" process as a method to reward employees' efforts toward meeting agency goals. Examples of pay for performance goals include reduction in cost per square foot for building operations. Energy efficiency and sustainable improvements are contributors to reduced cost per square foot goals.

2. **Performance Evaluations:** Describe agency plans to include successful implementation of provisions of ExO. 13123 in the position descriptions and performance evaluations of members of the agency energy team and facility/energy mangers.

To the extent employees are responsible for activities that are related to the objectives of E.O. 13123, their job descriptions contain reflective line items and their performance is evaluated in terms of the extent to which they accomplish such goals.

3. Training and Education: Describe plans to ensure that all appropriate personnel receive training for energy management requirements. Describe plans to develop and implement agency outreach programs that include education, training, and promotion of ENERGY STAR[®] and other energy efficient products for Federal purchase card users.

The AEMC continues to work on ways to inform TVA employees of how their daily activities influence energy and associated environmental impacts in TVA. The AEMC had its annual employee awareness display on tour during October. In conjunction with the tour, an energy-related article was published in TVA's newspaper, "Inside TVA."

TVA plans to utilize various methods of training to educate employees on the objectives of the IEMP which includes energy management requirements during FY 2006. Staff is educated on energy and environmental related topics through TVA's Employee Technical Training and Organizational Effectiveness (ETT&OE) group. The TVA Intranet and employee awareness programs are also used as tools to educate employees on how they impact energy use and efficiency both at work and home. Energy efficiency and information updates are provided on current federal requirements and regulations to employees, managers, and TVA customers upon request. Energy management and associated environmental training is provided to managers and employees as needed.

4. Showcase Facilities: Describe plans to construct or renovate exemplary facilities that the agency plans to designate as Showcase Facilities. Discuss why the facilities will be considered Showcase Facilities (i.e., discuss the facility design, the improvements made in energy or water efficiency, the use of renewable energy, etc.).

The TVA Chattanooga Office Complex (COC) continues to be TVA's designated showcase facility. The COC was completed in 1986 and encloses approximately 1.2 million square feet of floor area. It integrates the use of passive energy strategies, energy management practices, and environmental programs and activities. Occupants' daily activities have been recognized as a major component in facility performance. Energy and environmental awareness programs have been established to inform the occupants of the impacts their actions have on this performance. The combinations of original design elements, energy and environmental activities, and aggressive energy reduction operation and maintenance efforts have resulted in the COC becoming a model facility. TVA plans to continue with the COC as its designated showcase facility. During FY 2006 TVA will incorporate additional energy efficiency improvements in this facility.

- **II. Implementation Strategies:** The purpose of this section is to describe plans to use strategies to reduce energy consumption and improve energy efficiency. It is not expected that each agency will employ every strategy; rather, each strategy identified in E.O. 13123 is listed below to remind agency officials of the existence of these strategies and to encourage their use where practical and life-cycle cost effective. Agencies should provide highlights of activities under the following strategies that they plan to employ during FY 2006:
 - Life-Cycle Cost Analysis
 - Facility Energy Audits
 - Financing Mechanisms
 - Energy-Savings Performance Contracts (ESPCs)
 - Utility Energy Services Contracts (UESCs).
 - Use of ENERGY STAR[®] and Other Energy-Efficient Products
 - ENERGY STAR[®] Buildings
 - Sustainable Building Design
 - Energy Efficiency in Lease Provisions
 - Industrial Facility Efficiency Improvements
 - Highly Efficient Systems, i.e., combined cooling, heating, and power
 - Distributed Generation
 - Electrical Load Reduction Measures

TVA has implemented numerous energy management measures through its operation and maintenance activities and building retrofits. Through operations, maintenance and renovation, controls are placed on lighting and other energy consuming equipment, and inefficient lighting is replaced when these actions are determined to be life-cycle cost effective. TVA has also installed energy management control systems (EMCSs) in the majority of its corporate facility space and considers the use of EMCSs for all facilities when their use is life-cycle cost effective. Energy management measures will continue to be implemented through operations and maintenance activities and through the capital budget process during

FY 2006.

As part of its operations and maintenance function, TVA has an emergency curtailment procedure which facilitates the reduction of energy use in its buildings during energy emergencies.

A. Life-Cycle Cost Analysis:

TVA's Energy Plan provides that life-cycle cost analysis will be used in making investment decisions regarding energy conservation measures.

B. Facility Energy Audits:

TVA has evaluated its building inventory for potential energy conservation measures. These facilities will be re-evaluated in accordance with the E.O. 13123 and TVA's Memorandum of Understanding with the EPA. Ongoing energy surveys and building assessments are planned for FY 2006.

C. Financing Mechanisms including Energy Savings Performance Contracts (ESPCs) and Utility Energy Services Contracts (UESCs):

Funding procedures for energy management and related environmental projects are reviewed through the IEMP and the AEMC. Recommendations and comments are submitted to the proper organizations. Projects for facilities are primarily funded through renovation, operation, maintenance, and modernization efforts. Projects covered under general operations are ranked for economic benefit compared to other TVA projects to determine funding availability and implementation status and are funded mainly through the capital budgeting process. TVA considers the use of ESPCs where cost effective and in the best interest of the agency and its customers. In consideration of UESCs, TVA is a utility.

D. Use of ENERGY STAR[®] and Other Energy Efficient Products:

TVA considers the purchase of Energy Star and other energy efficient products whenever feasible. TVA will continue its efforts to buy materials that have positive environmental qualities during FY 2006.

E. ENERGY STAR[®] Buildings:

TVA's Energy Plan provides that TVA will strive, when cost-effective, to meet the Energy Star Building criteria for energy performance and indoor environmental quality in its eligible facilities to the maximum extent practicable, as described by section 403(c) of E.O. 13123.

F. Sustainable Building Design:

TVA incorporates sustainable design criteria into renovation and new construction efforts. A "Sustainable Check List" and "Sustainable Design Guideline" have been created to support this effort. TVA's agency sustainable program is under the IEMP.

G. Energy Efficiency in Lease Provisions:

Where applicable, TVA will use model lease provisions based on those recommended by the GSA, and such provisions will be incorporated into new and renewed leases, provided they are cost-effective. The model lease provisions address energy and water efficiency.

H. Industrial Facility Efficiency Improvements:

TVA will continue its current activities to investigate areas for improvement in industrial facility efficiency during FY 2006.

I. Highly Efficient Systems:

TVA will continue to investigate ways to improve system efficiency and will look for options that include biomass through FY 2006.

J. Distributed Generation:

TVA is a utility however; it does consider distributed generation when life-cycle cost effective.

K. Electrical Load Reduction Measures:

As part of its operation and maintenance function, TVA has an emergency curtailment procedure which facilitates the reduction of energy use in its buildings during energy emergencies.

REPORTING UNITS AND CONVERSION FACTORS FOR FEDERAL ENERGY MANAGEMENT REPORTING

<u>t Facilities</u>				
Fuel Type	Reporting Units	BTUs per	Joules per	GigaJoules (GJ) pe
		Reporting Unit	Reporting Unit	Reporting Unit
Electricity	Megawatt Hour (MWH)	3,412,000	3,599,660,000	3.59966
Fuel Oil	1,000 Gallons	138,700,000	146,328,500,000	146.3285
Natural Gas	1,000 Cubic Feet	1,031,000	1,087,705,000	1.087705
LPG/Propane	1,000 Gallons	95,500,000	100,752,500,000	100.7525
Coal	Short Ton	24,580,000	25,931,900,000	25.9319
Purchased Steam	Billion Btu (BBtu)	1,000,000,000	1,055,000,000,000	1,055.0
Other	Billion Btu (BBtu)	1,000,000,000	1,055,000,000,000	1,055.0
s/Equipment				
Fuel Type	Reporting Units	BTUs per	Joules per	GigaJoules (GJ) p
		Reporting Unit	Reporting Unit	Reporting Unit
Auto Gas	1,000 Gallons	125,000,000	131,875,000,000	131.875
Diesel	1,000 Gallons	138,700,000	146,328,500,000	146.3285
LPG/Propane	1,000 Gallons	95,500,000	100,752,500,000	100.7525
Aviation Gas	1,000 Gallons	125,000,000	131,875,000,000	131.875
Jet Fuel	1,000 Gallons	130,000,000	137,150,000,000	137.150
Navy Special	1,000 Gallons	138,700,000	146,328,500,000	146.3285
Other	Billion Btu (BBtu)	1,000,000,000	1,055,000,000,000	1,055.0

Other Conversion Factors

Standard Buildings/Facilities

100 Cubic Feet (Ccf) = 748 Gallons	1 Liter = 0.264 Gallons
1 Acre-Foot = 325,851 Gallons	1 Cubic Meter = 264 Gallons

12/02/05

TVA ENERGY POLICY

TVA is committed to being a leader in the efficient and environmentally-sound use of energy. Through the adoption of an energy plan, TVA facilitates compliance with legally and regulatorily required energy reduction goals and procedures. Delegation of authority is given to the Chief Operating Officer or that official's designee to develop a plan to achieve the objectives of this Policy and, subsequently, to modify the Plan when necessary.

TVA AGENCY ENERGY PLAN

This Plan is coordinated through TVA's Internal Energy Management Program (IEMP).

Contact:

Steve L. Brothers Address: Tennessee Valley Authority 1101 Market Street, EB3G-C Chattanooga, TN 37402-2801 Phone: 423-751-7369 E-Mail: slbrothers@tva.gov

REVISIONS, DATES and REASON:

Revision 1, May 27, 1997. Revisions were made to incorporate new regulations, the joining of the Energy Star Building Program and the Motor Challenge, and to facilitate the move of the IEMP from Customer Group under the COO to Facilities Services under the CAO.

Revision 2, September 10, 1998. Revisions were made to incorporate changes in organizational names and changes to regulations.

Revision 3, December 15, 1999. Revisions were made to incorporate changes in regulations.

Revision 4, October 23, 2000. Revisions were made to incorporate changes in regulations including Executive Order 13123 and Executive Order 13149.

Revision 5, December 26, 2001. Revisions were made to incorporate changes in organizational names and changes to regulations.

Revision 6, December 20, 2002. Revisions were made to incorporate changes in organizational names and changes to regulations including Executive Order 13221.

Revision 7, December 23, 2003. Revisions were made to incorporate changes in organizational names and updates to the Plan.

Revision 8, December 14, 2004. Revisions were made to incorporate changes in organizational names and updates to the Plan.

Revision 9, December 2, 2005. Revisions were made to incorporate changes in organizational names and updates to the Plan.

TABLE OF CONTENTS

TVA AGENCY ENERGY PLAN (revised 12/05)

I. Introduction / Background

II. Organization

- A. Dissemination of Information
- B. Organizational Plans

III. Major Plan Components

- A. Strategy
 - 1. Goals and Schedule
 - 2. Building Design and Renovation
- B. Implementation
- C. Identify and Prioritize Projects
- D. Funding Strategy
- E. Other Activities
- IV. Tracking and Reporting
 - A. Implementation Procedures
 - B. Progress Toward Meeting Objectives
 - 1. Quarterly Reporting
 - 2. Annual Reporting
 - 3. Other Reporting
 - C. General
- V. Special Problems
- VI. Additional Provisions
 - A. TVA Fleet Efficiency Strategy

ENERGY PLAN

I. Introduction/Background

The following plan (hereafter "the Plan") has been established to meet Federal statutory and regulatory requirements and the requirements of TVA's Green Lights agreement with the Environmental Protection Agency (hereafter "the EPA"), the Energy Star Building Program, the DOE Motor Challenge, and to comply with the annual implementation plan requirements of section 302 of Executive Order (E.O.) 13123, 13221 and 13149. TVA's intention is to make TVA a Federal agency role model and leader in the wise management and use of energy. This Plan will be implemented by Chief Officers and Vice presidents (heads of TVA major groups). The TVA Senior Energy Official, through the IEMP, will coordinate the implementation of the Plan. This Plan promotes, recommends, and outlines the wise use of energy in TVA's operations and in energy intensive equipment purchased for use inside the Agency. The Plan covers all organizations that are responsible for use of energy or purchase of energy consuming equipment. The Plan and supporting organizational energy management plans are intended to meet or exceed the energy reduction goals required under Federal law, regulations, executive orders, and the voluntary goals TVA has established as a participant in EPA's Green Lights, Energy Star Buildings, Energy Star and DOE's Motor and Compressor Challenge Programs.

- II. Organization
 - A. Implementation of Plan and Dissemination of Information

The Agency Energy Management Committee (AEMC), under the sponsorship of the TVA Senior Energy Official, will be responsible for implementing this Plan and the clearing-house for information regarding energy responsibility to the various TVA Groups. The AEMC shall be the team described in section 305 of E.O. 13123.

B. Organizational Plans

Each Group shall establish its own plan, when appropriate, to meet or exceed the goals and objectives described under the Plan. These plans shall be updated and maintained to show how each organization intends to accomplish its goals and objectives. Plans and updates will be submitted to the IEMP through organization's representatives on the AEMC at least annually, or when revisions are made, for reporting to DOE. Reports will be made to OMB, EPA and other federal agencies as requested or required.

III. Major Plan Components

A. Strategy

TVA has established the following goals and schedule to comply with Federal laws, memorandums of understanding (MOU), regulations, and executive orders to make TVA a more energy efficient and environmentally friendly agency:

- A. Strategy (continued)
 - 1. Goals and Schedule
 - a) Through life-cycle cost-effective energy measures, reduce its greenhouse gas emissions attributed to subject facility energy use by thirty percent by FY 2010, as discussed in section 201 of E.O. 13123.
 - b) Reduce overall energy consumption in TVA owned and leased buildings (subject to the National Energy Conservation Policy Act, as amended, and implementing E.O.'s and regulations from FY 1985 to FY 2005) by 30 percent (BTU/SQ FT/YR), and 35 percent by the year FY 2010 to the extent to which this reduction by FY 2005 and FY 2010 is cost effective. Implement all costeffective energy and water Energy Conservation Opportunities (ECOs) with a less than 10-year payback by the year FY 2005 for all subject TVA-owned buildings. A building is defined as: "any enclosed structure that consumes energy and is not on wheels."
 - c) Reduce energy consumption of subject industrial and laboratory facilities by at least 20 percent by the year FY 2005 and 25 percent by FY 2010, as compared with FY 1990, to the extent that those measures are cost-effective, as noted by E.O. 13123 Section 203.
 - d) Design all new TVA buildings (those designed after July 31, 1989) to be energy efficient, sustainable, and in compliance with 10 C.F.R. Part 435. Have new buildings designs meet Energy Star standards where practicable and life cycle cost effective. Have acquired buildings comply with 10 C.F.R. 435/434, if cost effective.
 - e) Conduct lighting surveys on all TVA buildings and reduce lighting energy use at least 50 percent without compromising lighting quality as part of the EPA Green Lights Program. Implement appropriate lighting upgrades, with a 10year payback or less, covering 100 percent of TVA's surveyed gross square footage by FY 2005. This will not apply to those parts of TVA buildings which are exempt from the TVA/Green Lights agreement pursuant to Addendum 1 Section 1.B of the agreement.
 - f) Strive to extend the use of renewable energy within its subject facilities and in its activities by implementing renewable energy projects and by obtaining electricity from renewable sources, as described in E.O. 13123 Section 204. Utilize TVA renewable and green programs to achieve E.O. requirements.
 - g) Through life-cycle cost-effective measures, reduce energy consumption and associated environmental impacts within its subject facilities, as described in E.O. 13123 Section 205.
 - h) Strive to reduce total energy use and associated greenhouse gas and other air emissions, as measured at the source, as described in E.O. 13123 Section 206.
- A. Strategy (continued)

- i) Implement best management practices to reduce water consumption and associated energy use in subject facilities to reach goals to be established under E.O. 13123 Section 503 (f), to the extent that these measures are cost-effective, as described in E.O. 13123 Section 207.
- j) Annually report progress in meeting the goals and requirements of E.O. 13123 to the President, as described in Section 303 of the E.O.
- k) Applicable to those facilities which are covered by the National Energy Conservation Policy Act, as amended and E.O. 13123, enter and participate in a Federal Energy Star Program Partnership Memorandum of Understanding (MOU) as an attachment to the current Federal Energy Star Buildings Program and Green Lights MOU with the Department of Energy and Environmental Protection Agency. Under the Federal Energy Star Buildings Program Partnership MOU, TVA will generally agree to aggressively pursue all lifecycle cost-effective energy efficient building systems upgrades in its existing facilities and will generally agree to design all new facilities in compliance with applicable codes and regulations, particularly 10 C.F.R. Part 435/434, subpart A or its successor.
- Participate in the DOE Motor and Compressor Challenge programs under which TVA will participate in a coordinated effort to encourage increased market penetration of more efficient electric motor and compressor systems. This will include TVA receiving reliable product and system information from DOE, customers and other Federal Agencies, helping develop new information based on communication with other organizations and experience in TVA facilities, and may entail TVA being recognized for developing more efficient and effective motor and compressor systems.
- m) Obtain, where applicable, alternative fuel vehicles (AFVs) and/or hybrid vehicles as provided by the Energy Policy Act of 1992 (EPAct 92) and, to the extent to which it applies, E.O. 13149.
- n) Continue to conduct energy and water audits for its subject facilities each year, either independently or through Energy Savings Performance Contracts or utility energy-efficiency service contracts, as described in section 402 of E.O. 13123.
- o) When entering and/or renewing leases, as provided by section 403 (e) of E.O. 13123, to the extent wherever life-cycle cost-effective and legally permitted, TVA will seek to incorporate provisions in each lease that promote sustainability and minimize the cost of energy and water. Consideration shall be given to providing cost-effective preferences to buildings carrying the Energy Star Building label.

- A. Strategy (continued)
 - 1.
- p) Designate exemplary new and existing facilities with significant public access and exposure as showcase facilities to highlight energy or water efficiency and renewable energy improvements, as described in Section 406 (e) of the E O.
- q) In accordance with section 304 of E.O. 13123, designate a senior official to be responsible for achieving the goals of this policy. Such official shall be appointed to the Interagency Energy Policy Committee (656 Committee/Senior Officials).
- r) Strive, where cost-effective, to meet the Energy Star criteria for energy performance and indoor environmental quality in its eligible facilities to the maximum extent practicable by the end of FY 2002, as described by E.O. 13123 Section 403 (c).
- s) Re-survey appropriate buildings every five years.
- t) Explore efficiency opportunities in its subject industrial facilities for steam systems, boiler operation, air compressor systems, industrial processes, and fuel switching, including cogeneration and other efficiency and renewable energy technologies, as described in E.O. 13123 Section 403 (f).
- u) Implement district energy systems, and other highly efficient systems, in new construction or retrofit projects when life-cycle cost-effective, as described in Section 403 (g) of E.O. 13123.
- v) Strive to improve the design, construction, and operation of its mobile equipment and implement all life-cycle cost-effective energy efficiency measures that result in cost savings while improving mission performance, as discussed in Section 405 of E.O. 13123.
- w) Strive to use management strategies, such as employee incentive programs, as described in Section 406 of E.O. 13123, to achieve the objectives of the E.O.
- x) In accordance with E.O. 13221, purchase standby power equipment which meets the standards of the E.O. where life-cycle cost-effective and when practical.
- 2. Building Design and Renovation
 - a) Sustainable Building Design. Apply sustainable design principles developed by DOD and GSA pursuant to Section 403 (d) of E.O. 13123 to the siting, design, and construction of its subject new facilities. Apply these and other cost effective principles through the TVA Sustainable Design Program.

A. Strategy (continued)

- b) New Building Design. All design firms doing building design work on TVA buildings must certify compliance at the contract execution. This statement shows that the firm will adhere as required to 10 C.F.R. 434/435 and any other energy regulation applicable to the particular building type under design. At the conclusion of the design, the responsible design organization will complete, sign, and submit a 10 C.F.R. Part 435 Compliance Form to the IEMP.
- c) Existing Building Renovation. Energy and water surveys will be conducted to discover potential energy conservation opportunities (ECOs) and best management practices (BMPs) for water. The life-cycle cost-effective recommendations from these surveys will be implemented in existing buildings. Also, buildings will be evaluated for cost effective sustainable options.
- B. Implementation

ECOs, BMPs, and sustainable options will be considered for implementation if, after completion of the life-cycle cost analysis, the project is shown to be cost effective and has a less than 10-year payback.

To ensure effective Policy implementation, reports on progress toward energy reduction goals, BMPs, and sustainable options achieved are required to be submitted to the IEMP by all TVA organizations affected at least annually.

TVA will use all practical means to ensure its programs, projects, and activities protect and enhance the quality of the human and natural environment. At the earliest practicable time, when a proposed project has environmental impacts, the office proposing an action under this plan will initiate environmental review.

C. Identify and Prioritize Projects

Life-cycle cost-effective ECOs, BMPs, and sustainable options will be reviewed and ranked for implementation based on their Savings to Investment Ratio (SIR), their Internal Rate of Return (IRR), and their impact on TVA's mission. The projects will be prioritized for implementation based on best return on investment and necessity to support TVA's mission and responsibility to its customers.

D. Funding Strategy

All ECOs, BMPs, and sustainable options analyzed shall be evaluated using the guideline of NIST Handbook 135, Life-Cycle-Costing Manual for the Federal Energy Management Program. Those cost-effective ECOs, BMPs and sustainable options having a 10-year or less payback and a savings to investment ratio greater than one will be budgeted for and implemented contingent on their support to TVA's mission and responsibility to its customers. For ECOs on TVA buildings not covered under EPAct 92, but considered under Green Lights (Energy Star), cost effectiveness shall be based on current TVA financial standards and business practices.

D. Funding Strategy (continued)

The following funding options will be considered when implementing ECOs, BMPs, and sustainable options:

- 1. Direct funding from TVA operating capital,
- 2. Utility sponsored demand side management programs,
- 3. Energy Savings Performance Contracts and Shared Savings Agreements, and
- 4. Federal Energy Efficiency Fund.
- E. Other Activities

TVA will consider implementation of all cost-effective operation and maintenance energy management projects in its day-to-day energy management activities. Water flow restriction devices and other activities which would conserve and preserve our water resources will be considered for implementation. TVA will demonstrate and implement energy efficient electrical equipment in its internal operations where appropriate and will promote their use to its customers. TVA will implement an energy awareness campaign annually to obtain employee assistance in reducing energy use. TVA will also continue its sustainable design efforts through the direction of the Sustainable Design Program.

- IV. Tracking and Reporting
 - A. Implementation Procedures

If an ECO has a less than five-year payback and meets TVA's IRR, as defined by TVA's CFO, this ECO will be considered for implementation during the next budget cycle. Water conservation objectives and sustainable options will be considered for implementation when, after life-cycle-cost analysis, their payback is less than ten years.

B. Progress Toward Meeting Objectives

All TVA organizations that have responsibility for energy and water consumption in buildings or operations will report this usage to the IEMP.

1. Quarterly Reporting

On a quarterly basis, unless otherwise specified, organizations which have identified or implemented ECOs, BMPs, and/or sustainable options will report this information to the IEMP.

2. Annual Reporting

On an annual basis, all organizations which have responsibilities over energy and/or water use in operations or buildings will describe energy management or conservation programs, projects, or operations performed during that fiscal year and those projects, programs, and operations planned for the next fiscal year. The date for submission for this information will be no later than 60 calendar days after the end of the fiscal year.

- 3. Other Reporting
 - a) Individual organizations may implement reporting requirements within their organizations in order to monitor usage in an effort to enhance performance.
 - b) Organizations may receive copies of the reports sent to DOE upon request. All other reports generated to assist TVA in its effort to be a leader in energy management and conservation will be available upon request.
- C. General

All TVA employees and organizations are encouraged to reduce energy and water waste. New and innovative ideas and techniques for the reduction of energy and water waste and better energy management should be communicated to the IEMP so the information can be shared throughout TVA. In selection of equipment, electrical alternatives shall be chosen whenever cost-effective and whenever possible. TVA buildings will be used to demonstrate the application of innovative energy and water efficient technologies.

V. Special Problems

Organizations having special problems meeting The Plan should submit a description of those problems to the IEMP for review. Any problems needing DOE attention will be communicated annually in TVA's annual report to DOE.

- VI. Additional Provisions
 - A. TVA FLEET EFFICIENCY STRATEGY (Attachment 9)

Background:

This strategy defines TVA's commitment to vehicle fleet and transportation efficiencies as described in EPAct 92 and E.O. 13149. The strategy is an internal part of the decision making process for fleet purchases and operations for TVA.

Responsibilities:

Administration: Program administrator and owner of the fleet efficiency strategy; goal setting, etc. Transportation Services will coordinate the implementation of the strategy in TVA through the Agency Energy Management Committee. Committee members representing this program include Fleet Management, Kathy Ellis and Heavy Equipment, David Gordon:

- a) John E. Long is the designated Senior Energy Official and Executive Vice President of Administrative Services.
- b) Stephen L. Brothers is the designated Chief Energy Manager, manages the TVA Internal Energy Management Program (IEMP) and is chairperson for the Agency Energy Management Committee.
- c) David R. Zimmerman is the manager of the TVA Sustainable Design Program.

Tennessee Valley Authority Compliance Strategy for E.O. 13149

Original: October 4, 2002 Revised: November 4, 2004 Revised: November 30, 2005

Tennessee Valley Authority Compliance Strategy for E.O. 13149

Executive Summary

TVA's mission includes generating and transmitting electric power to fulfill the needs of almost eight million users throughout TVA's seven-state service territory, and specifically includes the major objective of selling the power at rates as low as feasible. All TVA operations (including but not limited to 29 hydroelectric plants, 15 fossil-fueled plants, three nuclear plants, and 17,000 miles of transmission lines and facilities) are independently funded by power sales and by power revenue bonds (which are not obligations of, nor backed by, the United States); TVA receives no appropriated funds. Consistent with its mission requirements and its independent corporate status, TVA intends to comply with E.O. 13149 to the extent feasible. TVA has a long history of demonstrating stewardship toward energy reduction and fuel efficiency and will continue to work toward meeting fuel reduction and vehicle efficiency.

TVA's fleet strategy is to examine current vehicle use and replacement and where possible, choose replacement vehicles that are most efficient. TVA, as a major provider of electricity will continue to make use of alternative fueled vehicles (AFVs) including those that use electric power and acquire additional vehicles to meet requirements under EPAct92. TVA has recognized the value of hybrid electric vehicle technology in reducing fuel consumption, increasing versatility, and promoting electric propulsion and has included these vehicles in its fleet. TVA created a hybrid-fleet program in FY 2002 which is a partnership effort between TVA's Energy Management and Fleet Management organizations. In FY 2005, TVA added five hybrid gas/electric vehicles and 20 AFV's to its fleet, bringing the total number of hybrid vehicles to 25 and AFV's to 54.

In FY 2005 TVA reported in its "Federal Agency Annual Report on Energy Management" the following data:

- Annual MPG Sedans 27.3
- Annual MPG Light Trucks (4x2) 14.8
- Annual MPG Light Trucks (4x4) 13.4

I-1. TVA Petroleum Use

Petroleum use for covered vehicles will continue to be reported in FAST; however, gasoline and diesel fuel usage for FY 2005 and associated cost is listed below. This data includes fuel used by light duty, medium duty and heavy duty vehicles. The source of this data is the "TVA Energy Management Annual Report for FY 2005."

- Gasoline 2,412,954 gallons. Cost: \$4,511,774
- Diesel Fuel 807,082 gallons. Cost: \$1,597,886

To increase MPG for FY 2006, TVA plans to purchase more fuel efficient vehicles where possible, including additional hybrid vehicles. Fuel saving activities will be reported each year in the TVA Energy Management Annual Report.

I-2. TVA Fleet Characteristics and AFVs

TVA vehicles are spread across its seven-state service area. The TVA service area covers all of Tennessee and portions of six other states; therefore, employees are widely dispersed and often travel significant distances to attend meetings and presentations. TVA vehicles are used primarily outside of metropolitan statistical areas as described in EPAct92. Also, significantly for purposes of EPAct92 Alternative Fueled Vehicle requirements, TVA has no central fueling facilities in metropolitan statistical areas. Further, as coordinated with DOE, TVA vehicles used in maintaining the reliable operation of the power system appear to be within the intent of EPAct92 exemptions such as for emergency or off-road vehicles. Based on these facts, EPAct92 does not impose significant AFV purchase requirements on TVA but, TVA nonetheless does intend to continue to add to its current fleet of AFVs. Annual fleet characteristics for vehicles covered under EPAct92 will be reported in FAST.

I-3. TVA Fleet Strategy to Reduce Fuel Use and Increase Efficiency

TVA's fleet strategy is to replace vehicles with those that are more efficient where practical. To facilitate this effort TVA has produced several guides accessible to employees as needed, which graphically compare the fuel use and operating costs of various types of vehicles.

TVA will continue to utilize various transportation options related to increasing efficiency including the use of personal vehicles, short term rental cars, short term leases and assigned vehicles. This information will also be made available to employees to determine the best method of transportation based on trip duration and miles driven.

TVA examines current vehicle use and replacement and where possible, chooses replacement vehicles that are most efficient. TVA, as a major provider of electricity, will continue to make use of alternative fueled vehicles that use electric power and acquire additional vehicles to meet requirements under EPAct92. TVA recognizes the value of hybrid electric vehicle technology in reducing fuel consumption, increasing versatility, and promoting electric propulsion. TVA has added hybrid vehicles to its fleet and will continue to do so.

TVA's Agency Energy Management Committee (AEMC) facilitates compliance with federal statutes, Executive Orders, federal regulations, TVA energy and related environmental management objectives, and obligations under the Environmental Protection Agency's (EPA) Green Lights Program (GL), EPA's Energy Star Buildings Program (ESB) and EPA's Energy Star Program (ESP). The AEMC serves as the agency energy team. This committee is comprised of representatives from each TVA organization responsible for energy management and associated environmental considerations in facility and general operations inside the agency. The AEMC provides an avenue for sharing lessons learned and replicating success, including fuel use and increased vehicle efficiency. This committee meets every other month.