DEPARTMENT OF HEALTH AND HUMAN SERVICES

FOOD AND DRUG ADMINISTRATION

CENTER FOR DRUG EVALUATION AND RESEARCH

ADVISORY COMMITTEE FOR PHARMACEUTICAL SCIENCE

Tuesday, April 13, 2004 8:30 a.m.

Advisors and Consultants Staff Conference Room 5630 Fishers Lane Rockville, Maryland

PARTICIPANTS

Arthur H. Kibbe, Ph.D., Chair Hilda F. Scharen, M.S., Executive Secretary

MEMBERS

Charles Cooney, Ph.D. Patrick P. DeLuca, Ph.D. Meryl H. Karol, Ph.D. Melvin V. Koch, Ph.D. Marvin C. Meyer, Ph.D. Gerald P. Migliaccio (Industry

Representative)

Cynthia R.D. Selassie, Ph.D. Nozer Singpurwalla, Ph.D. Marc Swadener, Ed.D. (Consumer

Representative)

Jurgen Venitz, M.D., Ph.D.

SPECIAL GOVERNMENT EMPLOYEES

Judy Boehlert, Ph.D. Paul H. Fackler, Ph.D., (Acting Industry Representative) Thomas P. Layloff, Jr., Ph.D.

FDA

Ajaz Hussain, Ph.D. Chris Joneckis, Ph.D. Robert O'Neill, Ph.D. Keith Webber, Ph.D. Helen Winkle

CONTENTS

	PAGE
Call to Order: Arthur Kibbe, Ph.D.	4
Conflict of Interest Statement: Hilda Scharen, M.S.	4
Introduction to Meeting: Helen Winkle	8
Subcommittee Reports: Jurgen Venitz, M.D., Ph.D.	34
Parametric Tolerance Interval Test for Dose Content Uniformity: Ajaz Hussain, Ph.D.	44
Moving ForwardAn Approach for Resolution: Robert O'Neill, Ph.D.	46
Committee Discussions and Recommendations	53
Process Analytic Technology (PAT)Next Steps: Ajaz Hussain, Ph.D.	70
Finalizing PAT Guidance, Training and Certification: Chris Watts, Ph.D.	89
Standards Development: Ali Afnan, Ph.D.	100
Rapid Microbial Methods: Bryan Riley, Ph.D.	110
Committee Discussions and Recommendations	135
Open Public Hearing Leo Lucisano, GlaxoSmithKline Parrish M. Galliher, Xcellerex Troy J. Logan, Siemens Robert Mattes, Foss-NIRSystems	135 145 174 185
PAT Applications for Products in the Office of Biotechnology Products (OBP): Overview and Issues: Keith Webber, Ph.D. Christopher Joneckis, Ph.D. Charles Cooney, Ph.D. Kevin Koch, Ph.D. Tom Layloff, Ph.D.	194 213 224 248 271
Committee Discussions and Recommendations	279

1	PROCEEDINGS
2	Call to Order
3	DR. KIBBE: Ladies and gentlemen, shall we
4	begin. This is the Advisory Committee for
5	Pharmaceutical Science. Today is April 13th. Those
6	of you who have not done your taxes, because you
7	are here working for us and the Federal Government,
8	you will get exactly no compensation to allow you
9	to do your taxes late.
10	Hilda.
11	Conflict of Interest Statement
12	MS. SCHAREN: Good morning. I am going to
13	start reading the Conflict of Interest Statement
14	for the Advisory Committee for Pharmaceutical
15	Science. I am Hilda Scharen with the Center for
16	Drugs, FDA. I am the Executive Secretary for this
17	committee.
18	The following announcement addresses the
19	issue of conflict of interest with respect to this
20	meeting and is made a part of the record to
21	preclude even the appearance of such at this
22	meeting.
23	Based on the agenda, it has been

determined that the topics of today's meeting are

issues of broad applicability and there are no

24

1 products being approved at this meeting. Unlike

- 2 issues before a committee in which a particular
- 3 product is discussed, issues of broader
- 4 applicability involve many industrial sponsors and
- 5 academic institutions.
- 6 All Special Government Employees have been
- 7 screened for their financial interests as they may
- 8 apply to the general topics at hand. To determine
- 9 if any conflict of interest existed, the Agency has
- 10 reviewed the agenda and all relevant financial
- 11 interests reported by the meeting participants.
- 12 The Food and Drug Administration has
- 13 granted general matter waivers to the Special
- 14 Government Employees participating in this meeting
- 15 who require a waiver under Title 18, United States
- 16 Code, Section 208.
- 17 A copy of the waiver statements may be
- 18 obtained by submitting a written request to the
- 19 Agency's Freedom of Information Office, Room 12A-30
- 20 of the Parklawn Building.
- 21 Because general topics impact so many
- 22 entities, it is not prudent to recite all potential
- 23 conflicts of interest as they apply to each member
- 24 and consultant and guest speaker.
- 25 FDA acknowledges that there may be

1 potential conflicts of interest, but because of the

- 2 general nature of the discussion before the
- 3 committee, these potential conflicts are mitigated.
- 4 With respect to FDA's invited industry
- 5 representatives, we would like to disclose that
- 6 Gerald Migliaccio is participating in this meeting
- 7 as an industry representative acting on behalf of
- 8 regulated industry. Mr. Migliaccio is employed by
- 9 Pfizer. Dr. Paul Fackler is participating in this
- 10 meeting as an acting industry representative. Dr.
- 11 Fackler is employed by Teva Pharmaceuticals U.S.A.
- 12 In the event that the discussions involve
- 13 any other products or firms not already on the
- 14 agenda for which FDA participants have a financial
- 15 interest, the participants' involvement and their
- 16 exclusion will be noted for the record.
- 17 With respect to all other participants, we
- 18 ask in the interest of fairness that they address
- 19 any current or previous financial involvement with
- 20 any firm whose product they may wish to comment
- 21 upon.
- Thank you.
- 23 DR. KIBBE: Thank you. I am Art Kibbe. I
- 24 am Chairman of the Pharmaceutical Science's
- 25 Department at Wilkes University.

1 We have a tradition of introducing

- 2 everyone around the table, so, Dr. O'Neill, if you
- 3 will start.
- 4 DR. O'NEILL: I am Bob O'Neill. I am
- 5 Director of the Office of Biostatistics in CDER.
- 6 DR. HUSSAIN: Ajaz Hussain, Deputy
- 7 Director, Office of Pharmaceutical Science.
- 8 MS. WINKLE: Helen Winkle, Director,
- 9 Office of Pharmaceutical Science.
- 10 DR. VENITZ: Jurgen Venitz, Clinical
- 11 Pharmacologist, Virginia Commonwealth University.
- DR. SELASSIE: Cynthia Selassie, Professor
- of Chemistry, Pomona College.
- DR. BOEHLERT: Judy Boehlert. I have my
- own pharmaceutical consulting business.
- 16 DR. SWADENER: Marc Swadener, retired from
- 17 the University of Colorado at Boulder.
- DR. MEYER: Marvin Meyer, Emeritus
- 19 Professor, University of Tennessee, now a
- 20 consultant in Boca Raton, Florida.
- DR. KAROL: Meryl Karol, a Professor at
- 22 the University of Pittsburgh in Environmental and
- 23 Occupational Health.
- DR. LAYLOFF: Tom Layloff, Management
- 25 Sciences for Health, a nonprofit, working primarily

- 1 in Africa on drug quality.
- DR. KOCH: Mel Koch, Director of the
- 3 Center for Process Analytical Chemistry at the
- 4 University of Washington.
- 5 DR. COONEY: Charles Cooney, Department of
- 6 Chemical Engineering at MIT.
- 7 DR. DeLUCA: Pat DeLuca, Professor of
- 8 Pharmacy at the University of Kentucky.
- 9 MR. MIGLIACCIO: Gerry Migliaccio, Vice
- 10 President of Global Quality Operations for Pfizer.
- 11 DR. FACKLER: Paul Fackler, Teva
- 12 Pharmaceuticals.
- DR. KIBBE: Thank you.
- 14 Next on our agenda is an Introduction to
- 15 the Meeting. Ms. Winkle.
- 16 Introduction to Meeting
- 17 MS. WINKLE: Thank you and good morning to
- 18 all the committee members. I especially want to
- 19 welcome the members who have not attended before or
- 20 are just joining us for the first time.
- 21 That includes Dr. Cooney, Dr. Koch, and
- 22 Dr. Singpurwalla, who is not here yet, but will be
- 23 joining us later today, and also to Gerry and Paul
- 24 for helping us out as industry reps. We are really
- 25 pleased to have both of them here working with us.

1	[Slide.]
_	[DIIGO.]

- 2 Today, I just want to give a short
- 3 update--it will probably be longer than short, but
- 4 it is supposed to be short--update on some of the
- 5 things that we are doing in OPS.
- 6 [Slide.]
- 7 Today, I want to talk a little bit about
- 8 the OPS mission, vision, and goals. I think it is
- 9 really important for me to go over these with the
- 10 committee because it helps all of us understand a
- 11 little bit more about where OPS is going in the
- 12 future. I think that as we talk about various
- 13 scientific issues, it will help put things in a
- 14 better perspective for the committee.
- We have just recently finalized the
- 16 mission, vision, and goals, so I think it is
- 17 important that I share them.
- 18 I also want to talk a little bit about
- 19 what we are doing in OPS in developing a new
- 20 paradigm for CMC review in our Office of New Drug
- 21 Chemistry. This is really an exciting effort that
- 22 we have undergone, and I think there are a lot of
- 23 things that will be very beneficial to talk about a
- 24 little bit here.
- 25 A lot of this is built on the

- 1 Pharmaceutical Quality Initiative for the 21st
- 2 Century, so it helps put that in perspective, as
- 3 well as to what we are doing in the future in OPS.
- I also want to mention some of the new
- 5 personnel that we have in OPS and then talk a few
- 6 minutes about the meeting agenda.
- 7 [Slide.]
- 8 The mission statement. Again, I think
- 9 this is very important because it sets forth what
- 10 OPS is currently focused on, and it is important
- 11 not only to those activities that we are engaged in
- 12 and working on very diligently in the organization,
- 13 they are also very important in supporting the
- 14 overall mission of the Center and mission of the
- 15 Agency.
- 16 Basically, our mission statement is to
- 17 ensure timely availability of high quality drug
- 18 products to U.S. patients. We are doing this
- 19 through effective and efficient scientific
- 20 assessment of relevant pharmaceutical and
- 21 biotechnology information in the submissions, and
- 22 by facilitating those scientific and technological
- 23 innovation that improve understanding of product
- 24 performance, quality, and efficiency of
- 25 development, manufacturing, and quality assurance

processes.

- 2 Many of these things that we have talked
- 3 about at past meetings, that we will talk about in
- 4 the future, fall very much within this mission
- 5 statement and some of the things that we are trying
- 6 to accomplish.
- 7 [Slide.]
- 8 Our vision is to be an international
- 9 champion. I think it is very important that we
- 10 talk about where OPS is going from an international
- 11 perspective because things are more global.
- 12 Obviously, now industry, many of the
- 13 things that we work on are global, and we need to
- 14 be part of that overall global involvement in
- 15 pharmaceutical science, but we really want to be
- 16 champions and leaders in the regulatory application
- 17 of contemporary scientific knowledge, and that
- 18 knowledge that affects the design, development,
- 19 manufacture, and clinical performance of
- 20 pharmaceutical and biotechnology products.
- 21 [Slide.]
- 22 Basically, the goals are for OPS programs
- 23 and projects to support the achievement of the
- 24 following attributes of drug products:
- 25 The drug quality and performance is

1 achieved and assured through design of effective

- 2 and efficient development and manufacturing
- 3 processes;
- 4 That regulatory specifications are based
- 5 on a mechanistic understanding of how product and
- 6 process factors impact product performance;
- 7 And that there is continuous "real time"
- 8 assurance of quality.
- 9 These are all very important objectives
- 10 that we are striving toward.
- 11 [Slide.]
- 12 Also, OPS will implement a review quality
- 13 system and procedures throughout the organization
- 14 that will:
- 15 Recognize the level of scientific
- 16 knowledge supporting product applications, process
- 17 validation, and process capability;
- 18 Apply a risk-based regulatory scrutiny
- 19 that will relate to the level of scientific
- 20 understanding of how formulation and manufacturing
- 21 process factors affect product performance, and the
- 22 capability of process control strategies to prevent
- 23 or mitigate risk of poor product performance.
- 24 [Slide.]
- 25 I wanted to talk a few minutes now that I

- 1 have talked about sort of the mission and the
- 2 goals, and you have a feel for where we are going,
- 3 I want to talk about some of the changes that we
- 4 are making. Specifically, I want to talk about the
- 5 changes we are making in CMC review.
- To help set the stage for the future, I
- 7 wanted to go quickly through the FDA Strategic
- 8 Action Plan that Dr. McClellan initiated when he
- 9 came on board, I want to talk about the
- 10 Pharmaceutical Quality for the 21st century, which
- 11 is a really important initiative that is taking
- 12 place in the Agency, and is very important to us as
- 13 we move ahead in the Office of Pharmaceutical
- 14 Science and some of the things that we are trying
- 15 to accomplish.
- I want to talk just a second about
- 17 resources in our CMC area, because I think without
- 18 mentioning the resources and the problems that we
- 19 have in resources, it is hard to understand why the
- 20 changes are necessary that need to be made in order
- 21 to improve on how we do review.
- 22 Also, I want to talk about a few other
- 23 influences that have happened since the
- 24 organization was first established in 1995.
- 25 [Slide.]

1	The	FDA	Strategic	Plan	_	Responding	to

- 2 Challenges and Opportunities. Again, as I said,
- 3 Dr. McClellan introduced this plan several months
- 4 after he entered the Agency. He was very focused
- 5 while he was here at the Agency on accomplishing
- 6 these particular aspects of all of the products
- 7 that are regulated by FDA.
- 8 Mainly, he focused on efficient risk
- 9 management, so that we were sure we were going to
- 10 get the most public health bang for our regulatory
- 11 buck.
- 12 He wanted empowering consumers. He felt
- 13 that I think all of us understand there is a lot of
- 14 interest on the part of consumers in their own
- 15 health care, and he wanted to be able to improve
- 16 health through better information to consumers, so
- 17 as they make decisions, as they look at their own
- 18 health care, as they even deal with their
- 19 physicians, et cetera, that they have a better
- 20 understanding of the medications, food, et cetera,
- 21 et cetera, that they need to take or use.
- 22 He wanted to improve patient and consumer
- 23 safety, protect America from terrorism, and more
- 24 effective regulation through a stronger workforce.
- 25 So, as we make changes in OPS, and we look

- 1 toward the future of things that we want to do
- 2 differently, and how we want to do those, we are
- 3 trying to incorporate many of the things that Dr.
- 4 McClellan incorporated in his strategic plan.
- 5 [Slide.]
- 6 Also, as I mentioned, the FDA Initiative
- 7 on Pharmaceutical Quality is an important
- 8 groundwork for some of the things that we are doing
- 9 now and in the future in OPS.
- 10 This particular chart is very helpful
- 11 because it shows the particular dimensions of the
- 12 plan for strong public health protection, for
- 13 international cooperation, for risk-based
- 14 orientation, science-based policy and standards,
- 15 and integrated quality systems orientation. These
- 16 are the really important aspects of the initiative
- 17 and where we are going.
- 18 [Slide.]
- 19 There are various directional vectors that
- 20 came with the initiative, and I won't go through
- 21 each of these. I think you can look through them,
- 22 but I think they are important as we look at OPS
- and where we are going for OPS in the future, so
- 24 looking at our regulatory policies, making sure
- 25 that we incorporate new technology advances when we

- 1 do our regulation, that we are able to work with
- 2 industry, et cetera, in doing some of these, and
- 3 that we have consistency and coordination
- 4 throughout the whole drug quality regulatory
- 5 program.
- 6 [Slide.]
- 7 Here is basically the directional vectors
- 8 and many of the things that are being worked on
- 9 under the GMP initiative agencywide.
- These include looking at a preapproval
- 11 inspection compliance program, dispute resolution
- 12 processes being established, a pharmaceutical
- 13 inspectorate that focuses specifically on
- 14 pharmaceutical products during the inspection
- 15 process that is being set up. We are hoping to
- 16 have product specialists on inspection process, and
- 17 we hope to start that very soon.
- 18 We have set guidance on CFR Part 11,
- 19 aseptic processing guidance, a comparability
- 20 protocol guidance. We have been doing a lot of
- 21 stuff with risk management and quality by design,
- 22 and, of course, PAT, which we have talked about.
- 23 But you can see where each of these sits on the
- 24 whole vector between risk and science. These are
- 25 all important aspects of the initiative.

1	[Slide.
1	181100

- 2 But the most important thing to me about
- 3 the initiative is it afforded us in OPS, a lot of
- 4 opportunities to change the way that we do
- 5 business. It has opened up a window of time for us
- 6 to really look at how we do business and make the
- 7 changes that are necessary to move forward into the
- 8 21st century.
- 9 This is not easy, and I will go through
- 10 some of the challenges what we have had, but first
- 11 of all, I want to talk about some of these
- 12 opportunities and just mention them to you, because
- 13 I think they are really important.
- 14 We really have the opportunity now to
- 15 strategize more on how we are going to ensure
- 16 product quality. This is ensuring product quality
- 17 across all of the Center, and it is the first time
- 18 we really have thought about the whole aspect of
- 19 product quality and what needs to be done to ensure
- 20 in the future that we are focused on the right
- 21 aspects of that.
- We need to revisit our processes. This is
- 23 a really good opportunity for us to do that. We
- 24 have built processes over the last 20, 25 years,
- 25 not only in review, but in inspection, as well, and

1 this gives us an opportunity to look at all of the

- 2 processes that fall under pharmaceutical quality
- 3 regulation, and to incorporate best practices.
- 4 We need to focus more on manufacturing and
- 5 associated issues relating to the quality of
- 6 products, one of the things that was very apparent
- 7 to us when we went in and looked at the review
- 8 processes, that we did not pay as much attention to
- 9 the actual manufacturing of products and how it
- 10 affected the quality of the products.
- 11 So, this is a really good opportunity for
- 12 us to do that. We have a lot to learn and we have
- 13 to work with a lot of people because obviously, we
- 14 don't have as much understanding as we need, but we
- 15 are doing a lot and looking at manufacturing
- 16 science and trying to get a better understanding of
- 17 that. I think that has been very apparent in some
- 18 of the things that you have talked about with PAT,
- 19 we will talk about even more today.
- We need to focus both on review and
- 21 inspection, and we need to put more science into
- 22 those. A lot of times, and it has been said time
- 23 and time again, we have not used really good
- 24 science in making the decision, and sometimes we
- 25 have had a lot of complaints from industry and

- 1 others about that lack of really scientific
- 2 understanding on inspections, so this is a really
- 3 good opportunity for us to ensure that that science
- 4 exists, but it is really important that we ensure
- 5 that it is part of the review process, as well, and
- 6 it is going to take time, but I think working with
- 7 our people and others, we will get there in the
- 8 future.
- 9 We need to enhance the interactions
- 10 between review, inspection, and compliance. One of
- 11 the things that was very interesting to me right
- 12 before we started the initiative is we met with a
- 13 number of people from trade associations, and it
- 14 was made very clear, the gap between what happens
- in review and what happens in inspection, and who
- 16 is sitting in the middle but industry with a lot of
- 17 questions on how policy was set or what the policy
- 18 means, and dealing with the inspectors day to day
- 19 who really don't have an understanding of that
- 20 either, so we really need to ensure better
- 21 interaction between review and inspection.
- We need to foster communication with
- 23 industry. In the review, we have been very
- 24 hesitant to talk much to the industry and to work
- 25 with the industry, not only on specific

- 1 applications, but on science in general, and there
- 2 is a lot of science in the industry that can be
- 3 very beneficial to us in the Agency to understand
- 4 the processes and understand manufacturing and
- 5 pharmaceutical quality, and we need to do more of
- 6 that.
- 7 We need to have early discussion on CMC
- 8 questions. As I already mentioned, we have a
- 9 dispute resolution process that we are setting up,
- 10 which we feel will be very helpful to give industry
- 11 an opportunity to talk with us when they have
- 12 scientific issues or questions.
- 13 We need to leverage resources for the best
- 14 bang for the buck. This is a real problem, and as
- 15 I said, I am going to talk a little bit more about
- 16 resources.
- We need to simplify the regulatory
- 18 requirements and we need to be able to find ways to
- 19 reduce some of the regulatory burden. We have
- 20 talked here before at the committee about the
- 21 number of supplements that we get in the
- 22 organization, we are really drowning in
- 23 applications in supplements, and all of them are
- 24 treated basically the same, and we need to really
- 25 step back and look at ways that we can put more

1 emphasis or more responsibility on industry and try

- 2 and work with them to have better understanding of
- 3 things, and not get as many applications.
- We need to eliminate the "check box"
- 5 approach that we have. What we do basically in
- 6 review is we go through and do you have this, do
- 7 you have that, do you have this without a real
- 8 understanding of what the process is, the
- 9 manufacturing, the whole important aspects of
- 10 pharmaceutical quality.
- 11 [Slide.]
- We need to enhance training opportunities,
- 13 and we now have this opportunity under the GMP
- 14 initiative, as well as some of the things that we
- 15 are undertaking in OPS. We are in the process of
- 16 working with several of the pharmaceutical
- 17 industries to set up plant residency programs for
- 18 some of our chemists.
- 19 We have other cross-training opportunities
- 20 that we are discussing, and then we have the
- 21 pharmaceutical inspectorate, and the reason I put
- 22 this here is not only will we be able to train our
- 23 inspectors better as far as some of the aspects or
- 24 manufacturing science, will it be able to take
- 25 advantage of those from the review standpoint, as

1 well, and I think this will be extremely helpful

- 2 and useful to us in our future regulatory
- 3 activities.
- 4 [Slide.]
- We need to enhance FDA's knowledge
- 6 regarding new technologies in manufacturing, and we
- 7 need to encourage innovation, and again this goes
- 8 back to PAT.
- 9 We need to develop processes that are
- 10 focused more on product risk, which we have not
- 11 done. As I said before, almost every product has
- 12 the same weight, same level of review, and we
- 13 really need to look more at the risk aspects of the
- 14 product.
- We need to revisit how quality of products
- 16 relate to ensuring safety and efficacy, and
- 17 especially ensuring clinical relevance.
- 18 We need to alleviate industry's concern
- 19 regarding reprisal. I hate to put this up, it's a
- 20 bad word "reprisal," but that thought is out there
- 21 often in industry, I hear it time and time again,
- 22 and I am hoping through better interactions with
- 23 industry, with better understanding of the science
- 24 and the ability to discuss the science, we can
- 25 begin to eliminate some of these concerns.

1 We need to enhance our international

- 2 involvement. We are working on pharmaceutical
- 3 development and risk management in international,
- 4 but we need to do more of this, because again it's
- 5 a very global world out there, and we need to be
- 6 sure that we are involved in everything that is
- 7 happening on the international front.
- 8 [Slide.]
- 9 I did say I wanted to mention resources
- 10 real quickly. I thought this would give you a
- 11 better perspective again as to why we want to make
- 12 some of the changes in CMC. The workload is really
- 13 difficult for our CMC reviewers in new drugs.
- 14 We got, in 2003, 159 NDAs, 342 commercial
- 15 INDs, 507 research INDs, 1,858 CMC supplements, and
- 16 that doesn't include efficacy or labeling
- 17 supplements, and 1,132 annual reports. This is a
- 18 lot of work to take on, and this is a lot of work
- 19 because we have fewer and fewer review staff.
- 20 We have constantly been over the last few
- 21 years hit by reductions in resources, so we are
- doing more work with less people, and we have
- 23 really got to think of ways to streamline the
- 24 process and to be able to get some of this done in
- 25 a more efficient and effective manner.

1 1	ral:	ide.	٦
	ГРОТТ	Lue.	

- Other influences, though, too, that bring
- 3 about the necessity for change, as I said, in 1995,
- 4 when ONDC was established, it was collocated with
- 5 the clinical divisions, and this seemed to work
- 6 really well for a couple of years, but a lot of
- 7 things have happened within the Center, within the
- 8 Agency, within the world, that really affect how we
- 9 do the CMC reviews, so we really need to rethink,
- 10 based on these influences and changes, how we do
- 11 things.
- 12 Some of the influences includes shorter
- 13 PDUFA deadlines, FDAMA, again harmonization and
- 14 globalization, such changes in our regulatory
- 15 processes, such as SUPAC, BACPAC, new technologies
- in pharmaceutical manufacturing.
- 17 [Slide.]
- 18 PAT, counterterrorism, counterfeit
- 19 products. We were just talking about the fact that
- 20 we can't even begin to keep up with counterfeiting,
- 21 we have to find better ways to do that.
- 22 BSE and other crisis, such as that. There
- 23 has been a greater focus on generic drugs, and
- 24 tomorrow we will spend a lot of time talking about
- 25 some of the issues that we have with regulating

- 1 generic products, and it is really important that
- 2 we begin to focus more on some of these issues and
- 3 how we need to ensure that we incorporate other
- 4 thinking from the new drug side into how we are
- 5 going to regulate generic products in the future.
- 6 There have been a lot of changes in
- 7 industry, more globalization mergers, et cetera.
- 8 There has been electronic submissions. We are
- 9 working very hard to hopefully enhance the
- 10 efficiency of our processes through electronic
- 11 submissions, and there has been more focus on risk
- 12 management and quality systems.
- 13 [Slide.]
- So, basically, what we need to do is to
- 15 change the paradigm for CMC review. I have talked
- 16 about that we have the opportunity to do this. The
- 17 things that we really need to focus on based on
- 18 those opportunities is really to develop a
- 19 risk-based CMC review.
- 20 I think this is really important, and I
- 21 think we are going to need help. This is not going
- 22 to be an easy thing to determine risk.
- I think products are going to come and go
- 24 that are risky, we see that all the time, products
- 25 that you don't expect when it comes on the market

1 to have any risk, then, things are found out later

- 2 on, so it is not going to be an easy process to
- 3 develop, and it is going to take a lot of thought
- 4 and probably a lot of help even from the committee,
- 5 but this is definitely a direction that we need to
- 6 head in.
- We need to establish quality systems which
- 8 help set the framework for ensuring that we do have
- 9 a dynamic organization and that we can handle the
- 10 complications of the regulatory processes.
- We need to focus resources towards efforts
- 12 that improve quality, and not hinder and interfere
- 13 with innovation, and I think that is very
- 14 important, and we need to focus on all aspects of
- 15 CMC.
- We need to look at chemistry, we need to
- 17 look at manufacturing, and we need to look at
- 18 controls, and we have not done as good a job of
- 19 this in the past.
- 20 [Slide.]
- 21 The advantages of the new paradigm, for
- 22 FDA, we will have more product and process
- 23 knowledge, which can be shared by industry, so that
- 24 we have a better understanding of the products that
- 25 we regulate.

1 We will have more efficient resource

- 2 allocation for review and inspection, and we can
- 3 increase our trust and understanding of industry
- 4 decision making.
- 5 [Slide.]
- The advantages for industry is hopefully,
- 7 that we will have fewer, more efficient,
- 8 science-based inspections, faster, more consistent
- 9 reviews.
- 10 There is a potential for reduced
- 11 regulatory burden, for managing changes with less
- 12 FDA oversight, for focused resources on critical
- issues, flexibility to focus on what should be
- 14 done, not what can be done, and to improve
- 15 communication with FDA.
- [Slide.]
- 17 But most of all, the ultimate beneficiary
- 18 is the public, and we hope through some of the
- 19 changes that we make, that we can increase the
- 20 availability of drugs on the market, we can have
- 21 faster approval of new products, we can have
- 22 continued assurance of high quality products, and
- 23 we can increase the public's confidence in the work
- 24 that we are doing in FDA, and hopefully, reduce
- 25 costs, which isn't, of course, our business, but

1 something we hope is going to come out of some of

- 2 the changes that we are making.
- 3 [Slide.]
- 4 The new paradigm will include developing
- 5 strategies to recruit and train reviewers. One of
- 6 the things that we realize is that we have a real
- 7 gap in the qualifications that our reviewers have.
- 8 We need more that have understanding of
- 9 drug discovery, analytical chemistry,
- 10 pharmaceutical engineering, and we are going to be
- 11 looking at recruiting and training people in these
- 12 areas.
- 13 We need to build a learning organization,
- 14 one that is skilled at creating, acquiring, and
- 15 transferring knowledge. This is one thing we have
- 16 not done an adequate job of in the past, and we
- 17 really need to work on, probably not only just in
- 18 OPS, but throughout the whole Center.
- 19 We need to set specifications based on
- 20 science and process understanding. We need to
- 21 reengineer the process, so that we have the best
- 22 practices, metrics, and that we are customer
- 23 oriented.
- This is another thing that we have not
- 25 paid a lot of attention to in the past, which we

1 really need to look toward in the future, is who

- 2 our customers are and what they need.
- 3 [Slide.]
- 4 We need to increase emphasis on
- 5 manufacturing science, we need to ask the right
- 6 questions at the right time. We need to implement
- 7 peer review by FDA scientists and clinicians.
- 8 Establish a program to better integrate
- 9 review and inspection, develop processes which
- 10 ensure regulatory relief based on process
- 11 understanding and control, quality systems in
- 12 manufacturing, and continuous improvement is very
- important, and we need to create a better work
- 14 environment and promote job satisfaction within our
- 15 organization.
- 16 [Slide.]
- 17 As I said, there is a lot of challenges.
- 18 The current culture, both inside and outside of
- 19 FDA, is definitely the biggest challenge we have.
- 20 It is very difficult to get people to think
- 21 differently. They have worked in a certain culture
- 22 for years and years, and changing that culture is
- 23 not easy. We see that both inside the Agency, as
- 24 well as outside.
- 25 Hiring is not easy, it is very difficult

1 to find people with the right skills that want to

- 2 come to work for the Government, and this is a big
- 3 challenge that we have ahead of us.
- 4 Establishing performance metrics is also a
- 5 challenge because we have really never had the
- 6 metrics to measure anything except for the amount
- 7 of work we get, and we are really going to have to
- 8 step back and look at this differently.
- 9 We need to identify gaps in requirements.
- 10 We need to reevaluate the review process again to
- 11 be sure we are asking the right questions that
- 12 ensure product quality.
- 13 We need to understand what is relevant
- 14 science.
- 15 We need to determine what is needed for
- 16 pharmaceutical development data to assist in a
- 17 better understanding of manufacturing process.
- 18 We need to develop a science-based risk
- 19 model, and we need to integrate better into the
- 20 inspection process including participating on
- 21 inspections.
- This is a lot of work we have ahead of us,
- 23 and the reason I am sharing it is because I think a
- 24 lot of these issues are going to come up in the
- 25 future where we are going to need the committee's

- 1 input on how to tackle some of these challenges,
- 2 some of the things that we need to incorporate into
- 3 our review and our processes to make sure that we
- 4 are doing what is necessary to have the best
- 5 regulatory processes available.
- 6 Again, I feel that this is important that
- 7 you all have an understanding of where we are
- 8 going, and we will look forward to talking about
- 9 many of these things in the future.
- 10 [Slide.]
- 11 Before I go into the agenda, I just wanted
- 12 to mention some of OPS's new additions that we
- 13 have. We are really fortunate to be acquiring a
- 14 lot of new staff lately, and some of the people I
- 15 think that are very important, that will be working
- 16 with us very closely, I wanted to talk about today.
- 17 First, is Dr. Vince Lee. I think all of
- 18 you know Dr. Lee since he was once chair of this
- 19 committee. We are very happy to have Vince with
- 20 us, and we feel that there is a lot of things that
- 21 he is going to be able to help us work on as we
- 22 move towards changing some of our regulatory
- 23 paradigms.
- 24 Also, we will be adding Dr. Mansor Khan
- 25 from Texas to our staff. He is going to be our

- 1 director of our Division for Product Quality
- 2 Research in our Office of Testing and Research, and
- 3 he will be joining us next month.
- We are looking forward, too, to having Dr.
- 5 Khan. I think he is going to add a lot and help us
- 6 a lot in some of the areas of research that we need
- 7 to be focused on in order to accomplish some of the
- 8 things that we want to accomplish.
- 9 Also, I wanted to mention that Dr. Moheb
- 10 Nasr has become the permanent director of the
- 11 Office of New Drug Chemistry. I think many of you
- 12 know Dr. Chiu has retired. Dr. Nasr so kindly came
- 13 from St. Louis to take this job, and has been
- 14 working very diligently on some of the changes that
- 15 we are trying to make.
- Dr. Chi Wan Chen has joined him as the
- 17 deputy of the office.
- 18 Also, I wanted to announce that Dr. Keith
- 19 Webber, who is sitting over here, too, is the
- 20 Acting Director of the Office of Biotech Products.
- 21 We appreciate Dr. Webber stepping in and taking on
- 22 this very challenging group that has recently
- 23 joined us in the Office of Pharmaceutical Science.
- 24 [Slide.]
- Just to finalize my presentation, I just

- 1 wanted to quickly go through the meeting topics. I
- 2 think this is going to be an extremely exciting
- 3 meeting. I think that the topics tomorrow are
- 4 especially stimulating, topics that I think will
- 5 add a lot to our future thinking in these areas.
- Today, we are going to have subcommittee
- 7 reports. We are going to have a discussion of the
- 8 proposal on PTIT. That is parametric tolerance
- 9 interval test for dose content uniformity. We have
- 10 talked about this before. We have a proposal now
- 11 on how we want to finalize our thinking in this
- 12 area.
- 13 Then, we want to talk about PAT. We want
- 14 to give an update, talk about some of the things
- 15 that we have done, and also talk about how PAT is
- 16 going to be implemented in our Office of Biotech
- 17 Products.
- 18 Tomorrow, as I said, I think the topics
- 19 are very stimulating, I think we will have some
- 20 really good discussion on bioequivalence topics.
- 21 We want to talk about highly variable drugs, about
- 22 bioINequivalence. This is very important.
- We have a lot of areas here of thought
- 24 that we need to bring forward and discuss with the
- 25 committee, and we want to talk about topical

- 1 products.
- 2 Also, time allowing tomorrow, we have an
- 3 awareness topic, and this is nanotechnology that we
- 4 want to introduce.
- With that, I am going to finish up and
- 6 hand it over to Dr. Kibbe, and I look forward to
- 7 hearing the discussion in the next two days.
- 8 Thank you.
- 9 DR. KIBBE: Thank you, Helen.
- 10 We are pretty close to being on time, so
- 11 we will turn it over now to the subcommittee
- 12 reports. The first one is from Clinical
- 13 Pharmacology. Jurgen is moving rapidly to the
- 14 podium, so here we go.
- 15 Subcommittee Reports
- DR. VENITZ: Good morning. I am here to
- 17 report back from a meeting that the Clinical
- 18 Pharmacology Subcommittee had last November.
- 19 [Slide.]
- Just in terms of review, this committee is
- 21 serving to provide expertise in three different
- 22 areas to this parent committee: pharmacometrics or
- 23 exposure-response modeling, pediatrics, and
- 24 pharmacogenetics. As you see, those were the three
- 25 topics that we discussed.

1	[Slide.	٦
	ISTICE.	ш

- 2 Our first topic in the November meeting
- 3 was a proposal by Dr. Lesko from OCPB to institute
- 4 End of Phase 2a Meetings. Those are meetings that
- 5 are currently not recommended or that are currently
- 6 not required by the FDA.
- 7 He, as well as Dr. Lee, presented the
- 8 FDA's perspective, and then we had three FDA
- 9 staffers giving us case reports where those
- 10 meetings may be helpful in finding optimal doses
- 11 early on and identifying key issues.
- 12 [Slide.]
- 13 The committee appreciated that this was a
- 14 pilot program that is intended to improve dose
- 15 findings over a few years. There was some
- 16 discussion as to how we assess the success of a
- 17 program.
- 18 The committee noticed that there would be
- 19 additional FDA resources required to implement this
- 20 very program, but on the positive end, that this
- 21 End of Phase 2 Meeting Program would allow
- 22 integration of preclinical information both in the
- 23 PK and PD area and particularly to identify early
- on the use of biomarkers in Phase 2 and Phase 3
- 25 studies that may help streamline the dose finding

- 1 process.
- 2 The committee also felt that a meeting
- 3 such as this would be very useful in identifying
- 4 key issues early on and discuss them between the
- 5 sponsor and the FDA, as well as define what we call
- 6 "utility" functions, which are basically measures
- 7 of the potential consequences of either safety or
- 8 efficacy issues which are essential to come up with
- 9 an optimal dose.
- There was, as I said before, some
- 11 discussion as to how you would measure the success
- 12 of such a program, and the committee felt that
- 13 probably the overriding metrics to measure the
- 14 success would be customer satisfaction, the
- 15 customer being both the sponsor, as well as the
- 16 FDA.
- 17 Possible, but more difficult to measure
- 18 outcome would be the need to have post-approval
- 19 dose changes. Again, if we can minimize that, that
- 20 would indicate that there is success in this
- 21 program.
- 22 So, while the committee was in support of
- 23 this program, and as far as I know, it is being
- 24 implemented as speak.
- 25 [Slide.]

1	The	second	issue	relating	to

- 2 exposure-response was the issue about clinical
- 3 trial simulations specifically with the intent to
- 4 assess the liability of drug products to induce QT
- 5 changes which are thought to be associated with
- 6 fatal cardiac arrhythmias, we had Dr. Lee give the
- 7 introduction, Dr. Bonate from the outside review
- 8 modeling that he had done, clinical trial
- 9 simulations, and then Dr. Kenna from the FDA review
- 10 ongoing project within the FDA.
- 11 [Slide.]
- 12 There was a lively discussion on this very
- 13 topic. The committee I think still felt that the
- 14 QTc correction methods, those are ways to correct
- 15 the QT interval for change in heart rate, that
- 16 those methods are still questionable, we still
- 17 don't have a gold standard on that.
- 18 We felt that despite the trial simulations
- 19 presented to us, it still appears very difficult to
- 20 separate drug-induced changes from baseline changes
- 21 in those EKG intervals.
- There was some discussion as to what
- 23 constitutes a meaningful QTc change. Right now the
- 24 perception is that a 6-millisecond average QTc
- 25 change would be relevant. There is some concern in

- 1 the committee or there was some concern stated in
- 2 the committee that that might be too conservative,
- 3 however, there was acknowledgment that using
- 4 clinical trial simulation to get to the issue as to
- 5 what the QTc liability is of a new product may
- 6 provide a more rational risk/benefit assessment.
- 7 One issue that was brought up that is
- 8 currently not being explored is the fact that some
- 9 drugs, not only interact at the kinetic level, but
- 10 also the dynamic level, which may lead to QTc
- 11 changes on the PD level.
- 12 [Slide.]
- The second major topic related to the
- 14 pediatrics component of the committee, here, we
- 15 reviewed the pediatric decision trees. We had
- 16 several speakers. We had Dr. Hinderling and Dr.
- 17 Chen giving case reports. Those were drugs or drug
- 18 products that were reviewed for the pediatric use,
- 19 used what is a called a "pediatric decision tree,"
- 20 that allows PK or PK/PD studies to support efficacy
- 21 and safety.
- 22 We had Dr. Machado giving a statistical
- 23 overview on what methods might be useful to compare
- 24 pediatric exposure-response to see whether there
- 25 are any age-related differences.

1 Then, our committee member Dr. Kearns gave

- 2 his perspective on how those studies actually are
- 3 being done in practice and what some of the
- 4 shortcomings are of the current pediatric decision
- 5 tree, and this was followed by Dr. Rodriguez giving
- 6 the FDA experience with the decision tree that has
- 7 been in place for a few years.
- 8 [Slide.]
- 9 There was some discussion about the age
- 10 appropriateness of some of the endpoints that are
- 11 currently required to measure the pharmacology of
- 12 drugs in children, whether the endpoints are
- 13 related to the mechanism of action of the drug
- 14 and/or the pathophysiology of the disease, are
- 15 those meaningful endpoints and what do they tell
- 16 us.
- 17 There was some discussion, because that is
- 18 part of the decision tree, as to what evidence
- 19 supports that the disease progression in children
- 20 is similar to the one in adults, which would then
- 21 allow it to transfer information from adults to
- 22 children.
- There seemed to be consensus that
- 24 nonclinical information, such as data from primate
- 25 studies or in-vitro studies may be very useful in

- 1 supporting the pediatric decision tree.
- 2 However, there was extensive discussion on
- 3 whether there has to be extensive interaction and
- 4 discussion between both the clinical pharmacology,
- 5 the OCPB, as well as the reviewing divisions on the
- 6 pediatric decision tree and its use in a particular
- 7 drug product area.
- 8 There was some discussion also on the
- 9 limitations of the exposure-response in terms of
- 10 some of the PD differences that are very difficult
- 11 to be captured in the current paradigm.
- 12 I think there was overall an appreciation
- 13 that the pediatric decision tree is still
- 14 work-in-progress and additional updates may be
- 15 necessary to review or start discussing any changes
- 16 to it.
- 17 [Slide.]
- 18 The last area that we discussed related to
- 19 the pharmacogenomics and the metabolic drug
- 20 interaction area, so we had two outside speakers,
- 21 Dr. Flockhart and Dr. Neuvonen talk about two
- 22 relatively novel cytochrome p450 isoenzymes that
- 23 start to emerge as part of drug metabolizing
- 24 enzymes, and the issue was here what is the current
- 25 state-of-the-art, what can FDA use as basis of

-		_			
1	review	ior	new	incoming	NDAs.

- 2 [Slide.]
- 3 There was acceptance by the committee for
- 4 cytochrome P4502B6, that we do have both in-vitro,
- 5 as well as in-vivo, substrates, model substrates
- 6 that can be used for drug interactions.
- We don't have, on the other hand, any
- 8 specific clinical inhibitors, and somewhat
- 9 questionable in-vitro inhibitors. On the other
- 10 hand, for cytochrome P4502C8, we do have both
- 11 in-vitro, as well as in-vivo, inhibitors, as well
- 12 as substrates, so we can characterize any
- interaction potential for cytochrome P4502C8.
- 14 Discussion by the committee followed that
- 15 went beyond the specific isoenzymes where the
- 16 committee emphasized that it is becoming more and
- 17 more essential to look at population-based clinical
- 18 studies to primarily assess, not the incidence of
- 19 drug interactions, but their clinical significance.
- In other words, we have enough science to
- 21 support the likelihood of drug-drug interactions,
- 22 but we are not always sure about what the clinical
- 23 consequence would be or consequence would be.
- 24 Along the same line, the committee made
- 25 the recommendation to encourage sponsors to review

- 1 databases that exist, medication-use databases, to
- 2 look for this very issue, what are the clinical
- 3 consequences of drug-drug interactions especially
- 4 if you go beyond two interactions.
- 5 [Slide.]
- The last topic that we discussed related
- 7 to pharmacogenomics. Again, this is an ongoing
- 8 discussion that we had. In this case, we were
- 9 discussing how to integrate that in the drug
- 10 development and what kind of labeling may be
- 11 necessary to reflect information collected during
- 12 the development process.
- We had committee member Dr. Flockhart and
- 14 Dr. Relling give their academic, as well as
- 15 clinical, perspective, and Dr. Hockett give the
- 16 industry perspective.
- 17 [Slide.]
- To summarize the committee discussion, I
- 19 think there was acceptance of the fact that we need
- 20 additional population-based studies meaning
- 21 large-scale studies to look at the prevalence for
- 22 some of the rare genetic polymorphisms, in other
- 23 words, for some of those polymorphisms that may be
- 24 important, we do not know how many patients have
- 25 those specific genotypes.

1 There was recognition that we do have or

- 2 at least start to emerge having a lot of
- 3 mechanistic and quantitative understanding that is
- 4 necessary for labeling.
- In other words, we collect a lot of
- 6 information and we know a lot about how likely some
- 7 of those pharmacogenetic differences are and what
- 8 the kinetic or dynamic consequences are.
- 9 The discussion then really focused on what
- 10 is the impact as far as risk/benefit is concerned,
- in other words, how do we translate changes in drug
- 12 levels or change in the pharmacology of the drug,
- 13 how do we translate that into safety and efficacy
- 14 information.
- There was, shall we say, a lively
- 16 discussion of how to label pharmacogenetic
- 17 information in drug package insert, and I don't
- 18 think there was any consensus.
- 19 We had experts telling us we need to label
- 20 very extensively, on the other hand, clinicians
- 21 were concerned about overloading information that
- 22 is not being used by the ultimate consumer, and
- 23 there was recognition that pharmacogenetics or
- 24 pharmacogenomics is going to be different from some
- 25 of the other clinical covariates in the sense that

- 1 it has multidimensional nature, in other words,
- 2 there are lots of different pharmacogenetic
- 3 polymorphisms that may be relevant for a given drug
- 4 product.
- I would be happy to entertain any
- 6 questions that you may have.
- 7 DR. KIBBE: Okay. Jurgen will be with us,
- 8 so if you want to ask questions later, if topics
- 9 come up that we need to get back to him on, we can.
- 10 Thank you.
- Now, I know you are fumbling through your
- 12 things looking for the slides for the next speaker,
- 13 but there aren't any, which gives us great hope
- 14 that it will be a short and direct presentation.
- Dr. Hussain.
- 16 Parametric Tolerance Interval Test for
- 17 Dose Content Uniformity
- DR. HUSSAIN: No, I do not have slides for
- 19 this part of my introduction. The topic that will
- 20 be discussed as a proposal to you is that of
- 21 parametric tolerance interval test.
- 22 As we have discussed this several times
- 23 with you, in particular at the last meeting, in the
- 24 previous meeting that we had, the challenge is how
- 25 do you move forward with adopting a more rigorous

1 scientific, statistically sound approach to dose

- 2 content uniformity of inhaled products.
- 3 We believe that parametric tolerance
- 4 interval test that is being proposed by IPAC-RS is
- 5 an improvement over the current method, and we
- 6 would like to sort of move forward in sort of
- 7 resolving some of those issues which have lingered
- 8 on, and sort of adopting it as soon as possible.
- 9 But the challenges are not trivial, and I
- 10 tried to sort of summarize those challenges to you
- in the memorandum along with the paper that we
- 12 wrote.
- 13 We felt that in order to move this process
- 14 faster and move it forward more quickly, the
- 15 proposal to you is that we will form a working
- 16 group under this advisory committee.
- 17 This working group will report to you with
- 18 their findings and provide a way forward to
- 19 resolving the issues that have lingered on for
- 20 three years, and come up with a very well
- 21 structured process to resolve in a timely fashion.
- So, the proposal is a very straightforward
- 23 proposal that this working group will report to
- 24 you, and you will define the goals and objectives
- 25 for this group, and you will define also the

1 timeline for this group, and the proposal will be

- 2 presented by Bob O'Neill, who is going to head for
- 3 FDA working group members.
- 4 Bob.
- 5 Moving Forward -- An Approach for Resolution
- DR. O'NEILL: Good morning.
- 7 [Slide.]
- 8 My name is Bob O'Neill, and as I indicated
- 9 earlier, I am the Director of the Office of
- 10 Biostatistics, and Ajaz and Helen have asked me to
- 11 chair this group, which Ajaz has indicated is going
- 12 to be reporting to you all.
- This is the process for coming to
- 14 resolution on what you know to be a discussion that
- 15 has been going on at least for three years under
- 16 the specifications for delivered dose uniformity
- 17 for inhaled and nasal drug products.
- 18 [Slide.]
- 19 I am going to be proposing how we are
- 20 going to be going about doing this and asking for
- 21 your advice and concurrence, so we can move forward
- 22 on this.
- So, what we have thought about, and we
- 24 have met several times with the IPAC-RS group, and
- 25 this is the proposal. We will have a joint working

- 1 group under this particular committee, and it will
- 2 be populated by senior representatives from FDA and
- 3 from the Oral and Inhaled Nasal Drug Product
- 4 industry, and that is mainly the IPAC group that we
- 5 have been working with.
- 6 [Slide.]
- 7 The folks from FDA, I will get into the
- 8 names in a moment, but essentially are representing
- 9 sort of the clinical risk side of the house, the
- 10 statistical side of the house, the generic drug
- 11 side of the house, and the Office of New Drug
- 12 Chemistry side of the house, so all the major
- 13 players in terms of how this particular solution
- 14 impacts the way we go about doing business.
- This particular proposal is essentially a
- 16 way forward, so that we have a defined process with
- 17 identified objectives, with identified ways of how
- 18 we are going to communicate with each other, in
- 19 terms of the mechanism, some timelines, some
- 20 milestones, and how are we going to get some
- 21 resolution on some of the issues that might be sort
- 22 of sticky or still needing further discussion.
- 23 So, the overall working group objective is
- 24 to agree on a mutually acceptable parametric
- 25 tolerance interval test for delivered dose

- 1 uniformity, and these are the folks, and if they
- 2 are in the room, I would ask them to stand up.
- 3 On the lefthand side are the FDA folks.
- 4 It is myself, Dr. Chowdhury, I believe Badrul is
- 5 here. He is the Pulmonary Division Director.
- 6 Moheb Nasr, I believe is out of the country, you
- 7 probably know him. And Lawrence Yu, I don't know
- 8 if Lawrence is here--there he is, and he is the
- 9 Director for Science in Office of Generic Drugs.
- 10 On the industry side, I think Michael is
- 11 here, Michael Golden from GlaxoSmithKline. Kristi
- 12 Griffiths, I don't know if she is here, from Eli
- 13 Lilly. Bo Olsson from AstraZeneca. Dar Rosario
- 14 from Aradigm. Dennis Sandell from AstraZeneca
- 15 also. We have met with these folks and we plan on
- 16 meeting in the future, and I will go through the
- 17 timeline.
- 18 [Slide.]
- 19 So, just to reiterate, the objective of
- 20 this working group is to develop a mutually
- 21 acceptable, standard DDU specification, both the
- 22 test and the acceptance criteria, for these
- 23 products with a proposal to come back to you folks
- 24 by the end of this year, by the end of 2004.
- 25 [Slide.]

- 1 So, the process that we are going to
- 2 follow is pretty much trying to get the
- 3 communication and the coordination of this effort,
- 4 which is not going to be trivial, straight among
- 5 all of us.
- 6 We have identified that we will have a
- 7 project manager that will help us as a working
- 8 group stick to agendas, minutes, meeting materials.
- 9 We plan on having monthly meetings at FDA beginning
- 10 in May.
- The first one is probably in a few weeks,
- 12 and in May, what we will plan to do is to review
- 13 the feedback that you all give us today in terms of
- 14 your blessing and what other suggestions you might
- 15 have for how we would fine-tune this particular
- 16 process.
- We are going to need to rely on working
- 18 groups within the industry and within the FDA to
- 19 further deal with the statistical issues here, the
- 20 clinical issues, the CMC issues, and whatever else
- 21 is on the plate, so there is likely to be some
- 22 technical projects that will be assigned to folks,
- 23 and the leadership and the project management of
- 24 those particular projects will be overseen by the
- 25 folks on the working group.

1	[Slide.]
_	[DIIGO.]

- 2 So, again, just to reiterate the timelines
- 3 and the milestones, we expect to have a status
- 4 report back to you folks in the fall, in the
- 5 meeting in the fall, in October, and hopefully to
- 6 submit recommendations to you by the end of 2004
- 7 that you can act on and come back to us on.
- 8 [Slide.]
- 9 Here is where we think we are to date. We
- 10 have discussed these issues at length and here is
- 11 what we think we have reached consensus on.
- 12 That the parametric tolerance interval
- 13 approach is an improvement on the current test. It
- 14 is a concept that requires refinement and further
- 15 development to address the regulatory requirements.
- 16 There are still things that need to be fine tuned.
- We believe that there has been a lot of
- 18 work, productive work, a lot of understanding, but
- 19 it is time to move forward and come to closure
- 20 particularly on this particular test.
- 21 So the working group is formed to devote
- 22 the necessary time and the resources to get this
- 23 thing done, and that is through review of
- 24 additional data analyses, especially some of the
- 25 appropriate statistical procedures.

1	[Slide.]

- We also recognize that there is some stuff
- 3 hanging out there that needs consensus. You have
- 4 probably seen a presentation and heard about a
- 5 presentation with regard to the different operating
- 6 characteristic curves, the parametric tolerance
- 7 interval test versus sort of the zero tolerance
- 8 test, and there is a gap that essentially is the
- 9 difference between the producer and the consumer
- 10 risk, and it sort of differs in the middle over
- 11 what you might assume to be the standard deviation
- 12 of some of the measurements.
- 13 That is essentially where a lot of the
- 14 discussion has been. Much of the discussion has
- 15 been around what the performance characteristics
- 16 are of the different tests under assumed scenarios.
- 17 Another way of saying assumed scenarios is the
- 18 simulated data, so if this, then that.
- 19 So, if the data were to perform this way
- 20 or lay itself out this way, then, this is what the
- 21 operating characteristics of that particular test
- 22 procedure are.
- So, we are actually also interested in
- 24 seeing what real data is, so there is a number of
- 25 issues with regard to actual data that is not in

- 1 our hands, not in FDA's hands, which would lead us
- 2 to say, well, how many situations are there where
- 3 the standard deviations start to push out to 12,
- 4 13, 14, 15, because those are the areas where you
- 5 may be wanting to have a little more information
- 6 because if you are not in the symmetric situation,
- 7 your outliers are going to be where your problem
- 8 cases are.
- 9 So, there is some more work to be done in
- 10 this area, so talking about that and marrying both
- 11 the zero tolerance interval concept with the
- 12 parametric tolerance interval idea is essentially
- 13 where the statistical details of the test are
- 14 likely to be focused over the next few months.
- 15 Obviously, this issue of the applicability
- 16 to non-normal distributions, asymmetric bimodal
- 17 distributions, which essentially may be very much
- 18 characteristic of manufacturing processes of, you
- 19 know, large and small particles, and things like
- 20 this, which is not an unusual statistical scenario
- 21 when you have mixtures of populations, so that is
- 22 from the statistical perspective.
- 23 [Slide.]
- 24 The next steps are to ask you folks to
- 25 endorse this idea or to suggest some refinements to

- 1 it. We will come back to you with a status report
- 2 as to where we are in October, and the working
- 3 group is planning to submit recommendations to you
- 4 all by the end of this calendar year.
- With that, I think I am done. I would be
- 6 willing to take any questions, and I think anybody
- 7 on the working group would also be willing to chime
- 8 in.
- 9 Committee Discussion and Recommendations
- 10 DR. KIBBE: We have time now for
- 11 questions, it's on our schedule, so ask questions.
- DR. SINGPURWALLA: Well, just out of
- 13 curiosity, what is the DDU test?
- DR. O'NEILL: Delivered dose uniformity
- 15 test. It is essentially a measurement of, it's
- 16 content uniformity, how much of the dose is
- 17 delivered in, let's say, a spray or these nasally
- 18 inhaled products, so it's a matter of if this was a
- 19 pill, you would be crunching it up, you would be
- 20 looking at what its content is, you would have a
- 21 measure of that, and the test is essentially that
- 22 you agree what the goalposts are for an acceptable
- 23 amount of variability for the active ingredient,
- 24 and if it's in that zone, it's acceptable; if it's
- 25 not in that zone, it is not acceptable, so it's a

- 1 variant.
- 2 That is the whole concept behind the
- 3 delivered dose uniformity, that the product has to
- 4 have some consistent uniform characteristics to it.
- DR. SINGPURWALLA: So, how would it differ
- from the parametric tolerance interval?
- 7 DR. O'NEILL: Well, first of all, it
- 8 differs in a number of ways. I don't want to go
- 9 through the test, that there has been a
- 10 presentation on this, and there is a lot of
- 11 background stuff on this.
- The key difference between the zero
- tolerance is it's a zero/1 kind of thing, it's
- 14 either in or out, and it doesn't take the standard
- 15 deviation into account.
- 16 The parametric tolerance interval approach
- 17 is probably, assuming that you have something close
- 18 to normality, and it is essentially basing the test
- 19 both on the estimate of the mean and the estimate
- 20 of the standard deviation, and then depending upon
- 21 the combination of both of those guys, it is
- 22 essentially a zone of equivalence, but the
- 23 distinction between the two tests is one sort of a
- 24 zero/1, you are either all in or all out, but it
- 25 doesn't estimate the standard deviation.

- 1 The work that has been done on the
- 2 parametric tolerance interval approach
- 3 statistically is intended to be a more powerful,
- 4 more precise, take more of the information into
- 5 account.
- 6 DR. SINGPURWALLA: So, would you say that
- 7 the DDU test is not a statistical test, it has no
- 8 statistical basis?
- 9 DR. O'NEILL: No, I would not say that at
- 10 all. In fact, both of them have statistical bases.
- 11 In fact, the zero tolerance test is essentially the
- 12 USP test that is used for all content uniformity,
- 13 it is a variation on that.
- 14 Take 10, see whether they are in the
- 15 limits or out of the limits, if not, take another
- 16 20. If they are in the limits or out of the
- 17 limits, and you are done, up or down. That is what
- 18 the test has been for years.
- 19 What this is, is essentially to say,
- 20 well, I am not using all the information, I am not
- 21 finding out actually what the variability of the
- 22 process is, so I want to get some handle on what
- 23 the standard deviation of the process is, so I want
- 24 to estimate that also, and I also want to estimate
- 25 what the mean is.

- 1 So, if you were to back up and sort of
- 2 look at this within the mainstream of process
- 3 control, you sort of want to look at where you are
- 4 in the standard deviation world, where you are in
- 5 the mean target close to what the center of the
- 6 distribution is.
- 7 So, both of these are statistical in the
- 8 sense that they have probabilities of consumer risk
- 9 and regulatory risk, but it is that part of it that
- 10 is the statistical aspect of it.
- DR. SINGPURWALLA: So, if I were to
- 12 understand what you are saying, the DDU test seems
- 13 like a binary test, it's a sequential binary
- 14 process.
- DR. O'NEILL: Well, what we are talking
- 16 about, we are talking about the parametric
- 17 tolerance interval test versus what is--I don't
- 18 know what its best name is--but it would be like
- 19 the zero tolerance interval test. That test is
- 20 binary. The other one is--
- 21 DR. SINGPURWALLA: Is not binary.
- 22 DR. O'NEILL: --is not binary. It takes
- 23 more of the information into account. That is the
- 24 conceptual idea.
- DR. KAROL: Could you tell me how much

- 1 real data you have and what is the source of the
- 2 real data?
- DR. O'NEILL: Well, we have, our folks, I
- 4 know that there are folks maybe in the audience who
- 5 have looked at data that we have from the industry,
- 6 but it is not necessarily the data that is all the
- 7 data.
- I mean what we have is data that is
- 9 submitted to us in applications and in annual
- 10 reports, and often that is data that has already
- 11 been screened in the sense that it either passes or
- 12 doesn't pass, so in some sense, we are seeing data
- 13 that is less variable than the data that these
- 14 tests are intended to apply to uniformly.
- 15 I believe that is where our comfort level
- 16 is in terms of trying to understand how much
- 17 variability is in the data, and I think it's a
- 18 conceptual thing getting back to the way Helen
- 19 talked about.
- 20 For years, for years, I think the process
- 21 was let's set the goalposts and then see whether we
- 22 can manufacture it to fit the goalposts as opposed
- 23 to the other way around, sort of saying what is the
- 24 process capability and then fix the goalposts for
- 25 the process capability.

1 Under continued process improvement, the

- 2 idea is to be closer to the target mean and to be
- 3 closer and tighten down your variability. It may
- 4 be if you can't do any better, that's what you are
- 5 left with.
- 6 So, our situation is understanding that,
- 7 and what we are seeing now is I believe, if I am
- 8 not speaking for our chemists, our folks are seeing
- 9 relatively tight standard deviations in the 5, 6, 7
- 10 area, and the idea that there could be some
- 11 standard deviations that are hanging out in the 12,
- 12 13, 14 area is how come. We are not necessarily
- 13 seeing all of that.
- So, we want to see a little more data
- 15 along those lines. So, that is sort of
- 16 conceptually where the gap is in terms of trying to
- 17 move transitionally from the current test into a
- 18 test that we believe has a lot more merit for
- 19 several reasons.
- One, it captures better a handle on the
- 21 variability of the data, and, secondly, you should
- 22 be rewarded for taking more samples than less
- 23 samples. So, this test needs to reward you for
- 24 having better estimates of what your variability is
- 25 rather than less. That is another conceptual part

- 1 of this.
- DR. MEYER: I might be mistaken because I
- 3 don't normally read the USP, but it seems from my
- 4 recollection there are some tablet products that
- 5 have a specification for variability, as well,
- 6 warfarin being an example, where you do 10, then
- 7 you do 20, but you also look at standard deviation
- 8 or coefficient of variation as some marker for
- 9 approval or not.
- 10 Is that correct?
- DR. O'NEILL: Ajaz.
- DR. HUSSAIN: Right, I think, Marv, you
- 13 are right, in the sense the traditional approach,
- in the pharmacopeial approach, which are market
- 15 standards, and they were never intended to be
- 16 release standards, and that is the purpose they
- 17 serve, are to maintain the market standard.
- 18 In the case of tablets and solid dosage
- 19 forms, you have a non-parametric approach to that,
- and, say, you have your goalposts 85 to 115 for 10
- 21 tablets, and if one is outside that, you go to 75
- 22 to 125 with 20 additional ones.
- For those, you have an estimate of
- 24 standard deviation. I think it's 6.6 person at the
- 25 second stage, so you have to meet that.

1 The test we have for dose content

- 2 uniformity or delivered dose uniformity for
- 3 inhalation products right now, the FDA guidance
- 4 doesn't have a value of standard deviations. It
- 5 simply says take, if it's 85 to 115, if one is
- 6 outside that, take 20 more, and they all have to be
- 7 within 75 to 125.
- 8 So, the term "zero tolerance" actually is
- 9 not really a meaningful term, and I think we
- 10 discussed that at the previous committee, but if
- 11 you really look at it, Jurgen had one set of
- 12 comments at the end of that meeting, and our
- 13 statisticians there had a very different set of
- 14 comments on that, so we were very divided on that,
- 15 because zero tolerance is for that sample, and that
- 16 is, in my opinion, a big hindrance to continuous
- 17 improvement because it forces industry to do only
- 18 30 tests.
- 19 If they do more, they are at risk, so that
- 20 is not conducive to PAT, that is not conducive to
- 21 the 21st century process that we want to move
- 22 forward, so this actually is a model or the
- 23 framework for what we would like to do for all
- 24 specification, because clearly, the compendia,
- 25 there is no movement.

I don't see much movement in the compendia

- 2 to change that, so we will have to move forward and
- 3 change that, because if the compendia don't change
- 4 that, they are going to be hindrance to PAT and
- 5 everything else that follows.
- DR. BOEHLERT: Just as a follow-up to
- 7 that, I believe under ICH, the compendia are
- 8 looking at harmonizing general chapters, and one of
- 9 the ones they are looking at is content uniformity
- 10 and should there be a tie-in somewhere with that
- 11 group and what they are looking at and what they
- 12 are doing, so you don't go two separate ways in two
- 13 separate directions.
- DR. HUSSAIN: I agree, but compendia are
- 15 still a market standard, they are not a release
- 16 standard, so from a regulatory perspective, that
- 17 has always been the case.
- DR. BOEHLERT: That has always been the
- 19 case.
- DR. KIBBE: Tom.
- 21 DR. LAYLOFF: I was going to say also
- 22 there is a market standard in the way--you end up
- 23 in a contradiction if you test the whole lot, it
- 24 will always fail, because of the standard
- 25 deviation, so you can't really do that.

But in the regulatory laboratory, what we

- 2 used to do is if we found one out of limits, then,
- 3 we would submit it for check analysis, and if it
- 4 passed check analysis, then, it was okay. So, you
- 5 sort of got around that contradiction in the limit
- 6 setting.
- 7 DR. KIBBE: Anybody else?
- 8 Is there anyone on the committee who
- 9 thinks that moving forward is not necessarily the
- 10 way to go? Is there something that we need to
- 11 discuss, because they are essentially asking us to
- 12 say, well, yeah, we need to move forward and let's
- 13 get the results by the end of the year?
- DR. SINGPURWALLA: Do we have to do this
- 15 right now?
- DR. KIBBE: We are not going to decide on
- 17 which tests to do right now. We are just
- 18 supporting the concept of having the working group
- 19 move forward and give us a report.
- DR. SINGPURWALLA: But one of the things
- 21 they wanted is recommendations .
- DR. O'NEILL: No, I don't think so. We
- 23 are just asking you to endorse the idea of moving
- 24 forward and having this group, and we will come
- 25 back to you with a report. If you don't like it,

- 1 you can say go do more.
- DR. SINGPURWALLA: I am sorry, you said
- 3 suggest refinements in your talk, I made a note of
- 4 it, so do you want the refinements now or later on?
- DR. O'NEILL: No, we don't.
- DR. SINGPURWALLA: So, you don't want
- 7 refinements.
- DR. O'NEILL: No, it's very high level,
- 9 not detail oriented feedback that we would like
- 10 from you right now.
- DR. SINGPURWALLA: Because I would like to
- 12 suggest refinements, but not at this minute.
- 13 DR. O'NEILL: I am sure we would be very
- 14 interested in your refinements, and, in fact, I
- 15 would certainly be interested in speaking with you
- 16 outside of the meeting in terms of getting some
- 17 additional ideas on this particular test, because
- 18 again, this is a working group that is under the
- 19 umbrella of this committee and essentially is
- 20 coming back to the committee on behalf of the
- 21 committee saying what do you think, because the
- 22 committee is the one who is going to give the
- 23 recommendations to the Agency.
- So, if you don't like the recommendations,
- 25 then, it is totally within the committee's

- 1 responsibilities and rights to say, you know, that
- 2 is not what we had in mind, or that's not what we
- 3 think is right.
- 4 DR. KIBBE: Let me get at some of this a
- 5 little bit. We have, I think, a tentative schedule
- 6 to meet in October, and for you, the working group,
- 7 to have your best shot prepared for us to look at
- 8 and give you feedback on, right?
- 9 DR. O'NEILL: Yes, and it's not that we
- 10 haven't thought this isn't ambitious either, but
- 11 that's what we are trying to work on.
- DR. KIBBE: Is it reasonable for a member
- 13 of this committee to forward suggestions to you in
- 14 the interim and then have you incorporate them in
- 15 the working group? If you have some things that
- 16 you would like to think through and then--
- DR. SINGPURWALLA: Honestly, I was
- 18 intrigued by the comment made that we invite
- 19 suggested refinements, and for me to suggest
- 20 refinements, I need to have a better appreciation
- 21 for exactly what is going on.
- DR. O'NEILL: I hear what you are saying.
- 23 I guess maybe that was meant in terms of
- 24 refinements to the process. Part of this is the
- 25 process, and part of this is the content that the

- 1 working group will be dealing with, and the working
- 2 group already has essentially a proposal that they
- 3 have been reacting to from IPAC-RS that has been in
- 4 the works for a number of years, and it is that
- 5 that is trying to be refined, those ideas are
- 6 trying to be refined in the context of how do we
- 7 understand what is currently sort of the operating
- 8 characteristic curve of the current way we do
- 9 things versus a new proposed way of doing things,
- 10 and are they achieving where we want to be as a
- 11 committee.
- 12 I think that is the sense of the
- 13 refinements.
- DR. SINGPURWALLA: So, if the endorsement
- 15 that you seek is for the process, and not for the
- 16 inner workings of the process, I have no comments,
- 17 go ahead, but if it is for the workings, then, I
- 18 would like to think about it.
- DR. KIBBE: I believe we are looking for
- 20 moving ahead on the process right now.
- 21 DR. O'NEILL: That is what we are seeking
- 22 from you, yes.
- DR. KIBBE: What I hear my colleague
- 24 saying is that he would like to have some input on
- 25 the actual workings of the committee, with the

- 1 thought process of the committee, and that if we
- 2 could find some way to do that, to accommodate that
- 3 situation within the budget constraints of the FDA,
- 4 it would be useful.
- 5 It always is good for a subcommittee or a
- 6 working group of ours to have somebody from here to
- 7 carry water for us. You might get yourself into
- 8 more work than you thought you were going to get
- 9 into.
- 10 Anybody else? Jurgen.
- DR. VENITZ: I am obviously in favor of
- 12 moving forward, but I would like to give maybe
- 13 somewhat of an unwanted recommendation, not
- 14 necessarily a refinement.
- That is, when I look at the objectives of
- 16 the working group, they are basically, primarily
- 17 looking at the statistical properties of the test.
- I am recommending the group for having
- 19 information on it, and I would encourage the
- 20 committee to also, the subgroup, I guess, the
- 21 working group, to also look at the clinical
- 22 significance, in other words, in my mind, we talked
- 23 about that last time, the clinical use is part of
- 24 what risk-based manufacturing is all about.
- 25 So, for example, it may be very different

- 1 whether you are comparing inhaled insulin release
- 2 to inhaled topical steroids, and I would like for
- 3 that to be discussed as part of the working group.
- DR. O'NEILL: I hear you. Maybe I went
- 5 through this a little too fast. If you look at the
- 6 constitution of the working group, Dr. Chowdhury is
- 7 our clinical input on that, so that has been
- 8 recognized, and that is why he is on the working
- 9 group, to essentially put, as an overlay, the
- 10 clinical risk structure on this, recognizing very
- 11 much it might be product-specific, so that is his
- 12 role.
- 13 Lawrence Yu's role is also looking at this
- 14 from, let's say, the generic drug implication, so I
- 15 think the working group has been put together
- 16 primarily to be relatively broad-minded.
- 17 The statistical component of this is only
- 18 one of multiple dimensions to this, but it is
- 19 critical to understanding where we are in terms of
- 20 the only thing that is not moving right now, which
- 21 is the test that is on the table.
- DR. KIBBE: Pat, go ahead.
- DR. DeLUCA: Since this committee is going
- 24 to be reporting back to this group, I am just
- wondering why a member of this group wasn't put on

- 1 that committee, and it sounds like Nozer could have
- 2 some real input into it, as well as being a link to
- 3 this committee. There may be some reason why you
- 4 didn't do that, but I would certainly consider
- 5 that.
- 6 MS. WINKLE: It certainly is an option.
- 7 The way that this group is set up is basically a
- 8 fact-finding group for the advisory committee, to
- 9 give them the facts and the information that they
- 10 will need to help make a recommendation on this
- 11 test and how we want to move forward with it, but I
- 12 think that it would be very helpful to have some
- 13 input from Nozer.
- I think that he has some knowledge and
- 15 some understanding and there is nothing that
- 16 prohibits us from doing that, but we tried to set
- 17 it up as an independent fact-finding group for the
- 18 advisory committee.
- 19 DR. SINGPURWALLA: By the way, I just want
- 20 to clarify that I didn't raise the question to
- 21 thrust myself into this arena. I was honestly
- 22 asking a question, and since the matter has been
- 23 raised by my colleague on the clinician, I would
- 24 like to suggest that a Bayesian be on this
- 25 particular group.

- 1 DR. O'NEILL: We will certainly be
- 2 listening to you. If you want to get into that
- 3 discussion, we could, but one of the critical
- 4 discussions we have been having right now is
- 5 assumptions versus data, and Bayesians are heavy on
- 6 the assumptions, but you have to have the data to
- 7 support the assumptions, the game we are in, in the
- 8 regulatory game we are in, and that is why we are
- 9 trying to sort of get some sense of what does the
- 10 waterfront actually look like, because it is very
- 11 important to the behavior of the characteristics of
- 12 this test.
- DR. KIBBE: It is always fun to have
- 14 statisticians discussing statistics.
- Do we have any other questions?
- 16 Seeing no one's hand or little button lit
- 17 up, I want to thank you very much. We are looking
- 18 forward to a very informative and useful report in
- 19 October.
- 20 My schedule says that we are supposed to
- 21 be talking until 10:15, and we could either take a
- 22 break now or if Ajaz promises to get finished in
- 23 time for a break, we could move forward. What is
- 24 everyone's pleasure? Naturally, the Bayesian wants
- 25 to break.

- 1 [Laughter.]
- DR. KIBBE: I will give you all 15 minutes
- 3 and then we will have Dr. Hussain.
- 4 [Break.]
- DR. KIBBE: Why don't you go ahead and
- 6 start, Ajaz.
- 7 Process Analytical Technology (PAT) Next Steps
- 8 DR. HUSSAIN: Thank you.
- 9 [Slide.]
- 10 What I would like to do today is to give
- 11 you a brief progress report on the PAT initiative
- 12 and have three speakers.
- 13 [Slide.]
- I will present a brief history to recap
- 15 how we got here, current status and next steps.
- 16 There are three topics that we want to share with
- 17 you, finalizing PAT guidance, training and
- 18 certification. Chris Watts will make that
- 19 presentation.
- 20 What we are doing with respect to
- 21 standards development. Ali Afnan will talk about
- 22 that.
- 23 A topic that we have discussed twice with
- 24 you, but we thought we would sort of bring some
- 25 closure to that, what we have done with rapid

- 1 microbial methods and how that has been a part of
- 2 PAT. Bryan Riley will talk to you about that.
- What we are hoping is, we have not really
- 4 posed any questions, this is more of a progress
- 5 report, status report, and we are moving forward,
- 6 but if there is anything that you think we need to
- 7 consider, please share this with us.
- 8 The questions you might want to consider -
- 9 are we on track? Are there any recommendations for
- 10 improving how we have approached PAT and how we
- 11 might want to approach PAT in the future?
- 12 [Slide.]
- 13 The aspect that I often share is I think
- 14 the PAT thought process has been in the Agency for
- 15 a long time, and, in particular, a focal point for
- 16 the discussion occurred in October of 1993. I was
- 17 not at FDA at that time, but Tom Layloff and others
- in St. Louis had organized a Symposium on
- 19 Pharmaceutical Process Control and Quality
- 20 Assurance by Non-traditional Means.
- 21 The information I have about that is a lot
- of the focus became on near IR, and a lot of the
- 23 focus tended to be on endproduct testing although
- 24 the title was process control, and the discussion
- 25 that led to sort of a very negative view of near IR

- 1 and some of this technology came from FDA saying
- 2 this cannot be USP methods, therefore, cannot be
- 3 regulatory methods, which is probably more blunt,
- 4 Tom will correct me if I am wrong.
- 5 So, I think that was really an unfortunate
- 6 aspect because from an FDA perspective, a lot of
- 7 progress did not occur because of that.
- 8 Tom and I spent a lot of time together
- 9 thinking about this, and we saw this as an
- 10 opportunity. It was more of a discussion between
- 11 an analytical chemist and an industrial pharmacy
- 12 type, so we were putting our heads together and we
- made a presentation in the year 2000, the
- 14 Millennium Conference in San Francisco. I will
- 15 just share some slides on that with you.
- 16 Another meeting which was very important
- in the evolution of this process was the new
- 18 technology meeting of Royal Pharmaceutical Society
- 19 entitled Process Measurement and Control. I
- 20 actually met Ali Afnan and many other people who
- 21 were then associated with the PAT at that meeting.
- 22 [Slide.]
- The aspect I think which was important is
- 24 this was a presentation that Tom and I did together
- 25 at FIP meeting. Tom had left FDA and was part of

- 1 the USP at that time. The title was Advanced
- 2 Quality Control of Pharmaceuticals: In-line Process
- 3 Controls.
- 4 If you look at the outline, what we talked
- 5 about then was pharmaceutical product development
- 6 and manufacture: Building Quality In, and sort of
- 7 design and specifications, how you approach that.
- 8 We looked at modern in-line controls,
- 9 potential advantages over traditional controls, a
- 10 better approach for "building quality in," and
- 11 talked about the need for accelerating industry and
- 12 regulatory acceptance of modern in-line controls.
- 13 That was the thought process before we coined the
- 14 term "PAT," and so forth.
- 15 [Slide.]
- In many sense, if you look at the cartoon
- 17 there, that was the art of pharmacy manufacturing
- 18 to the science of pharmaceutical manufacturing is
- 19 how did we do granulation endpoint. We reach in
- the bowl, grab a handful of granules, and look how
- 21 they crumble, and then decided the granulation
- 22 endpoint was reached, so we wanted to move from the
- 23 art to more of a science-based approach.
- Our part of the PAT looked something like
- 25 this, so if you look at that other cartoon there,

1 that is how we saw it in 2000, this is what PAT

- 2 might be.
- 3 [Slide.]
- I think one of the critical meetings that
- 5 I attended was a far more technical conclave in
- 6 North Carolina. I happened to walk into that
- 7 meeting and G.K. Raju from MIT was talking about
- 8 it, and that was a chance meeting that really
- 9 provided us some of the critical information
- 10 because I think without that, Tom and I could not
- 11 have made any points in 2001.
- 12 What the CAMP consortium, the MIT
- 13 consortium helped us was to really put a value to
- 14 this thought process, and based on that, we made a
- 15 presentation to the advisory committee, Vince Lee
- 16 was the chair then, is to initiate public
- 17 discussion on application of process analytical
- 18 chemistry tools in pharmaceutical manufacturing.
- 19 You gave us strong support to move
- 20 forward. You recommended that we form a PAT
- 21 Subcommittee. We also, at that same meeting,
- 22 related discussion on Rapid Microbial Testing,
- 23 however, we did not discuss this further at the
- 24 advisory committee, we had these discussions at the
- 25 subcommittee, and that is the reason I brought

1 Bryan Riley to come back and share with you that

- 2 discussion again.
- 3 [Slide.]
- But at the same time, I think Helen and
- 5 Dr. Woodcock, we were discussing this, we felt this
- 6 was much bigger than just an OPS issue, it had to
- 7 be an FDA issue, so we took this to the FDA Science
- 8 Board, and Dr. Woodcock presented that as emerging
- 9 science issues in pharmaceutical manufacturing.
- 10 We actually invited--I am not going to go
- 11 through all the slides, but just to sort of
- 12 illustrate the key presentations that occurred--one
- 13 was the opportunity for improving the efficiency
- 14 from G.K. Raju and then Doug Bean from
- 15 PriceWaterhouseCooper, and we had industry
- 16 colleagues from Pfizer who really came and helped
- 17 us, saying that Pfizer has adopted a "Don't Use"
- 18 and "Don't Tell" approach.
- 19 That is the industry approach is to not to
- 20 use new science and new technology because of
- 21 regulatory uncertainty, or if it is needed, they
- 22 will use it, but then they will do something for
- 23 the regulators to say here, this is what you want,
- 24 but we will control the process this way.
- 25 So, we felt that was undesirable from a

- 1 public health perspective, and we wanted to move
- 2 forward to facilitate introduction of PAT, and we
- 3 coined the term PAT. So, we got a very strong and
- 4 unanimous endorsement from the FDA Science Board to
- 5 move forward. In fact, the Science Board also said
- 6 that they would like to talk and give seminars on
- 7 it, but they have not, but we did give them
- 8 updates.
- 9 [Slide.]
- 10 Taking the recommendations of the advisory
- 11 committee, this committee's recommendation. we
- 12 issued a Federal Register Notice to invite people
- 13 to participate on a PAT Subcommittee.
- So, we got people to apply. We selected
- 15 those individuals and we formed a PAT Subcommittee.
- 16 We brought it back to this advisory committee to
- 17 see whether the charter for the subcommittee is
- 18 acceptable.
- 19 You gave us valuable recommendations. We
- 20 formed the subcommittee, and we had three meetings
- 21 October, June, and February. Tom Layloff served
- 22 as the acting chair for the subcommittee.
- 23 [Slide.]
- 24 The subcommittee moved so rapidly we did
- 25 not have an opportunity to remove the word "Acting"

1 from these names, so while they were acting, the

- 2 work was done, so we never finalized their
- 3 positions.
- 4 Dr. Kibbe, now the current chair of this
- 5 committee, took the responsibility for PAT
- 6 Applications Benefits Working Group. Judy
- 7 Boehlert, who is the chair for Manufacturing
- 8 Committee, took the lead for Product and Process
- 9 Development Working Group.
- 10 Leon Lachman focused on Validation.
- 11 Dr. Koch, who is now on the advisory
- 12 committee, chaired the Working Group on PAT
- 13 Chemometrics.
- So, these working groups provided us
- 15 information, feedback to sort of help create a
- 16 framework to write this guidance.
- 17 [Slide.]
- 18 We also, in parallel, were discussing this
- 19 further at the FDA Science Board, and the key
- 20 aspect was the PAT initiative was just a starting
- 21 point to what was to follow, the 21st Century
- 22 Initiative, and so forth.
- 23 So, we took this discussion further to the
- 24 Science Board, and the second Science Board
- 25 discussion was very important. There was a topic

- 1 that Dr. Woodcock herself discussed, and that was
- 2 actually something similar to what we had the
- 3 discussion on parametric tolerance interval test,
- 4 because the current regulatory system and the
- 5 current pharmacopeial system is such that actually
- 6 does not promote continuous improvement, it
- 7 actually penalizes people for doing more testing,
- 8 and therefore it had to change.
- 9 So, we had to bring the concept of
- 10 research and moving away from the current mentality
- of 75 to 125 type thinking, the market standard
- 12 type thinking, so we had to build that consensus,
- 13 and we got strong endorsement from the FDA Science
- 14 Board to move forward also on that aspect.
- The other presentation, which is very
- 16 important to remember, is that of Dr. Ray Sherzer
- 17 from GlaxoSmithKline speaking on behalf of CAMP,
- 18 and the thing that he pointed out, that there are
- 19 many barriers, we need a paradigm shift, and that
- 20 paradigm shift is necessary because the barriers
- 21 are cultural, organizational, historical.
- The challenges are not technical, the
- 23 technical knowhow exists. The scientists can do
- 24 this, but the barriers are significant cultural
- 25 barriers and organizational barriers, and we could

1 relate to that, because we had the same barriers

- 2 in-house at FDA.
- 3 [Slide.]
- 4 As we were building the PAT team process,
- 5 and you will see a lot of the thought processes
- 6 that Helen expressed in terms of the desired goal
- 7 that OPS wants to move in, this becomes a model or
- 8 the pilot project for a lot of the things we have
- 9 done.
- 10 So, we had to build a PAT team for
- 11 reviewers and inspectors and compliance officers,
- 12 because this was the engine for success. We had to
- 13 think very carefully about this because we have a
- 14 long history of turf issues. We don't talk to the
- 15 field, the field doesn't talk to us type of
- 16 mentality, or this is my issue, field keep away
- 17 type of thing.
- 18 [Slide.]
- 19 So, we actually started a team building
- 20 exercise, so starting with a definition of team, a
- 21 team is a group of interdependent individuals with
- 22 complementary skills who are organized and
- 23 committed to achieving a common purpose, applying a
- 24 common process, and sharing a common destiny.
- Now, I think we clearly have worked on No.

- 1 and 2, we haven't really worked on No. 3 yet, but
- 2 the importance of this is the quality of the
- 3 results we expect from the regulatory assessment,
- 4 review, or inspection really depend on the quality
- 5 of relationship between the reviewer and
- 6 inspectors, and the quality of the relationship
- 7 defines quality of thinking, and the quality of
- 8 thinking defines quality of action that leads back
- 9 to the quality of results we expect.
- 10 So, this is really a complex issue and
- 11 that has to be dealt with very carefully.
- 12 [Slide.]
- We started the PAT process with three
- 14 organizations: our colleagues in Office of
- 15 Regulatory Affairs, which are the GMP inspectors,
- 16 Center for Drugs, and Center for Veterinary
- 17 Medicine.
- 18 The Center for Biologics chose not to be
- 19 part of this, and we will discuss that further this
- 20 afternoon whether they wish to join us or not.
- So, we formed a PAT Steering Committee,
- 22 again reflecting all the different organizations.
- 23 We formed a PAT Review and Inspection Team, and we
- 24 actually recruited a small group, Raj Uppoor, Chris
- 25 Watts, Huiquan Wu, and Ali Afnan to come and join

- 1 OPS, so we had a very successful recruitment
- 2 process. We actually got Ali to take half the
- 3 salary to come to work for FDA, and he did.
- 4 We actually put a PAT Training and
- 5 Coordination Team, and the training was critical.
- 6 One of the critical aspects of the PAT Subcommittee
- 7 was developing a curriculum for training, and then
- 8 we partnered with three schools: a School of
- 9 Pharmacy, a School of Engineering, and a School of
- 10 Chemistry to bring this process together, all three
- 11 National Science Foundation Centers for Excellence,
- 12 Center for Process Analytical Chemistry,
- 13 Measurement Control Engineering Center at
- 14 Tennessee, and Center for Pharmaceutical Processes
- 15 at Purdue.
- 16 So, we brought the groups together and the
- 17 training occurred, but I do want to share with you
- 18 the challenges are cultural.
- 19 [Slide.]
- 20 If you look at the first picture, if you
- 21 can see, a perfect team, right, so we wanted to
- 22 work together, so we did want to talk to each
- 23 other, it is important, and that is the message I
- 24 really want to hone in, because the challenges
- 25 right now we are facing, especially in companies,

- 1 is this challenge.
- We have been able to overcome that in a
- 3 small way within the PAT team, but this has to
- 4 occur broadly, as Helen pointed out, throughout the
- 5 Agency.
- 6 [Slide.]
- 7 So, I think the challenges are great, and
- 8 we have to build teams by dancing together, and we
- 9 did dance together--that is Joe Famulare and Doug
- 10 Ellsworth dancing, you will never seen them dance
- 11 anywhere else--and working as a team on smaller
- 12 projects and building a team. You can see Chris
- 13 Watts smiling.
- 14 [Slide.]
- That led to a team process that paralleled
- 16 the efforts that we put together to develop a
- 17 guidance. The guidance is different, it is a very
- 18 different guidance, it is not a "how to" guidance,
- 19 it is a guidance developed as a framework, and the
- 20 guidance simply outlines a framework that reflects
- 21 analytical chemistry, industrial pharmacy,
- 22 pharmaceutical engineering principles, but in an
- 23 integrated way.
- 24 What it does is it changes quite a bit of
- 25 things each discipline might think about. The way

- 1 I like to say that is if you change the way you
- 2 look at a thing, the thing you are looking at
- 3 changes, so when Tom and I were discussing, we are
- 4 discussing as an analytical chemist and a
- 5 industrial pharmacy type.
- 6 When we brought engineers in, we got
- 7 engineering aspect, so now PAT is somewhat
- 8 different than any of the three views of that.
- 9 DR. SINGPURWALLA: It is called the
- 10 Heisenberg principle.
- DR. HUSSAIN: Yes. So, this is a draft
- 12 guidance which we are finalizing, and Chris will
- 13 talk to you about that, but I do want to sort of
- 14 share some other thoughts.
- 15 [Slide.]
- 16 We had very successful workshops. The
- 17 Arden House conferences this year and last year
- 18 were very successful, but they were very emotional,
- 19 especially the one last year was very emotional.
- 20 The emotions came out first as R&D versus
- 21 Manufacturing, because they didn't want to talk to
- 22 each other, and then it come out between
- 23 pharmacists and engineers, so the engineers came up
- 24 to me saying these pharmacist types don't know what
- 25 they are doing, but it was necessary because it

- 1 forced soul-searching, it forced the thought
- 2 processes that was needed, and many companies are
- 3 going through that right now.
- 4 So, the emotions gave into a lot of
- 5 rational discussion at Arden House this year, IFPAC
- 6 meeting, ISPE meeting, PDA meetings. Now we have
- 7 several proposals, in fact, I expect by the end of
- 8 this summer or the end of this year, you will see
- 9 two complete PAT lines, two different companies,
- 10 from crystallization to endproduct, complete
- 11 automated manufacturing, so that is how fast two
- 12 companies have moved, and one we have approved, and
- 13 Bryan will talk to you about that.
- 14 The first training session is complete,
- 15 certification process is ongoing. We have an
- 16 ongoing interagency agreement with National Science
- 17 Foundation. We would like to explore ways of
- 18 expanding this, and one opportunity that has been
- 19 created is a new initiative called Critical Path,
- 20 and we will share that with you next time.
- 21 The Critical Path Initiative focuses on
- 22 the need for research in three areas: to improve
- 23 drug development itself. One of those is
- 24 industrialization, that is where PAT fits in, and
- 25 we want to use that as a means to sort of highlight

- 1 the need for public funding for research,
- 2 especially academic research in this area, and hope
- 3 to do so in the next several months and years.
- 4 We had an ongoing CRADA with Pfizer on
- 5 chemical imaging. Things are looking good there,
- 6 and we hope to bring some of the results back to
- 7 you for some sharing of that with you.
- 8 We have ongoing communication and
- 9 cooperation with other regulatory agencies. Now,
- 10 our European colleagues have formed a PAT team very
- 11 much like ours. They are actually going to meet
- 12 the end of this month, and they have invited us to
- 13 participate.
- 14 Health Canada has met with us and they are
- 15 very eager to sort of join our training session
- 16 next year, the next training session that we start.
- 17 MHLW, the Japanese are looking at it very
- 18 intently and things are happening on the
- 19 harmonization front with our trying to harmonize.
- 20 [Slide.]
- Now, standards development, it was very
- 22 important that we have a venue to develop standards
- 23 that bring in the multifaceted structure, engineers
- 24 have to talk to pharmacists, have to talk to
- 25 analytical chemists.

1 The way we thought that will happen is

- 2 through ASTM, because ASTM has a lot of knowhow
- 3 already, so we formed a committee called E55,
- 4 Pharmaceutical Applications of PAT. Ali Afnan will
- 5 talk to you about that.
- 6 There is growing external collaboration
- 7 and emerging support structure. ISPE and PDA are
- 8 interested in PAT and are actually developing
- 9 programs to cover a lot of the training needs for
- 10 the next several years, we have PAT Group in the
- 11 AAPS, discussion group.
- We are looking at possible collaboration
- 13 between AAPS and ISPE to bring the material science
- 14 and the engineers together to really focus on
- 15 processing, strong support from IFPAC and the
- 16 formation of an association for manufacturers. I
- 17 think they are struggling with some identity
- 18 crisis. They call it IFPACma, so I suggested they
- 19 should call it IFPATma.
- I think this association will be helpful
- 21 because it will house all the manufacturers of the
- 22 sensors, the software, and so forth, and give them
- 23 a voice, a common voice to move forward.
- When you have an association especially
- 25 with a nonprofit association, we can partner with

- 1 them more easily. AICHE has an extensive
- 2 discussion, and we are building on the vision 20/20
- 3 of AICHE especially in processing to see how that
- 4 can be leveraged.
- 5 A growing number of academic programs that
- 6 focus on PAT. Several PAT companies and training
- 7 opportunities have emerged. Pharmacopeias are
- 8 interested in PAT. Hopefully, they resolve the
- 9 acceptance criteria first.
- 10 PAT is now a part of the 21st Century
- 11 Initiative and FDA's Strategic Plan, so I think
- 12 that small crystal is starting to crystallize the
- 13 system.
- 14 [Slide.]
- The next step is guidance finalization.
- 16 We are moving towards a quality system for the PAT
- 17 process. FDA will participate in the ASTM.
- This afternoon, we will discuss
- 19 application of PAT to the Office of Biotechnology
- 20 Products. I want to sort of make sure I say this
- 21 in a way that emphasizes the structure.
- 22 Expand the scope of the guidance to
- 23 include Office of Biotechnology Products. Since
- 24 they were not part of the training and
- 25 certification program, the guidance is not

- 1 applicable to them.
- The guidance is a framework guidance. It
- 3 applies to any manufacturing, whether it's biotech,
- 4 whether it's automobile, whether it's anything, the
- 5 concepts apply to any manufacturing, so it will
- 6 apply to Office of Biotechnology Products.
- 7 The reason that office is not within the
- 8 scope is they were not trained and certified on
- 9 this aspect. So, the question to you would be how
- 10 would we develop a training program that will meet
- 11 their needs, and as we go to the second training
- 12 program, that will have a more biotech focus and
- 13 then that becomes part of the PAT process.
- I will stop my presentation and invite
- 15 Chris to continue. I think in the next two to
- 16 three years, we want a sunset PAT. What I mean by
- 17 "sunset PAT," is that becomes a regular part of our
- 18 CMC and GMP program, so it will merge with the rest
- 19 of the system.
- Is two to three years the right time? I
- 21 think we will see, but the intention is that this
- 22 is no longer a unique program, it is part of the
- 23 current system.
- 24 With that, I will stop. If you have any
- 25 questions, I will be glad to answer, or we could

1 answer after Chris and others have t	ta⊥ked
--	--------

- 2 Finalizing PAT Guidance
- 3 Training and Certification
- DR. WATTS: Thank you, Ajaz, and thank the
- 5 committee for giving me just a few minutes of your
- 6 time to go over what we have done in terms of
- 7 training and certification and moving toward
- 8 finalizing the draft guidance that we put out back
- 9 in September of 03.
- 10 [Slide.]
- I just want to take a step back really
- 12 quickly and just summarize some of the discussions
- 13 that took place at this committee and the PAT
- 14 Subcommittee in terms of defining what PAT is, and
- 15 that will really give some background on the intent
- 16 of the training program and what the focus was for
- 17 the training program.
- 18 The definition that came from this and
- 19 subsequently made its way into the guidance was PAT
- 20 is a system for designing, analyzing, and
- 21 controlling manufacturing through timely
- 22 measurements of critical quality and performance
- 23 attributes of raw and in-process materials and
- 24 processes.
- So, it is not just focused on any one

- 1 analytical technique, it is not focused on
- 2 endproduct only, it is the entire manufacturing
- 3 process.
- When you think about PAT, process
- 5 analytical technology, that term "analytical" more
- 6 should be thought of as analytical thinking, not
- 7 just simply analytical chemistry, so we made a
- 8 point of emphasizing that analytical, when you
- 9 think about that term, you should include not only
- 10 chemical, but also physical, microbiological,
- 11 mathematical, and risk analysis, all those
- 12 conducted in an integrated manner to come up with a
- 13 framework for controlling the manufacturing
- 14 process.
- 15 [Slide.]
- So, with that definition, the unmistakable
- 17 focus of PAT is to really understand the
- 18 manufacturing process. What we outlined was a
- 19 process is considered well understood when, number
- 20 one, all critical sources of variability are
- 21 identified and explained; number two, the
- 22 variability is managed by the process, and,
- 23 finally, product quality attributes can be
- 24 accurately and reliably predicted.
- So, with that focus on process

- 1 understanding, it brings in the concept of really
- 2 risk management, so we consider that the level of
- 3 process understanding is inversely proportional to
- 4 the risk of producing a poor quality product.
- 5 So, a well understood process then offers
- 6 less restrictive regulatory approaches to manage
- 7 change to different approaches to validation.
- 8 So, if you focus on process understanding,
- 9 we can facilitate risk-managed regulatory decisions
- 10 and innovation, not only within the Agency, but
- 11 within the manufacturing arena and the
- 12 pharmaceutical industry in general.
- 13 [Slide.]
- So, having that background, I want to now
- 15 talk about this framework that we developed for PAT
- 16 that came out in the guidance, and it was a
- 17 framework, as I just mentioned, for innovative
- 18 pharmaceutical manufacturing and quality assurance.
- 19 We really set forth some scientific
- 20 principles, some basic principles and concepts, and
- 21 described some PAT tools that would support
- 22 innovation.
- In my opinion, one of the most important
- 24 aspects was the regulatory strategy that would
- 25 accommodate innovation, and that the primary focus

- 1 there was on the PAT team approach again which Ajaz
- 2 mentioned briefly, the team approach to review and
- 3 inspection.
- 4 Along those lines, we developed a joint
- 5 training and certification program, so I want to
- 6 talk to you now about that training and
- 7 certification program.
- 8 [Slide.]
- 9 You have already seen a few slide from
- 10 Ajaz on the team building aspect, really getting to
- 11 know one another very well, and again that included
- 12 people from the Center for Drugs, both reviewers
- 13 and compliance officers, the field investigators
- 14 from the Office of Regulatory Affairs, and, of
- 15 course, the compliance officers and reviewers from
- 16 the Center of Veterinary Medicine.
- During this training program, it was
- 18 important that all 15 individuals who were part of
- 19 that initial training program, we went through
- 20 everything together, every didactic session we went
- 21 as a team, every practicum we went as a team.
- The team building obviously, everyone was
- 23 involved there, so there it would really break down
- 24 the communication barriers, which is really going
- 25 to be key to ensuring that science-based,

1 risk-based or risk-managed approach to review and

- 2 inspection.
- 3 A brief outline of the training program
- 4 that we had. Two didactic sessions, both of those
- 5 were conducted here at the FDA, and three practica,
- 6 again, at the University of Washington, the Center
- 7 for Process Analytical Chemistry; Purdue
- 8 University, Center for Pharmaceutical Process
- 9 Research, and the University of Tennessee, the
- 10 Measurement and Control Engineering Center.
- 11 [Slide.]
- 12 In summary, the first didactic that we had
- 13 was really just to provide a general overview of
- 14 some of the pharmaceutical processes, the
- 15 scientific basis for some of those processes, why
- 16 they may be necessary, to really give the team a
- 17 feel for what some of those unit operations
- 18 specifically may be trying to do to the material
- 19 and what are some approaches for trying to control
- 20 that process.
- 21 Of course, there was some extensive
- 22 discussion on some of that process analytical
- 23 techniques, multivariate analysis, an in-depth
- 24 discussion on the background of where some of the
- 25 multivariate analysis techniques came from,

- 1 principal component analysis, partial e-squares,
- 2 how those can be used in terms of developing a
- 3 control system for the manufacturing processes, and
- 4 then finally, a general introduction to true
- 5 process control from a process control engineer.
- 6 After that, we went to the University of
- 7 Washington in Seattle, The Center for Process
- 8 Analytical Chemistry, and the focus there was
- 9 really on sensor technology and development. I
- 10 think CPAC did a wonderful job of tying that in,
- 11 giving some other industrial examples, and tying
- 12 that into how some of these sensors may be applied
- 13 to the pharmaceutical industry.
- 14 [Slide.]
- To maintain continuity with the practicum
- 16 visits, we took some of those, the sensor
- 17 technology, some of the sensors that were being
- 18 utilized at CPAC, and put them in the use onto some
- 19 pharmaceutical processes at Purdue University.
- There, we really focused on some of the
- 21 experiments that we conducted were blending, for
- 22 example, compression, granulation, traditional
- 23 solids processes, how some techniques were emerging
- 24 that may be able to allow us to control those
- 25 processes on line, really understand the impact of

- 1 those processes on the final product quality and
- 2 how they relate, not just to consider them
- 3 independently, but how they relate to the final
- 4 product quality as a whole.
- 5 After having done our experiments at the
- 6 second practicum at Purdue, we then took some data
- 7 on the granulation process. Then, when we went to
- 8 the Measurement and Control Engineering Center at
- 9 the University of Tennessee, we actually analyzed
- 10 that data.
- 11 Paul Kemperlein, who is part of MCEC,
- 12 really walked us through, you know, what are some
- 13 of the techniques that you maybe use, what are some
- 14 limitations of these multivariate techniques that
- 15 you may be want to be keeping in mind when you are
- 16 going through the review of these applications.
- 17 [Slide.]
- 18 Finally, the last didactic, we tried to
- 19 tie everything together again. We broke up into
- 20 teams, developed some case studies, so that we
- 21 could really apply what we had learned throughout
- 22 the training program, and discussed those as teams,
- 23 a true team approach, a reviewer, compliance
- 24 officer and investigator, and really began to
- 25 discuss what some of the relevant issues were in

1 terms of managing the review and inspection

- 2 processes.
- 3 That really ended the initial training
- 4 portion, but by no means did we think it is
- 5 complete. I think continuing education is going to
- 6 be vital to the success of this team, which Ajaz
- 7 mentioned is really going to drive the success of
- 8 PAT within the Agency.
- 9 Along those lines, we have monthly video
- 10 conferences with the people that are here in
- 11 Rockville and the investigators that are in the
- 12 field, and we try to discuss some of the relevant
- 13 issues that are coming out, for example, some
- 14 recent publications or some inspections, review
- 15 issues that may have surfaced, and discussed those
- 16 as a team, not individually as reviewers or not
- 17 inspection issues individually as inspectors, but
- 18 as a team.
- 19 We also have developed a seminar series to
- 20 discuss some publications that may be relevant to
- 21 what we are trying to do within the PAT initiative,
- 22 and, of course, we are using the Intranet to
- 23 communicate some of these publications and discuss
- 24 those on line, really, an easy way of communicating
- 25 with the entire team.

[Slide.]

- In summary, we have, in terms of the
- 3 training and certification, we have completed the
- 4 initial training program. We are now in the
- 5 process of conducting some lessons learned in terms
- of what we have accomplished with this, maybe some
- 7 additional aspects that need to be considered, and
- 8 some of those will be discussed with this committee
- 9 this afternoon in terms of expanding the scope of
- 10 PAT to include biotech products.
- 11 Again, continuing education and
- 12 involvement in the next training, I think is going
- 13 to be critical for this group, so that we maintain
- 14 links, not only with the team that we currently
- 15 have, but the team that we intend to build.
- 16 We can take some of the experience of
- 17 those reviewers and investigators who have
- 18 processed and will be processing some applications
- 19 and who have gone on inspections and really share
- 20 those with the new group that is coming in and the
- 21 group that we currently have, so that we can
- 22 understand maybe what is the best approach for us
- 23 to go in terms of taking a team to do an
- 24 inspection.
- 25 Maybe we don't need to have all three

1 people, maybe one or two should be sufficient, and

- 2 we can do discussions over the telephone or
- 3 videoing to handle some issue.
- 4 Of course, we have involved the entire
- 5 team in finalizing the guidance. In my opinion, I
- 6 think it was very important to get a real feel for
- 7 how the reviewers felt about the guidance, how the
- 8 compliance officers and how the investigators felt
- 9 about the policy that was emerging in the guidance,
- 10 really how that framework was going to be
- 11 implemented because they are going to be the ones
- 12 who are really driving things.
- They are going to be the ones who are
- 14 enforcing the policy, not really enforcing the
- 15 policy, but making sure that the process works as
- 16 it should, so that it is a least burdensome
- 17 approach to the industry.
- 18 Within the Office of Testing and Research,
- 19 you heard Helen mention Dr. Khan is coming on
- 20 board, I think it is going to be important to
- 21 maintain a link to the Office of Testing and
- 22 Research, so that we can support policy development
- 23 and future training if we develop some in-house
- 24 expertise and what are some critical issues that we
- 25 may want to be able to focus on in terms of review

- 1 and inspection and some of the technologies that
- 2 may be developed, if we can develop some of that
- 3 expertise in-house, we can not only bring some of
- 4 the training in-house, but also have some consults,
- 5 we have expertise within the Agency that we can
- 6 consult on a given basis.
- 7 [Slide.]
- 8 So, building on a little bit of the
- 9 guidance finalization, we involved the entire team
- 10 in the development of the guidance, and, of course,
- 11 they are going to be involved in finalizing the
- 12 quidance.
- 13 The quidance was issued in September of
- 14 03, and the public comment period extended through
- 15 November 4th, and those comments are available on
- 16 the docket. You can see all, I think there were
- 17 some two dozen companies or individuals that
- 18 submitted comments to the guidance, and we are in
- 19 the process of going through those and discussing
- 20 those and addressing each one of those.
- 21 We have included the entire team and we
- 22 have broken the teams down into reviewers again,
- 23 compliance officers, and investigators, and have
- 24 those address each of those and see which comments
- 25 they may think are most relevant and convey that

1 back to the policy team, so that we can move

- 2 forward in finalizing the guidance.
- With that, I am going to conclude this
- 4 portion right here. Again, I think we may have
- 5 time for some questions afterwards, and I want to
- 6 turn it over to my colleague, Ali Afnan, who will
- 7 discuss the standards development process for PAT.
- 8 Standards Development
- 9 DR. AFNAN: Thank you very much for giving
- 10 me the opportunity to be here.
- 11 [Slide.]
- 12 I am going to be very quick. The outline
- 13 of the talk is why we went with ASTM, what is ASTM,
- 14 what is the history of the committee, where are we
- 15 going with it, and I will give you some background
- 16 also as to how, what Chris has just said, links
- 17 into this process.
- 18 [Slide.]
- 19 Having focused on the processing, going
- 20 away from product testing, which Chris very
- 21 beautifully put out as PAT being process
- 22 understanding, we had to come up with new standards
- 23 and new ways of assessing whether a process was
- 24 right or wrong.
- 25 If the process was working well, then, the

- 1 product would be right, so for that reason, we
- 2 began to look at alternatives to the current
- 3 specifications we were working with because
- 4 effectively, we needed standards, not
- 5 specifications.
- 6 We needed a process which included all the
- 7 interested parties and allowed them to come in for
- 8 a balanced discussion, definition of balanced
- 9 discussion being that we would each have one vote,
- 10 it would have a due process, and, of course, there
- 11 was the NTTAA Act, the National Technology Transfer
- 12 Act, which mandates federal departments and
- 13 agencies to use voluntary consensus standards in
- 14 place of government standards wherever possible.
- So, having looked at all of those, we
- 16 decided to look at ASTM, which had already been in
- 17 dialog with our other departments in the agency.
- 18 [Slide.]
- 19 So, ASTM, which now they call themselves
- 20 ASTM International, is an ANSI-accredited standards
- 21 development organization with more than 100 years
- 22 of experience in standard development.
- They actually generate standards, best
- 24 practices, and guides, three different things, but
- 25 they are all done through a peer review process.

- 1 Their offices are in West Conshohocken, and they
- 2 meet regularly. There is a committee which goes
- 3 around to various places. This year it is in Salt
- 4 Lake City, and next year it is somewhere in Europe.
- 5 [Slide.]
- 6 The history of developing the committee
- 7 was that through the winter and spring of 2003, FDA
- 8 met with ASTM re: development of a new committee
- 9 for Process Analytical Technology.
- 10 In October of 2003, there was a meeting at
- 11 ASTM, and then in December, the first
- 12 organizational meeting was held at which interested
- 13 parties from academia and industry were present.
- In January, the nomination and election of
- 15 committee officers took place. Again, if you are
- 16 interested in the procedures and the processes of
- 17 elections or how ASTM functions, the best place to
- 18 look at is ASTM.org, World Wide Web.
- 19 In February of this year, we had the first
- 20 meeting of ASTM E55 Committee, and the next one is
- 21 in Salt Lake City, 18th through 20th of May.
- 22 [Slide.]
- What is the scope of E55? E55 pretty much
- 24 reflects the FDA PAT draft guidance, but the scope
- 25 of the committee is that the scope of the committee

- 1 shall be development of standardized nomenclature
- 2 and definitions of terms, recommended practices,
- 3 guides, test methods, specifications, and
- 4 performance standards for pharmaceutical
- 5 application of process analytical technology.
- 6 The committee will encourage research in
- 7 this field and sponsor symposia, workshops and
- 8 publications to facilitate the development of such
- 9 standards. The committee will promote liaison with
- 10 other ASTM committees and other organizations with
- 11 mutual interests.
- 12 What was quite interesting was it took
- 13 about an afternoon to come up with that, and,
- 14 really, we thank the industry for taking a very
- 15 active role in coming up with that scope.
- 16 [Slide.]
- 17 Currently, E55 has three subcommittees.
- One is E55.01, which is PAT Systems Management;
- 19 E55.02, which is Systems Implementation and
- 20 Practice. The Executive Subcommittee is 90, and
- 21 then there is a third one, which is E55.91
- 22 Terminology.
- 23 [Slide.]
- 24 The Chair and the elected officers, which
- 25 was by ballot effectively, of E55, the Chairman is

- 1 Don Marlowe from the Office of the Commissioner.
- 2 The Vice Chair is Ray Scherzer from GSK. The
- 3 Membership Secretary is James Drennen from Duquesne
- 4 University, and the Recording Secretary is Gawayne
- 5 Mahboubian-Jones from Optimal Industrial
- 6 Automation, Ltd., a system integration company.
- 7 [Slide.]
- 8 The Subcommittee officers. E55.01's chair
- 9 is Ken Leiper, Vice Chair is Gerry, the Secretary
- 10 is Chris Watts. E55.02 Chair is Ferdinando Aspesi
- 11 from Aventis. The Vice Chair, from AstraZeneca, is
- 12 Bob Chisholm. I am the Secretary.
- E55.91, which is the Terminology
- 14 Subcommittee, has Larry Hecker, Abbott, as Chair,
- 15 and Jim Fox, of GSK, as its Secretary.
- There are also 8 members at large, who
- 17 serve on the E55 Main Executive Committee, and they
- 18 are appointed from industry and academia.
- 19 Thank you.
- 20 Rapid Microbial Methods
- 21 DR. RILEY: What I would like to do this
- 22 morning is give you a brief update on the status of
- 23 rapid microbiology methods as part of the PAT
- 24 initiative.
- 25 [Slide.]

- 1 As you may know, rapid microbiology
- 2 methods were not originally part of the PAT
- 3 initiative. We were sort of looking at rapid micro
- 4 methods in a parallel track with the development of
- 5 the PAT initiative, but finally, someone recognized
- 6 it would make sense to have rapid micro methods as
- 7 part of PAT, so at the October 2002 PAT
- 8 Subcommittee meeting, there was an extensive
- 9 breakout session dealing with rapid microbiological
- 10 methods.
- 11 A number of speakers discussed the
- 12 importance of rapid microbiology methods, how they
- 13 could fit into PAT and also the best way to look at
- 14 rapid microbiological methods for the
- 15 pharmaceutical industry.
- [Slide.]
- 17 From that point on, we worked to try to
- 18 integrate rapid microbiological methods into the
- 19 PAT initiative because PAT had sort of a headstart
- 20 on us. So, the first thing we did was looking at a
- 21 training session for rapid micro. To do that, in
- 22 July of 2003, here in Rockville, we had a training
- 23 session.
- We invited people from CDER, ORA, CBER,
- 25 and CVM to attend. As an agenda, we had an

- 1 overview of rapid microbiological method
- 2 technologies, a very extensive overview. We had
- 3 two rapid micro method vendors come in and talk
- 4 about their products and how they can be used.
- We also had a company come in and talk
- 6 about their experiences of validating a rapid
- 7 microbiological method for pharmaceutical use.
- 8 [Slide.]
- 9 Since the team approach is very important
- 10 for PAT, one of the things we had to do was to form
- 11 a rapid micro method team for PAT. That team
- 12 consists of Bob Coleman, expert drug investigator
- 13 from ORA; Dennis Guilfoyle, a pharmaceutical
- 14 microbiologist from the North East Regional
- 15 Laboratory at FDA, Brenda Uratani, a microbiologist
- 16 from the Office of Compliance, CDER, and myself.
- 17 [Slide.]
- 18 As we were doing the training and setting
- 19 up the team, we were also in contact with a large
- 20 global pharmaceutical manufacturer who was
- 21 interested in using a rapid microbiology method for
- their pharmaceutical manufacturing process.
- We had a number of meetings with them to
- 24 discuss their use of these rapid micro methods, how
- 25 they would validate them, how they would submit the

- 1 information to the Agency, that sort of thing, and
- 2 these meetings culminated with a formal
- 3 presubmission meeting with the applicant in 2003,
- 4 where they discussed what they would submit and how
- 5 they would submit it.
- 6 Because what they wanted to do was to use
- 7 some different rapid micro methods for release
- 8 testing of a variety of non-sterile drug products,
- 9 they wanted to use these at multiple manufacturing
- 10 sites, it was decided that a comparability protocol
- 11 would probably be the best way for them to submit
- 12 this information to begin with.
- 13 A comparability protocol is simply a
- 14 written formal experimental protocol where, in this
- 15 case, what they are demonstrating is that their
- 16 rapid method is equivalent to or superior to the
- 17 traditional method they have been using, and it
- 18 talks also about the experiments they will do and
- 19 also the acceptance criteria that they would want
- 20 to use to demonstrate that equivalence.
- 21 So, what they did after this meeting was
- 22 they submitted two comparability protocols, one for
- 23 product release testing for several non-sterile
- 24 drug products, and also testing for pharmaceutical
- 25 grade waters.

1 After the approval of the comparability

- 2 protocol for product release testing, they then
- 3 submitted a changes being affected supplement to
- 4 implement that rapid micro method for one of their
- 5 non-sterile drug products.
- 6 [Slide.]
- 7 It was decided as part of this application
- 8 process that an inspection would be done related to
- 9 the rapid micro method implementation, and because
- 10 of that, the rapid micro method team had several
- 11 meetings, one in September of 2003, where we mainly
- 12 discussed the comparability protocols that were
- 13 submitted by the company, and then finally, in
- 14 early February of 2004, we talked about the actual
- inspection itself, what we would do, how we would
- 16 do it, that sort of thing.
- 17 The inspection took place in late February
- 18 of 2004. It was led by again Bob Coleman from the
- 19 Office of Regulatory Affairs, and Bob's experience
- 20 and his leadership in this process was very, very
- 21 helpful to us especially on the inspection process.
- 22 It made it go very smoothly.
- 23 We looked at the rapid micro method
- 24 itself, how it was validated. We looked at just
- 25 the general microbiological laboratory aspect of

1 the pharmaceutical manufacturing facility, and also

- 2 looked at some of the GMPs related to the
- 3 manufacturing of the product that they would be
- 4 using the rapid micro method test for.
- 5 The inspection found no significant
- 6 problems. There was no 43 issue as a result of
- 7 that inspection, and we thought everything went
- 8 well both from our standpoint, as well as the
- 9 firm's standpoint.
- 10 [Slide.]
- 11 What is the future of rapid microbiology
- 12 methods in the pharmaceutical industry? I think
- 13 the ultimate goal, the ideal would be real-time
- 14 testing to provide immediate feedback. I think
- 15 that would be very, very helpful.
- Where are we today? The traditional
- 17 micro methods require several days to several weeks
- 18 to get results. The current available rapid micro
- 19 methods that are available today, and can be used
- 20 today, significantly shorten that time to result.
- 21 It can be as little as a day or maybe a
- 22 little bit more than a day, and some of the rapid
- 23 methods can give you results in as little as a
- 24 couple of hours.
- We think even though it is not real-time

- 1 testing, it still provides much better control,
- 2 much better understanding of the manufacturing
- 3 process from a microbiological standpoint and
- 4 hopefully, can help detect and enable you to
- 5 correct a potential problem before it becomes a
- 6 real and serious problem as far as microbiological
- 7 quality of the drug product is concerned.
- 8 We are hoping that our experiences that we
- 9 have had so far with our rapid micro method
- 10 submission and inspection and approval process will
- 11 encourage others in industry to also use this PAT
- 12 regulatory pathway to look at other rapid micro
- 13 methods and use them to improve their manufacturing
- 14 process and understanding.
- I thank you for your attention this
- 16 morning and I guess we will take questions of any
- 17 presentations of this session.
- 18 Committee Discussions and Recommendations
- DR. MEYER: One question for Ajaz and I
- 20 guess one for Chris.
- 21 As the U.S. develops this PAT concept and
- 22 begins to apply it, it seems like it is better to
- 23 harmonize as things are being developed than after
- 24 they are set in stone.
- 25 Is there an effort with the Japanese, the

1 Europeans, the Canadians to harmonize on the front

- 2 end?
- 3 DR. HUSSAIN: Yes, in terms of I think
- 4 there is quite a significant dialog and discussion,
- 5 and I think the framework provides a way forward
- 6 because as a framework, it does not get in how to,
- 7 and harmonizing how-to guidance is a difficult
- 8 challenge, so this is the time to do this.
- 9 That is the reason we felt ASTM also
- 10 provides a way forward because the devices, the
- 11 Center for Devices, for example, utilize the ASTM
- 12 standards, and these are international standards,
- 13 so many of the members on the ASTM committees are
- 14 international members right now, Europe and U.S.
- 15 right now, and we are encouraging people from Japan
- 16 to join in.
- So, that would be a way forward, so you
- 18 are absolutely correct. I mean we are trying to do
- 19 that as you move along, and the progress has been
- 20 significant on that. That is what I tried to say
- 21 is we are harmonizing without trying to harmonize.
- DR. MEYER: My question to Chris, if I
- 23 understood you correctly, there is about a
- 24 15-member team, a variety of disciplines, that were
- 25 sent through this fairly intensive training

- 1 program?
- DR. WATTS: Correct, yes.
- 3 DR. MEYER: Will that be all there is, or
- 4 how is this going to grow to be 150 people or will
- 5 it?
- DR. WATTS: Well, as Ajaz mentioned, I
- 7 think within a few years, two to three years, he
- 8 envisions it being a regular part of the operation
- 9 within the CMC review and GMP inspection when it
- 10 comes to this team approach to PAT.
- 11 We have every intention of expanding the
- 12 training program to include more members within
- 13 CDER, the Office of Pharmaceutical Science, Office
- 14 of New Drug Chemistry, Office of Compliance, but I
- 15 think the immediate need may be to expand the scope
- 16 to include the Office of Biotechnology Products,
- 17 which will be included in the discussion this
- 18 afternoon.
- 19 Based on a lot of the comments that we got
- 20 from the guidance that we issued in September,
- 21 there were a significant number of comments
- 22 suggesting that we do expand the scope to include
- OBP, and as far as an immediate need, I think that
- 24 may be more urgent in terms of expanding the team
- 25 concept.

1 DR. COONEY: Another question on the

- 2 education side, actually, two questions. Could you
- 3 comment a bit on what do you see as the important
- 4 metrics that you use in measuring the success of
- 5 the educational program and then could you also
- 6 elaborate a bit on what do you see as the major
- 7 challenges in continuing to evolve and develop the
- 8 educational program?
- 9 DR. WATTS: Actually, I think one of the
- 10 most important aspects was just the team approach.
- 11 The technical aspects will be actually rather
- 12 simple to address when it comes to terms of getting
- 13 some expertise either within academic environment
- 14 or within industry that have given technical
- 15 expertise that can convey that to the team.
- 16 Given the team approach, rather than
- 17 expecting one member to have all the answers, then,
- 18 as a team, we think we can have most of the right
- 19 questions, we can ask most of the right questions,
- 20 just not having one person have all the right
- 21 answers.
- 22 As Ali has said on many occasions, the sum
- 23 of the team is much more than the individual
- 24 components, so it is much more than just what each
- 25 member brings to it.

- 1 A real metric, again, I think the team
- 2 approach, that was one of the most important
- 3 aspects, can they communicate as a team, can they
- 4 really work as a team, for example, with the rapid
- 5 micro inspection process.
- 6 That is relatively a novel concept when it
- 7 comes to the regulatory environment. Typically,
- 8 the reviewers are responsible for review only,
- 9 inspectors are responsible for inspection only.
- 10 There is little, if any, communication between the
- 11 two.
- 12 What we are really treating it as is a
- 13 two-way street, not just reviewers participating on
- 14 inspection, but what are some of the key aspects of
- 15 the manufacturing process that an inspector may be
- 16 familiar with that they can convey to other members
- 17 of the team.
- 18 Really, I think the communication with the
- 19 team is one of the most important aspects, the
- 20 technical aspects or the scientific aspects, which
- 21 will be a little simpler to address, I think, with
- 22 training.
- DR. COONEY: Just one more point. In the
- 24 training exercises, do you present problems of
- 25 innovation or scenarios where you would not expect

- 1 previously people to be able to have had all the
- 2 answers and then ask them to try and synthesize a
- 3 strategy or an approach?
- 4 DR. WATTS: Actually, some of the case
- 5 studies that we developed are along those lines
- 6 exactly. During the second didactic, it wasn't
- 7 just this is what one person did. This is the
- 8 problem, how would you as a team think about
- 9 solving that problem, not just regulating it, the
- 10 problem of solving it in general.
- 11 DR. KOCH: I think the question of
- 12 developing metrics will become increasing important
- 13 just in observing the first class that went
- 14 through, the team building indeed was there. As
- 15 you go to 150, it is going to be more difficult to
- 16 dance, there is going to be more variation.
- 17 The first group was exceptional. If every
- 18 one of the 150 projected fits that description,
- 19 it's a wonderful program. I think I have to add,
- 20 too, the team building exercise that you went
- 21 through before the training, that was I think
- 22 replaced by a team building that occurred, say, if
- 23 I look at the practicum and the didactic, it was
- 24 quite obvious that the team members were very
- 25 conscious to make sure that everybody on the team

1 understood the technology to a working level, and

- 2 it wasn't as if two or three came away with
- 3 understanding it and didn't bring the others up.
- 4 It was very obvious that by the end of the
- 5 program, they were quite excited to move ahead, and
- 6 that is where the problem I think in the future is
- 7 going to come, is that as you grow the number in
- 8 the team, you have to develop more metrics to
- 9 evaluate how well it is going.
- 10 A small number is relatively easy, I
- 11 think, to build the teamwork especially as it is
- 12 getting off the ground.
- DR. KAROL: Bryan, I would like to ask you
- 14 a little bit about the microbial methods. That is
- 15 very exciting that you are moving to real-time
- 16 detection.
- 17 Can you tell us a little bit about the
- 18 processes that will be involved, what you are
- 19 thinking of, and are there particular organisms
- 20 that will be difficult to detect? You know, where
- 21 are you having your problems in moving in this
- 22 direction?
- DR. RILEY: Well, right now I think the
- 24 methods that we are looking at are fairly simple
- 25 and straightforward. We are not going to do

- 1 anything too exotic to begin with. A lot of the
- 2 methods, even the rapid methods are still growth
- 3 based, they have an enrichment step, and then an
- 4 alternate detection method to detect fairly small
- 5 numbers of microorganisms.
- 6 But I think as we get into some of the
- 7 more exotic methods that don't rely on any growth
- 8 at all, you know, cytometry, that type of thing, I
- 9 think the issue is going to be again how do you
- 10 measure, you know, make sure you detect everything,
- 11 and look at how are we going to validate that, how
- 12 are we going to make sure that that is possible.
- 13 DR. KAROL: I wondered if you were moving
- 14 into DNA technology or any of the molecular biology
- 15 techniques now.
- DR. RILEY: It is for some of the
- 17 identification. What I have talked about mainly
- 18 has been the enumeration or
- 19 qualitative/quantitative type tests, but certainly
- 20 for identification, yes, a lot of people are
- 21 looking at that using nucleic acid methods,
- 22 sequencing, PCR, that sort of thing, for detection
- 23 or identification of organisms, and that I think is
- 24 becoming much more common, and it is something that
- 25 I think we are encouraging, as well.

- 1 DR. KIBBE: Anybody else?
- DR. HUSSAIN: Why don't we finish with the
- 3 committee questions before the audience?
- 4 DR. KIBBE: If we could hold off for a
- 5 second and see if there is anybody else on the
- 6 committee.
- 7 DR. COONEY: I have a question on the
- 8 rapid microbial. Do you also have an interagency
- 9 cooperation with Homeland Security, in this area,
- 10 as well? There seems to be a synergy.
- DR. RILEY: We don't really have a direct
- 12 formal connection at this point although one of the
- 13 team members has been involved in that, so I am
- 14 hoping that we can work something from that to get
- 15 more involvement in our aspect of it. But you are
- 16 right, it does go together, a lot of those types of
- 17 rapid methods that they would be interested in are
- 18 things that we could apply, as well.
- DR. KIBBE: Anybody else on the committee?
- [No response.]
- 21 DR. KIBBE: If you could come to the
- 22 microphone and identify yourself, and then let us
- 23 know what your question is.
- DR. CHERNEY: Hi, I am Barry Cherney of
- 25 the FDA.

1 My question was essentially the same one

- 2 as was just asked by the committee members, I know
- 3 the CDC and other federal agencies, DARPA, are very
- 4 interested in the rapid microbial techniques and
- 5 have made actually a lot of advancement in that,
- 6 and I was also wondering what we have done to get
- 7 involved in those type of efforts as an overall
- 8 approach for the Federal Government.
- 9 DR. RILEY; I agree. I think we are
- 10 starting to do that. Certainly, within FDA, we are
- 11 looking at some of the different centers to see
- 12 what they are doing, but you are right, other
- 13 government agencies have done a lot of work along
- 14 these lines, and we need to have more of a coherent
- 15 approach or at least cooperation and information
- 16 sharing between the different agencies and
- 17 different groups that are doing that, and I think
- 18 that will be very helpful for everybody.
- 19 DR. KIBBE: Ajaz, you had something to
- 20 say. You leaned forward like you were poised.
- 21 DR. HUSSAIN: I think what would be useful
- 22 is if you could share some thoughts in terms of how
- 23 do you think we have progressed so far, especially
- 24 Tom and Judy, and folks who were on the
- 25 subcommittee, what we could have done better or

1 what we should we be looking out for in the future,

- 2 that would be very helpful.
- 3 Also, as part of this, I think there are
- 4 external leverages that really have to come
- 5 together here, not only in the international arena,
- 6 but also in terms of academia, in terms of public
- 7 funding for some of the research that is needed
- 8 especially in pharmaceutical manufacturing, and so
- 9 forth, how do you recommend we move forward in many
- 10 of these areas.
- DR. KOCH: I guess I would make one
- 12 suggestion, and that is not to lose the momentum
- 13 that started with the training of the first group,
- 14 and I know that the second group hasn't necessarily
- 15 been put together yet, and there is obviously good
- 16 reasons for that, but don't lose that momentum
- 17 because it is a growing area.
- DR. KIBBE: We have two observers from
- 19 industry, what does industry think?
- 20 MR. MIGLIACCIO: I guess I would just
- 21 comment on the training, that I think one of the
- 22 frustrations that FDA has is the number of
- 23 applications and supplements that are coming in
- 24 from industry.
- 25 The good news is, I think Chris had a

- 1 slide that said PAT equals process understanding,
- 2 and we are 100 percent behind that. What we are
- 3 doing now is using, in the framework that the
- 4 quidance has provided, we are using PAT for process
- 5 understanding, and we are putting all our resources
- 6 into that, identifying sources of variability and
- 7 dealing with them, not necessarily moving to
- 8 primary control of our processes.
- 9 So, I think there is some frustration that
- 10 they are not seeing as many supplements. Right now
- 11 you probably have enough people trained to deal
- 12 with what you are getting. I think once our
- 13 resources can move from process understanding and
- 14 process capability into primary control, then, you
- 15 will start seeing more supplements coming in and
- 16 more new drug applications coming in.
- DR. KIBBE: Anybody else? Comment?
- DR. BOEHLERT: I was going to make a very
- 19 similar comment. You know, there was a lot of
- 20 initial interest. A number of large companies very
- 21 interested in the techniques involved with PAT
- 22 making presentations. I am wondering if that is
- 23 starting to wane, you know, if the FDA has seen a
- 24 steady influx of companies asking for information
- 25 or did it start off high and then it is sort of

- 1 drifting off.
- The other issue on the microbiology, I
- 3 think there is probably considerable interest on
- 4 the part of companies in that technique, but there
- 5 is some constraints around it right now, and those
- 6 are compendia tests that are different, and I think
- 7 there needs to be some interaction with the
- 8 pharmacopeia on some of these topics because there
- 9 are different endpoints.
- 10 Even though you can demonstrate
- 11 equivalency, the compendia test right now doesn't
- 12 cover the rapid micro technique.
- DR. KIBBE: Do you have a response?
- MR. MIGLIACCIO: Yes. On the is the
- 15 interest waning, absolutely not. In fact, the good
- 16 news is if you have seen the transcripts of any of
- 17 the recent industry meetings and presentations over
- 18 the last year or so, we have gone from talking
- 19 about concepts to talking about applications, and
- 20 there are many more applications out there right
- 21 now of PAT where people are either solving
- 22 20-year-old problems or looking at a new way to
- 23 make a new product.
- So, it is moving forward. The interest is
- 25 increasing exponentially right now. It is a matter

- 1 of once someone introduces in the public an
- 2 application, others are grabbing onto those
- 3 applications and bringing them home, so I think it
- 4 is increasing significantly.
- 5 Ajaz.
- 6 DR. HUSSAIN: I totally agree with that,
- 7 and I think what we have seen is I think the
- 8 requests we get for presentations have skyrocketed,
- 9 so we cannot handle most of it, so we are actually
- 10 refusing--not refusing--we are trying to be very
- 11 selective in where we speak.
- 12 I think others have taken up the charge
- 13 and that is wonderful, and that is the reason why
- 14 we feel that I think we don't have to keep speaking
- 15 all the time, and we have other champions that have
- 16 been created, and the champions are coming from
- industry, academia, and everywhere.
- 18 The number of questions being asked of FDA
- 19 is increasing, and the number of proposals that
- 20 people are coming forward with is increasing. So,
- 21 right now, for example, we do not have many, we
- 22 have seven or eight proposals right now, which will
- 23 translate into some very focused comparability
- 24 protocols and other aspects, so at least seven or
- 25 eight by the end of this year.

- 1 DR. KIBBE: Tom.
- DR. LAYLOFF: First of all, I think that
- 3 the number of people trained is probably more than
- 4 appropriate for the amount of material coming in.
- 5 I think the industry is under an
- 6 imperative to move to just-in-time manufacturing
- 7 because of the model that Wal-Mart has put out, of
- 8 essentially maintaining zero inventory at their
- 9 level, which means that the inventory control has
- 10 to shift back to the producer, which means that
- 11 they have to be able to bring things more to
- 12 just-in-time, and PAT is going to be able to handle
- 13 that or make it better anyhow, reduce the dwell
- 14 time, which is going to be critical for maintaining
- 15 good supply and keeping inventory costs down.
- I think the initiative has gone very well
- 17 so far. It has to hatch on its own case, on its
- 18 own time, otherwise, the momentum will fall apart.
- 19 So, I think as the industry moves, and you move
- 20 with it, it will develop and expand.
- 21 DR. KIBBE: Introduce yourself.
- 22 DR. RITCHIE: Gary Ritchie. I am with the
- 23 USP and currently the liaison with the process
- 24 analytical technology project team that was formed.
- 25 There were some questions or issues raised

- 1 directed to the compendia barriers, I suppose, and
- 2 what I just wanted to do with the committee was
- 3 just to let them know that the project team is
- 4 addressing some of those issues, one with respect
- 5 to rapid micro methods, a second one with respect
- 6 to I think the content uniformity issue, and,
- 7 third, I guess in general, other techniques that
- 8 may be perceived currently as general chapters or
- 9 proposed that may be barriers, and that there is a
- 10 work group that will be looking at those areas, and
- 11 doing what we can do to see if we can improve or
- 12 remove those barriers.
- 13 I just wanted to make that comment and let
- 14 the committee know that it is being actively looked
- 15 at.
- DR. KIBBE: Thank you.
- Tom, did you have something else?
- DR. LAYLOFF: This is a comment more on
- 19 compendia issues. The compendia or market
- 20 standards, the part of the law, and occasionally,
- 21 you run into unusual circumstances because of
- 22 incorporation of standards and laws, and probably
- 23 the most exciting ones I have ever attended was the
- 24 protein equivalent to nitrogen and the analysis of
- 25 grain for protein equivalents is a kilodalton

1 determination is done and the nitrogen is

- 2 determined.
- 3 There is a number called a PETN, the
- 4 protein equivalent to nitrogen, the little
- 5 multiplier. Well, it turns out the multiplier was
- 6 wrong, and it was a decision to change the number,
- 7 and the number was off by 2 to 3 percent, something
- 8 like that.
- 9 It was one of the most heated meetings I
- 10 have ever attended because everybody said if you
- 11 change that number by 2 or 3 percent, you change
- 12 the value of millions of tons of grain in ships and
- 13 barges and warehouses everywhere.
- 14 So, legal standards, even though they may
- 15 not be correct, cannot be changed in a very
- 16 cavalier fashion because they involve a lot of
- 17 work, a lot of impact, and the same is true for the
- 18 USP, there are many methods that are obsolete, but
- 19 if you change them immediately, all the firms that
- 20 have worked away from using those and validated
- 21 against them, are now in a box of having to
- 22 revalidate all their processes against the new
- 23 standards.
- DR. DeLUCA: Before making my comment, I
- 25 would just comment I wonder what was the basis for

1 that value in the first place, did it have peer

- 2 review.
- 3 With that little comment, you know, what
- 4 we are talking about here, manufacturing process,
- 5 for a long time, we have tried to bring science
- 6 into the manufacturing area, and this is certainly
- 7 an opportunity to do that. I mean this requires
- 8 science.
- 9 I think science requires scholarly work
- 10 and publications, and it seems that what I have
- 11 heard today, an awful lot of work has gone into the
- 12 PAT, but I am not so sure that we have seen
- 13 publications coming out of this work, and I think
- 14 this has got to get into the literature.
- So, I think we need to encourage that.
- 16 Along those lines, we are. We recognized this I
- 17 guess a little over a year ago that we wanted to
- 18 have an actual theme issue devoted to this in Pharm
- 19 Sci. Tech, and Ajaz is the editor along with Tom
- 20 Hale of that theme issue.
- 21 What we are trying to get publications,
- 22 people who are actually doing research in this
- 23 area, and it seems with all the presentations that
- have gone on, some of the conferences and whatnot,
- 25 that we could solicit from these people, and there

- 1 is people around this table here who probably could
- 2 be contributors to this, certainly, we would like
- 3 to encourage the industry to submit their work in
- 4 this area.
- 5 So, I think this is essential to have
- 6 this, to get this kind of research and science into
- 7 the literature, the rapid microbiology methods,
- 8 these would be great publications.
- 9 I think the important thing about it, that
- 10 you would have some peer review of these, so you
- 11 wouldn't maybe make some mistakes about having a
- 12 value for the nitrogen and protein correlation if
- 13 you had that kind of critique.
- DR. KIBBE: Bryan, you had a comment?
- DR. RILEY: I just wanted to respond to
- 16 the question about USP and possibly not meeting USP
- 17 standards if you use a rapid micro method.
- 18 I don't think it is as big a concern as
- 19 some people may think it might be because even
- 20 though some of the rapid methods may use a totally
- 21 different basis of measurement and give you a very
- 22 different number than the traditional USP microbial
- 23 limits test or whatever, I think that you can
- 24 certain compare, when you are assessing the
- 25 usability of a rapid method, you can compare it to

- 1 the results you are getting with the USP method and
- 2 certainly set your acceptance criteria based on the
- 3 fact that you are looking at different numbers, and
- 4 that even though a product can still meet your
- 5 acceptance criteria with a rapid method, it would
- 6 still meet the acceptance criteria if you use the
- 7 USP method even though the numbers may be very
- 8 different.
- 9 So, I think that should be taken into
- 10 account and compared when you are assessing the
- 11 method itself.
- DR. BOEHLERT: I agree, I think the issue
- 13 is around equivalent to or better, which is how USP
- 14 defines alternate tests.
- DR. RILEY: Yes, and I think demonstrating
- 16 equivalence to the USP test should not be that
- 17 difficult for a lot of the rapid methods.
- DR. LAYLOFF: With regard to the testing
- 19 for viable organisms, the rapid tests will
- 20 frequently give false positives. Do they also give
- 21 false negatives?
- 22 DR. RILEY: It can depend on the test and
- 23 what you are testing. It is something that has to
- 24 be looked at on a case-by-case basis, if you are
- 25 looking at a product or you are looking at water,

- 1 you could have interference, that sort of thing.
- 2 It really depends on what you are looking at.
- 3 As I said, there are some growth-based
- 4 rapid methods, and those would have very
- 5 similar--if you are looking at growth in the media
- 6 or not, that is going to be very similar to the
- 7 growth-based traditional compendia test.
- 8 Some of the rapid methods that don't
- 9 require growth, it looks like a viable stain, that
- 10 type of thing, that is something that we would have
- 11 to determine experimentally.
- DR. LAYLOFF: But that would be a false
- 13 positive rather than a false negative, or do you
- 14 get false negatives also?
- DR. RILEY: I think it depends on the
- 16 method.
- 17 DR. SINGPURWALLA: You wanted to answer
- 18 two questions, are we on the right track and any
- 19 recommendations. Well, I just need a point of
- 20 clarification. It has much to do with I don't
- 21 understand what PAT is all about.
- 22 So, the first question to you is how is it
- 23 different from process control practiced in
- 24 automobile industries and manufacturing industries,
- 25 and if it is the same, I am surprised that the drug

- 1 industry has not been using it because my sense is
- 2 that the drug industry has been using it ever since
- 3 I was a student.
- 4 MR. MIGLIACCIO: What has happened over
- 5 the last five, seven years is we have the
- 6 analytical technology, so the near infrared has
- 7 been there, and statistical process control has
- 8 been there.
- 9 What has been absent is the engineering
- 10 solution to bring the technology right to the shop
- 11 floor to marry the analytical technology to the
- 12 manufacturing equipment. That is what we have now
- in process analytical technology.
- So, you are doing real-time process,
- 15 monitoring, and control versus taking samples,
- 16 bring them through a laboratory, and then doing SPC
- 17 on that.
- So, there is a paradigm shift that we have
- 19 gone through, that you have real-time monitoring,
- 20 and not just of a unit dose sample that you have
- 21 taken out of a blender or 10 tablets that you have
- 22 taken off a tablet press, but of a very large N.
- 23 The N has increased substantially our ability to
- 24 monitor the process.
- DR. HUSSAIN: I think that is a good

1 point. At the same time, I think the key aspect has

- 2 been that in the sense some have regarded that the
- 3 pharmaceuticals would be quite different, I mean if
- 4 you really look at some of the literature, the
- 5 thought process had been that pharmaceutical dosage
- 6 forms are different from making machines, and so
- 7 forth, so some of those principles might not apply.
- 8 So, it has been an evolution, it has been
- 9 a paradigm shift, and in many ways, I have used the
- 10 phrase testing to document quality to quality by
- 11 design. We have always talked about quality by
- 12 design, but our mentality has been testing to
- 13 document quality, because that is what we could do.
- I think the pharmacopeial structure, the
- 15 regulatory structure had sort of reinforced that
- 16 thought process on that, and Gerry is right in
- 17 terms of when you bring the analytical tools, the
- 18 engineers, everybody together, it is a paradigm
- 19 shift, and it is happening now to a large degree.
- DR. SINGPURWALLA: So, am I correct in
- 21 understanding that you are using what the engineers
- 22 called "control theory" techniques into the
- 23 pharmaceutical industry, which was not there early
- 24 on?
- DR. HUSSAIN: I think "not there" is not

- 1 probably the correct characterization in the sense
- 2 different segments have different levels of
- 3 controls, for example, manufacture of the drug
- 4 substance material API, which is more closer to
- 5 chemical synthesis, chemical industry, you have a
- 6 lot more of that in there.
- 7 Biotechnology evolved later on, so they
- 8 have more of that already in place, because process
- 9 is so critical. So, there are segments, the
- 10 pharmaceutical dosage forms, you know, tablets,
- 11 capsules, and so forth, have not received the same
- 12 level of attention, and that is new for these
- dosage forms, so it depends on which part of
- 14 industry you look at.
- DR. SINGPURWALLA: So, to come back to
- 16 your original thing, about your question, so when
- 17 you say PAT, this is a generic thing.
- DR. HUSSAIN: Yes.
- 19 DR. SINGPURWALLA: Not specific to the
- 20 drug industry.
- DR. HUSSAIN: Well, the framework is
- 22 generic to manufacturing irrespective of which
- 23 manufacturing. The language, the vocabulary we
- 24 have used in the guidance is pertaining to the
- 25 pharmaceutical industry, and from that perspective,

- 1 it is somewhat focused on the pharmaceutical
- 2 situation or scenario.
- 3 DR. KIBBE: Anybody else? You are doing
- 4 so well.
- 5 In light of the fact that we have run out
- of steam, what I propose we do is break for lunch.
- 7 We have already checked, I hope we have checked,
- 8 with our open hearing individuals, and we are going
- 9 to try to start the open to the public at 12:30
- 10 instead of at 1 o'clock, so that you are all
- 11 invited to be back here at 12:30.
- 12 [Whereupon, at 11:15 a.m., the proceedings
- were recessed, to be resumed at 12:30 p.m.]

1	Δ	F	Т	F.	R	M	\cap	\cap	Ν	P	R	\cap	C	F.	E.	D	Т	M	G	S
-	4 7	_	_		1	T.A	\sim	\sim	Τ.4	_	T.	\sim	\sim			$\boldsymbol{\mathcal{L}}$	_	Τ.4	<u> </u>	\sim

- [12:30 p.m.]
- 3 Open Public Hearing
- DR. KIBBE: We have how many people who
- 5 have asked to speak? We have four. Their
- 6 presentations, if they have slides, and what have
- 7 you, will be on the web page by tomorrow, we hope,
- 8 so that those of you in the public who need copies,
- 9 and what have you, can get access that way.
- 10 We have the Regional Director of the CMC
- 11 Regulatory Affairs from GlaxoSmithKline, Leo
- 12 Lucisano. We are really lucky to have you here.
- 13 MR. LUCISANO: I don't have any slides
- 14 today. Really, my comments are intended to
- 15 complement Dr. Riley's presentation on rapid micro
- 16 methods this morning.
- 17 It wasn't until I saw Dr. Winkle's metrics
- 18 this morning that I realized that GlaxoSmithKline
- 19 provides about 10 percent of the annual reports
- 20 that is reviewed by new drug chemistry and about 5
- 21 percent of the manufacturing supplements.
- 22 So, we create a lot of work for the Office
- 23 of Pharmaceutical Sciences. So, I was delighted
- 24 when, on February 27th, the PATRIOT team from FDA,
- 25 the PAT Review and Inspection Team, completed a

1 week-long inspection at our facility in Parma,

- 2 Italy.
- 3 It was led by Bob Coleman, as Dr. Riley
- 4 mentioned. Bob is a national expert based in the
- 5 Atlanta District Office, and he was accompanied by
- 6 three microbiologists, one of which was Dr. Riley.
- 7 The inspection actually was triggered by
- 8 the submission of a supplemental new drug
- 9 application in which we sought approval of one of
- 10 the types of applications for rapid micro methods.
- 11 That technology was endorsed as PAT technology by
- 12 this committee back in October of 2002.
- 13 The inspection was a success and now it
- 14 enables us to potentially implement this technology
- 15 across a global supply chain, and it represents the
- 16 culmination of a 16-month effort between the Office
- 17 of Pharmaceutical Sciences, the Office of
- 18 Regulatory Affairs, and industry in addressing the
- 19 challenges associated with the first PAT
- 20 application approved as part of FDA's Quality
- 21 Initiative for the 21st Century.
- 22 What I wanted to do today was just spend a
- 23 few minutes talking about the challenges that we
- 24 had in working with the Agency to reach this
- 25 milestone. They were really of three types. There

1 was the technical challenges, the regulatory

- 2 management challenges, and the educational
- 3 challenges.
- 4 Just by way of background with respect to
- 5 microbiological testing in the industry, we use it
- 6 in a lot of different ways. We may use it to meet
- 7 the regulatory specifications to release a drug
- 8 product, we may apply it to the testing of
- 9 excipients, such as water for injection prior to
- 10 its use in the drug product, and we may also
- 11 utilize it to verify that a manufacturing suite is
- 12 sufficiently clean prior to the next phase of
- 13 production.
- So, the conventional methods typically
- 15 take about four to seven days to complete and
- 16 oftentimes really represents the rate-limiting step
- 17 in our decision process associated with batch
- 18 release or release of a manufacturing area.
- 19 So, with the availability of commercial
- 20 instrumentation for rapid micro methods being
- 21 available and providing results in a matter of
- 22 hours using technologies, such as ATP
- 23 bioluminescence and solid phase cytometry, there
- 24 are tremendous opportunities for us in utilizing
- 25 rapid micro methods.

1 So, the technical challenges. One of the

- 2 examples that we had was trying to apply rapid
- 3 micro methods to regulatory specification for a
- 4 class of dosage forms, so in working with Dr. Peter
- 5 Cooney's staff in the Office of Microbiology, we
- 6 agreed on an approach that adopted a two-stage
- 7 acceptance criteria, combining the qualitative
- 8 rapid micro method with the currently approved
- 9 microbial limit test that used more conventional
- 10 methods as stated in the USP, so if a batch of drug
- 11 product tested free of bioburden using the
- 12 qualitative rapid micro test, that no further
- 13 testing was required.
- 14 If the screen indicated the presence of
- microorganisms, then, the conventional microbial
- 16 limit test was performed to determine compliance
- 17 with the regulatory specifications.
- 18 So, when you think about a high-volume
- 19 product where the historical data indicates that
- 20 the product typically is free of bioburden,
- 21 applying rapid micro methods in this strategy
- 22 offers very significant advantages with respect to
- 23 product release and inventory turnover.
- The foundation for the validation of this
- 25 methodology was actually provided by the PDA

- 1 technical report published in 2002. This document
- 2 addressed the evaluation, validation, and
- 3 implementation of new microbiological test methods, so,
- 4 speaking to Dr. DeLuca's comment this morning
- 5 about the availability of published literature
- 6 actually facilitating working through some of the
- 7 issues that we had around process analytical
- 8 technology and its approval.
- 9 The second type of challenge that we had
- 10 was the regulatory management process. We were
- 11 interested in applying rapid micro methods in a
- 12 variety of different ways at multiple FDA-approved
- 13 facilities, so this scope of interest would
- 14 potentially affect the entire approved product
- 15 portfolio expanding over 140 approved new drug
- 16 applications.
- 17 So, in the conventional regulatory review
- 18 and approval process, this might require an
- 19 equivalent number of new drug applications, each
- 20 containing a data package demonstrating the
- 21 application of rapid micro methods to the specific
- 22 product of interest.
- So, how would we progress rapid micro
- 24 methods without further overburdening the Office of
- 25 New Drug Chemistry with additional supplemental new

- 1 drug applications?
- 2 Actually, the solution was provided by the
- 3 Agency with the issuance of the draft guidance on
- 4 comparability protocols that was published in
- 5 February of 2003. So, a comparability protocol is
- 6 essentially a plan that evaluates the effect of
- 7 changes on an approved product.
- 8 You don't have to include product-specific
- 9 data, but describe the analytical procedures that
- 10 you intend to use and the acceptance criteria that
- 11 will be achieved to demonstrate that there is no
- 12 adverse effect on product quality.
- So, what we agreed upon that we would
- 14 submit a plan, a comparability protocol to apply
- 15 this technology, and we do it by a prior approval
- 16 supplement.
- 17 Once the Agency approved that plan, we
- 18 could then implement that technology at any GSK
- 19 manufacturing site that had a satisfactory CGMP
- 20 inspection status with the FDA, so that if these
- 21 conditions were met, any site within the
- 22 manufacturing network could adopt rapid micro
- 23 methods according to its own timeline and notify
- 24 the Agency via a regulatory submission that does
- 25 not require prior approval, such as an annual

1 report or changes being effected in zero day

- 2 supplement.
- 3 This agreement applied regardless of the
- 4 number of NDA-approved sites or number of
- 5 NDA-approved products and dosage forms manufactured
- 6 at a particular facility.
- 7 So, the process, the end result was a
- 8 streamlined management process for adopting rapid
- 9 micro methods or really any process analytical
- 10 technology, for that matter, across a global supply
- 11 chain.
- 12 It offered advantages for the Agency by
- 13 decreasing the number of prior approval supplements
- 14 that needed to be reviewed, and also retained the
- 15 appropriate checks and balances for the Agency to
- 16 conduct an inspection at its discretion and verify
- 17 that the manufacturing site has fulfilled the
- 18 validation requirements approved in a comparability
- 19 protocol.
- The last challenge was one of education,
- 21 and as the discussions evolved between GSK and FDA,
- 22 we recognized that there was a need for both the
- 23 Agency and GSK to educate their personnel regarding
- 24 rapid micro methods, their science, and their
- 25 regulation. This was achieved in a number of

- 1 different ways.
- 2 Dr. Riley mentioned this morning about a
- 3 day-long seminar that the FDA conducted with a
- 4 large number of FDA staff, talking about
- 5 instrumentation, bringing in consultants,
- 6 discussing their application.
- We also had a half-day technical meeting
- 8 between GSK scientists and FDA scientists in May of
- 9 last year with the objective of that meeting to
- 10 share the ongoing work that was evolving with rapid
- 11 micro technology, but there was also a need to
- 12 educate the global organization within GSK since
- 13 the regulatory process that was approved for rapid
- 14 micro methods was very different from the
- 15 conventional post-approval process for implementing
- 16 changes.
- We also had to review our changed
- 18 management systems to assure that they could
- 19 accommodate the conditions of approval agreed upon
- 20 with the agency. The regulatory management process
- 21 approved for the implementation of rapid micro
- 22 methods has implications for other process
- 23 analytical technologies in the future.
- 24 Consequently, we have functional groups
- 25 within my organization requesting the Regulatory

- 1 Affairs Department to educate them under rapid
- 2 micro experience with FDA, and to guide them with
- 3 respect to future PAT applications and their
- 4 approval.
- 5 Sixteen months from the time that this
- 6 advisory committee endorsed rapid micro methods as
- 7 a process analytical technology, we now have an
- 8 approved regulatory process that can be applied
- 9 across the company's entire product line at any
- 10 FDA-approved facility.
- 11 It required the review and approval of
- 12 three supplemental new drug applications and an FDA
- inspection by the PATRIOT team.
- 14 I would like to thank this advisory
- 15 committee for really providing the incentive to
- 16 address the technical, the regulatory management
- 17 and educational challenges associated with the
- 18 approval and implementation of a PAT technology
- 19 platform.
- The resolution of these challenges
- 21 required the application of new guidance documents,
- 22 such as the guidance on comparability protocols,
- 23 the availability of published scientific
- 24 literature, such as PDA Report 33, and a new way of
- 25 conducting business that really required some

1 introspection and some adjustment on both the

- 2 Agency's part and ours.
- I know within GSK, we are now motivated by
- 4 these first approvals and are looking at additional
- 5 applications of process analytical technologies
- 6 that may be more expansive in scope and require a
- 7 somewhat different road map, but I suspect the
- 8 challenges will still be somewhat the same and
- 9 require a similar investment of resources, cost,
- 10 and flexibility to be successful.
- 11 Thank you.
- DR. KIBBE: Do you have any questions for
- our speaker, anybody?
- [No response.]
- DR. KIBBE: Well, I will hit you with one.
- 16 Do you have an estimate of what was saved in
- 17 man-hours or paperwork on both ends of the street,
- 18 like for your people and for the FDA people?
- MR. LUCISANO: With respect to reductions,
- 20 at the FDA inspection at Parma, we shared with the
- 21 Agency that for one particular product, we would be
- 22 saving 160 kiloEuros--it was a European site--per
- 23 year with the application of rapid micro methods.
- 24 Certainly, the availability of only
- 25 submitting or the opportunity to submit only two

- 1 supplements rather than 140 supplements to gain
- 2 approval of a technology across approved product
- 3 line offers significant cost reductions for the
- 4 Regulatory Affairs Department.
- DR. KIBBE: Anybody else?
- 6 [No response.]
- 7 DR. KIBBE: Thank you.
- 8 We now have two individuals from
- 9 Xcellerex, the founder, Parrish M. Galliher, and
- 10 the Vice President, Quality and Regulatory Affairs,
- 11 Elizabeth Fowler.
- MR. GALLIHER: Good afternoon. Thank you
- 13 to the advisory committee and Keith Webber in
- 14 particular for the invitation, and Ajaz's support
- 15 and vote of confidence for our view on PAT for
- 16 biologics.
- 17 [Slide.]
- I want to introduce Beth Fowler, who is
- 19 our VP of Regulatory and Quality at Xcellerex.
- 20 The title of our talk is PAT for
- 21 Biologics, Ensuring Quality of Biologically
- 22 Produced Drugs.
- 23 I think I want to focus, what I would like
- 24 to sort of conduct as sort of a brainstorm view of
- 25 our opinions on PAT, to focus in on biotech drugs,

- 1 recombinant proteins produced in mammalian cell
- 2 systems or bacterial yeast systems, and less on the
- 3 traditional biologics, such as vaccines.
- 4 So, before I get going into what we have
- 5 to say, I would like to mention that PAT, to us, is
- 6 much broader than the title, the words of PAT. It
- 7 is not just, in our view, process analytical
- 8 technology that we are concerned about, it is a
- 9 broader vision of ensuring product quality across
- 10 all stages of manufacturing, but also throughout
- 11 the organization that is responsible for delivering
- 12 the drug that comes from all parts of the
- organization as the process is developed, as the
- 14 process is implemented, and as the product quality
- is assessed either in-line, at-line, or off-line.
- 16 We will talk a bit about how, at Xcellerex, we are
- 17 trying to take this broader view as part of doing
- 18 business for ourselves and for our customers.
- 19 We are a contract manufacturing
- 20 organization for biotech products, so we have the
- 21 customers' product quality right square in our
- 22 view, and that drives a lot of what we do in our
- 23 business, and we find that PAT, in general, in the
- 24 broader interpretation, is really good business for
- 25 us and for our customers.

- 1 I think looking back over the last 25
- 2 years of the biologics manufacturing business, I
- 3 think in the eighties, the industry was consumed
- 4 with the simple task or the herculean task of
- 5 simply producing these products and the initial
- 6 ones getting to market, and I think the industry is
- 7 really consumed with that whole endeavor, which was
- 8 huge.
- 9 In the nineties, more and more drugs,
- 10 biotech drugs, came to the market. We now have
- 11 approximately 30 individual proteins that have been
- 12 licensed, so getting to market in the nineties was
- 13 really where the industry was focusing.
- 14 However, in the last five years, we have
- 15 seen the importance of speed getting to the clinic
- 16 and speed getting to the market as being more and
- 17 more of a driver in what we hear from our
- 18 customers, what we have seen in our own lives and
- 19 biotech companies, rushing drugs to the clinic and
- 20 to the market, and very much our interpretation
- 21 today of PAT is focused, not just on quality, but
- 22 also affording speed without sacrifice of quality
- 23 or, in fact, improving quality, and I will talk a
- 24 bit more about that.
- 25 However, in the next decade, we see the

- 1 indications and trends in the industry impacting or
- 2 bringing costs to the forefront of biotechnology
- 3 and manufacturing through the advent of competition
- 4 with a number of similar compounds in the market,
- 5 through the pressures of managed health care, and
- 6 so we think that PAT will actually be invigorated
- 7 or stimulated by cost pressure of the industry
- 8 coming in the next decade.
- 9 [Slide.]
- In general, that was our review of PAT,
- 11 again a broader vision than simply process
- 12 analytical technology. We are going to talk about
- 13 the importance of PAT specifically for biologics
- 14 manufacturing and drill down into the real value
- 15 and how we are, in several places throughout the
- 16 organization, in our business, implementing PAT
- 17 principles at various levels. I will give you
- 18 specific examples of those, and then wrap up with
- 19 some conclusions.
- 20 [Slide.]
- 21 We view PAT as process knowledge gained
- 22 through process analytics and statistically
- 23 designed process optimization studies to begin
- 24 with. So, in our view, it really begins with
- 25 understanding the process that is intended to

- 1 deliver a product of a certain quality.
- 2 So, we view PAT more as product quality
- 3 knowledge rather than process analytical
- 4 technology. The focus is really on product quality
- 5 wherever it is being produced in the manufacturing
- 6 process.
- 7 Again, to begin with, we start in the
- 8 development laboratory by studying the parameters
- 9 that affect product quality and yield in a
- 10 statistically oriented fashion in robustness
- 11 studies, and I will get into that a little bit.
- So, the processes are really designed to
- 13 maintain product quality or to, in fact, improve
- 14 product quality, and we make real efforts there,
- 15 and I will give you some examples.
- 16 We see the advent of continual monitoring
- 17 to, in fact, further ensure process control to
- 18 produce a product of a defined quality, and the
- 19 reason that we think continual monitoring is a
- 20 benefit is, in fact, that if there are process
- 21 perturbations during a lengthy step, we can analyze
- 22 those perturbations more quickly and determine
- 23 whether or not that product is in jeopardy or
- 24 whether, in fact, we should invest in further
- 25 processing to carry it to final form.

1 With regard to then the manufacturing risk

- of further processing a batch that could be in
- 3 danger, again, PAT, with the database that is
- 4 generated through the efforts of PAT, will help us
- 5 not only assess the risk to product quality, but
- 6 also from a manufacturing economic side, is it
- 7 worthwhile investing in a batch that has some sort
- 8 of perturbation in this processing step.
- 9 So, it is not just risk to product
- 10 quality, but in point of fact, from a
- 11 manufacturer's standpoint, we are also concerned
- 12 about are we delivering what the customer wants,
- 13 are we delivering on the contract to produce a
- 14 certain amount of product of a certain defined
- 15 quality.
- 16 [Slide.]
- Just to talk a little bit about some of
- 18 the key issues that we see in this business, first
- 19 of all, just stepping back a bit, there is
- 20 biological variation in production of the material
- 21 that we are interested in depending on the system
- 22 with which you are producing the product.
- 23 If you are in a transgenic system, there
- 24 can be animal to animal variation, and in cell
- 25 culture based processes, whether they be mammalian,

1 bacterial, or yeast or fungi, there is variation in

- 2 the cell culture step.
- It is not a surprise, the organisms are
- 4 very complex, they have a huge number of genes
- 5 whose function can impact the manufacture of the
- 6 product, so we expect that in biological systems,
- 7 there will be inherently more variation that could
- 8 affect product quality.
- 9 There can also be unknown pathogens
- 10 associated with biological systems, and these, of
- 11 course, are an issue with regard to biological
- 12 safety of the product, and there can be, in fact,
- 13 unrelated impurities to the drug with unknown
- 14 activities that can, in fact, be produced by
- 15 biological systems at low quantities that may not
- 16 be measured.
- So, in general, we see biologics as a
- 18 highly variable environment within which to make a
- 19 product, and taking this account, it is to me quite
- 20 remarkable and wonderful that there are so many
- 21 approved products on the market today helping so
- 22 many people who are, in fact, in need.
- So, we see this background therefore
- 24 advocating the greater value then of more process
- 25 analytical technology or more product quality

- 1 knowledge given the inherent variability. So, that
- 2 is the general background in which we see the value
- 3 of PAT.
- 4 [Slide.]
- 5 To just talk a bit more about product risk
- 6 management, this is our present state of affairs.
- 7 First of all, in today's biologics
- 8 manufacturing, we generally start with a viewpoint
- 9 that minimal process change should be attempted or
- 10 even allowed as the drug moves through the clinic
- 11 or into the clinic and on to the market, we try to
- 12 minimize the number of process changes.
- 13 Two. Process parameters are used, that
- 14 is, process control parameters are generally used
- 15 as surrogates for product quality indication or
- 16 monitoring. That is, we are not really directly
- 17 monitoring the product quality attributes in every
- 18 step of the manufacturing process mainly due to
- 19 limitation in analytical technology and specificity
- 20 especially in the presence of crude background
- 21 materials and matrices that interfere with current
- 22 methodologies.
- Therefore, we rely on post-production
- 24 release and some in-process testing again through
- 25 surrogate markers to ensure product consistency.

- 1 Again post-facto is the point, post-production is
- 2 the operative here.
- 3 Generally, we are faced with processing a
- 4 batch to completion, which can be an investment of
- 5 millions of dollars, and then to find out that we
- 6 have somewhere along the way lost the product
- 7 quality attributes that we intended to achieve, and
- 8 that batch no longer can be considered releasable.
- 9 So, today's business is post-production
- 10 and there is a huge investment made in the intent
- 11 of that batch being released, but, in fact, our
- 12 methodologies are very large, inadequate to ensure
- 13 that on-line.
- 14 The future vision that we have is that
- 15 real-time, on-line or at-line monitoring of product
- 16 quality can provide increased assurance of process
- 17 in that product consistency, and that is the vision
- 18 that we are very interested in.
- 19 We think it reduces our risk, we think it
- 20 improves the product quality all along the way. We
- 21 think the customer ultimately wants to know that
- 22 anyway, as we do, and at the end of the day, if you
- 23 add up the dollars, it is cost efficient, and I
- 24 will give some examples.
- 25 Secondly, increased process understanding

- 1 enables risk-adjusted evaluation of process and
- 2 product data, so that means when we do have a
- 3 spurious event in manufacturing, which we will
- 4 have, which everyone does have, and don't believe
- 5 them if they tell you they are not having them, we
- 6 can use the product quality analytical methodology
- 7 on-line to assess the product quality impact at
- 8 that moment and decide whether or not that batch
- 9 should be processed or not in order to achieve a
- 10 certain product quality attribute.
- 11 [Slide.]
- 12 So, let's talk about where on-line, or
- in-line, or at-line technology stands as of today.
- On this slide on your left, the three
- 15 major stages of manufacturing include fermentation,
- 16 purification, and formulation fill finish.
- 17 In the second column, the purpose of each
- 18 step certainly is to control product quality in the
- 19 fermentation and to assure biosafety, that is, the
- 20 adventitious agents that may impact the
- 21 fermentation step, purification, again control
- 22 product quality, impurity removal, ensure
- 23 biosafety, virus clearance, bioburden clearance, et
- 24 cetera, and finally, in formulation fill finish,
- 25 ensure product quality, uniformity, and again

- 1 safety.
- 2 Present day, in the middle column, the
- 3 third column over, in the fermentation step, we
- 4 measure cell growth and cell viability, and we
- 5 measure a number of metabolic parameters that, in
- 6 part, control whether we use as control of the
- 7 growth and the viability of the cells with the
- 8 intent then, and the prevalidated, prospective
- 9 validated purpose of producing the product of a
- 10 certain quantity and a certain quality, but we do
- 11 not measure the product quality directly in the
- 12 cell culture step.
- In purification, again we measure process
- 14 parameters including those listed as surrogate
- 15 markers of control of product quality. In order to
- 16 measure product quality, we have to take samples
- 17 off-line, purify the product, and measure its
- 18 quality attributes.
- 19 Finally, in formulation fill finish, we
- 20 get a chance to really look at the product itself
- 21 and the environment, the quality in terms of
- 22 adventitious contamination and volume as an
- 23 example, fill volume.
- So, it is not really until we get to the
- 25 end of the process that we really get a look at the

1 product quality attributes that we are trying to

- 2 get at.
- 3 Our view for the future then is that in
- 4 the cell growth culture step, in the fermentation
- 5 step, we want to be able to measure on-line,
- 6 in-line, non-invasively, because we are trying to
- 7 protect the fermentation from contamination, the
- 8 content, the product concentration in the fermenter
- 9 and the quality. In fact, it could be a very
- 10 sensitive attribute of quality. It could be
- 11 tertiary or quaternary structure. It could be
- 12 potency, it could be glycosylation.
- 13 We want to understand the impurity profile
- 14 and any other adventitious agents that have entered
- 15 the step. I want to remind you that the background
- 16 in this step is very dirty, relatively speaking,
- 17 that is, there are many nutrients added to the
- 18 fermentation to promote cell growth. These are
- 19 obviously components that we need to purify away,
- 20 so there is a complex chemical background against
- 21 which we are asking to measure the product quality
- 22 and content.
- 23 Similarly, downstream in purification, we
- 24 want to watch quality all the time, the
- 25 concentration as well, as we are clearing the

1 impurities from the product and clearing any

- 2 adventitious agents.
- 3 Lastly, formulation fill finish, I think
- 4 what we really want to do is as we are formulating
- 5 our pre-formulation, really make sure we do have
- 6 the right quality of the product at that point,
- 7 because at that point in the process, the value of
- 8 the product is very high, there has been a lot
- 9 invested in it, and we want to make sure that we
- 10 are going to go forward, do a fill with active,
- 11 appropriately folded, biologically active product,
- 12 if that is the attribute of the product at that
- 13 stage.
- So, that gives you a vision of the future
- 15 of what we are trying to achieve, and we feel there
- 16 are real values to achieving that.
- 17 [Slide.]
- 18 Simply stated, we want to ensure that
- 19 product quality remains consistent throughout the
- 20 process from the beginning to the end, not just
- 21 measuring it after the fact.
- We want to assess deviations and their
- 23 impact in real-time, which do occur. Some of them
- 24 are trivial, some of them are major, nevertheless,
- 25 the cost invested in a cell culture step is huge.

- 1 It's about nearly 50 percent of the total
- 2 manufacturing cost is incurred within the cell
- 3 culture production step.
- 4 So, we want to avoid the cost of
- 5 processing unreleasable batches at that stage. So,
- 6 this is really cost avoidance, rapid cost
- 7 avoidance, not just ensuring product quality, we
- 8 want to kill bad batches fast and early.
- 9 If we want to continue processing, we have
- 10 got the data set to justify the batch processing
- 11 and ultimately, we will be ensured of batch
- 12 release.
- 13 Three. Continual process monitoring
- 14 obviates need for process validation. I think that
- 15 may be a little bit broad claim, but I think the
- 16 implication of processing legal technology with
- 17 regard to its impact on potential, the reductions
- 18 in process validation is huge.
- 19 It is huge to us because I can tell you
- 20 today, in order to validate a process, and I am not
- 21 just talking about the three qualification lots at
- 22 scale prior to BLA, I am talking about all the
- 23 process robustness studies and the assay validation
- 24 that is done to support those process robustness
- 25 studies.

1 The industry spends 50 to 100 man-years in

- 2 studying the impact of process perturbations on
- 3 product quality and process yield. That is a huge
- 4 investment at the cost of a quarter of a million
- 5 dollars per person year. You do the math, it's a
- 6 gigantic investment.
- 7 In addition, we validate the assays that
- 8 support the measurement of the product quality
- 9 under those conditions. So, there is a huge
- 10 investment in doing process validation. If we can
- 11 supplant that by doing real-time process quality
- 12 assessment and reduce process validation effort,
- 13 that is a very big implication for the industry.
- 14 We can reduce testing requirements at the
- 15 end of the process potentially if we are measuring
- 16 product quality and content all along the way. I
- 17 know that makes perfect sense to me as long as
- 18 those assays are validated.
- 19 Ultimately, we can increase process
- 20 knowledge through identification of critical steps
- 21 and parameters that impact quality, and this helps
- 22 obviously improve the risk assessment and validity
- 23 on any particular batch that is in question.
- 24 [Slide.]
- 25 The investment risk is substantial. Let's

- 1 just take on-line bioburden as an example in the
- 2 cell culture step. The assumptions here are
- 3 listed. If we are making 20 batches a year, a \$20
- 4 million annual budget, fully loaded, that is \$1
- 5 million per batch, fully loaded, a 90 percent
- 6 overall success rate facility, that means 18
- 7 batches a year gets released, that means 2 do not,
- 8 so the cost of lost batches is \$2 million a year.
- 9 If we had on-line bioburden in the
- 10 fermenter that could detect the contamination
- 11 in-line, or at-line, or on-line at the time that it
- 12 occurred, we wouldn't invest in the processing of
- 13 that batch downstream. That could save half the
- 14 manufacturing costs of a batch, that is, the
- downstream costs, and we would go on with the next,
- 16 dump that batch, and restart with the next batch.
- 17 That is good business. It's good business
- 18 for the customer, it's good business for Xcellerex.
- 19 [Slide.]
- 20 We are involved in process analytical
- 21 technology activities at Xcellerex. It turns out
- 22 we licensed the technology platform that positioned
- 23 the company to be in this frame of thinking in the
- 24 way of doing business, and I have listed here sort
- 25 of four or five main bullets that we are pursuing

- 1 at this time under process development.
- We are using high throughput screening to
- 3 statistically optimize process parameters.
- 4 Two. We are using process analytics to
- 5 look at glycosylation, for instance, and microarray
- 6 technology, process control via noninvasive sensors
- 7 which we have developed, including pH and DO2, and
- 8 we are using on-line environmental monitoring of
- 9 non-viable particulates in our manufacturing steps
- 10 in our modular systems.
- 11 The benefit from optimization of process
- 12 development, on the right, is certainly to optimize
- 13 the process from the start, to examine more
- 14 parameters in less time.
- So, we are doing very large statistically
- 16 designed experiments now to screen many more
- 17 parameters that could affect product quality or
- 18 yield. We are using automation robotics to do
- 19 that.
- 20 In process analytics with these real-time
- 21 assays, we can assess product quality in complex
- 22 backgrounds, not in-line, but at-line at this
- 23 point, and the non-invasive nature of the sensors
- 24 allows us to avoid contamination of the process
- 25 stream.

1 Ultimately, on-line will bring us

- 2 real-time assessment of environmental parameters
- 3 and control, as I mentioned.
- 4 [Slide.]
- 5 So, specifically, in manufacturing--sorry,
- 6 that was more of a focus on process development
- 7 analytics--but in the manufacturing, what we have
- 8 really implemented in automation include electronic
- 9 batch records, non-invasive sensors, and on-line
- 10 quality assurance.
- 11 So, again, this is showing us a broader
- 12 view of PAT, so at manufacturing level, we are not
- 13 just talking about on-line sensors and on-line
- 14 activity, on-line analytics, we are talking about
- 15 an overall quality attribute or quality program
- 16 that achieves what we think is a higher level of
- 17 product quality, and automation is one vehicle to
- 18 do that.
- 19 We are using controlled environment
- 20 modules to separate the operators in the process,
- 21 and we are using disposables. On the right is
- 22 listed the benefits of doing business this way.
- So, this is our sort of approach to
- 24 process analytical technology, but again thinking
- on the broader level of product quality knowledge

1 and improvement in the manufacturing.

- 2 [Slide.]
- 3 With regard to knowledge management, and
- 4 data, trending, and archiving, we have put in a
- 5 system that is getting right at that, and so we are
- 6 right in line with the PAT philosophy of using
- 7 process knowledge historically, archiving it,
- 8 trending it, statistically analyzing it with our
- 9 eFactory platform.
- 10 [Slide.]
- In process optimization, here is another
- 12 example. We do many multivariate studies with many,
- 13 many combinations of variables. This is a graph of
- 14 one experiment in which we have cross-plotted the
- 15 results of duplicates in one experiment in which we
- 16 have looked at over 300 different media
- 17 formulations.
- 18 Through these methodologies, which give us
- 19 the statistical data and power, shown in the
- 20 numbers on the right, lower right, we really get a
- 21 good look at process robustness and parameters that
- 22 affect product quality and yield.
- So, the automation and robotics puts us
- 24 ahead in terms of understanding more about our
- 25 process before it goes into manufacturing.

1	[Slide.]	
1	[SIIGE.]	

- 2 Electronic batch records. Here is a
- 3 picture. This gives us the ability to provide
- 4 on-line quality assurance, which is again advocated
- 5 by the PAT guidance. We use electronic batch
- 6 records to catch compliance issues with the
- 7 operators, signatures, quantities, process control
- 8 parameters, so that real-time, we are catching
- 9 product or process control parameters that are out
- 10 of spec or out of control.
- 11 [Slide.]
- 12 We look at our data historically. Here is
- 13 a chart of 30 batches or so, and there are four
- 14 lines on the graph showing the data from different
- 15 parameters that we are measuring. In fact, this is
- 16 a composite graph of the step yields of the
- 17 process, so there are four steps in each graph of
- 18 data points, is showing the step yield for that
- 19 particular step in the process.
- The point here is that we are using
- 21 statistical process control as advocated in the PAT
- 22 guidance to learn about the process, to learn more
- 23 about what affects product quality, product
- 24 performance, and product yield.
- 25 [Slide.]

1 A couple of more slides. I would like to

- 2 just mention the challenges in applying process
- 3 analytical technology to biologics. Really, I
- 4 think are three or four key points.
- 5 First, the investment in bringing
- 6 analytics on-line is not trivial. We don't see a
- 7 big driver to do that, and I think that, as I
- 8 mentioned, cost drivers will, in fact, I believe
- 9 stimulate more investment in on-line or at-line
- 10 technology.
- I think until we have cost pressure in the
- 12 industry, there will not be a huge driver to do
- 13 that.
- 14 Secondly, innovation to develop analytical
- 15 tools to assess critical attributes really is where
- 16 it has to start. It has to start back in the lab
- 17 long before you get to the manufacturing line, you
- 18 have got to be back in the lab converting the
- 19 technology to something that is applicable on-line,
- 20 perfecting that technology, miniaturizing it, and
- 21 designing it to work in the plant floor.
- 22 Extensive data has to be accumulated then
- 23 in order to validate the methodology to identify
- 24 those critical attributes and appropriate limits
- 25 for that on-line method.

1 Always, there is a regulatory uncertainty.

- 2 I think we are always concerned about more data
- 3 revealing more variation, and why would we want
- 4 that if, in fact, the variation is out of spec.
- 5 So, that is always a concern, and I think it is a
- 6 matter of a lot of the date.
- 7 Stringency of limits related to the
- 8 criticality of impact gets to how widely you are
- 9 going to validate the variance tolerance in your
- 10 process with your on-line methodologies.
- 11 [Slide.]
- 12 Again, the regulatory risk is data, how
- 13 much data is too much data, what is the collection
- 14 interval, continuous versus intermittent data
- 15 collection. How to use that data, speeding release
- or speeding off-line release post-batch, or
- 17 real-time release, and how to manage noise.
- 18 At the end of the day, we do not want to
- 19 lose product itself, we do not want to lose
- 20 productivity or lower the plant output. It just
- 21 leads to higher manufacturing costs and lost
- 22 product quality for the client.
- 23 [Slide.]
- 24 Here is an example of a continuous
- 25 real-time data set with spurious spikes. This

1 process actually tested the in-control, but, in

- 2 fact, we had spikes during the continuous
- 3 monitoring, are those spikes meaningful.
- 4 The organization needs to have a mechanism
- 5 by which to analyze spurious spikes due to
- 6 electronic noise or other things in order to ensure
- 7 that it is an issue or not an issue.
- 8 [Slide.]
- 9 In summary, we think that the impact of
- 10 PAT is as follows. First, we clearly want to
- 11 measure the product quality in the process stream,
- 12 and we support that.
- 13 Secondly, we want to increase the
- 14 understanding of the process and the product
- 15 quality relationship. There is a relationship. It
- 16 is not just product by process, or process by
- 17 product. The two go together and understanding
- 18 more about that is money in the bank.
- 19 Third, continual process monitoring
- 20 obviates the need for process validation. We think
- 21 that is possible within limits.
- 22 Fourth, we believe that PAT enables
- 23 science-based decisionmaking real-time in
- 24 manufacturing where it has a huge value. It can
- 25 reduce batch release time ultimately at the end of

- 1 the batch, and can ultimately increase plant
- 2 capacity. It can overall lower manufacturing risk
- 3 and, in fact, lower our cost of goods delivered.
- So, in summary, we think after all those
- 5 things, PAT technology really can be a very cost
- 6 effective investment for a manufacturing
- 7 organization.
- 8 Thank you.
- 9 DR. KIBBE: Thank you. Are there any
- 10 quick questions? Then, we will move on to our next
- 11 speaker.
- DR. COONEY: Parrish, do you see any
- 13 particular needs in the guidance that have been put
- 14 forward so far on PAT to extend it to biologics?
- MR. GALLIHER: Yes, we had a discussion
- 16 actually a week or so ago with Ajaz and team. I
- 17 think the impact of reduction in process validation
- 18 is understated in the guidance as written. We
- 19 would like to explore that further and perhaps
- 20 expand the interpretation and the understanding of
- 21 the impact biologics.
- The cost of process robustness study and
- 23 the cost of validation is huge, and it may or may
- 24 not be the right way to go ultimately if we are
- 25 really thinking about PAT. So, I think that is

1 particularly an area for biologics that I would

- 2 think about.
- 3 DR. SINGPURWALLA: I have two comments.
- 4 One is your control charts. It looks like your
- 5 step one is out of control, right?
- 6 MR. GALLIHER: That data does not show any
- 7 release parameters.
- 8 DR. SINGPURWALLA: The top one, to me it
- 9 seems like it is out of control, but that is a
- 10 minor point. The major point is this, that we have
- 11 had two talks, one by yourself, one by the previous
- 12 speaker, and what we have seen is extolling the
- 13 virtues of PAT into your particular industry.
- 14 It is my sense that the FDA has taken the
- 15 initiative and the lead in terms of infusing PAT
- 16 into the pharmaceutical industry. It has made you
- 17 more efficient, presumably you saved some money.
- 18 How much of that money has trickled down to the
- 19 consumer as a consequence, or is there any estimate
- 20 of that? Because it is government investment in
- 21 the end.
- 22 MR. GALLIHER: I am not sure I can answer
- 23 that directly. I would say that in biotech
- 24 manufacturing, cost pressure is not really present,
- 25 so consumer cost reduction interest in the

- 1 pharmaceutical, at the end of the day, has not
- 2 really trickled back to manufacturing organizations
- 3 as part of biotech pharma companies saying to
- 4 manufacturing you must lower costs.
- 5 The game has been to get to market quickly
- 6 or to the clinic and to produce enough product. We
- 7 have not seen on a broad scale yet the trickle-down
- 8 of high cost of drugs, biopharmaceutical drugs to
- 9 the manufacturing floor. It has not really
- 10 happened.
- 11 That is why I said at the beginning of the
- 12 talk, I think that is in the next decade. As
- 13 managed care begins to trickle back down through
- 14 the pharmaceutical value chain to the manufacturing
- 15 floor, we will begin to see it.
- DR. SINGPURWALLA: So, what has been the
- 17 gain then?
- 18 MR. GALLIHER: The gain for manufacturing,
- 19 the gain for the organization?
- DR. SINGPURWALLA: Yes.
- MR. GALLIHER: The gain for the
- 22 pharmaceutical organization is to reduce its
- 23 operating costs and therefore, presumably,
- 24 hopefully, to increase profits.
- DR. SINGPURWALLA: Ah, but I want to see

- 1 some of your profits come to me.
- 2 [Laughter.]
- 3 MR. GALLIHER: Well, maybe we should have
- 4 a talk outside.
- 5 DR. KIBBE: Anybody else?
- 6 DR. SELASSIE: I have a broad question on
- 7 your statistical process control. Are they
- 8 sequential and are those the overall yields for the
- 9 whole process?
- 10 MR. GALLIHER: This is an example of a
- 11 process development data set, where in process
- 12 development, again, this is where we are building
- 13 information about the process, this is not actual
- 14 manufacturing runs.
- We are looking at the performance of
- 16 different steps in the process and the yield. The
- 17 lines that go through the data points are averages
- 18 of the data.
- 19 DR. SELASSIE: I am kind of curious
- 20 because it looks like as you go from one step to
- 21 the fourth step, I mean the yields gradually go
- 22 down. Is that the overall yield or just the yield
- 23 for each step?
- 24 MR. GALLIHER: Each line is the step
- 25 yield. Again, this is listed here as an example.

1 DR. SWADENER: Since this is a sense of an

- 2 evaluation of the process, I am presuming that some
- 3 of this is used to determine whether some steps are
- 4 necessary or not in the monitoring process?
- 5 MR. GALLIHER: Well, what we do is we look
- 6 at this, this is the kind of data that we look at
- 7 to determine whether or not there are trends
- 8 starting to impact the manufacturing controls, so
- 9 instead of just looking at a few data points at a
- 10 time, we look over a number of data points to
- 11 determine if there is a trend developing in the
- 12 data.
- We have shown this graph as a process
- 14 development data set illustrative of the process of
- 15 looking at many data points over a long period to
- 16 determine if there is a trend in the data, in the
- 17 performance of the process that you wouldn't see if
- 18 you were just looking at a few batches at a time.
- 19 DR. SWADENER: Do you sometimes find that
- 20 some of your data points that you thought were good
- 21 data points, were not good data points, therefore,
- 22 you don't need to use them?
- MR. GALLIHER: No. I mean if we are
- 24 producing a pharmaceutical drug for intended human
- 25 use, each batch is tested and has to meet with

- 1 these criteria before it is ever released.
- 2 DR. SWADENER: But suppose one data point
- 3 consistently comes out with the same results all
- 4 the time, and doesn't tell you much?
- 5 MR. GALLIHER: Well, each assay is
- 6 validated to ensure that it is measuring the
- 7 intended attribute of the product, so we are quite
- 8 sure that that is not happening.
- 9 In those particular assays, there are
- 10 controls that are included in those analytical
- 11 assays to ensure that the analytical method is, in
- 12 fact, valid every time it is run.
- DR. SWADENER: What I am saying is suppose
- 14 a given data point consistently comes up with the
- 15 same result, and it is not really adding any new
- 16 data to the whole process, can you drop that one
- 17 and move it somewhere else?
- 18 MR. GALLIHER: Not without going through
- 19 the program of change control, which is a regulated
- 20 method of evolving process analytical technology or
- 21 release assays or process methodologies or
- 22 controls.
- DR. KIBBE: I think we need to move on.
- 24 We are gaining back all the time we saved this
- 25 morning.

- 1 Thank you very much.
- We have a representative from the
- 3 pharmaceutical segment manager of Siemens Energy &
- 4 Automation, Troy Logan.
- 5 MR. LOGAN: Good afternoon. I would like
- 6 to start by thanking the committee for providing
- 7 the opportunity to speak here today about some of
- 8 the experiences that Siemens has had with process
- 9 analytical technologies.
- 10 [Slide.]
- 11 The PAT opportunities that are listed in
- 12 the PAT draft guidance published by the FDA are
- 13 that it can help to reduce production time, to have
- 14 faster production lead time, also right first time
- 15 quality, which means that the whole quality system
- 16 is an integral part of the process, and a kind of
- 17 quality system built in by design.
- 18 Also, managing variability, trying to
- 19 reduce the variability of the process to have a
- 20 more consistent process.
- 21 Facilitating continuous processing meaning
- 22 that we can move faster from one unit operation to
- 23 the next with fewer waiting times, which most of
- 24 the time are due to laboratory tests.
- We can increase automation to improve

1 operator safety and reduce human errors, which is

- 2 more of a risk consideration.
- 3 Then, the ultimate goal is real-time
- 4 product release. In fact, to achieve real-time
- 5 product release, we need to achieve the first steps
- 6 listed above.
- 7 [Slide.]
- 8 Real-time product release means that we
- 9 can release the product to the market without a
- 10 final test, so without doing laboratory tests, but
- 11 just by reviewing process characteristics.
- 12 [Slide.]
- 13 If we consider the whole biopharmaceutical
- 14 process, there are a few steps which are very
- 15 important and which have a big impact on the
- 16 quality of the product.
- 17 For instance, the bioreactor stage is one
- 18 of the most important steps because it has a large
- 19 impact on the final quality of the product,
- 20 compared to separation and purification where the
- 21 quality cannot be changed very much. We can only
- 22 isolate the desired product out of the
- 23 fermentation.
- So, in fact, the first step where PAT
- 25 should be applied is in steps where the impact on

- 1 quality is the highest, and this is the bioreactor
- 2 stage. Later in the manufacturing process, we see
- 3 that the biggest impact on final product quality is
- 4 in the formulation step, so that is why formulation
- 5 happens to be the first one addressed for PAT for
- 6 drug manufacturing, also known as secondary
- 7 manufacturing.
- 8 All other areas can benefit similarly from
- 9 PAT. The idea is to start with the areas where it
- 10 will have the greatest impact and the returns will
- 11 be the greatest.
- 12 [Slide.]
- To achieve real-time product release, we
- 14 need to bring together many disciplines, and we
- 15 must carefully consider the capabilities of each as
- 16 we do. For instance, we have to combine
- 17 manufacturing execution systems together with
- 18 advanced control systems, with process modeling,
- 19 also with process development, with multivariate
- 20 data analysis or chemometrics, with process
- 21 understanding and with process analytics, all, of
- 22 course, inside of a regulatory framework.
- 23 [Slide.]
- 24 If we look at the whole concept, there is
- 25 the process layer on the bottom and the IT

- 1 infrastructure on the top. There are two aspects
- of this whole PAT concept, the control aspect on
- 3 one side and the process monitoring aspect on the
- 4 other.
- 5 Looking inside the boxes, we see that the
- 6 control solution is built out of control modules
- 7 and equipment modules, brought together to form
- 8 pharmaceutical modules, a batch management system,
- 9 and, of course, electronic batch records, which are
- 10 fed into the MES or IT infrastructure.
- 11 On the other side are the process
- 12 analytics which can be applied in two ways.
- 13 First, for process specification verification and
- 14 real-time product release, and, second, for
- 15 collecting information from the process to apply an
- 16 iterative learning control system that will help to
- 17 increase our knowledge of the process on the fly as
- 18 the process runs and, based on that, improve the
- 19 control strategy.
- 20 Further on top, as you gain more knowledge
- 21 about your process, you can begin to optimize that
- 22 process.
- 23 [Slide.]
- We look now to a real world example, that
- 25 is, control of a bioreactor, which is typically

- 1 based on monitoring pH, dissolved oxygen and
- 2 temperature, and apply a closed loop control
- 3 strategy based on the information from these
- 4 sensors.
- If we now also introduce a PAT solution,
- 6 it can help by providing more information about the
- 7 process, not just secondary parameters, but also
- 8 chemical composition and biological performance or
- 9 biological status of the process. This information
- 10 can then be used as an input to the control system.
- 11 Separate from this, there is typically a
- 12 laboratory that is checking the quality of the
- 13 product and making decisions about holding or
- 14 releasing the product to the market.
- 15 A future strategy can be that decisions
- 16 are no longer made in the laboratory, but instead,
- 17 the process control system on the manufacturing
- 18 floor decides, based on the information obtained
- 19 from PAT, if product will be held or released to
- 20 the market.
- 21 [Slide.]
- This is an example of where we have
- 23 applied PAT for fast identification of
- 24 contaminations or a certain disturbance in a
- 25 process. This is from a yeast-based fermentation

- 1 where the major threat to the process is
- 2 contamination introduced by microorganisms coming
- 3 in through air that is sparged into the bioreactor
- 4 or via the substrate before it is transferred into
- 5 the bioreactor.
- 6 The conventional laboratory test
- 7 normally take 8 hours before it is known if this
- 8 contamination has taken place. With this new way
- 9 of applying PAT, we are able to quickly, within a
- 10 few seconds, identify when there is a
- 11 contamination.
- 12 [Slide.]
- 13 What you see here is a representation of
- 14 this kind of classification. On purpose, we have
- 15 contaminated the yeast fermentation with 7 of the
- 16 most common microorganisms that, in the case of
- 17 this company, caused one-third of their rejected
- 18 batches, so that means significant economic impact
- 19 in their business.
- 20 We intentionally contaminated the
- 21 fermentation and found that we can classify and
- 22 identify the outcome into contaminated or not
- 23 contaminated product, and this chart is the result
- 24 of that experiment.
- 25 [Slide.]

1 Here is another example. An in-situ probe

- 2 was placed inside a bioreactor and is monitoring
- 3 the process by collecting the spectra from the
- 4 beginning to the end, and a principal component
- 5 analysis is being applied. The principal component
- 6 analysis is used to monitor process change
- 7 throughout the batch.
- 8 [Slide.]
- 9 What you see here is a two principal
- 10 component plot that represents the major changes of
- 11 this process. From a process control point of
- 12 view, we are mainly interested in what is changing
- in the process, so we would like for everything
- 14 that is staying constant to be taken out of what is
- 15 being monitored. That is exactly what a principal
- 16 component analysis does.
- 17 The result of this principal component
- 18 analysis is a plot that is called a process
- 19 fingerprint. It represents a typical batch track.
- 20 The next step is to define the ideal track, which
- 21 is the so-called "golden" track. By following this
- 22 track, the required endproduct quality can be
- 23 achieved.
- 24 The next step is to determine the maximum
- 25 acceptable tolerance to achieve the required

- 1 endproduct quality. That is this tunnel, which can
- 2 be calculated based on good batches. This is a
- 3 kind of standard deviation that we will allow
- 4 around the process track.
- 5 This is a great tool for helping to define
- 6 if the process is running consistently. Also, if
- 7 sudden process disturbances occur, it is a fast
- 8 detection tool that helps to avoid lasting impact
- 9 of those disturbances.
- 10 Shown here in the middle of this chart is
- 11 where we had a disturbance due to an oxygen
- 12 depletion when an oxygen valve was blocked.
- 13 [Slide.]
- Now we have the PAT road map
- 15 implementation stages for the implementation of
- 16 PAT. It consists of three major steps. First, is
- 17 the measuring part including monitoring and process
- 18 understanding. The second one is the controls, and
- 19 the third is optimization.
- 20 Along with these three steps we have some
- 21 parallel tracks. One is knowledge and change
- 22 management, another is the validation aspect, and
- 23 the third, the people and organizational issues.
- 24 Because the introduction of this PAT solution will
- 25 cause a lot of changes in the organization, people

- 1 have to make decisions differently.
- 2 For example, the decision on holding or
- 3 releasing product will be made on the manufacturing
- 4 floor and no longer in the laboratory. This means
- 5 that the work processes of the organization must be
- 6 realigned.
- We start first with risk assessment on
- 8 product quality and on the process, so to determine
- 9 the required product quality and assess the process
- 10 to determine which process parameters are the
- 11 relevant ones to track.
- 12 The third part is the analyzer assessment,
- 13 finding out which analyzer is most appropriate for
- 14 the type of process and what information is needed
- 15 from that analyzer. Once all of that information is
- 16 collected, a multivariate data analysis is
- 17 conducted. This focuses on finding the
- 18 relationships between product quality and process
- 19 parameters.
- 20 Based on that, you can then begin the
- 21 design of experiments. The PAT solution will then
- 22 begin to help to determine which are the good
- 23 batches and isolate the "golden" batch.
- 24 The next step is then control. Here, we
- 25 can modify control parameters if the process goes

1 off track, and we can get an understanding of the

- 2 ideal process control strategy. When the process
- 3 is running off track, other techniques can be used
- 4 to get the process under control again, and we can
- 5 improve process knowledge with the application of
- 6 an iterative learning control strategy.
- 7 During all these different steps, we are
- 8 collecting a lot of information process behavior,
- 9 process capabilities, process quality, et cetera.
- 10 This data can then be used to further
- 11 optimize the process meaning we can further
- 12 optimize the "golden" process track, perhaps the
- 13 processing time can be shortened, improving
- 14 efficiency of equipment utilization, or the process
- 15 can be optimized to use fewer resources and still
- 16 achieve the required final endproduct quality.
- 17 In conclusion, the use of these PAT
- 18 technologies will become part of an ongoing
- 19 strategy of continuous process improvement.
- 20 Thank you for your attention.
- 21 DR. KIBBE: Quick questions, anyone?
- 22 DR. SINGPURWALLA: Your second slide said
- 23 something about production release of
- 24 pharmaceuticals without final tests.
- MR. LOGAN: Yes.

1 DR. SINGPURWALLA: Are you serious about

- 2 that?
- 3 MR. LOGAN: I will have to begin by
- 4 answering that I am really here as a spokesperson
- 5 for our technical people, but as I understand it,
- 6 that is the ultimate end goal that they are
- 7 attempting to achieve, and they are seriously
- 8 pursuing it with the end users that we are trying
- 9 to work with.
- DR. SINGPURWALLA: Maybe that needs a
- 11 point of clarification. You don't want to test,
- 12 you cannot test every product because if you tested
- 13 it, you couldn't sell it. When I buy a pill, it is
- 14 presumably not tested, but then you still want to
- 15 sample even though you use PAT techniques at the
- 16 end, you do want to sample.
- 17 Here is an analogy. Suppose you are
- 18 building an airplane engine, it has got many parts.
- 19 You test each part. There is no guarantee that when
- 20 you put it all together, the engine will function.
- 21 So, you still need to do testing at the end to make
- 22 sure that nothing has been overlooked. No? Why is
- 23 that?
- DR. KIBBE: I will allow your colleague to
- 25 respond. We will let you off the hook.

1	7 22 2 2 2 2	~ 7 ~ ~	harra	anrithings
⊥	Allybody	erse	IIave	anything?

- 2 [No response.]
- 3 DR. KIBBE: Thank you very much.
- 4 Our last speaker during the open public
- 5 hearing is someone from Laboratory Instrumentation
- 6 Scientist, Foss-NIRSystems, Robert Mattes.
- 7 MR. MATTES: Thank you. I am Robert
- 8 Mattes.
- 9 I would like to talk to you today about
- 10 near infrared spectroscopy as possibly one of these
- 11 analytic tools that would help in the toolbox for
- 12 PAT, and by demonstrating some of our experiences
- in PAT so far as we have implemented some
- 14 techniques in the tableting arena.
- 15 [Slide.]
- 16 The near infrared, just so everybody
- 17 knows, is the region between the visible and the
- 18 mid-IR, and it looks at overtones of the
- 19 fundamental absorptions in the mid-IR.
- 20 [Slide.]
- 21 One of the things that we have done for
- 22 years using near infrared has been the inspection
- 23 of incoming raw materials, and we can measure them
- 24 for identification and qualification of those
- 25 materials, so that you are making sure that you

- 1 have the right materials going into a process
- 2 fermentation cell before starting a reaction.
- 3 One of the things we also have had a lot
- 4 of experience in and has been implemented in
- 5 manufacturing environments is measurement of
- 6 moisture content and lyophilized product. I am
- 7 going to show some data from each of those.
- 8 [Slide.]
- 9 I have a similar chart to the last speaker
- 10 here that shows, first of all, the typical types of
- 11 monitoring that we do real time In a process
- 12 reactor for temperature, pH, oxygen level, you
- 13 know, and you are controlling the temperature and
- 14 sparging and pH level.
- With the near-infrared probe also
- 16 introduced directly into the process reactor, we
- 17 are able to measure analytes, amino acids, glucose
- 18 levels, feedstock levels in that process reactor
- 19 real time, which helps the manufacturing people a
- 20 great deal.
- 21 We haven't actually installed this in, in
- 22 research laboratories and plants so far.
- So, if you are looking at the raw
- 24 materials that we have now identified and qualified
- 25 being brought into the bioreactor, then, we are

1 monitoring the analytes and can real-time adjust pH

- 2 or nutrient levels, and so forth, according to the
- 3 data that we get.
- 4 As the product comes out, we can measure
- 5 the moisture content as the product is being dried
- 6 and possibly lyophilized. This can also lead to
- 7 control feedback for process improvement through
- 8 statistical process control charts, and so forth,
- 9 as previous people have mentioned.
- 10 [Slide.]
- Here are some of the organisms that we
- 12 have worked with, Escherichia coli, products like
- 13 you see on the list there, and the biomass also.
- 14 With one spectrum that you take in the near
- 15 infrared, you can analyze multiple components
- 16 instantaneously with the same spectrum.
- 17 In fact, we are working on one experiment
- 18 right now where we are looking at 28 different
- 19 analytes including all the amino acids, glucose,
- 20 glutamate, lactate, and so forth. Really, your
- 21 requirements are not limited in that sense.
- 22 [Slide.]
- Here is an example of a process, the raw
- 24 near-infrared spectra of a process as it
- 25 progresses. As biomass increases the y axis

1 spectra or the absorbance of the spectra increases,

- 2 as you can see here.
- 3 [Slide.]
- 4 You see these two major peaks are the
- 5 water bands in the near infrared. It is not
- 6 terribly informative in that form. We usually take
- 7 the second derivative of the spectra, which
- 8 enhances the resolution and enhances the peak
- 9 separations.
- In the top set of spectra here, we see one
- 11 analyte progressing with time, and it is increasing
- 12 in a downward direction because of that second
- 13 derivative that we have taken. In the lower set of
- 14 spectra, we see where different analytes are
- 15 appearing within a process.
- 16 [Slide.]
- 17 The colors on the charts are backwards in
- 18 the overhead here, but I have corrected them in
- 19 your handout, I am sorry about that, but the
- 20 biomass should be in red as you will see it
- 21 increasing with time in the process, and the
- 22 glycerol content was decreasing there.
- So, you can see using those spectra, you
- 24 can predict and measure the levels of different
- 25 analytes and trend them with time rather than

1 waiting for a week or more sometimes, waiting for

- 2 the wet chemistry to come back on a process that
- 3 you are running presently.
- 4 [Slide.]
- 5 Here are some of the types of things and
- 6 the types of error in precision that we have been
- 7 able to develop. At-line, we are talking about
- 8 using a peristaltic pump that pumps out of the
- 9 reactor and back in again. In-line, we are talking
- 10 about actually having it pulled right in the
- 11 reactor, which is the type of work I have been
- 12 working on most recently with some of our
- 13 customers.
- 14 [Slide.]
- One of the things that has been reported
- 16 recently in biotechnology and bioengineering by a
- 17 group that worked at Strathclyde University in the
- 18 UK was CHO cell fermentation, which is a very big
- 19 topic right now.
- They used a small, 2-liter bioreactor
- 21 similar to the one you saw in a previous lecture
- 22 there, and they were monitoring glucose, glutamine,
- 23 lactate, and ammonia.
- 24 [Slide.]
- 25 This is more like the work that I was

- 1 doing most presently with about a 100-liter
- 2 bioreactor with a direct fermenter interface, using
- 3 standard Ingold port. We are putting our probe
- 4 right into the sterile environment. The probe can
- 5 be sterilized right in the environment.
- 6 As I say, we simultaneously can get
- 7 results in less than one minute of up to 28
- 8 analytes. Previously, we have to have developed
- 9 the model for each one of those. The
- 10 time-consuming part is upfront on the analysis
- 11 rather than the real-time usually used in wet
- 12 chemistry.
- 13 This then can be turned into monitoring
- 14 and closed-loop control, adding feed or whatever,
- 15 changing glucose levels real-time automatically,
- 16 but certainly in the nearest future, will help the
- 17 people to know when the levels have changed to a
- 18 serious level within a reactor real-time.
- 19 [Slide.]
- 20 Here is the results of that particular
- 21 experiment with the CHO cells. You can see the
- 22 precisions and ranges that were used in that
- 23 experiment with ammonia, glucose, lactate, and
- 24 glutamine.
- 25 [Slide.]

- 1 Here is an example of monitoring
- 2 lyophilized product. You mentioned earlier that
- 3 not every sample can be measured or would be
- 4 destroyed. In this case, we can, we actually
- 5 non-invasively, non-destructively measure right
- 6 through the bottom of the lyophilized bottle, and
- 7 we can predict the moisture content. So, there is
- 8 a possibility of 100 percent measurement in this
- 9 case.
- 10 You see this band, the largest band there
- 11 is the water band. Again, it's the second
- 12 derivative, so it is increasing in downward
- 13 direction. The driest bottle would be the red line
- 14 that is up at the top.
- 15 [Slide.]
- 16 Some of the benefits for the PAT
- 17 initiative in the biotech area. It gives a
- 18 real-time analysis of sterile environments. You
- 19 don't have to constantly be taking samples out that
- 20 could lead to problems with sterility and asepsis
- 21 and also the possibility of closed-loop feedback
- 22 process control.
- 23 It is not invasive and can add to the
- 24 process optimization, as people spoke of earlier,
- 25 waste reduction, and better understanding of your

1 process, so that they can create safer and

- 2 improved, more consistent product.
- 3 Thank you. Are there any questions?
- 4 DR. KIBBE: Questions?
- DR. SINGPURWALLA: This is very
- 6 interesting. So, this is a non-invasive method of
- 7 looking at some particular unit, but then do you
- 8 have a template for what would be a normal unit,
- 9 and how do you compare these templates?
- 10 Suppose you have a template which says
- 11 this is what the spectrum of a proper product
- 12 should be, and then you get a defective, how do you
- 13 say this is defective?
- MR. MATTES: What you are talking about is
- 15 a qualitative analysis before predicting the sample
- 16 quantitatively? Yes, we can build libraries, and I
- 17 have done quite a bit of work like this recently.
- 18 You want to build a library of what
- 19 qualified good samples of spectra should look like,
- 20 and if it doesn't conform to those criteria,
- 21 statistical criteria that you have developed in
- 22 your library, it gives you some sort of indication,
- 23 or it will not give you a prediction as such, so
- 24 you won't be predicting on the wrong type of
- 25 spectrum.

1 DR. SINGPURWALLA: What you need is a

- 2 template which measures the spectrum of a good
- 3 product versus the spectrum of a defective product
- 4 and the criteria for seeing how diverse those two
- 5 are, because, you know, a little diversity, you
- 6 cannot say it's bad or good, but you need proper
- 7 criteria to say that this is very diverse, and I
- 8 don't know if you have that, but it is interesting.
- 9 MR. MATTES: Yes. We use statistical
- 10 criteria in our library model developments, and we
- 11 can use bad samples as reject sets, so we can test
- 12 both positive and negative sets, and it is
- 13 basically, to use the simplest example, if you had
- 14 normal distributions of 3-sigma outlier or you
- 15 choose some number of standard deviations from the
- 16 mean-centered spectrum of this acceptable
- 17 population.
- DR. KIBBE: Anybody else?
- DR. COONEY: An extension of the previous
- 20 question. You are using the sensor to measure
- 21 multiple components in variable and complex
- 22 systems. To what extent do you have to go back and
- 23 redevelop the algorithm for each system for the
- 24 components versus being able to use standard
- 25 wavelengths or a template, as was asked, that you

- 1 can apply across different processes?
- 2 MR. MATTES: Well, each unique process
- 3 really needs the model development done for that
- 4 process, so this, as I say, is the upfront
- 5 time-consuming portion of this model development,
- 6 but you simultaneously are looking at all the
- 7 variance caused by all the different constituents
- 8 or analytes in the matrix of your fermentation.
- 9 So you need many samples, reference
- 10 samples, to help you be able to do this, because
- 11 you are going to have so many degrees of freedom,
- 12 you need more samples.
- DR. KIBBE: Thank you. The table at the
- 14 back end is just references?
- MR. MATTES: Yes, it is just a
- 16 bibliography that has some references including the
- 17 work that Strathclyde University did on the CHO
- 18 cell mammalian culture.
- 19 DR. KIBBE: Great. Thank you very much.
- Now we are back to the PAT Applications
- 21 for Products in the Office of Biotechnology
- 22 Products, and we are going to start off with Keith
- 23 Webber. Keith is here ready to lead the charge.
- 24 PAT Applications for Products in the
- 25 Office of Biotechnology Products

1	Overview an	nd Issues

- DR. WEBBER: Good afternoon. I am Keith
- 3 Webber and I would like to thank the committee for
- 4 taking the time today to participate and listen to
- 5 the issues surrounding our desire to implement PAT
- 6 technologies for the products in the Office of
- 7 Biotechnology Products.
- 8 As Ajaz mentioned this morning, the PAT
- 9 guidance specifically excluded the biotech
- 10 products, that are regulated in our office, from
- 11 its scope.
- To some extent, this was to expedite the
- 13 publication of the document and also the training
- 14 and qualification program for inspectors and
- 15 reviewers, but as he also said, it is a technology
- 16 that is certainly amenable to any manufacturing
- 17 process, so there is not inherently any reason why
- 18 we couldn't implement it with these products if we
- 19 have the technologies and the information and
- 20 understanding available.
- 21 [Slide.]
- Now, this afternoon, just to give you a
- 23 brief overview of the agenda here, I am going to
- 24 give an overview basically of the biotech products
- and the manufacturing processes for the products

- 1 that are regulated in our office, and then Dr.
- 2 Joneckis from CBER will give a brief overview
- 3 related to some of the products that are regulated
- 4 in CBER.
- 5 After that, two members of the committee,
- 6 Dr. Cooney and Dr. Koch, will give presentations to
- 7 describe some of the issues, as well as some of the
- 8 opportunities available in the area of fermentation
- 9 and biological manufacturing.
- 10 That will be followed by Dr. Layloff, who
- 11 will give a brief overview of the view in this area
- 12 with regard to the PAT Subcommittee which he
- 13 chaired when it was active.
- 14 Afterwards, we will put up some questions
- 15 to stimulate discussion. I certainly hope that we
- 16 will get a good amount of discussion from the
- 17 committee with regard to this exciting area of
- 18 manufacturing.
- 19 [Slide.]
- The biological products as a class include
- 21 all the products listed here, which were originally
- 22 regulated in CBER. There was a reorganization back
- 23 in 2003 that moved the recombinant DNA-derived
- 24 proteins, or many of them I should say, to the
- 25 newly formed Office of Biotechnology Products

1 within the Office of Pharmaceutical Sciences in

- 2 CDER.
- 3 Essentially, those are the products that I
- 4 am going to be focusing on today. Dr. Joneckis may
- 5 have comments on the other products, as well, or
- 6 the recombinant DNA products that are still
- 7 remaining in CBER.
- 8 [Slide.]
- 9 This is in terms of sort of a review.
- 10 [Slide.]
- 11 There are essentially two aspects of
- 12 process analytical technologies. One requirement
- 13 is that you have to have the ability to monitor the
- 14 critical product characteristics that are needed
- 15 for the product's function, or, if it is an
- 16 intermediate in manufacturing, you need to be able
- 17 to know what characteristics are important for
- 18 being able to move it forward in manufacturing to
- 19 the next step.
- Now, alternatively, there may be
- 21 surrogates as opposed to direct product quality
- 22 attributes that one can use to make decisions.
- 23 This monitoring, as has been mentioned a number of
- 24 times here, will optimally be done on-line, but at
- 25 this point, I think to a large extent, many of the

1 monitoring is done off-line, so this is something

- 2 we look for in the future.
- 3 Secondly, one has to be able to monitor
- 4 and modulate the critical process parameters to be
- 5 able to guide the product quality attributes and
- 6 quality characteristics during the manufacturing
- 7 process.
- 8 It is probably worth mentioning two other
- 9 requirements that may be self-evident, but are
- 10 certainly not trivial, that is, that you need to
- 11 know the critical characteristics of the product in
- 12 the first place that are important for its function
- 13 or that need to be obtained to get to the next step
- 14 in manufacturing.
- 15 You also need to know how these
- 16 characteristics can be modified and manipulated by
- 17 the manufacturing process parameters themselves.
- 18 That is one area that is really dependent upon
- 19 industry to determine during their period of
- 20 product development and gaining a thorough
- 21 understanding of their product and their process.
- 22 [Slide.]
- 23 This is really part of a come-down version
- 24 of process analytical technologies, but I think has
- 25 most of the important aspects with regard to the

- 1 manufacturing element itself. One has a process,
- 2 unit operation, one is monitoring the process
- 3 characteristics or process parameters, as well as,
- 4 if possible, the product characteristics during the
- 5 process.
- 6 You gather this data, evaluate it, and
- 7 then make decisions, so that one can adjust the
- 8 process to ensure that the product that is coming
- 9 out of that process is going to have the
- 10 appropriate characteristics that are desirable.
- 11 [Slide.]
- This is just a brief overview, which we
- 13 have seen already in one of the earlier
- 14 presentations, of the various
- 15 biotechnology processes that are utilized. This
- 16 isn't all-inclusive, but are the major ones.
- 17 You have fermentations, harvesting from
- 18 the fermenter. You have product capture from that
- 19 harvest. Concentration is usually a step that goes
- on after, and may be a part of product capture.
- 21 There are filtrations that are done often,
- 22 almost always chromatography of some sort, many
- 23 times multiple steps. There is formulation
- 24 process, and if the products are lyophilized
- 25 products, you then have lyophilization process at

- 1 the end.
- 2 I didn't cover filling operations, but
- 3 those are certainly amenable to PAT, as well.
- 4 [Slide.]
- Now, what are the characteristics of the
- 6 biotech APIs that are generally considered to be
- 7 critical quality attributes? Certainly, the
- 8 primary amino acid sequence is critical to the
- 9 proper functioning of the product, however, this is
- 10 a characteristic that is relatively invariant, I
- 11 would say, once you get into the manufacturing
- 12 area, and it is established at the master cell bank
- 13 stage or the working cell bank stage, so it is
- 14 usually not looked at on a lot-to-lot basis.
- 15 The secondary structure pertains to the
- 16 local interactions between the amino acid residues
- 17 to produce a structure, such as the alpha helix,
- 18 the pink you see in the front, and the beta pleated
- 19 sheets that you see in the back, in yellow.
- 20 The secondary structure is really very
- 21 important to the protein because these are the
- 22 structures that serve as the building blocks to
- 23 produce enzymatically active sites or the binding
- 24 sites for protein.
- 25 [Slide.]

1 They come together, as I mentioned

- 2 form tertiary structures. This is illustrated here
- 3 in this figure by a model of an antibody FAV
- 4 fragment. You can see that this is purely beta
- 5 pleated sheet, and these tertiary structures form
- 6 to form the binding sites of the antibody itself.
- 7 The next level of complexity that is
- 8 characteristic of some proteins is the assembly of
- 9 independent protein molecules into multimeric
- 10 quaternary structures. Such structures assemble
- 11 post-translationally and they are generally held
- 12 together by either ionic or hydrophobic
- interactions between the independent subunits.
- 14 [Slide.]
- The last, but not least certainly, of the
- 16 API characteristics that I am going to talk about
- 17 today are the post-translational modifications.
- 18 Glycosylation is probably one of the most common
- 19 post-translational modifications that is of concern
- 20 with proteins, particularly those that are made in
- 21 the eukaryotic cells.
- It is illustrated in this figure by the
- 23 sugar chains that are in the center of the Fc
- 24 fragment of an antibody molecule.
- 25 Glycosylation patterns and structures are

1 highly variable in proteins from one product to the

- 2 next, and they can be significantly altered, as
- 3 mentioned earlier, by the fermentation conditions
- 4 that occur during cell growth and fermentation.
- 5 The other modifications that are seen in
- 6 proteins include the proteolytic cleavages that can
- 7 either be caused by endoproteinases that chew away
- 8 at one end of the molecule or exoproteinases--I am
- 9 sorry, endoproteinases that eat the middle--may be
- 10 producing the final product as a necessary activity
- 11 to get the product you want, or the exoproteinases
- 12 which eat away at the end of the protein and could
- 13 produce degradation products during the
- 14 manufacturing process.
- There also is often or sometimes you see
- 16 acylations and sulfations, and many other
- 17 post-translational modifications that I really
- 18 won't describe here.
- 19 [Slide.]
- Now, leaving API on its own and looking at
- 21 the product characteristics themselves, which
- 22 really then you get into the whole impurity profile
- 23 of the product and excipients that may be present.
- 24 Impurities fall into two categories, the
- 25 process-related impurities, which are media

- 1 components coming from the fermentation process,
- 2 host cell proteins that would come from the
- 3 expression system, and then leachates, which come
- 4 from columns or containers that are used to store
- 5 the product during processing.
- 6 Then, also, you have product-related
- 7 impurities, which are perhaps truncations of the
- 8 molecules or misfolded molecules or aggregates of
- 9 the product, which can occur during storage or even
- 10 during manufacturing.
- 11 [Slide.]
- 12 Now, I would like to discuss briefly some
- 13 of the analytical methods that are used currently
- 14 to look at these factors for biotech products or
- 15 these characteristics of biotech products.
- As was mentioned earlier, the primary
- 17 structure is really something that is not looked on
- 18 at a lot-to-lot basis unless in particular cases,
- 19 you might have, as I mentioned, a cleavage of a
- 20 protein that is part of the manufacturing process.
- 21 In those cases, then, one generally does look at
- 22 the primary structure, not necessarily with
- 23 sequencing, but just to demonstrate that cleavage
- 24 has occurred appropriately.
- 25 One area that I also would note here, for

- 1 products that are patient-specific products, for
- 2 example, antibodies that are used for treating
- 3 B-cell lymphomas where each individual patient gets
- 4 a unique product. There is an area where the
- 5 primary structure would certainly be critical to
- 6 look at as an identity test, if nothing else, prior
- 7 to giving a product to the patients.
- 8 [Slide.]
- 9 The secondary structure is somewhat more
- 10 difficult to evaluate, and that is because there is
- 11 a limited number of direct techniques. The ones
- 12 that are primarily used are circular dichroism and
- 13 NMR at this point.
- 14 Also, another complicating factor for
- 15 proteins is that most proteins have multiple
- 16 secondary structures in them. For antibodies, it
- 17 is almost all beta-pleated sheet, but other
- 18 proteins, you have a mixture, so you need to have a
- 19 method that will be able either to distill out the
- 20 critical values for that protein or can look at the
- 21 individual secondary structures separately.
- 22 One other complicating factor for this
- 23 with regard to an in-process control, which we
- 24 hopefully will be able to overcome at some point,
- 25 is they need relatively pure material to look at

- 1 secondary structures in a protein.
- 2 [Slide.]
- Now, I grouped the tertiary and quaternary
- 4 structures together because they are both high
- 5 order structures and are amenable to a similar set
- 6 of analytical tools.
- 7 The functional assays, such as in-vitro
- 8 potency assays, can directly measure the
- 9 therapeutic--or I shouldn't say the
- 10 therapeutic--but the activity of the product
- 11 itself, so it is semi-looked upon as a surrogate,
- 12 but actually, it is a measure usually of the direct
- 13 activity, but it requires, of course, the
- 14 product-specific reagents to do that.
- This is also true of the immunoassays.
- 16 You can get a direct picture of the structure of
- 17 the protein if you have antibodies that will bind
- 18 to 3-dimensional epitopes that are relevant to the
- 19 tertiary or quaternary structure, but again you
- 20 need to have product-specific reagents to do that.
- 21 Peptide mapping is a valuable method for
- 22 looking at the disulfide bonds to make sure that
- 23 they are mapped, that they are forming
- 24 appropriately.
- 25 Size-exclusion chromatography is a

- 1 relatively insensitive method for looking at
- 2 tertiary structure, but in some cases, you can use
- 3 it to separate monomeric from multimeric forms of
- 4 the protein, so that can be a very useful
- 5 technique.
- 6 Hydrophobic-interaction chromatography is
- 7 actually a very good method because it looks at the
- 8 surface charges and surface characteristics of the
- 9 protein and can be used to very sensitively detect
- 10 either misfolded proteins or proteins that are not
- 11 associated with their other monomers appropriately.
- 12 [Slide.]
- For post-translational modifications, this
- 14 is probably the most variable characteristic of the
- 15 protein, as I mentioned before, and analyses of
- 16 these usually requires a highly purified protein
- 17 and some rather sophisticated methodologies, for
- 18 example, enzymatic cleavage and analysis of the
- 19 amino-linked oligosaccharide protein, however,
- 20 recently, the mass spec and NMR have allowed direct
- 21 analysis of post-translational modifications in
- 22 intact proteins, which is an up and coming
- 23 technique.
- 24 Peptide mapping can also pinpoint the
- 25 location of the modification within the protein

1 sequence, which is very useful for characterization

- 2 of the product.
- 3 Immunoassays and the functional assays can
- 4 be used for more impure proteins because they are a
- 5 little bit more specific for your product, however,
- 6 the functional assays are often not very sensitive
- 7 to protein modification itself unless there is a
- 8 specific modification that is really critical to
- 9 the activity.
- 10 [Slide.]
- 11 So, to summarize, inherent challenges that
- 12 we see to implementing PAT for biotech products at
- 13 this point are that the biotech products are
- 14 generally large and complex pleiotropic molecules.
- They are composed usually of a mixture of
- 16 post-translational modifications, they have
- 17 multiple active sites. Some of those are
- 18 homologous like two binding sites antibody, or they
- 19 can be heterologous where you have different active
- 20 sites doing different functions on the same
- 21 protein.
- The activities are dependent upon the
- 23 complex, folded conformations of a protein, and
- 24 proteins are also susceptible to multiple
- 25 degradative events, so you need to look at a lot of

- 1 different aspects of a protein during
- 2 manufacturing. As I mentioned before, these
- 3 include the proteolysis, aggregation, misfolding,
- 4 oxidation, deamidation, just to name some of those
- 5 that we know of.
- 6 [Slide.]
- 7 Of course, when you are considering the
- 8 factors involved in protein structure or actually
- 9 any product, you need to consider the purity,
- 10 potency, and the strength, of course, but also the
- 11 impact that those changes or modifications or
- 12 variabilities to the protein would have on the
- 13 pharmacokinetics, the pharmacodynamics, and the
- 14 immunogenicity of the product.
- That is delving more into the area of the
- 16 product development stage of pharmaceutical
- 17 development as opposed to manufacturing itself, but
- 18 surely, that is one of the early bits of
- 19 information that one needs to have, we need to
- 20 gather.
- 21 [Slide.]
- Now, I would like to talk briefly about a
- 23 few of the manufacturing processes that have been
- 24 touched on before and what the current state of
- 25 monitor and control are.

1 For fermentation processes, generally, one

- 2 can monitor and control the agitation rate, the pH,
- 3 the ionic strength of the media, the temperature,
- 4 dissolved gases, media components, and by being
- 5 able to monitor and control those, you can then
- 6 control the growth rate and the expression rate
- 7 usually of your product.
- 8 This is an area where process analytical
- 9 technology, we will probably see it developed
- 10 early, because one has that control over some of
- 11 the aspects of the process.
- 12 As we have heard before, there are methods
- 13 now available for detecting or monitoring the
- 14 biomass and bioburden through using rapid
- 15 biological methods, rapid microbiological methods
- 16 for sterility testing. Generally, one monitors the
- 17 product by light absorbance, for example, protein
- 18 concentration to A280.
- 19 [Slide.]
- 20 Moving on to chromatographic processes,
- 21 this is again the same format. You can monitor and
- 22 control your pH of the effluent or the liquid
- 23 phase, ionic strength, flow rate, temperature, and
- 24 volume, and of value here, which isn't exactly laid
- out, though, is that because you can control the

- 1 volume and monitor the light absorbance, one can
- 2 then control the composition to some extent of the
- 3 fractions that you collect out of that, from that
- 4 column.
- 5 That is currently being done although it
- 6 is really looking just at the protein
- 7 concentration, one usually doesn't know except by
- 8 doing previous experiments, to know what is in each
- 9 of the fractions that you collect.
- 10 [Slide.]
- 11 Filtration processes. This includes both
- 12 dead-end filtrations for removal of bacteria and
- 13 viruses, as well as the ultra-filtration for
- 14 selectively removing lower and higher molecular
- 15 species from a product.
- 16 In most cases, one can monitor and control
- 17 the temperature and flow rate, the back pressure,
- 18 and the volume of the filtrate, although you
- 19 usually can't do all those independently because
- 20 they are inter-related.
- 21 Again, we have seen before the protein
- 22 concentration is monitored by light absorbance and
- 23 the bioburden is, at this point, generally
- 24 monitored off-line, but soon could be monitored
- 25 on-line.

- 1 Dead-end filtration is usually a
- 2 flow-through process and that generally allows
- 3 little control over the product characteristics
- 4 themselves other than the removal of the material
- 5 which is filtered out.
- 6 Ultra-filtration, on the other hand, can
- 7 be a much more dynamic process, and that may allow
- 8 more control over the composition of the product.
- 9 For example, ultra-filtration is often used for
- 10 formulation of biotech products.
- 11 [Slide.]
- 12 It was discussed a little bit earlier, the
- 13 lyophilization process, and this one may be
- 14 currently the most close to being a process
- 15 analytical technology. In the lyophilizer, you can
- 16 monitor and control the shelf temperature and the
- 17 product temperature, the chamber pressure, the
- 18 condenser temperature, the pressure, and time in
- 19 the lyophilizer.
- The ability to monitor and control these
- 21 parameters allows you to control the freezing rate
- 22 and the drying rate, and the moisture content, all
- 23 of which directly affect the physical quality of
- 24 the final product, which really is what we are
- 25 shooting for in process analytical technologies.

1 Although you have to have a product with

- 2 an acceptable composition going into the
- 3 lyophilizer, the physical characteristics of the
- 4 product that comes out will play an important role
- 5 in the stability and the activity of the product
- 6 that goes to the patient.
- 7 [Slide.]
- 8 Finally, you will see these questions
- 9 again at the end of our session, but I just want to
- 10 introduce them now, because these are points that
- 11 we would like to initiate discussion with.
- 12 What technologies are available now to
- 13 evaluate the characteristics of protein products in
- 14 real time during manufacturing, or to speed things
- 15 along with an off-line test which is faster, is
- 16 valuable to know, as well.
- 17 What tools would allow us to understand
- 18 the manufacturing process better?
- 19 What processes in biological drug
- 20 manufacturing would benefit the most from
- 21 implementation of PAT? Essentially, where are we
- 22 going to get the most bang for our buck, as has
- 23 been said before.
- 24 For processes or products that do not
- 25 currently allow direct product quality monitoring,

- 1 what other strategies would you, as a committee,
- 2 recommend for product quality control in addition
- 3 to control of the in-process parameters?
- 4 Finally, what additional elements should
- 5 be incorporated in a training and certification
- 6 program for reviewers and inspectors of
- 7 biotechnology PAT applications?
- 8 Thank you.
- 9 DR. KIBBE: Does anybody have any
- 10 questions? It might be a good idea for us to go
- 11 ahead and get at least the next speaker through the
- 12 process, and I think it might be useful for the
- 13 committee to be able to take a break then, so I
- 14 don't know how that does to your continuity, but it
- 15 would be helpful for us.
- DR. JONECKIS: Thank you and good
- 17 afternoon. I am Chris Joneckis. I am the Senior
- 18 Adviser for CMC Issues in CBER, Office of the
- 19 Director.
- I am just going to briefly describe CBER's
- 21 perspective on process analytical technologies for
- 22 the biotechnology and biological products that CBER
- 23 currently regulates.
- 24 [Slide.]
- 25 CBER regulates a wide variety of products,

1 as shown in these slides, the majority of the major

- 2 product classes shown here. They include a wide
- 3 variety of biological and biotechnology products,
- 4 diagnostic and processing devices, cells, and even
- 5 chemical entities that are clearly derived from a
- 6 variety of sources and manufactured using a wide
- 7 variety of techniques.
- 8 My comments today will predominantly focus
- 9 on the experience that we have gained with the more
- 10 traditional biologics and some of the newer
- 11 recombinant products that are produced from living
- 12 organisms and are typically extracted and further
- 13 modified, purified, and, for example, fill for
- 14 distribution following some of the examples that
- 15 Keith provided in the manufacturing process.
- 16 For many of these products, most actually,
- 17 product contamination with adventitious agents from
- 18 a variety of sources is of primary concern, and
- 19 most of these products are again aseptically
- 20 processed.
- 21 It is important to point out also that
- there are recombinant products not just in the
- 23 blood derivative class for the recombinant
- 24 analogues that CBER regulates, but also in a
- 25 variety of other classes including allergenic

- 1 extracts, prophylactic and therapeutic vaccines.
- 2 They are also used in the manufacture of various
- 3 cellular therapies and in some other product
- 4 classes not shown here.
- 5 CBER's approach to technology in general
- 6 is also applicable to other product classes, and
- 7 many of the comments on PAT that I will make today
- 8 will be applicable to those.
- 9 [Slide.]
- 10 Historically, CBER's approach to
- 11 controlling the process can clearly be summed up by
- 12 the mantra, if you will, that, "The process is the
- 13 product."
- 14 There has been a long historical emphasis
- in understanding the product and a long emphasis on
- 16 understanding and controlling that manufacturing
- 17 process. This clearly requires, not just an
- 18 understanding of the process and the product, but
- 19 the interaction of those two, how the process
- 20 results in the product.
- 21 The nature of many of the traditional
- 22 biologics influenced this approach. Many of these
- 23 were complex heterogeneous products susceptible to
- 24 a variety of variability produced almost
- 25 exclusively from living sources or living sources

- 1 themselves.
- 2 The complex mixtures, coupled with
- 3 insufficient analytical technologies, made it very
- 4 difficult to detect all the active components or
- 5 materials, in fact, that can influence the activity
- 6 of the active components.
- 7 This necessitated a very strict control of
- 8 the manufacturing process to reproducibly result in
- 9 the desired product with the appropriate safety and
- 10 efficacy profile.
- 11 Recent advances in analytical technology
- 12 and enhanced manufacturing processes often result
- 13 in better defined products, aiding in a greater
- 14 assurance of producing products with the desired
- 15 characteristics.
- 16 Manufacturing is beneficial to implement
- 17 these newer technologies and improved approaches to
- 18 better control processes and demonstrate that
- 19 products can be consistently manufactured. That
- 20 was clearly shown in many of the recently derived
- 21 biotechnology and biological products.
- 22 [Slide.]
- 23 An overall approach that we have followed
- 24 at CBER has been that we have always encouraged the
- 25 application of technologies and concepts to the

- 1 manufacturing and testing of products.
- 2 Again, we have lived with developing
- 3 technologies throughout its history, and have
- 4 applied those to manufacturing and testing of
- 5 various products. We are actively involved in the
- 6 development and application of these new
- 7 technologies.
- 8 Again, historically, we have developed and
- 9 applied technologies appropriate to specific
- 10 manufacturing and testing issues. We continue to
- 11 be actively engaged in developing and applying
- 12 these technologies.
- 13 For example, the conversion of older
- 14 technologically-based assays, such as animal-based
- 15 assays and cell-based assays to newer analytical
- 16 methods, actively involved again in development and
- 17 application of proteonomics and genomic
- 18 technologies to issues, such as product
- 19 characterization and adventitious agent detection.
- 20 This large laboratory component assists us
- 21 in maintaining our knowledge base for discussions
- 22 in applying these new technologies.
- We clearly partner with manufacturers in
- 24 developing and implementing new technologies and
- 25 concepts. As I have indicated, we have had to live

- 1 with developing technology throughout history.
- 2 It is through these interactions with the
- 3 manufacturers in both development and in
- 4 post-approval phases that allowed the advancement
- 5 and development and introduction of new
- 6 technologies or appropriate manufacturing
- 7 processes.
- 8 Issues are addressed, validation issues,
- 9 for example, and other types of issues about
- 10 understanding this new technology are addressed
- 11 throughout the development process, the
- 12 post-approval process, on review and inspection, as
- 13 well as in review of applications.
- 14 [Slide.]
- The approach to process control that CBER
- 16 has emphasized is best described as a comprehensive
- 17 life-cycle approach to validate this process and
- 18 spans the life cycle of that product.
- 19 This approach relies on developing an
- 20 understanding of the process and product. Use of
- 21 knowledge gained can be applied throughout the life
- 22 cycle and typically is.
- In addition to CBER's perspective, this
- 24 comprehensive approach was largely influenced
- 25 through interactions with manufacturers of

- 1 biologics and biotechnology products, incorporated
- 2 concepts and approaches often used in manufacturing
- 3 industries.
- 4 It emphasizes identification and control
- 5 of critical unit operations and process variables
- 6 to product intermediates, resulting in a product
- 7 with acceptable quality attributes.
- 8 Some of the elements are shown here. They
- 9 are familiar I am sure to many of you. They also,
- 10 I should point out, overlap with many of the
- 11 fundamental underlying principles necessary to
- 12 implement many of the PAT applications.
- 13 [Slide.]
- 14 As a result, over time, there have been
- 15 many PAT-like applications of technology to
- 16 manufacturing and testing. For example, as Keith
- 17 had indicated, there are many examples of continual
- 18 on-line monitoring of critical process attributes
- 19 often with real-time feedback mechanisms that may
- 20 be computer assisted.
- 21 Within the defined parameters from the
- 22 validation studies and such there is also some
- 23 flexible control within those parameters, so one is
- 24 not necessarily fixed to certain endpoints if the
- 25 appropriate validation characteristics support a

- 1 range within which one can operate.
- We have been involved with application of
- 3 on-line analysis of various intermediates and
- 4 product attributes, as well as facility systems.
- 5 Some examples are indicated here.
- 6 We have approved several years ago an
- 7 on-line measure of a critical physical-chemical
- 8 quality intermediate for a naturally-derived
- 9 product. We have entertained discussions, again
- 10 several years ago, on measuring through a
- 11 non-destructive method the moisture content of
- 12 final filled containers. We have approved
- 13 appropriate physical property for changing
- 14 lyophilization conditions in lyophilizers.
- 15 CBER regulates and reviews major facility
- 16 changes. We approve numerous supplements that
- 17 described on-line applications of water systems
- 18 when conductivity measurements were substituted for
- 19 the wet chemistry measurements in water systems.
- 20 Most importantly, we have recently
- 21 approved microbial methods for two applications.
- 22 Rapid microbial methods are very concerned
- 23 especially to or for our cellular products, and for
- 24 those products where they cannot be held or stored
- 25 prior to the release of the sterility testing

- 1 results, so implementing methods that have allowed
- 2 for a rapid turnaround to determine whether the
- 3 products are sterile or not has provided great
- 4 increase in the assurance of the quality of that
- 5 product.
- I should point out that that last method
- 7 is not an on-line method, but is an off-line
- 8 method.
- 9 [Slide.]
- 10 There are clearly potential applications
- 11 for new manufacturing and testing technologies that
- 12 have been discussed. Many of those advantages for
- 13 PAT have been described and are probably known much
- 14 better to you all than to me.
- I think some of the best applications
- 16 would be if one could use those in terms of
- 17 defining product or intermediate quality
- 18 characteristics. Unfortunately, that provides the
- 19 most challenge and at present, I think there are
- 20 some great limitations to doing that in an on-line
- 21 fashion.
- 22 Immediate applications I think may be more
- 23 likely in terms of drug product manufacturing,
- 24 measuring of more single types of process or other
- 25 very select quality attributes.

1 Some of the challenges I think that we

- 2 face at CBER is that we still have, in contrast to
- 3 some of the more purified and defined recombinant
- 4 products, a large amount of complex and
- 5 heterogeneous products. All of the issues that
- 6 Keith discussed about the identity, purity, and
- 7 composition of these products is in many cases
- 8 magnified when one has a complex and heterogeneous
- 9 product.
- 10 Again, I think that leads to the ability
- 11 that it may be difficult to know from a multifactor
- 12 analysis the heterogeneous mixture, what actually
- 13 that relationship is.
- 14 Again, manufacturing unit operations in
- 15 biological and biotechnology products often perform
- 16 multiple functions. Again, the ability to measure
- 17 all important product quality characteristics in a
- 18 continuous mode from any of those functions, I
- 19 think is going to be very challenging.
- 20 For CBER, we have the development of new
- 21 products, not just products within a class, but
- 22 again completely new products, gene therapy,
- 23 therapeutic vaccines, as well as cellular products.
- 24 [Slide.]
- 25 Just in summary, I think it is still

1 important at CBER that we understand and emphasize,

- 2 understanding both the product and the process,
- 3 clearly integral to the development and manufacture
- 4 of biotechnology and biological products.
- 5 The comprehensive, life-cycle approach to
- 6 process validation remains integral to the
- 7 consistent manufacture of these products.
- 8 Validation is still a regulatory requirement and
- 9 when conducted in a comprehensive life-cycle
- 10 manner, has provided great assurance that the
- 11 process will consistently produce that desired
- 12 product.
- 13 That has been most readily seen at CBER
- 14 when products that were approved prior to
- 15 validation being a regulatory requirement,
- 16 validated their process. They had potential
- 17 savings both from economic and public health
- 18 perspectives.
- 19 We see PAT more as an extension of the
- 20 existing process understanding the manufacturing
- 21 control paradigm. I think clearly, PAT has
- 22 potential applications for biotechnology and
- 23 biological manufacturing processes especially if it
- 24 can monitor again intermediate quality attributes
- 25 and provide greater assurance of that product

- 1 quality.
- We will continue to partner with
- 3 manufacturers of existing and new products to
- 4 facilitate implementing any type of new technology
- 5 and concepts, including those that can enhance the
- 6 knowledge and control of the manufacturing process.
- 7 Thank you.
- 8 DR. KIBBE: Does anybody have any
- 9 questions for Chris? Go ahead.
- DR. COONEY: One of the particular
- 11 challenges for the class of products you are
- 12 dealing with are viruses, viral contamination.
- How do you see some of the issues of
- 14 detection and validation of viral removal being
- 15 advanced by PAT?
- DR. JONECKIS: That is an interesting
- 17 question. Currently, I guess, for the committee's
- 18 benefit, most people do challenge or clearance
- 19 studies, usually small scale, representative of the
- 20 larger scale manufacturing process.
- In terms of detection, again, as I
- 22 mentioned earlier, there are efforts underway to do
- 23 genomic and proteomic screenings for potential
- 24 contaminants within products at various appropriate
- 25 stages in addition to the current various levels of

- 1 safety that are provided.
- I suppose theoretically if one could with
- 3 the increased sensitivity of certain methods, one
- 4 may be able to do more on-line monitoring, if you
- 5 would, again at early or appropriate stages to
- 6 actually see if there is any type of potential
- 7 viral materials present.
- 8 One could potentially in theory, depending
- 9 upon how much is present, again, sensitivity of
- 10 your methods, actually measure on-line for the
- 11 various steps, present of type C retroviral
- 12 particles, CHO-derived products, and things of that
- 13 nature.
- 14 Similarly, you know, it has been done for
- 15 measuring DNA and other types of materials when it
- 16 is there in a large amount in early purification
- 17 steps, given the sensitivity of the assay, one can
- 18 measure those on-line in addition to whatever model
- 19 studies are done to provide additional assurance
- 20 that your model truly reflects what is occurring.
- 21 DR. KIBBE: Anyone else?
- Seeing none, I am going to take the
- 23 prerogative of the Chair and declare a 15-minute
- 24 break, which means we should be back in our seats
- 25 and ready to go at approximately 2:35.

- 1 [Break.]
- DR. KIBBE: I have been assured by experts
- 3 in the field that Tom has all the answers in his
- 4 presentation, so when we get to them, we will be
- 5 done for the day.
- 6 Charles Cooney is on the podium.
- 7 DR. COONEY: Thank you very much.
- I am pleased to have an opportunity to
- 9 share some thoughts this afternoon on the question
- 10 that Keith Webber put before us, and that is the
- 11 extension of PAT to biological processes.
- 12 In preparing for any talk, one obsesses
- over a number of things, one of which is the color
- 14 of your tie, of course, but another is the title of
- 15 the talk. I obsessed over a complex title and a
- 16 simple title, and I resolved that dilemma by having
- 17 both.
- 18 [Slide.]
- 19 PET for PAT? The message that I am trying
- 20 to convey in my title as a place to begin is that
- 21 when we think about PAT and all of its virtues and
- 22 aspects that have been dealt with earlier today,
- 23 process analytical technologies applied to
- 24 processes and products, it is a very important
- 25 fundamental concept, and it means a lot.

1 When you think about it in terms of the

- 2 process, it occurred to me that we really need to
- 3 think about analyzing the process, as well as
- 4 analyzing parts of the process and the product
- 5 itself.
- So, the emphasis here is to think about
- 7 process evaluation tools as a component of process
- 8 analytical technologies, and I think that the broad
- 9 definition that has been used for PAT very much
- 10 embraces that idea.
- 11 [Slide.]
- 12 In putting together my comments for this
- 13 afternoon, I have identified more questions than I
- 14 have answers, and the reason for this is that as we
- 15 think about going forward with the extension of PAT
- 16 to biological products, there are a number of
- 17 issues and questions, and I would like to try to
- 18 put at least a few of these into some context.
- 19 The first set of questions I have
- 20 summarized here as Some Issues. What are the
- 21 issues, what is the context as we look forward, one
- 22 of which is the pipeline of new products, what will
- 23 that look like going forward in the next 10 to 20
- 24 years.
- 25 I think there is no doubt that it is going

- 1 to be expansive, there is going to be increased
- 2 complexity in the nature of the products, and it is
- 3 going to be a very vibrant pipeline simply based
- 4 upon what we see in discovery and what we see in
- 5 clinical trials today.
- If we think about the increase in the
- 7 number of BLAs and NDAs that will be coming through
- 8 for biological products, it puts a real future
- 9 stress on the Agency because as we look at the
- 10 number of these products, they are increasing
- 11 exponentially, and I don't think that the number of
- 12 people in the FDA is increasing exponentially.
- 13 Just a guess, but I think it's true.
- So, what that means is that the pressure,
- in order to be more efficient, and to focus on a
- 16 risk-based strategy and understand where and when
- 17 to look, at what, is really very, very timely to be
- 18 in this process right now.
- 19 Then, of course, there is the question of
- 20 follow-on biologics that are beginning to--I will
- 21 come back to this in a moment--but are beginning to
- 22 come forward, and I think are going to be an
- 23 increasing issue.
- 24 Both of these issues raise the question
- 25 how do biological products respond to the physical

- 1 process changes that occur when you develop a
- 2 process, scale the process, move it, change its
- 3 location, and the like.
- We have some understanding of this, and,
- 5 of course, this is fundamental to understanding how
- 6 biological products, particularly the complex one,
- 7 respond to the complex processes used to make them.
- 8 Underlying all this, do we have the
- 9 adequate analytics to address the uncertainties
- 10 associated with manufacturing in this industry, and
- 11 I am struck by looking at the presentations we had
- 12 earlier today, and, of course, they all focused on
- 13 where we have the analytics in place.
- In fact, do we have the necessary
- 15 analytics? No, I don't think we do.
- 16 Are efforts underway to develop them?
- 17 Well, we are going to hear in the next presentation
- 18 that there are some very exciting efforts that are
- 19 underway, and I think the future looks bright, but
- 20 it is only going to come with a lot of diligence
- 21 and a lot of innovation in order to measure the
- 22 kinds of things that we really need to be looking
- 23 at.
- 24 Then, ultimately, how do we bring this
- 25 together to assure robustness in design and

1 operation of these processes.

- 2 [Slide.]
- I tried to address where we are going.
- 4 Keith Webber already identified a number, in fact,
- 5 the previous two speakers identified the range of
- 6 products that are out there today and the ones that
- 7 are likely to be out there tomorrow, and we can
- 8 expect that there are going to be a lot more
- 9 antibodies, replacement proteins, designer
- 10 proteins, vaccines, not just for therapeutic use,
- 11 but for prophylactic use, cellular and gene
- 12 therapies are being developed quite aggressively.
- One of the other observations I would like
- 14 to make, though, when we look at the range of
- 15 products that are there today and that are going to
- 16 be there tomorrow, is that this question of
- 17 follow-on biologics is on the minds of many people
- 18 and we need to take stock of where we are today,
- 19 because we really have follow-on biologics today,
- 20 we have multiple processes for the same products,
- 21 multiple manufacturers for human growth hormone,
- 22 multiple manufacturers by very diverse technologies
- 23 for human insulin.
- How we have managed them is perhaps not
- 25 the same way that we wish to manage them in the

1 future, but these are realities today, these are

- 2 not things that are looming out there for the
- 3 future.
- 4 [Slide.]
- 5 When we look at the processes that are
- 6 going to be used, we have very diverse recombinant
- 7 protein production processes. Why are there so
- 8 many? Why isn't there a single technology that has
- 9 emerged?
- The answer is very simple, not all
- 11 processes are suitable for all products.
- 12 Furthermore, the intellectual property landscape is
- 13 such that it dictates complexity in the processes
- 14 that are used simply to work your way through the
- 15 minefield of intellectual property that is out
- 16 there.
- 17 Is that going to get simpler as we look
- 18 forward? No, the processes are going to become more
- 19 complex, driven in part by innovation, and driven
- 20 in part by the nature of the products, tissue
- 21 products, multicellular products, and certainly the
- 22 potential future for transgenic plants and animals.
- So, as we look at the array of complex
- $24\,$ $\,$ processes for these complex products, I do not see
- 25 that landscape getting simpler. I see it remaining

- 1 complex and as a consequence, we need to be able to
- 2 have the analytics in place and the ways of
- 3 handling the data and the ways of understanding
- 4 these processes that is better in the future than
- 5 it is today.
- 6 So, this leads us to a series of
- 7 challenges, and I have tried to organize these
- 8 challenges in a way that represents where we are
- 9 coming from and where we are going to go.
- There is the continuing challenge of
- 11 rapid, cost effective development and scale-up. We
- 12 need to shorten the timelines, the timelines for
- 13 developing the processes, and if we develop better
- 14 processes, that should lead to improved timelines
- 15 for approval of those processes, and we need to be
- 16 able to have more flexibility, so that the process
- 17 of development and scale-up could be a lot more
- 18 nimble and lean than it is today.
- 19 But then once we have processes in place,
- 20 I think the industry has done an increasingly good
- 21 job in the drug space of continuous improvement,
- 22 and most recently, and we have heard examples of
- 23 that today, PAT is a major contributor to how that
- 24 is going to go forward in the future. That is very
- 25 positive.

1 We need to understand how t	to bette:
-------------------------------	-----------

- 2 achieve continuous improvement in process change in
- 3 the biological space, and that is the challenge
- 4 that we are focusing on in this particular session.
- What the tools that we need to do that?
- 6 What are the methodologies? Where is the
- 7 uncertainty, and, of course, how do we understand
- 8 that risk, and risk is implicit in all of this.
- 9 Follow-on biologics present their own
- 10 challenges, and then when we get into complex
- 11 biologicals, cellular therapies, and tissue
- 12 engineering, there are a wide variety of unknowns
- 13 and we need to understand quickly what are the
- 14 parameters, what are the biomarkers, what are the
- 15 surrogate markers, what are the direct methods that
- 16 we can apply in order to get a grasp of these
- 17 processes and how they will define the products
- 18 that we make.
- 19 Furthermore, as we look at these
- 20 challenges, there is a constant tension between the
- 21 safety and the economic agenda, and where is the
- 22 proper balance in terms of how much risk we seek to
- 23 minimize and how much risk we seek to embrace and
- 24 manage and take forward.
- 25 [Slide.]

1 Well, when you look at the broad issue of

- 2 the relationship between the process and the
- 3 product, one has to look at what goes in and what
- 4 comes out. We have raw materials and environmental
- 5 conditions that are variables going in. We are
- 6 trying to control a number of the parameters in
- 7 this space.
- 8 Some of those parameters are suitable for
- 9 control in a closed loop fashion. Again, we heard
- 10 a number of examples of how that is increasingly
- 11 important today. A number of those parameters we
- 12 don't control in a closed loop manner, but we need
- 13 to control them nonetheless.
- 14 I think the challenge in looking at this
- 15 very microscopic view of a process is the
- 16 information flow. We know how to do process
- 17 control. We are going to get better at
- 18 implementing new analytics on these processes.
- 19 There is a long history of applying statistical
- 20 process control and a wide variety of other
- 21 methodologies of process control.
- We are going to get better at doing that,
- 23 and that is all going to be incremental. What is
- 24 not going to be incremental is the more systems
- 25 view of understanding to do it better. I think

1 there we will have some big jumps, but where I

- 2 think we are doing a terrible job is on the
- 3 information flow.
- 4 The information is quite an asset, a lot
- 5 of money goes into generating that information, and
- 6 do we adequately understand and mine it, and the
- 7 answer is no, we don't. In fact, it's a very
- 8 poorly utilized asset, and in some cases, the
- 9 reason is, well, if I don't look at it, I don't
- 10 have to worry about the variance in it. That is
- 11 one way to control variance.
- 12 Another way is to say, well, let me
- 13 embrace that variance, let me learn from it, let me
- 14 capture that information, and feed that back and
- 15 learn, and that is an area where I think we are
- 16 getting better, but, frankly, I think if I look
- 17 back over the past decade or two, even looking at
- 18 work that I have done, I think we have done a
- 19 pretty bad job.
- Now, what I would like to do is to stay in
- 21 the frame of raising questions rather than
- 22 providing answers, but I can't go through a
- 23 presentation like this without showing some data
- 24 and without taking an example to illustrate where I
- 25 think there are some opportunities and some of the

1 kind of learning that represents work-in-progress.

- In biological processes, one of the main
- 3 issues we deal with is the oxygen dilemma.
- 4 [Slide.]
- 5 We all know that in most biological
- 6 processes, there is a requirement for oxygen for
- 7 efficient growth, and in this particular case,
- 8 recombinant protein expression. That is a given.
- 9 By the way, there is some interesting data
- 10 to suggest that that is not necessarily true, but
- 11 we won't go there now. But that is a general
- 12 methodological given, and let's assume that it's
- 13 true for the moment.
- But on the negative side, there is the
- 15 potential that if a little bit of oxygen is good,
- is a lot of oxygen better, and the answer is not
- 17 necessarily, because there is potential for both in
- 18 vivo and in vitro protein oxidation of methionine,
- 19 cysteines, for instance, and as we scale-up and as
- 20 we change the amount of oxygen, as we use enriched
- 21 oxygen in processes, is this going to be a hazard,
- 22 is it going to be a problem?
- We wanted to explore that, and we also
- 24 know that oxygen can induce stress. Actually,
- 25 oxygen too high or too low can induce stress. One

- 1 of my hobbies is high altitude mountaineering, and
- 2 I decided what would it be like to operate under 35
- 3 percent partial pressure of oxygen. Well, I don't
- 4 recommend going there on a regular basis.
- 5 [Slide.]
- But when we look at processes today, we
- 7 are looking at scale. Traditionally, what we have
- 8 done is to do a lot of our optimization of a
- 9 process at a shake flask scale, 100-milliliter,
- 10 perhaps to a 10-liter scale, and then go to 10 or
- 11 100 cubic meter scale.
- The benefits of doing research at the
- 13 homogeneous milliliter or liter scale is that we
- 14 can make the assumption that it is almost
- 15 homogeneous, and the work we have done over the
- 16 years is to better resolve events in time, so we
- 17 have taken analytics, like some of the probes, and
- 18 so on, that have been discussed earlier, and we
- 19 have learned to evolve events in time and
- 20 understand how the time space is critical.
- 21 At the fermentation scale, we might do 200
- 22 to 300 experiments in order to get what we think is
- 23 an optimum, but we really know it is not, in order
- 24 to scale to the 10 to 100 cubic meter scale, but
- 25 all we do is get to a place that allows us to

- 1 economically be in the business, and then,
- 2 hopefully, we will be allowed to undergo continuous
- 3 improvement following that.
- 4 What I want to suggest is that what we
- 5 really need to think about is how we look at this
- 6 process development and scale-up paradigm very
- 7 differently.
- 8 That is, if we scale down, and, for
- 9 instance, one approach is to use reactors that are
- 10 100 microliters, and they indeed are homogeneous,
- 11 or somewhere in that small space, and do large
- 12 numbers of experiments, and not just resolve events
- in time, but do the kind of things that were
- 14 described earlier, create large experimental
- 15 design, so that we can now not just look at our
- 16 experimental space, but we can look at the
- 17 interdependencies between the independent variables
- in a much more effective way, reduce the
- 19 uncertainty associated with how the process
- 20 responds to the environment, as well as changes
- 21 with time, and reduce the uncertainty of scale-up,
- 22 and presumably reduce the variance as we do so.
- 23 That is not to say that we shouldn't also,
- 24 at scale, resolve events that take place in time.
- 25 There is going to be variance in a biological

- 1 process. We can learn a lot from that, and that
- 2 allows us to manage the risk associated with these
- 3 processes, and that goes on, as well, but we are
- 4 doing a better job with that than we are simply
- 5 going to the large-scale experimental design.
- 6 [Slide.]
- 7 A model system that we happened to choose
- 8 is alpha-1 antitrypsin. It is a human recombinant
- 9 protein. It is an interesting model because you
- 10 notice that methionine 358 and the one at 351, it
- 11 sticks up like a sore thumb and is sensitive to
- 12 oxygen. So, we reasoned it would be useful as a
- 13 molecular probe in order to determine if oxidation
- 14 was a problem.
- This molecule also actually has 10
- 16 methionines, several of which are partially or
- 17 completely exposed, and 1 unpaired cysteine that is
- 18 partially exposed, but with models such as this,
- 19 this might be the product where its structure is
- 20 well known, you can begin to do microscale
- 21 experiments that you can then project to the larger
- 22 scale and ask, well, what is the effect of oxygen
- 23 on the molecule.
- 24 [Slide.]
- 25 In this particular case, we observed that

- 1 there was an oxygen-dependent proteolytic cleavage,
- 2 and as you look at these three lines, the green
- 3 line is for the expression, transient expression
- 4 under air. The top line is transient expression
- 5 under anaerobic conditions, which turns out to be
- 6 not so bad. But the bottom line is expression
- 7 under pure oxygen, so there is this oxygen
- 8 dependency of the proteolytic cleavage.
- 9 [Slide.]
- 10 How do we resolve that? Well, one
- 11 approach is the very hypothesis-driven problem,
- 12 and, of course, when you have a problem, and a
- 13 complex problem, and as you can see by the photo on
- 14 the left, if you don't get the ropes right, you
- 15 could be in serious trouble, so you have got to
- 16 know where the problem is if you want to be in the
- 17 position on the right.
- 18 [Slide.]
- 19 So, how do we resolve that? Well, we have
- 20 a hypothesis. In this case, we tried many
- 21 hypotheses. I am only going to tell you about the
- 22 one that is right. That way you will remember that
- 23 I got it right the first time. Wrong, but
- 24 nonetheless, we speculated that it was the protease
- 25 ClpP that was responsible.

- 1 [Slide.]
- 2 It is a complex protease that involves
- 3 ATP. You do the hypothesis-driven experiments, you
- 4 knock it out, and as you can see by the figure on
- 5 the righthand side, you eliminate the
- 6 oxygen-dependent proteolytic cleavage, not all the
- 7 cleavage, but that hypothesis, which was one of
- 8 about a dozen that we explored, in fact, worked.
- 9 [Slide.]
- 10 Are there other ways to think about these
- 11 kind of problems? Do we have analytical techniques
- 12 that allow us to probe much more broadly the global
- 13 cell response?
- 14 [Slide.]
- Of course, the answer is yes, and the
- 16 technology of using DNA microarrays to do
- 17 transcriptional profiling is one kind of tool that
- 18 can be used in identifying where the problem is,
- 19 and, after all, isn't that what PAT is about.
- 20 It is about getting at the underlying
- 21 science to understand what the issue is, and then
- 22 focus on the right issue, not necessarily measuring
- 23 everything that you possibly can measure.
- 24 E. coli is very convenient. It only has
- 25 about 4,000 genes, but fortunately, those genes are

- 1 set up in pathways, and rather than think about
- 2 4,000, I don't like big numbers, I would rather
- 3 think about, well, there are about 170 pathways.
- 4 [Slide.]
- 5 So, if we look at the response in terms of
- 6 pathways, we can begin to say, well, are there
- 7 pathways that are up or down-regulated, and,
- 8 indeed, this is an example in the case of the
- 9 experiments I showed you a moment ago.
- 10 What you see on the lefthand side is the
- 11 regulon associated with the peroxide response for
- 12 E. coli to high oxygen--excuse me--on the lefthand
- 13 side to the superoxide response, the righthand side
- 14 is the peroxide response.
- What you can see by the elevated levels of
- 16 the genes in the superoxide response, that E. coli
- 17 reacts with the operon, superoxide dismutase and
- 18 some other enzymes, and the peroxide response is
- 19 transient, if anything at all.
- This tells us where the problem is. The
- 21 problem is associated with the small amount of
- 22 superoxide radical that is being made.
- 23 [Slide.]
- 24 When we look at clusters of genes, one can
- 25 see that the green ones are up-regulated in the

1 presence of oxygen, and when they are red, they are

- 2 down-regulated, which happens in the case of
- 3 nitrogen, and you see green dots with superoxide,
- 4 but one of the other strange things is that you see
- 5 proteins that have iron/sulfur in them
- 6 up-regulated.
- 7 Why would any self-respecting E. coli
- 8 up-regulate genes associated with iron/sulfur
- 9 proteins when you are making a recombinant protein?
- 10 This didn't make sense, and, in fact, it has
- 11 nothing to do with the production of alpha-1
- 12 antitrypsin, but rather has to do with the fact
- 13 that a small amount of superoxide, that free
- 14 radical, knocks out the iron/sulfur clusters.
- There are about 100 proteins in E. coli
- 16 that have them. Those proteins are not functional,
- 17 so how does the cell respond? It up-regulates
- 18 pathways in order to compensate.
- 19 [Slide.]
- 20 So, within these global techniques, you
- 21 can begin to understand where the problem is and
- 22 think about the strategies to better design the
- 23 process, and basically, it is about taking the next
- 24 step.
- Where is the appropriate next step? I

1 will leave it to your imagination whose feet they

- 2 are.
- 3 [Slide.]
- 4 A little quick self-assessment. When we
- 5 introduce a process to make a biotherapeutic
- 6 product, do we know the optimum conditions for
- 7 quality and quantity of the product today?
- 8 No, and as a consequence, once the process
- 9 is in place, we see very substantial process and
- 10 product improvement during the course of operation,
- 11 and that is good because it means that we have
- 12 recognized that there is going to be variance and
- 13 that we have recognized that we can manage that
- 14 variance, we can learn from it, and collectively
- 15 benefit. That is the reality.
- 16 So, there are lessons learned there. The
- 17 variance that is going to occur is not something to
- 18 be avoided, it is something to embrace and learn
- 19 how to manage, and it is getting the right balance
- 20 of managing that risk.
- 21 So, during routine manufacturing, do we
- 22 improve the product in the process? Absolutely.
- 23 [Slide.]
- 24 What is the way forward? Well, is there a
- 25 better way than incremental adjustments to optimize

- 1 and scale a process? Sure, and I think the idea of
- 2 taking these complex processes and learning how to
- 3 operate large numbers to capture design of
- 4 experiments and to capture what happens in that
- 5 space, and learn how to assess the
- 6 interdependencies of the parameters is a very
- 7 exciting opportunity.
- 8 The technologies that allow us to do it,
- 9 both from a process side, from an analytical side,
- 10 from a data analysis side are really important to
- 11 bring together, and we are not there, but we can be
- 12 there.
- 13 We need to live with variance and take an
- 14 adequate opportunity to learn from that variance.
- 15 Listen to the data, don't ignore it, listen to it.
- In doing that, we can again grasp much
- 17 more experimental space both in variables, as well
- 18 as time. So, this issue of embracing that
- 19 variance, learning what it is about, learning where
- 20 the problem is, and then using that to come back
- 21 and develop a robust process, this is the kind of
- 22 mind-set that PAT is about, and biological
- 23 processes are very much in need of being thought
- 24 about and treated and respected in this way.
- 25 [Slide.]

1 In closing, the last slide is to look at

- 2 what are some of the process evaluation tools.
- 3 This is not all-inclusive, but it is meant to
- 4 reinforce just a couple of points that I have made.
- 5 One is the leverage analytical technology
- 6 on process and products, what does this really
- 7 mean? This is PAT, and this is leading us to a
- 8 process understanding and a process evaluation.
- 9 That is very much what it means, that we
- 10 need to be able to look at the process globally,
- 11 and not just locally. It fits exactly in with the
- 12 quidance that has been laid out for PAT.
- 13 We need to explore the biological space
- 14 and the parameter variance. We need to understand
- 15 how this variance propagates through a process.
- 16 It is very interesting, if you take
- 17 process simulation tools, and we can do a very nice
- 18 process simulation on any of these processes, and
- 19 then you do things like Monte Carlo simulation
- 20 where you have variance in the process, you can
- 21 begin to understand how that variability at
- 22 multiple steps is going to propagate through very
- 23 complex processes.
- 24 As a consequence, when you do that, you
- 25 then are not surprised by how a little bit of

- 1 variance here, a little bit of variance there,
- 2 propagates to give you what the end result is going
- 3 to look like. So, with simulation and these tools,
- 4 you can avoid some surprises.
- We need to better interrogate the cell at
- 6 the molecular scale, and then be able to do the
- 7 multi-scale analysis to scale up. So, part of what
- 8 I think PAT is about, is multi-scale analysis,
- 9 driving down to understand the science, so we can
- 10 understand where the problem is, and then driving
- 11 back up with appropriate solutions to eliminate the
- 12 right problem, in the right way, at the right time.
- 13 A lot of this about understanding these
- 14 interdependencies in what is a very large
- 15 experimental space.
- 16 Lastly, understanding this connection
- 17 between the molecular processes, process
- 18 performance, and product quality. We are doing I
- 19 think an exciting job with drug substances in this
- 20 regard, and we are perfectly capable of carrying
- 21 that over, with work, to biological products, as
- 22 well.
- I will stop there and I hope that I have
- 24 generated more questions than providing answers,
- 25 because that is what I started out to do.

1 DR. KIBBE: Thank you. If there anybody

- 2 who has any quick questions you want to take care
- 3 of now before I go on, any point of understanding?
- 4 [No response.]
- DR. KIBBE: In that case, Dr. Koch.
- 6 DR. KOCH: I have had the benefit today of
- 7 a number of speakers who were leading up to the
- 8 type of things that I wanted to say. I left out
- 9 some things, and those of you who have paged
- 10 through the slides probably can't believe that.
- 11 There is a lot of slides there, it is going to be a
- 12 little bit like a fire hose here for a while. I am
- 13 going to try to stick to things that are more of a
- 14 miniature nature or micro-analytical rather than
- 15 hitting the broad base of all analytical.
- 16 Let me move into it and I think I will tie
- in with some of the previous speakers.
- 18 [Slide.]
- 19 PAT. We have heard a number of
- 20 definitions of it, but again it is looking at all
- 21 aspects from the chemistry tools through the
- 22 control strategies and into the data handling
- 23 aspects. The goal again, process understanding.
- 24 [Slide.]
- The origin of PAT goes back, oh, 50 years

- 1 at least, and we have got a few examples that go
- 2 back to the mid-forties with some of the German
- 3 chemical companies applying it, so it is not as if
- 4 the approach is new.
- 5 We can go into all of the reasons why it
- 6 is relatively new in the pharma industry, but that
- 7 is mostly psychological. It started within the
- 8 analytical chemistry labs where tools used for
- 9 specifications, et cetera, as coming from the areas
- 10 listed here, were then made portable for running in
- 11 the process or close to where the process was, and
- 12 adopting the term "real time analysis."
- 13 [Slide.]
- 14 That real-time data resulted in a number
- 15 of things, in fact, almost every time one went into
- 16 a process, and this is borrowing from the
- 17 petrochemical experience, almost every time a
- 18 sample was taken to a chemical analysis lab, we
- 19 found out that the results were different if we did
- 20 it in real time, taking and watching things that
- 21 you could see fleeting intermediates or a number of
- 22 things that were indicating both safety and
- 23 environmental problems.
- 24 It also was a very good scoping tool for
- 25 understanding what type of issues and what places

1 in a process could be monitored, process

- 2 understanding results from doing this.
- 3 [Slide.]
- 4 What is appropriate for PAT? It really
- 5 comes down to a very broad statement, and that
- 6 anything that gives you data that you are presently
- 7 not measuring, certainly want to look at cheaper
- 8 and more reliable, and then we are entering into
- 9 something here where we are going to get more data
- 10 than we ever wanted, but we are going to want
- 11 additional data points in order to build better
- 12 models from which to control from.
- 13 This is probably going to be the crack in
- 14 the wall for Bayesian type approaches where you
- 15 have to make assumptions because you finally get
- 16 too much data that you can't possibly study all of
- 17 it.
- 18 It is also going to allow us to depart
- 19 from traditional analytical science technologies,
- 20 that list that showed up before as coming out of
- 21 the analytical laboratories, have to move away from
- 22 that.
- 23 [Slide.]
- 24 We are going to have to look at fully
- 25 integrated analyzer systems. Historically,

- 1 analysis is detection. The thing that people have
- 2 avoided forever is the problem with sampling, I
- 3 think taking inadequate representative sample to be
- 4 analyzed.
- 5 Then, the other thing that often was
- 6 slipped over because of expense and capability had
- 7 to do with collecting the data and making sense out
- 8 of it, and eventual information and knowledge.
- 9 That has to be all integrated into a system.
- The next point has to do with inferential
- 11 analysis, and we have heard that referred to a
- 12 couple of times, and that is where you can project
- 13 to the desired product properties by doing some
- 14 measurement during the process, and it doesn't have
- 15 to be the property itself, but you have enough data
- 16 that you can extrapolate to that point.
- 17 [Slide.]
- 18 Then, you have to revisit some of these
- 19 underutilized, but not revolutionary techniques.
- 20 The few that I mention here are technologies that
- 21 were discovered in the early 1900s, but not used
- 22 forever, largely because of instability of optics
- 23 or computer possibilities back when it was first
- 24 looked at.
- 25 [Slide.]

I want to mention a couple of these. One

- 2 is in the optical low coherence reflectometry, that
- 3 when you do that type of measurement, the result
- 4 you get depends on things like on the column on the
- 5 left, the thickness, the particle size,
- 6 concentration, shape, and some of these other
- 7 morphological things all affect the measurement.
- 8 As a result, if you can interpret the
- 9 signal that you get from the measurement, you can
- 10 then use it to monitor a number of things. There
- 11 are examples there, that are largely from a
- 12 chemical and materials point of view, but
- 13 eventually, you get down to being able to monitor
- 14 tablet coating.
- The technique started in measuring coating
- 16 of airplane wings, and we found that that could be
- 17 extrapolated quickly to other measurements that is
- 18 being used now for tablet coating, as I mentioned,
- 19 and we are finding that there is variations during
- 20 a fermentation or a biological process that can be
- 21 monitored, and it is a technique that operates at
- 22 high concentration, in slurries of 70 to 80 percent
- 23 as a technique for particle size versus the
- 24 historical need for dilution.
- 25 [Slide.]

1 A couple of examples. You can look at a

- 2 multi-layer film. Here is an example of a drug
- 3 delivery patch. I think you can see some of the
- 4 peaks there on the bottom.
- 5 Very interestingly, what happens in this
- 6 process, it looks like a chromatogram with various
- 7 peaks, however, it is the bounce back of the
- 8 photons at each layer, and you measure the time
- 9 that it takes to come back and project into
- 10 distance.
- 11 Each one of those peaks is a layer. It is
- 12 a layer from the barrier layer on the outside and
- 13 the back, and then the intermediate layer is
- 14 between active ingredients, so it becomes a way to
- 15 measure how much active ingredient one has placed,
- 16 so the baseline is basically the thickness of the
- 17 active ingredient.
- 18 The scattered material example is one
- 19 where you have a total reflection of the photon and
- 20 the path in which it travels indicates the
- 21 complexity of the mixture, and you can extrapolate
- 22 then into things like particle size, shape, and
- 23 waveguide formation, et cetera.
- 24 [Slide.]
- 25 An example of being able to look at

- 1 consistency, there is one curve here that shows at
- 2 one concentration, you can see quite a range of
- 3 small particles from basically 20 to 90 nanometers,
- 4 or you can take one size, in the lower example, of
- 5 308 nanometers, and get a concentration difference.
- 6 So, it has proven to be quite valuable in that
- 7 regard.
- 8 [Slide.]
- 9 Moving on to Raman, certainly, everyone
- 10 has heard the terminology, but as you look at some
- 11 of the potential advantages now that the stability
- 12 of the lasers have improved in some of the data
- 13 handling, and as databases grow, you can look at
- 14 non-invasive or non-destructive technology.
- 15 You can work in aqueous systems. You can
- 16 do multiplex of your instrument using fiber optics
- 17 that can go hundreds of meters, and you can also
- 18 then look at chemical structure and fingerprinting
- 19 of both inorganic and organic materials.
- 20 [Slide.]
- 21 Then, with effective probes, in fact, this
- 22 particular probe that is demonstrated here, was the
- one that we used in the practicum and moved between
- 24 the various centers to study some milling and
- 25 mixing operations, but we have done a number of

- 1 things in composition, as well as, at the bottom
- 2 right, putting it in a protein mixture in terms of
- 3 determining aspects of that material.
- 4 [Slide.]
- 5 The fringing electric field or
- 6 dielectrometry sensor is pretty simple, one that
- 7 was developed for detecting mines, and it has to do
- 8 with the ability to set your electrical fields with
- 9 the various sensors in setting the distance and the
- 10 intensity, and you can get a disturbance of that
- 11 electrical field based on the properties of the
- 12 sample.
- 13 You can measure things like density,
- 14 distance from the sensor, texture, and moisture,
- 15 and moisture not only in concentration, but
- 16 distribution, so you will start to look at filter
- 17 cakes or other aspect of various processes. You
- 18 have another relatively unused method that can be
- 19 applied.
- 20 [Slide.]
- 21 To date, a number of things happening in
- 22 the paper pulp industry, pharmaceutical products,
- 23 and we have got a few companies, pharma-based, that
- 24 are using it for mixing consistency, a lot of food
- 25 applications including some of the baking companies

1 to monitor the moisture distribution in cookies and

- 2 cakes and things, and that turns out to be pretty
- 3 important for them, composites, plastics, et
- 4 cetera.
- 5 [Slide.]
- Going on to surface plasmon resonance, a
- 7 number of things, primarily in miniaturization and
- 8 sensitivity have occurred here, and plugging some
- 9 disciplines together from electrical engineering
- 10 and genetic, have come up with some real-time
- 11 biosensors that are operating at a very fast mode.
- 12 [Slide.]
- Work sponsored by the Department of
- 14 Defense, again that tie in with some of the things
- 15 we heard earlier on homeland security.
- 16 You can start to look at high throughput
- 17 screening, automated protein purification, and
- 18 number of toxins, food-related activities, and we
- 19 are actually moving quite rapidly into response in
- 20 the food industry for safety, security, nutrition
- 21 in the food and related water chains.
- 22 [Slide.]
- One example, this has been demonstrated in
- 24 a protein purification system, would be a way in
- 25 which after the broth is separated and some

- 1 chromatography applied using biosensors, one can
- 2 determine when to change columns or monitor the
- 3 process, which brings us to biosensors and the need
- 4 in the bioprocess in general.
- 5 [Slide.]
- I have been in discussions with Harry Lam
- 7 of Genentech, to get a feel for what type of things
- 8 the industry is looking at, and certainly to
- 9 maintain a consistent product performance or
- 10 process performance with the development cycle from
- 11 early stage through manufacturing.
- 12 [Slide.]
- 13 Measurement is needed in order to look at
- 14 the underlying functional relationships that occur
- in the process, as well as some of these
- 16 interactions of the organisms with their
- 17 environments.
- 18 [Slide.]
- 19 We need to improve the capabilities for
- 20 process control, and the type of measurements are
- 21 going to be broad based, biological, chemical,
- 22 physical.
- 23 [Slide.]
- 24 Much of this has been touched on today -
- 25 biological with this whole range of things that are

- 1 of a cellular nature.
- 2 [Slide.]
- 3 Chemical, we have got a number of things
- 4 in the media that need to be addressed, that have
- 5 to do with the nutrients and the additives, et
- 6 cetera.
- 7 [Slide.]
- 8 It continues on when you start to
- 9 characterize the product, the by-products, the
- 10 environment, as well as the off-gas.
- 11 [Slide.]
- 12 Physical. We have heard much of this in
- 13 terms of the type of things that need to be looked
- 14 at.
- 15 [Slide.]
- What can we look at today? Much of this
- 17 was mentioned here in the last couple of
- 18 presentations, of things that are being used to
- 19 monitor, but that leaves a number of the issues on
- 20 the table yet to be addressed and solved.
- 21 [Slide.]
- 22 Also, the industry is looking at the
- 23 various requirements that are going to be
- 24 necessary, and it is a lot more than just having a
- 25 measurement tool, but to get into the things that

1 have to do with sterilization, interference, and

- 2 the fouling, low maintenance, and the small size.
- We have heard several assumptions today
- 4 that if it's smaller, it could be better.
- 5 [Slide.]
- 6 That gets us into what has been driving
- 7 the improvements in measurement over the last, say,
- 8 20 years, and it has been the advances in
- 9 miniaturization. Much of this has been driven by
- 10 technologies in the computing industry and the
- 11 ability to make things smaller and use microfluidic
- 12 technologies, et cetera.
- 13 Certainly, new materials, the optic
- 14 advances, and computing have helped, but
- 15 miniaturization is really a big one.
- [Slide.]
- 17 It has been focus of the center where I am
- 18 located in Washington. It has been a
- 19 multi-industry, and I have implied that a few
- 20 times. A number of industry come together and
- 21 discuss advance in real-time measurement, and we
- 22 are now beginning to apply those things to the
- 23 food, pharma, biotech industry.
- 24 [Slide.]
- 25 Multidisciplinary. There are many

- 1 examples where bringing different disciplines
- 2 together results in some very interesting sparks
- 3 coming from that smoke, presently supporting 20
- 4 different research projects at 5 universities, and
- 5 involved with some international collaboration.
- 6 [Slide.]
- 7 The initiatives, and we will see the
- 8 importance of this growing, is sampling and
- 9 sensors. That is one that we try to act as a forum
- 10 across industry. Trying to also compile analytical
- 11 and chemometric methods, what to use in terms of
- 12 interpreting the data.
- 13 A couple of things that are used just
- 14 inside for the members, are to look at
- 15 micro-instrumentation for the high throughput
- 16 experimentation, the CombiChem, and some of the
- 17 process optimization tools, and then a fermentation
- 18 platform, and I will mention some of the things
- 19 there.
- 20 [Slide.]
- 21 When we look at this response to high
- 22 throughput experimentation, we get into the
- 23 micro-instrumentation world, but also the
- 24 micro-reactor world. I have to agree with that
- 25 Charles mentioned, the petrochemical industry is

- 1 finding huge benefits in scaling down before you
- 2 scale up, and going down to molecular interactions
- 3 in a number of data-gathering aspects at the small
- 4 scale to understand how to then move on from that
- 5 to macro scales.
- 6 [Slide.]
- 7 We also have a number of techniques that
- 8 are being miniaturized largely due to advances. As
- 9 I mentioned before, most of the analytical
- 10 technologies, we only have a few that have not been
- 11 miniaturized yet or taken on-line, and some of
- 12 those are microscopy-based, but we actually have
- 13 some breakthroughs now in bifringes and other
- 14 things that could help in this respect.
- 15 [Slide.]
- I will give you a couple of examples. In
- 17 micro-LC, we have got a small 100-micron flow
- 18 channel where you mix a sample at a mobile phase
- 19 and then detect the deflection in your laser beam
- 20 with a position-sensitive detector.
- 21 [Slide.]
- We have since found, after starting into
- 23 this project, that low molecular weight material
- 24 diffuses much faster than the higher molecular
- 25 weight material.

de.	[Slide.]
de	[Slide

- 2 So, why not put two sensors in-line and
- 3 then begin to calculate the difference between
- 4 those distances in terms of a particular molecule.
- 5 [Slide.]
- 6 What has resulted is an in-line molecular
- 7 mass sensor where we are able, in this case, to
- 8 look at polyethylene glycols from a very low
- 9 molecular weight. Actually, it has now been taken
- 10 to over 100,000 molecular weight in terms of a
- 11 standard curve.
- 12 [Slide.]
- 13 This has resulted in other things now, in
- 14 some biological testing where we can see peptide
- 15 synthesis, we can look at polysaccharide synthesis
- 16 and be able to see differences as chains are
- 17 building, and also be able to see differences in
- 18 diffusion in following trends in that way.
- 19 [Slide.]
- 20 Developments at Sandia, again, homeland
- 21 security basis, have resulted in a micro chem lab.
- 22 This is a very interesting thing, obviously, the
- 23 size of a dime is quite impressive, but when you
- 24 look at the SAW ray detector you have go a 1-meter
- 25 column, and your sample pre-absorption.

1	[Slide.	٦
1	ISTIME	ı
_	[DIIGC.	J

- 2 You put all that into a hand-held unit,
- 3 this is a now a hand-held GC, but the end there
- 4 indicates it is also an LC, so that has all been
- 5 incorporated into taking today's lab technology
- 6 down to a very small size.
- 7 [Slide.]
- 8 Some work that we have been involved with
- 9 recently is when you go to use of nanoparticles in
- 10 your column, you can increase the speed. We are
- 11 now talking of these compounds being separated in
- 12 two seconds.
- Normally, you are looking at 40-minute
- 14 type turnarounds on a lot of these GC analysis
- 15 things that have been improving, and I can't really
- 16 talk about it, but we now have a similar separation
- 17 in 500 milliseconds, that things are really flying
- 18 in that way, so it has become a real-time
- 19 analytical technology.
- 20 [Slide.]
- 21 A small mass spec has been developed.
- 22 There is three or four examples of taking mass spec
- 23 down to these small sizes.
- 24 [Slide.]
- We are also involved with development at

- 1 UC/Davis with the micro labs, the electrical and
- 2 computing and the food science areas, to develop a
- 3 NMR.
- 4 [Slide.]
- 5 This is an NMR now that early signal is
- 6 shown on the bottom left, which showed water, a lot
- 7 of excitement by the food group because they could
- 8 monitor a number of things in real time. It has
- 9 since been refined to the bottom right there, and
- 10 it has been taken from a protein signal, we have
- 11 now seen carbon and phosphorus, so we are talking
- 12 about a hand-held NMR that is going to be
- 13 multinuclear and have a cost of probably under
- 14 \$20,000.
- 15 [Slide.]
- So, all these advances in sensors and
- 17 controls again highlight the need, how do you get
- 18 the right sample to these technologies.
- 19 [Slide.]
- The chemical industry has come to us, and
- 21 we have been a forum for discussions on how to
- 22 create new sampling and standardized technologies
- 23 in that arena.
- 24 [Slide.]
- The typical sampling in a petrochemical

- 1 plant is a large, often covering a wall, quarter of
- 2 a million dollars worth of instrumentation just to
- 3 interface the process with the analyzer.
- 4 [Slide.]
- 5 That has now shrunk down to an inch and a
- 6 half by an inch and a half modules, a standard set
- 7 by the ISA, and this platform now houses the valves
- 8 and filters and regulators to interface again the
- 9 process with the analyzer.
- 10 [Slide.]
- 11 What has been evolving here, this concept
- 12 started in late 2000, and it has now generated to
- 13 point where we are beginning to think of how we
- 14 could make this Smart and how to utilize advances
- 15 in micro-analytical.
- 16 [Slide.]
- So, the base here has been defined. We
- 18 now have a standard sampling interface that can be
- 19 heated or cooled, or whatever, and the flow
- 20 patterns all defined, and in the next couple of
- 21 months, we are standardizing a connectivity.
- This is getting into some control
- 23 engineering terminology of how do you move the
- 24 signals from that platform to distributor control
- 25 systems and other fields of how do you use that.

1	[Slide.	٦
1	ISTIME	ı
_	[DIIGC.	J

- 2 Then, what has happened is you can now
- 3 drop your pressure regulators, your valves, and
- 4 your filter onto that platform and be able to
- 5 monitor what they are doing.
- 6 A very interesting story happened at again
- 7 interfacing the process with the analyzer. The
- 8 first year of use of these devices caused the
- 9 engineers to say why does the analyzer have to be a
- 10 refrigerator size, when the sampling system has
- 11 come off the wall to this fairly small
- 12 compartmentalized unit.
- 13 So, this platform has now become the base
- 14 for micro-analytical, so it has become a standard
- 15 platform for the development of micro devices.
- 16 Three or four years ago, if somebody had
- 17 come in with a small GC and say wow, isn't this
- 18 neat, and we would say that is really nice, but how
- 19 do we use it, how do we go to this big,
- 20 wall-mounted sampling system and put this little GC
- 21 at the end of it.
- That has changed, people are now putting
- 23 on a fair amount of suction for the development of
- 24 these devices.
- 25 [Slide.]

1 So, we predict, and it is beginning to

- 2 happen, that the NeSSI platform will become the
- 3 base for a micro-analytical lab. Already we have
- 4 oxygen and pH and moisture, mass flow controllers,
- 5 little mass specs, all of the techniques that are
- 6 listed there have the plan to be mounted on this
- 7 particular platform.
- 8 [Slide.]
- 9 And then we have been devising different
- 10 interfaces. Our Raman sensor now will fit on the
- 11 NeSSI platform.
- 12 [Slide.]
- 13 The surface plasmon resonance, this is the
- 14 one that does the very fast biological detection,
- 15 is now down to the size where the flow channels
- 16 will interface with the surface and provide almost
- 17 real-time biological detection in the NeSSI
- 18 platform.
- 19 [Slide.]
- 20 And we have taken something that basically
- 21 used to be flow injection analysis, it migrated to
- 22 be called sequential injection analysis, now it is
- 23 micro sequential injection analysis, where you can
- 24 put wet chemistry on a multi-functional,
- 25 multi-position valve, so you can scale down wet

1 chemistry and titrations and things, and do things

- 2 like glucose, nitrogen, nutrients, and inorganic
- 3 detection, and this is now on the NeSSI platform.
- 4 [Slide.]
- 5 So, there is almost nothing right now that
- 6 we don't have that couldn't possibly fit on here,
- 7 and we see it, not only for the process control,
- 8 but all kinds of optimization studies that could
- 9 interface with lab-based fermentation and with the
- 10 micro-reactor systems for the chemical world.
- 11 [Slide.]
- 12 The last thing I will mention is our
- 13 Fermentation Initiative.
- 14 [Slide.]
- We are trying to apply the known
- 16 techniques and compare them with things that are
- 17 evolving and have applications in other fields. We
- 18 want to provide training and understanding the
- 19 implication of some of these measurements.
- 20 [Slide.]
- 21 We have set up some platforms that are now
- 22 outfitted with this array of instrumentation, and
- 23 you can see things like dielectric spectroscopy,
- 24 the surface tension, light reflective spectroscopy,
- 25 et cetera, that are not traditionally being used in

- 1 the fermentations, but we are gathering data and
- 2 finding then ways to extrapolate to which
- 3 fermentation areas they will best influence, and
- 4 then looking at sampling.
- 5 Sampling and fermentation is a big
- 6 problem. Go back to some of the things that we put
- 7 together that Genentech summarized.
- 8 [Slide.]
- 9 They are very concerned about how to
- 10 achieve these type of considerations, and then you
- 11 get into some of the sterile requirements and how
- 12 do you design your sampling system, so it will meet
- 13 these requirements.
- 14 [Slide.]
- So, what we have is a plan to continue to
- 16 scope out activities from an analytical point of
- 17 view, but to implement and evaluate this NeSSI
- 18 platform for not only sampling, but sensor and
- 19 process control interfaces, so we have a platform
- 20 now that is being put in to work with sampling the
- 21 broth and another one with head space.
- We are looking at chemometric tools to
- 23 model this batch variability and look at various
- 24 data fusion approaches. We need to do this to
- 25 begin to develop these automated tools to evaluate

- 1 production data and implement chemometrics as much
- 2 as possible for quantifying process performance and
- 3 applying these PCA approaches to performing
- 4 automated pattern recognition.
- 5 [Slide.]
- To borrow a little bit from Helen's
- 7 earlier slide, it is going to be an exciting time.
- 8 We have got a lot of things in front of us, but to
- 9 take the advances in PAT from the other industries,
- 10 through the pharmaceutical on to the biological, I
- 11 think is going to be very rewarding.
- DR. KIBBE: Thank you.
- 13 Are there any quick questions?
- DR. SINGPURWALLA: I have a comment.
- 15 You have this nice chart on
- 16 multidisciplinary, page 16, and you also had CPAC
- 17 initiatives. Just from a parochial point of view,
- 18 I noticed the absence of a statistician, yet, you
- 19 are discussing the sampling, which is really a
- 20 statistical issue.
- 21 DR. KOCH: You are right. In fact, that
- 22 list is not complete. What that list is, is the
- 23 present principal investigators involved with our
- 24 programs. We have just finished a project with the
- 25 chairman of our Statistics Department where we were

- 1 funding things just for what you are saying.
- 2 So, really, that list is project
- 3 dependent. I could probably add as many as six
- 4 other areas, like physics was on there, and a few
- 5 others in the past year, so we rotate projects in
- 6 and out. Chemometrics is probably based in
- 7 statistics. They don't like to admit it.
- 8 DR. KIBBE: Anything else? Ajaz doesn't
- 9 want to comment? Okay.
- Tom, wrap us up.
- DR. LAYLOFF: Much of what I wanted to say
- 12 has been said already, so I will speed through my
- 13 slides, and I have a few comments at the end that
- 14 are not in the slides.
- 15 [Slide.]
- 16 First of all, PAT, with the subcommittee
- 17 to this committee, advisory committee, we had a
- 18 series of charges which were given to us.
- 19 [Slide.]
- We had meetings lasting through 2002,
- 21 three meetings. We covered applications and
- 22 benefits, process and analytical validation,
- 23 chemometrics, process-product development, process
- 24 and analytical validation, a proposed PAT training
- 25 and certification program, which I think was one of

- 1 the highlights of the activities.
- 2 Computer systems validation, 21 CFR 11,
- 3 and Joe out there tackled that one, PAT case
- 4 studies, and rapid microbiological testing was
- 5 tacked on near the end there.
- 6 [Slide.]
- We reported that back to this committee
- 8 back in October. There was a definition of process
- 9 analytical technology. I am not going to read that
- 10 to you again, you have already seen it.
- 11 [Slide.]
- 12 Again, more statements on PAT
- 13 applications.
- 14 [Slide.]
- Now, this was not included. Historically,
- 16 there has never been anything to stop people from
- 17 using new technologies. As a matter of fact, in
- 18 the 1978 preamble to the CGMPs, there is no
- 19 prohibition in the regulations against the
- 20 manufacturing of drug products using better, more
- 21 efficient, and innovative methods.
- It is a big box, and it has been there
- 23 since 1978.
- 24 The USP also allows alternative methods
- 25 for assessments.

- 1	_ ~ ¬	•	٦.	
	[S]	٦.	റമ	
- 1	\sim \sim		α	•

- The committee proceeded by coming up with
- 3 a general guidance through Raj Uppoor and the OPS
- 4 staff to generate a guidance, which defined a
- 5 regulatory position for the process and added some
- 6 incentives. Then, the FDA PAT team, which came
- 7 through the training program you have heard about
- 8 earlier.
- 9 [Slide.]
- 10 Of course, the Agency's perspectives. One
- 11 of the things that I think is very interesting,
- 12 coming from many years of service in the Agency,
- 13 was the Agency's use of existing knowledge,
- 14 experience, and guidances from other FDA
- 15 components, and NIST, ASTM, and ANSI.
- The FDA tended over the period of my
- 17 tenure to be very introspective, if it wasn't NIH,
- 18 not invented here in FDA, we had very little use
- 19 for it. Going to ASTM and NIST was more of an
- 20 engineering approach, and we tended to hang with
- 21 the pharmacists in the USP.
- The USP, of course, was established by
- 23 practitioners as a book of recipes to assure
- 24 quality, and we hung with that, with the
- 25 practitioners rather than with the engineering.

1 ASTM was established by engineers and

- 2 chemists to deal with defective rails in the
- 3 railroad, so they tended to be very
- 4 engineering-oriented, and it was quite interesting
- 5 that when FDA-CDRH went out looking for standards,
- 6 they went to the engineering standard type area
- 7 rather than practitioners of pharmaceuticals.
- Now, the switch in OPS of looking at ASTM
- 9 standards is very interesting because it moves
- 10 process analytical technologies into an arena where
- 11 there are engineers and chemists, scientists rather
- 12 than practitioners. It's a switch in philosophy.
- 13 Also, the ANSI and ISO fit in that also.
- 14 They established a framework for manufacturers with
- 15 flexibility needed to develop new designs.
- [Slide.]
- 17 Future issues. Validation data and
- 18 retention. We have heard some about retention of
- 19 data, and I don't think that has been addressed
- 20 well, but the process analytical technology is
- 21 going to deluge with information, and there is
- 22 going to have to be some way of defining what is
- 23 essential and should be retained, and what is not
- 24 essential.
- 25 The definition of in-process endpoint

- 1 detection, data acquisition and storage. In a
- 2 process of PAT, you have to have some component in
- 3 the process which is measurable and defines an
- 4 endpoint. You have to have analytics, but you have
- 5 to have something that you are looking for.
- 6 The documentation of the data acquired and
- 7 electronic signature closures of decision points
- 8 are going to be an issue, and the incoming material
- 9 stream consistency and robustness assessments are
- 10 going to be critical for supporting PAT also.
- 11 [Slide.]
- 12 Regulatory incentives, we have gone over
- 13 those already, not a requirement.
- 14 [Slide.]
- 15 How to move forward, try and do it by
- 16 evolution rather than revolution. Don't bring it
- 17 all up at once.
- 18 [Slide.]
- 19 And the guidance which came out in
- 20 September, just a few items from it.
- 21 [Slide.]
- The guidance is intended to describe a
- 23 regulatory framework that will encourage the
- 24 voluntary development and implementation of
- 25 innovative pharmaceutical manufacturing and quality

1 assurance--manufacturing and quality assurance,

- 2 voluntary, innovative. Those are key terms.
- 3 [Slide.]
- 4 The scientific risk-based framework
- 5 outline in the guidance should help manufacturers
- 6 develop and implement new and efficient tools for
- 7 use during pharmaceutical development,
- 8 manufacturing, and quality assurance while
- 9 maintaining or improving the current level of
- 10 product quality assurance.
- 11 The framework we have developed has two
- 12 components: a set of scientific principles and
- 13 tools supporting innovation, and a strategy for
- 14 regulatory implementation that will accommodate
- 15 innovation-keys.
- 16 [Slide.]
- 17 Among other things, the regulatory
- 18 implementation strategy includes creation of a PAT
- 19 team approach to the CMC review and CGMP
- 20 inspections and joint training and certification of
- 21 PAT review and inspection staff.
- The Agency is encouraging manufacturers to
- 23 use the PAT framework described here to develop and
- 24 implement new pharmaceutical manufacturing and
- 25 quality assurance technologies.

1	[Slide.]
_	[pride.]

- 2 The quidance is written for a broad
- 3 industry audience in different organizational units
- 4 and scientific disciplines.
- 5 To a large extent, the guidance discusses
- 6 principles with the goal of highlighting
- 7 technological opportunities and developing
- 8 regulatory processes that encourage innovation.
- 9 [Slide.]
- 10 Biologics and PAT. The umbrella guidance
- 11 covers biological production within the scope.
- 12 Presentations before our committee included
- 13 individuals that were using, or companies that were
- 14 using, process analytical technology to monitor
- 15 fermentation and purification of biological
- 16 materials, so it fits if you can define those kinds
- 17 of controls.
- 18 However, the process differences that
- 19 occur in biologics may require or likely will
- 20 require additional skills and an expansion of the
- 21 training and certification program.
- So, that PAT concept, the training of
- 23 reviewers and inspectors will probably need to be
- 24 expanded with training in biologics type PAT
- 25 applications. The standard chemical stuff is not

1 going to work, you are going to have to expand it

- 2 beyond that.
- 3 But I think the concept that came out of
- 4 our committee of having a training program and a
- 5 certification of competencies is very useful for
- 6 building teams to get around some of the silos that
- 7 we have in FDA, that have been there, because those
- 8 silos contribute to poor science and poor
- 9 regulation, some of them, and that needs to be
- 10 straightened out, and this is a good attempt at
- 11 beginning to do that.
- 12 [Slide.]
- 13 Acknowledgments. Ajaz has done a great
- 14 job, I am a great fan of his efforts in taking this
- 15 and driving it forward because he has really done a
- 16 great job of pulling it.
- 17 Raj for doing the guidance. My former
- 18 colleagues at the DPA, DPQR, colleagues that
- 19 presented at the PAT Committee, and those reports
- 20 are at that web site.
- 21 It has been a lot of fun for me to work on
- 22 the PAT Subcommittee. As Ajaz said, it was a
- 23 project that we started about 11 years ago, and to
- 24 see it come to fruition now has really been great.
- I think the industry has got to do more,

- 1 they are going to do more as they reduce their
- 2 inventories and move to just-in-time manufacture,
- 3 which will reduce cost, and, very importantly, help
- 4 bring the vision of health to all closer.
- 5 That's it. Any questions?
- 6 DR. KIBBE: Any questions for Tom? Now,
- 7 we understood that you had answers to all of these
- 8 questions from Keith Webber.
- 9 DR. LAYLOFF: I do, I do.
- 10 DR. KIBBE: If you could just tell us what
- 11 the answers are, we could all go to--Happy Hour,
- 12 right.
- No questions? Perhaps, Keith, you would
- 14 like to lead us through these questions and try to
- 15 get at least some of our collective wisdom on some
- 16 of them.
- 17 Committee Discussion and Recommendations
- DR. KIBBE: What technologies are
- 19 available now to evaluate the characteristics of
- 20 protein products in real time during manufacturing?
- 21 Who has an answer?
- 22 Dr. Koch.
- 23 DR. KOCH: I don't know if I could answer
- 24 that directly, but there are a number of monitoring
- 25 methods that are being used by those manufacturing

- 1 protein products today, and it probably might be
- 2 best to pool some kind of a compilation from those
- 3 who are presently in that product arena.
- 4 Often from the place where I am sitting, I
- 5 have a difficult time judging what measurement
- 6 techniques that we develop, and we have been
- 7 involved with technologies that have made it into
- 8 commercialization, but when we ask one of our
- 9 members is it working or how well is it working,
- 10 and their processes, we can normally tell just by
- 11 the smile or lack of it.
- So, we are in a situation where we are
- 13 developing tools for a toolbox, and we are never
- 14 quite sure how well they are being applied.
- I don't know, Gerry, you are probably in a
- 16 position, or Rick, I saw earlier.
- 17 MR. MIGLIACCIO: My background is on the
- 18 small molecule side, so I wouldn't want to leap
- 19 into this.
- DR. LAYLOFF: I have a question on what
- 21 does it mean evaluate the characteristics, because
- 22 the sequence is pretty well clean on proteins. Are
- 23 you talking about secondary, tertiary, quaternary
- 24 structures?
- DR. WEBBER: I am talking about more the

- 1 overall structure, say, tertiary, and in those
- 2 cases where it is applicable, quaternary
- 3 structures, but also the post-translational
- 4 modifications structure of the product, which is
- 5 one of the I think most variable in terms of what
- 6 we see to change during, say, fermentation, or it
- 7 can be selected out during purification.
- 8 You can get various species of product get
- 9 selected or rejected during purification, so that
- 10 is really what I was looking at there.
- DR. LAYLOFF: So, it is not a process
- 12 closure, it is actually an assessment of the
- 13 product coming out of the process.
- DR. WEBBER: In this particular question,
- 15 yes, it is the product which is not necessarily
- 16 coming out, but the product during manufacturing.
- 17 One of the areas that I have seen reported is the
- 18 ability to use--and I discussed it a little
- 19 bit--immunological techniques or lectins to look at
- 20 structures.
- 21 For example, carbohydrates on products, I
- 22 haven't seen that in practice yet as a PAT, but
- 23 that is something that may be coming down the line.
- DR. KIBBE: Dr. Cooney.
- DR. COONEY: First of all, this is a very

- 1 important question because this is a question that
- 2 relates what you make to its therapeutic safety and
- 3 efficacy, on the one hand, so part of addressing
- 4 this question is to understand the relationship
- 5 between particularly post-translational
- 6 modification, glycosylation, acetylation,
- 7 phosphorylation, and so on, and its therapeutic
- 8 efficacy.
- 9 It is also important because a lot of
- 10 those properties are known to vary with the
- 11 process, so whatever you use at this point for an
- 12 assay or an analytical technology, links you back
- to the process, on one hand, presumably you will
- 14 understand that linkage, and links you forward to
- 15 the patient, on the other hand.
- I think the advances in mass spec that
- 17 have evolved with proteins and, in particular, with
- 18 proteins that are modified, is quite substantial.
- 19 Quite recently, I saw ultra-high pressure
- 20 chromatography, which takes advantage of a number
- 21 of innovations in chromatography by being able to
- 22 go to very small particles with a very high amount
- of surface area at very high pressures, and by
- 24 doing that, you can very quickly get a very high
- 25 resolution of complex mixtures.

1 So, a combination of size, shape methods

- 2 plus mass spectrometry and being able to work with
- 3 large molecules and very small amounts of material,
- 4 that seems to be where things are going, and
- 5 provides a very powerful armamentarium of PATs.
- DR. KIBBE: Tom has another comment?
- 7 DR. LAYLOFF: I was wondering, on
- 8 chromatographic procedure, whether or not you could
- 9 have subsequent post-translational modification of
- 10 the proteins themselves. Denaturation would be one,
- 11 but reactions with the supports themselves at
- 12 15,000 psi are reactive with solvents catalyzed on
- 13 the supports.
- I don't know how you validate the
- 15 separation tools at 15,000 psi.
- 16 DR. COONEY: You raise a very good point.
- 17 The work on ultra-high pressure chromatography is
- 18 very new and solvents and dissolved gases and
- 19 solvents are very reactive at those pressures.
- 20 That needs to be sorted out. It's the right
- 21 question, and I think one can design the
- 22 experiments to get the answer.
- 23 DR. KIBBE: I feel like we are doing 1 and
- 24 2 a little bit. What tools would allow us to
- 25 understand the manufacturing process better? The

1 tools that will allow us to understand the product

- 2 will also allow us to go back and look at the
- 3 process.
- 4 Is there anything specifically that
- 5 anybody would like to add on that?
- 6 DR. LAYLOFF: I was going to say one of
- 7 the things that comes up, of course, in near
- 8 infrared, in applications, is that you don't have
- 9 to separate anything, you just look at it, and you
- 10 define your endpoints on a polyvariate system.
- It may be also possible to do something
- 12 like looking at a mass spec fingerprint without
- 13 separating anything, just look at the mass spec,
- 14 just hammer it and see what it looks like during
- 15 the course of a process, just hammer it at
- 16 intervals and just see what it looks like until you
- 17 define an endpoint by another source, and then use
- 18 that as an endpoint indicator.
- 19 DR. KIBBE: Anything else you need?
- DR. WEBBER: Just one follow-up question
- 21 with regard to No. 1 from the presentation that Dr.
- 22 Koch did.
- 23 You had shown LC and NMR technologies that
- 24 were miniaturized, and we like to think smaller is
- 25 better and more PAT-like. Would those

- 1 technologies, as they are now, be amenable to
- 2 biotech products or do smaller molecules, would
- 3 they be useful for looking at, say, fermentation
- 4 components, and things like that?
- DR. KOCH: We plan to have all those
- 6 techniques tied in with the fermentation project,
- 7 so there are early reasons to believe that we will
- 8 be getting data from them.
- 9 I think one of the important things to
- 10 point out, when we even talk about DNIR or Raman or
- 11 some of the others, I think we will find with time
- 12 an array of technologies with a multivariate
- 13 evaluation of the data is going to prove in the end
- 14 to be quite valuable, so that you can look at, and
- 15 see, the variations that are coming from batch to
- 16 batch or system to system.
- DR. WEBBER: Thank you.
- 18 We had completed Item No. 2 or not, you
- 19 sort of led into that, but are there any other
- 20 comments with regard to what tools would be
- 21 available to allow us to better understand biotech
- 22 processes?
- DR. KOCH: Maybe just a comment on that
- 24 one. It seems like at the top of most
- 25 manufacturers' list is bioviability, and that takes

1 on all kinds of definitions based on what product

- 2 one is working with.
- 3 The more tools that are developed to
- 4 determine the health of the organism, the maturity
- of the system, or measurement or metrics to
- 6 determine when is the best time to harvest, there
- 7 is a number of things I believe are going to be
- 8 advancing there, both direct and indirect methods.
- 9 DR. LAYLOFF: Then, there is also going to
- 10 probably be indirect methods, like on flowing
- 11 stream systems, where you actually take the
- 12 fermentation broth, react it on to other species,
- 13 which could serve as a surrogate to where the
- 14 process is located.
- DR. COONEY: One of the things that will
- 16 surely happen in the diagnostics field is improve
- 17 proteomic techniques. The genomic techniques are
- 18 not so bad, the proteomics are still early stage,
- 19 but as we develop better proteomic techniques, as
- 20 you develop better immuno-based panels that are
- 21 important in diagnosis of disease, there is going
- 22 to be a spillover benefit to the application of
- 23 these to the processes themselves.
- 24 So, this not a static, obviously a static
- 25 situation, and I expect that the main driver for

1 some of the new analytical techniques will not be

- 2 process understanding, but rather will be
- 3 understanding the biology, and that it is up to us
- 4 to take those same techniques and those same
- 5 methodologies and begin to apply them to the
- 6 processes.
- 7 The other piece of this, to emphasize a
- 8 point I made earlier, by being able to do a lot of
- 9 measurements on a small scale, one can take
- 10 advantage of experimental design and look at your
- 11 experimental space, so these techniques that allow
- 12 you to do that are important.
- 13 Another area, I mentioned doing
- 14 large-scale fermentation type of experimental
- 15 programs, but you need to do this for downstream,
- 16 as well, and there is a fair amount of work, there
- 17 is a modest, well, there is a little bit of work
- 18 being done to miniaturize the downstream processes
- 19 that hopefully should have the benefit of also
- 20 being able to do design of experiments on a larger
- 21 amount of downstream space at the same time, so
- there is yet another area of development
- 23 particularly in the microfluidic space.
- DR. KIBBE: Just a quick follow-up
- 25 question of our experts over here. One of the

- 1 things I have noticed whenever we discuss PAT, is
- 2 we deal with a tremendous amount of data influx, we
- 3 get lots of data, and then we have to sort out the
- 4 data that is really valuable to us.
- Is there a role to play for the
- 6 ever-increasing power of the computational machine
- 7 that sits next to the instrument?
- 8 DR. COONEY: Absolutely yes, not only in
- 9 working your way through large data sets, but also
- 10 learning how to do simulation both at the molecular
- 11 scale and upwards.
- 12 There is very interesting work being done
- 13 with modeling of small molecule-protein
- 14 interactions that is useful from a design point of
- 15 view, but it is also useful to explain some of the
- 16 phenomena that you see in a process.
- 17 So, having large computational capacity is
- 18 very important both from the passive data mining,
- 19 as well as the proactive process simulation role.
- DR. KOCH: I have to more than second
- 21 that. The number of sensors being developed, and
- 22 that is just begging for a number sensor mining and
- 23 then into the data mining, and then on into how do
- 24 you handle the monstrous amounts of data.
- 25 DR. KIBBE: Just a personal opinion about

- 1 accepting monstrous amounts of data is I sincerely
- 2 hope that the companies analyze it, pick out what
- 3 is important, and the FDA accepts only those things
- 4 that are worth looking at, and doesn't demand every
- 5 ton that comes through the door.
- DR. SINGPURWALLA: Well, I have to
- 7 disagree. I am suspicious of data mining because
- 8 you are looking at patterns. You may look at
- 9 patterns that are purely imaginary. There is a
- 10 classic example of consumption of alcohol and
- 11 professor's salaries. You know, there are dubious
- 12 correlations that can come about.
- 13 Now, having said that, I think when you
- 14 are exploring any data--and I think you asked a
- 15 very good question, and I am not sure if the
- 16 question has been addressed--with a lot of data, we
- 17 are collecting a lot of data, by itself, may not
- 18 contain the knowledge of the information that you
- 19 are really looking for.
- 20 You may collect a lot of data which
- 21 provides information which is not really relevant
- 22 to what it is that you are interested in. So, the
- 23 whole idea is when you are doing a data analysis
- 24 rather than data mining, what you have to do is
- 25 have some kind of a hypothesis in mind, have some

- 1 kind of a model in mind, and the model is never
- 2 suggested by the data, the model is always
- 3 suggested by the science that you are looking at
- 4 and let the data then give you the unknowns of the
- 5 particular model or help you change your model or
- 6 help you update your model.
- 7 So, I think your question is very nice and
- 8 very important, and I think it goes back to why
- 9 collect the data. You should have a purpose for
- 10 collecting the data. You should have an
- 11 experimental design in mind when you collect the
- 12 data, and the design itself should be driven by a
- 13 certain hypothesis. So, this is more of a
- 14 philosophical comment.
- DR. KIBBE: Off-line, we will talk about
- 16 the philosophy of making observations about your
- 17 surroundings and then developing the thesis and
- 18 hypothesis versus having an hypothesis and making
- 19 your observations fit it.
- 20 Shall we go on to the next question?
- DR. COONEY: I can't let this point go
- 22 unnoticed. I think that you are absolutely right,
- 23 and I like your hypothesis, and I think the
- 24 experiment that has to be done to confirm it is to
- 25 increase the salaries of professors.

1	[Laughter.]
_	[Hadqiicci .]

- 2 DR. KIBBE: What processes in biological
- 3 manufacturing would benefit the most from
- 4 implementation of PAT? I think we are dealing with
- 5 fermentation here, and the alcohol is just
- 6 naturally connected somehow. Go ahead.
- 7 DR. COONEY: I would address this question
- 8 in two ways. One is if you look at which
- 9 particular products might benefit by early
- 10 implementation, and I would suggest that the
- 11 simpler the better, better to walk rather than run,
- 12 taking very complex biological products made by
- 13 very complex processes would be a very perhaps
- 14 difficult place to begin, so that I think one needs
- 15 to think about what are the logical targets.
- 16 But then within the process, it is
- important to think about it, as well, because it's
- 18 in the fermentation that you define the initial
- 19 product that is being made, but a lot of the
- 20 concerns about process variance occur once you have
- 21 made the product and it is then subsequently being
- 22 processed.
- 23 So, that suggests that you need to
- 24 methodically think through your entire process as
- 25 you do for a drug substance, but because there are

1 more steps, there is more complexity, obviously,

- 2 there is more to do.
- 3 But one of the characteristics of
- 4 biologicals is that it is important to get the
- 5 synthesis right, and then it is important to treat
- 6 it right once it has been made.
- 7 DR. DeLUCA: Let me just add to that, I
- 8 think it's a good follow-on, and I guess we have
- 9 heard a lot about the biological process in
- 10 fermentation, purification, and certainly we have a
- 11 sensor technology in the Smart systems today to be
- 12 able to handle that.
- 13 I guess I wanted to move to the fill and
- 14 finish end of it, and I guess I have a lot of
- 15 questions. You know, do you apply PAT to current
- 16 products? What properties can vary from unit to
- 17 unit? What does the variation mean in the
- 18 pharmacological sense? These are the types of
- 19 questions.
- 20 But with regards to the biological, it
- 21 seems in the fill and finish that most of these
- 22 freeze dried, so they are going to be lyophilized,
- 23 and I think in lyophilization, this is not a
- 24 trivial situation here, and I think you think that
- 25 you put 10,000 vials into a chamber and you get out

- 1 10,000 vials with little variation.
- 2 You have to look at processing, and most
- 3 products are processed and then filled in the
- 4 containers. In freeze drying, the processing takes
- 5 place in an individual container.
- 6 Each little container is processed after
- 7 it's filled, and the heat that goes to that
- 8 container is such that each vial doesn't see the
- 9 same temperature, you like to have a small
- 10 variation across the shelves in the type of flow,
- 11 and the heating element, the fluid that goes
- 12 through it to heat and freeze, but it isn't.
- So, you end up with, you could have
- 14 product that has a variation in moisture, you can
- 15 have products that vary in meltback collapse, so
- 16 this can occur, so I think it is important that
- 17 when we are looking at PAT and looking at the fill
- 18 and finish, that moisture becomes very, very
- 19 important in these lyophilized products and these
- 20 biologicals, and I think applying things like NIR
- 21 to that, I think makes this a very doable thing, to
- 22 be able to do that with every product. It's a
- 23 non-invasive procedure, and I think that is
- 24 critical.
- 25 So, you have to bring in robustness in

- 1 here. What can the product chemically tolerate in
- 2 the way of moisture? I mean it is being freeze
- 3 dried because obviously, it can't be put into a
- 4 solution form, so moisture is going to have an
- 5 effect.
- 6 But what moisture content, can it tolerate
- 7 5 percent or maybe it only can tolerate a half
- 8 percent, or maybe there is an optimum moisture
- 9 content that is good, because you are going to get
- 10 into changes in tertiary and quaternary structure,
- 11 aggregation, and whatnot with regards to moisture.
- 12 So, I think that is an area that really
- 13 lends itself to PAT, I think is in actually
- 14 determining the moisture of these products, and
- 15 again knowing where, you know, what kind of
- 16 variation it can tolerate, and you have to somehow
- 17 try to have some idea of the pharmacological effect
- 18 of this, whatever the effect is of the moisture,
- 19 does it really translate into a pharmacological
- 20 effect, but I think that is an area that needs to
- 21 be looked at.
- 22 DR. KOCH: I would certainly agree with
- 23 that, but one other part of the biological drug
- 24 manufacture, particularly fermentation, that I
- 25 think needs to be addressed is just the

1 fermentation itself in terms of reaction

- 2 engineering.
- If you look at today's fermenters, they
- 4 don't look that much different than they did 50, 60
- 5 years ago. Aeration is very important, as it
- 6 nutrient and contact, so maybe the most effective
- 7 fermentation is where you optimize those
- 8 parameters, and huge vessels are not necessarily
- 9 the way to do that.
- 10 I think we are in a sunk capital situation
- 11 where industry probably can't afford to redesign
- 12 the approach, but there are some very interesting
- 13 approaches, that if you could number up from the
- 14 micro scale that Charles indicated, you might have
- 15 a far more effective control of the material and
- 16 far less of impurities that are being generated.
- 17 DR. COONEY: I would like to add another
- 18 point to what Pat said. When one is doing a
- 19 de-bottlenecking exercise on a manufacturing
- 20 process to try and improve the throughput, you
- 21 begin that exercise from the end of the process and
- 22 you work your way from the end forward.
- One very logical way of thinking about the
- 24 application of the strategy, of PAT strategy, it is
- 25 due to exactly the same thing, that if you

- 1 understand, if you really understand the product
- 2 and then you work your way back down the process,
- 3 that makes it easier to de-bottleneck and design
- 4 going forward.
- DR. KIBBE: Since we started at the front,
- 6 then, moving towards the back with the questions,
- 7 we will keep going towards the back.
- 8 The next question is for processes or
- 9 products that do not currently allow direct product
- 10 quality monitoring, what other strategies do you
- 11 recommend for product quality control in addition
- 12 to control of in-process parameters?
- 13 DR. SINGPURWALLA: I like this question.
- DR. KIBBE: He likes this question. It's
- 15 a Bayesian question.
- DR. SINGPURWALLA: Exactly. I am really
- 17 impressed with your insight and intuition.
- 18 There is a technology, and there is a
- 19 technology called information fusion. Sometimes it
- 20 is called information integration. The basic idea
- 21 is this. The analogy here is like investigating a
- 22 crime. Some crime has been committed. You don't
- 23 know who has committed the crime. You are gathering
- 24 all kinds of evidence, and then you are pooling
- 25 that evidence in a very systematic way to make a

1 probabilistic judgment about the crime. You cannot

- 2 make a judgment with certainty, because the only
- 3 way to make a judgment to certainty is to see
- 4 something.
- 5 So, you have a similar situation here, and
- 6 the problem you mention is common in other
- 7 scenarios where you cannot directly observe the
- 8 product.
- 9 You are not allowed to either observe the
- 10 product or test the product for whatever reason you
- 11 have, but you have evidential information. You
- 12 have information on degradation, you have
- 13 information on other kind of attributes, and how do
- 14 you systematically integrate that information is a
- 15 well-developed technology, and I think that would
- 16 be germane here to the kind of question that you
- 17 are raising.
- 18 You have a process, you cannot directly
- 19 observe it, but you presumably can observe other
- 20 things related to it. So, the question is how do
- 21 you systematically pool that information, and there
- 22 is a methodology, and, of course, it is Bayesian,
- 23 as our chairman so wisely suggested, and it is
- 24 available.
- DR. KIBBE: Do you have a different

- 1 method?
- DR. LAYLOFF: No, I like Bayesian, but I
- 3 was thinking that the monitoring and control, the
- 4 in-process parameters may be polyvariate with
- 5 respect to the quality of product.
- It may be a series of interactions on
- 7 product quality, so the thing has to be linked
- 8 together, so the evidentiary procedure may be many,
- 9 many different mixtures of it to relate to the
- 10 product quality.
- DR. SINGPURWALLA: Just to add to that,
- 12 you used the word polyvariate?
- DR. LAYLOFF: No, I didn't.
- 14 [Laughter.]
- DR. SINGPURWALLA: It's multivariate.
- DR. LAYLOFF: I know I did something
- 17 wrong.
- DR. SINGPURWALLA: The thing you want to
- 19 be careful about is this multivariate information
- 20 may be interdependent because the same phenomena
- 21 can appear under two guises, so you don't want to
- 22 add up, you know, the basic information should not
- 23 be added up. You have got to recognize the
- 24 interdependence when there is a multivariate case,
- and therefore the technology, the mathematical

- 1 technology that you need has to be nicely refined
- 2 and carefully thought out, but the technology is
- 3 what I am suggesting is purely an analytical
- 4 technology, it is not a physical technology.
- DR. WEBBER: Thank you.
- 6 This question was mostly--I think that's a
- 7 great answer, but we are looking at sort of, as Dr.
- 8 Cooney pointed out, the oxygenation issues with
- 9 fermentation, how that affects product. If you can
- 10 understand those, what sort of surrogates can you
- 11 use to monitor or have a comfort level with the
- 12 product quality based on looking at secondary
- 13 parameters, but I think the answer you have given
- 14 is one that we have to consider, as well, the
- 15 analytical methods used to ensure that those aren't
- 16 interfering with one another.
- DR. COONEY: There is a fundamental
- 18 problem with surrogates, and that is that many of
- 19 them come from correlative observation, and the
- 20 point was made quite appropriately earlier that
- 21 when you take the data, develop a correlation, that
- 22 may work within a certain amount of space with a
- 23 certain set of assumptions, but it indeed is a
- 24 correlation.
- I think the challenge that we have is to

- 1 take that correlative knowledge and then create an
- 2 hypothesis that, in fact, can be tested by one or
- 3 more of the many techniques that we are talking
- 4 about.
- 5 I think what we are really talking about
- 6 in this initiative is a change in the mind-set and
- 7 the way that we think about developing and
- 8 exploring and validating our processes, so there is
- 9 going to be a lot of these iterations of learning,
- 10 many of which will come from the surrogate
- 11 procedures and correlative observations, but we
- 12 need to drill down and understand that we are
- 13 solving the right problem at the right time in the
- 14 right way.
- DR. KIBBE: Ajaz.
- 16 DR. HUSSAIN: I think the points are well
- 17 made. As we were putting the guidance together,
- 18 one of the key aspects that we did say that in some
- 19 cases, correlations would not be sufficient from a
- 20 regulatory perspective, and we would look for
- 21 causality as a means for making judgments, and so
- 22 forth, and we sort of leaned that way, risk in a
- 23 systems way, because keeping in mind, you are
- 24 looking at a constrained space once it's in
- 25 manufacturing.

1 So, there are opportunities to utilize

- 2 correlations in some low-risk areas, but also when
- 3 there is a risk associated, you might prefer it to
- 4 be causal rather than correlative. That is how we
- 5 sort of structured the guidance.
- 6 DR. KOCH: I guess this supports the
- 7 Bayesian approach, as well, we will find out in a
- 8 second, but rather than the crime analogy, I would
- 9 like to think of something that is more like going
- 10 to have a physical with a physician, where you are
- 11 actually trying, in our product quality
- 12 specifications, you know, assuming that is the
- 13 perfect health you are looking for, but then
- 14 develop a number of tests that would be analogous
- 15 to doing body fluids or x-rays or a bunch of
- 16 technologies, and then looking at the results that
- 17 are coming back like in the physician's office, all
- 18 of the tests are not going to be judged equally,
- 19 but if you have a blood pressure and a lipid and an
- 20 EKG, that is out of a predefined specification, you
- 21 will start to spend your time at that first in
- 22 order to see how the process is working.
- So, you will have a lot of data to work
- 24 from, but you will have to make some assumptions
- 25 early on in terms of what type of data relate more

1 quickly to the final health of the product in this

- 2 case.
- 3 DR. KIBBE: Jurgen, do you have any
- 4 opinions so far?
- DR. VENITZ: To respond I think to the top
- 6 four or five questions in terms of how do you link
- 7 all of this to the in-vitro potency, I think
- 8 Patrick alluded to that a little bit when he talked
- 9 about the fill stage, the late stage. You are
- 10 measuring attributes. You may or may not know what
- 11 they actually are other than they depend on some of
- 12 your process variables.
- 13 My question, as a pharmacologist, is
- 14 always so, why should I care about that. It is
- 15 driven by your ability to measure, not necessarily
- 16 by your ability to understand the consequences.
- 17 You do know it is affected by your process, but you
- 18 don't know whether it has any pharmacological
- 19 consequences that I should care about.
- 20 So, whenever you are looking at those
- 21 steps, there has to be a linkage between whatever
- 22 attributes you have to the ultimate pharmacological
- 23 activity of the product.
- So, maybe that is my comment.
- DR. KIBBE: Thank you, Jurgen.

DR. WEBBER: I certainly agree with that

- 2 completely. I think one can measure all sorts of
- 3 things, but you have to look at what the critical
- 4 product characteristics are, and that is something
- 5 that has to be determined during the clinical
- 6 development stage and product development stages.
- 7 DR. VENITZ: It goes beyond that. I mean
- 8 when I listen to the gentleman talk about what
- 9 process analytical technology does, the way I
- 10 understand, it is basically a statistical way of
- 11 relating process variables and their impact, their
- 12 criticality in terms of other attributes that you
- 13 measure using some of those sensors that we heard
- 14 about, but that doesn't tell me whether I should
- 15 care about any of this, because you are really then
- 16 changing your variables to affect your attributes
- in a way that you think it should be.
- 18 But my question is, so what is your
- 19 template, how do you know that that is the way your
- 20 attributes should be, unless it is relevant to the
- 21 pharmacologic activity of your product?
- If it is not relevant, then, yes, you
- 23 might be improving your process, but it is
- 24 cosmetic, it is not of any particular relevance for
- 25 me to care about. So, as part of this in the

1 development stage, maybe not in manufacturing, the

- 2 ultimate manufacturing stage, there has to be a
- 3 linkage to the pharmacologic activity.
- DR. KIBBE: Go ahead, Pat.
- DR. DeLUCA: Just to add, I think it is
- 6 critical that we have good control, I mean with
- 7 regards to the fermentation before it gets to the
- 8 fill and finish. I think that is essential. I
- 9 think when the product gets to the point where it
- 10 is going to be formulated and put into final dosage
- 11 form, you want to have good control over that,
- 12 because in that finishing, there could be a lot of
- 13 variation.
- I just mentioned moisture before, but when
- 15 you are freezing, you are freezing an amorphous
- 16 form, and then when you are drying, you get a lot
- 17 of conversion into the crystalline states, and
- 18 there could be variation in the distribution of
- 19 crystalline and amorphous form in the finished
- 20 product, and that is going to affect the water
- 21 content and the effects, so there is a lot of
- 22 variation that can occur in that stage, that I
- 23 think there needs to be control over.
- 24 I support that there needs to be great
- 25 control in the upstream processing, as you

- 1 mentioned.
- 2 DR. KIBBE: Anybody else on the first
- 3 four?
- 4 That brings us to: What additional
- 5 elements should be incorporated in a training and
- 6 certification program for reviewers and inspectors
- 7 of biotechnology PAT?
- I am going to take the prerogative of the
- 9 Chair to speak first, and then you all will tell me
- 10 what mistakes I have made.
- I have been involved with educating
- 12 college level students for years, and one of the
- 13 things that I find is that they learn something in
- 14 a specific incidence or example, but they don't
- 15 learn things in the generalities, and one of the
- 16 most powerful tools we have to handle all of this
- 17 is a true and real understanding of the scientific
- 18 method and the application of the scientific method
- 19 to the problem in front of you, and not just
- 20 learning how to do it in one situation, but
- 21 learning how that works in any situation.
- 22 I don't know whether you can get that into
- 23 a training session, with a process that hasn't been
- 24 well developed and isn't templated, when you look
- 25 at the data you have in front of you and can use

- 1 that.
- The second is critical thinking. Often,
- 3 students really don't know the difference between
- 4 facts and opinions, because they have been trained
- 5 over their life to accept someone who stands in
- 6 front of them in a lecture hall and says something
- 7 as if they were saying facts, when, in fact, most
- 8 of the time we who lecture give opinions about
- 9 everything and very little real facts.
- They also have a hard time differentiating
- 11 results from conclusions. They look at the result
- 12 and immediately leap to a conclusion that isn't
- 13 necessarily supported by the facts, and if we could
- 14 add anything to anybody's training who are going to
- 15 be involved in reviewing data or doing inspections,
- 16 it is that level of sophistication that would be
- 17 very helpful.
- DR. SINGPURWALLA: I agree with you on
- 19 that point certainly. I really also think that
- 20 there should be some kind of education and training
- 21 on basically uncertainty, what is the meaning of
- 22 uncertainty, how to quantify uncertainty, what are
- 23 the different ways of quantifying uncertainty, what
- 24 is the difference between variability and
- 25 uncertainty, is there a difference, and basically,

- 1 not statistics or statistical technology, but just
- 2 the background of what it is all about, I think
- 3 that would be very valuable because that seems to
- 4 be running through completely all the way here.
- 5 So, that is what I would like to add,
- 6 "parochial."
- 7 DR. LAYLOFF: I think also it would be
- 8 useful to turn to the biotechnology industry, to
- 9 the people working in CMC, to try and help define
- 10 what attributes reviewers and inspectors should
- 11 have to properly evaluate, because those guys live
- 12 with that stuff on a daily basis, and I am sure
- 13 they would be willing to help.
- DR. KIBBE: Judy.
- DR. BOEHLERT: Finally, I am going to make
- 16 a comment. My background is in small molecules, so
- 17 I am sorry, but it would seem to me with the
- 18 complexity of these processes, that you might want
- 19 to go to industry and sort of talk with them, and I
- 20 think you know, as well, about what are the issues
- 21 that can occur, because things go wrong in these
- 22 processes that don't go wrong in conventional
- 23 processes.
- 24 You have adventitious contamination and
- 25 things that don't happen elsewhere, so

- 1 investigators, reviewers need to learn to ask the
- 2 right questions and go beyond what they see to say,
- 3 well, what about this, what about that, could this
- 4 happen here, did this happen here, and that you
- 5 need to train people to ask the right questions,
- 6 because it's a whole different ball game when you
- 7 get into these products.
- 8 DR. KIBBE: Anybody else? Do we have
- 9 anybody who hasn't spoken? Would you like to
- 10 comment on our discussion?
- DR. SELASSIE: I think I will pass.
- DR. KIBBE: What I am going to do now,
- 13 unless Keith has something specific he needs us to
- 14 do, is I am going to summarize.
- DR. WEBBER: I didn't have anything
- 16 specific for you to do now. Maybe before you
- 17 summarize, I would like to thank the committee
- 18 certainly for getting together and addressing the
- 19 issues and the questions that we have, giving
- 20 presentations, and giving us your input on this
- 21 difficult issue that we have ahead of us.
- 22 DR. KIBBE: You had five things that you
- 23 wanted us to help you with and some of them we can
- 24 help you with and sometime we will help you with.
- 25 Starting with the first one, technology

- 1 changes at an ever-increasing rate since the
- 2 beginning of civilization, each breakthrough in
- 3 technology is taking shorter and shorter periods of
- 4 time. if you wait two weeks, there will be a new
- 5 technology to measure something.
- 6 The question is what do you need to know,
- 7 what good questions have you asked, and that is the
- 8 core of the quality of scientific endeavor, so make
- 9 sure you ask good questions, and there will be
- 10 someone out there will develop a way of getting you
- 11 an answer.
- No. 2, data collection is important. I
- 13 think there is fun in data mining, I enjoy it. I go
- 14 looking for patterns and try to develop patterns,
- 15 but the question really is are these patterns of
- 16 correlation of cause and effect, how do you know
- 17 the cause and effect, and this boils down to being
- 18 able to think critically about the analytical data
- 19 in front of you.
- No. 3, variability control seems to be the
- 21 key. If we know how much variation we can allow in
- 22 any critical step in order to still maintain a good
- 23 product, then, that is the variation we should
- 24 allow, and we should really look at variability on
- 25 each critical step in the process.

- 1 If we know our critical steps, which is
- 2 always an assumption that we make, and we hope we
- 3 do, and we know the variability that will throw our
- 4 process out of control, then, we know where we need
- 5 to limit ourselves, and making intelligent choices
- 6 about those limits are really important.
- 7 Related observations. I know my friend
- 8 likes, under No. 4, Bayesian approach. It all
- 9 boils down to critical thinking about the things
- 10 that you can measure and the things that you need
- 11 to measure, just because you can measure it doesn't
- 12 mean you need to know about it. If it is something
- 13 critical you need to measure, you need to find a
- 14 way to measure it.
- This brings us to No. 5, which I think
- 16 boils down to training people to think critically
- 17 and to apply the scientific method appropriately.
- 18 The quality of good science is the quality of the
- 19 questions.
- The difference between a normal researcher
- 21 and Albert Einstein is that the way he posed the
- 22 questions allowed him to get breakthroughs and
- 23 answers. The other thing that he had that most of
- 24 us don't have, and I won't say any one of you
- 25 doesn't, is that he was never satisfied with the

- 1 quality of the answer, and he always kept looking
- 2 for better and better answers.
- 3 Twain said that what we don't know doesn't
- 4 get us in trouble. It is what we know that ain't
- 5 so.
- 6 So, we have to be very careful to avoid
- 7 thinking we know something about our process just
- 8 because we made a measurement, and it really isn't
- 9 something that describes the process, but it is
- 10 just a convenient measurement.
- 11 We find in clinical realm that often a
- 12 technique comes along looking for a disease to
- 13 diagnose, so don't look for a technique that
- 14 diagnoses a disease you don't have or wouldn't even
- 15 get. Just look for the ones that help you get the
- 16 answers.
- On that note, I will end whatever
- 18 soliloquy I have.
- 19 Helen, do you have a comment? I saw you
- 20 getting closer to the microphone.
- MS. WINKLE: No.
- 22 DR. KIBBE: We are going to be back here
- 23 at 8:30 tomorrow morning.
- 24 [Whereupon, the meeting was recessed at
- 25 4:30 p.m., to reconvene at 8:30 a.m., Wednesday,

1 April 14, 2004.]

2 - - -