
ISSN 0006-2952/97/$17.00 + 0.00 
PI1 SO0062952(96)00834-9 

Biochemical Pharmacology, Vol. 53, pp. 615-621, 1997. 
Copyright 0 1997 Elsevier Science Inc. 

ELSEVIER 

COMMENTARY 

Stress-Induced Apoptosis 
and the Sphingomyelin Pathway 

Louis A. Peti,* Zui Fuksf and Richard Kolesnick*# 
*LABORATORY OF SIGNAL TRANSDUCXON AND THE tDEpARrMENT OF RADIATION ONCOLOGY, 

MEMORIAL SLOAN-KETTERING CANCER CENTER, NEW YORK, NY 19921, U.S.A. 

ABSTRACT. The sphingomyelin pathway is a ubiquitous, evolutionarily conserved signaling system initiated 
by hydrolysis of the plasma membrane phospholipid sphingomyelin to generate the second messenger ceramide. 
Sphingomyelin degradation is catalyzed by acid and neutral sphingomyelinase (SMase) isoforms. Most, if not all 
mammalian cells, appear capable of signaling though the sphingomyelin pathway. Diverse receptor types and 
environmental stresses utilize the sphingomyelin pathway as a downstream effector system. In some cellular 
systems, ceramide initiates differentiation or cell proliferation, while in other systems, ceramide signals apoptosis. 
Recent investigations link the activation of neutral SMase to the extracellular signal regulated kinase (ERK) 
cascade and pro-inflammatory responses, and acid SMase to the stress-activated protein kinase/c-jun kinase 
(SAPK/JNK) cascade and apoptotic responses. Environmental stresses act directly on membrane to activate acid 
pH-dependent sphingomyelinase (ASMase), whereas cytokine receptors signal ASMase activation through 
motifs termed death domains. The present review focuses on mechanisms of activation of ASMase and on 

ceramide signaling of the apoptotic response. BIOCHEM PHARMACOL 53;5:615-621, 1997. 0 1997 Elsevier 
Science Inc. 
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The ability of organisms to eliminate selected types of cells 

by apoptosis (programmed cell death) represents a major 

regulatory mechanism in development, growth, and differ- 

entiation. The biochemical pathways of apoptosis can be 

triggered by a variety of physiologic stimuli and environ- 

mental stresses. Tightly regulated cascades of overlapping or 

competing cellular signals effect the activation of specific 

proteases and nucleases that carry out an ordered disassem- 

bly of cellular structures. The regulation of these signal 

transduction cascades is currently the subject of intensive 

investigation. Inhibition of apoptosis or disruption of the 

balance between growth and apoptotic signals is implicated 

in autoimmune disorders and cancer, while increased ap- 

optosis is believed to be associated with degenerative dis- 

eases [l, 21. It is, therefore, suggested that advances in the 

understanding of the biochemical events involved in these 

$ Correspondme author: Richard Kolesnick, M.D., Laboraton, of Signal 
Transduction, Memorial Sloan-Kettering Cancer Center, 1275 ‘York Ave., 
Box 254, New York, NY 10021. Tel. (212) 639-8573; FAX (212) 639- 
2767; E-mail: r-kolesnick@ski.mskcc.org 

0 Abbreviations: ICE, interleukin lp-converting enzyme; ASMase, acid 
pH-dependent sphingomyelinase; NSMase, neutral pH-dependent sphin- 
gomyelinase; ERK, extracellular signal regulated kinase; SAPK, stress- _ _ _ 
activated protein kinase; JNK, c-jun kinase; TNF, tumor necrosis factor; 
NPD, Niemann-Pick disease; NSD, NSMase activating domain; FAN, 
factor activating NSMase; CAPK, ceramide-activated protein kinase; 
CAPP, ceramide-activated protein phosphatase; PKC, protein kinase C; 
SPP, sphingosine l-phosphate; TRADD, TNF receptor l-associated death 
domain; FADD, Fas-associated death domain protein; MORTl, mediator 
of receptor-induced cytotoxicity; and DED, death effector domain. 

processes may lead to the developtnent of selective phar- 

macological interventions to improve the outcome in treat- 

ment of human diseases. 

Whereas the biochemical apparatus of the apoptotic 

pathway remains to a large extent unknown, it is generally 

accepted that in mammalian cells apoptosis is effected by 

the interleukin lB-converting enzyme (ICES) family of 

proteases [3, 41. These enzymes can be classified function 

ally into two groups, ICE-like and ted-3-like proteases, 

based on their ability to recognize and cleave substrates 

containing the sequences -YVAD- or -DEVD-, respec- 

tively. This property allows synthetic tetrapeptides with 

corresponding sequences to serve as competitive inhibitors 

of ICE/ted-3 enzyme action in vitro and in uiuo. The 

ICE/ted-3 proteases are expressed in the intact cell in the 

form of zymogens, activated either by autocatalysis, or by 

cleavage by other ICE/ted-3 proteases or the serine protease 

granzyme B. By analogy to other protease cascades, it has 

been suggested that a hierarchy of trans-cleavage of 

ICE/ted-3-related proteases controls the orderly progression 

of the apoptotic disassembly of cellular organelles. Ectopic 

expression of ICE in mammalian cells results in apoptosis 

[5] and ICE-like proteases also have been shown to be re- 

sponsible for apoptosis in a cell-free system [6]. Recent stud- 

ies show that Fas/Apo-l/CD95induced apoptosis requires 

activation of an ICE-like-protease upstream of a ted-3 

CPP3Z/Apopain/Yama-like protease [7-91. 

A great deal of attention has been directed recently at 
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mechanisms by which extracellular signals activate the 
ICE/cede3 proteases to effect apoptosis. Two distinct trans- 
membrane signaling systems have been characterized: the 
sphingomyelin pathway, which utilizes turnover of mem- 
brane sphingolipids to generate the second messenger cer- 
amide and may be involved in cytokine- and environmen- 
tal stress-induced apoptosis, and a “death domain” adapter 

protein system, which specifically mediates the apoptotic 
function of cytokine receptors, such as TNF-a and 

Fas/Apo-l/CD95. This review will focus on the role of the 
sphingomyelin pathway in stress-induced apoptosis, and a 

possible mode of integration of the two effector systems will 
be explored. 

THE SPHINGOMYELINZERAMIDE PATHWAY 

Ceramide serves as a second messenger of the sphingomy- 
elin pathway (Fig. l), stimulating specific kinases, phospha- 
tases, and transcription factors that mediate a variety of 

cellular functions [for reviews, see Refs. 10-131. Ceramide is 
the backbone of all sphingolipids and glycosphingolipids 

and, thus, is subject to complex metabolic regulation. How- 
ever, within the context of signal transduction, ceramide 
can be generated by two mechanisms. It can be synthesized 

by condensation of the sphingoid base sphinganine and 
fatty acyl-CoA by the enzyme ceramide synthase (EC 

2.3.1.24, sphinganine N-acyl transferase) to form dihydro- 
ceramide, followed by a rapid oxidation to ceramide. This 
route has been shown to be involved in daunorubicin- 
induced apoptosis [14]. An alternative and more prevalent 
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FIG. 1. Sphingomyelin metabolites involved in signaling. 
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system for ceramide generation involves the degradation of 
sphingomyelin into phosphorylcholine and ceramide by the 

action of sphingomyelin-specific forms of phospholipase C, 

termed sphingomyelinases (EC 3.1.4.12, sphingomyelin 
phosphodiesterase). 

The sphingomyelin pathway is a ubiquitous, evolution- 

arily conserved signaling system analogous to the phospho- 

inositide pathway. Similar to the action of diacylglycerol, 

generated by a phosphoinositide-specific phospholipase C, 

ceramide can initiate a variety of cellular effects. In some 

cellular systems, ceramide has been reported to initiate dif- 

ferentiation [15] or cell proliferation [l&18], while in other 

systems, ceramide signals apoptosis. Activation of sphingo- 

myelinases has been linked to several cell surface receptors, 

such as the 55 kDa TNF-a receptor [19-221, the 80 kDa 

interleukin-1 receptor [23, 241, the 75 kDa neurotrophin 

receptor (~75~~~) [25,26], and CD95 [27,28], to list a few. 

Further, numerous stresses that initiate apoptosis have also 

been associated with rapid ceramide generation via sphin- 

gomyelinase activation, including ionizing radiation, ultra- 

violet-c, heat shock, oxidative stress, daunorubicin, and 

vincristine [14, 22, 29-331. Cell-permeable ceramide ana- 

logs have been useful agents in studying signaling through 

the sphingomyelin pathway [12, 131. In this regard, cer- 

amide analogs, but not analogs of other lipid second mes- 

sengers, mimic the effect of cytokines and environmental 

stresses. 

Ceramide generation via sphingomyelinase activation 

has been shown to involve either an ASMase or an 

NSMase, which exists as Mg2’-dependent or -independent 

forms [34]. Human and murine ASMases have been cloned 

and determined to be the products of single genes, while 

NSMase has yet to be characterized at the molecular level. 

However, ASMase knockout (ASM-KO) mice retain 

NSMase activity, indicating that NSMase is the product of 

a distinct gene or genes [35, 361. 

KrGnke and co-workers have explored the mechanisms of 

activation of the ASMase and NSMase by mutational 

analysis of the 55 kDa TNF receptor [21, 371. The cyto- 
plasmic portion of the TNF receptor contains two distinct 

regions that differentially associate with ASMase or 

NSMase signaling (Fig. 2). A membrane proximal region 

comprised of an 11 amino acid motif termed the NSD is 

specifically associated with NSMase signaling of pro- 

inflammatory cellular responses [37]. A novel adaptor pro- 

tein that has been identified recently, termed FAN, binds 

to the TNF receptor NSD motif promoting NSMase acti- 
vation [39]. In contrast, a membrane distal region of the 
cytoplasmic domain of the TNF receptor links to the 
ASMase [21]. This region comprises a 75 amino acid motif, 
termed the “death domain” [40]. Deletions or mutations in 
the death domain abolish TNF receptor-induced apoptosis. 
The death domain is conserved in CD95, a TNF receptor 
homolog that mediates apoptosis in lymphocytes and other 
CD95-expressing cells. Mutations within the death do- 
main, which abolish CD95-induced apoptosis, also block 
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PROLIFERATION 
INFLAMMATloN A POiTOSIS 

FIG. 2. Proposed mechanism for stress and TNF receptor 
signaling via the sphingomyelin pathway. Environmental 
stresses act directly upon membrane and activate ASMase, 
generating ceramide and initiating signaling through the 
SAPWJNK cascade. It is presumed that SAIWJNK phase 
phorylates a target upstream of the ICE/ted-3 proteases that 
effect apoptosis. The 55 kDa TNF receptor delivers prolif- 
erative/pro-inflammatory and apoptotic signals through the 
sphingomyelin pathway. A membrane proximal region of 
the cytoplasmic domain of the TNF receptor links through 
the adaptor protein FAN to a NSMase isoform catalyzing 
sphingomyelin hydrolysis to ceramide in the plasma mem- 
brane. Ceramide then stimulates CAPK, which phosphov 
lates and activates Raf-1, and the ERK cascade. In cells in 
which TNF initiates apoptosis, TNF-TNF receptor interac* 
tion results in formation of a multi-protein complex that 
links the death domain (DD) in the membrane distal region 
of the cytoplasmic domain of the receptor to the adaptor 
proteins TRADD, FADD/MORTl , and pro-FLICE/MACHl . 
Autocatalysis of FLICE/MACHl is presumed to initiate a 
cascade of ICE/ted-3 proteases. The DD region also links to 
ASMase, perhaps via a phosphatidylcholine.specific phos- 
pholipase C (PCPLC) [38]. Deletions of the DD region of 
the TNF receptor [21] and CD95 [28], as well as overexpres. 
sion of dominant negative FADDMORT 1 { 81, block ligand. 
induced ceramide generation but not apoptosis initiated by 
ceramide analogs. Hence, ASMase activation can be mo. 
lecularly ordered downstream of the DD adaptor protein 
complex. As for environmental stress, ceramide generated 
via this mechanism eventually signals through the 
SAPKiJNK cascade. It is presumed that the effects of cer- 
amide act in concert with ICE/cede3 proteases activated di. 
rectly through FLICE/MACHl to mediate apoptosis. 

activation of ASMase ]28]. Whether the linkage between 
the death domains and ceramide is a general mechanism for 
the induction of apoptosis, and the molecular ordering of 
this putative pathway, remain unknown. 

A substantive body of evidence now exists defining cer- 
amide as a message for the induction of apoptosis. In intact 
cells, rapid ceramide generation is an early event in the 
apoptotic response to numerous stimuli including cytokines 

and environmental stresses, and ceramide analogs mimic 
the effect of stress and induce apoptosis [lo-131. More sub- 
stantial confirmation comes from “cell-free” studies using 

membrane fractions devoid of nuclei. Membranes isolated 

from cells treated with the cytokine TNF-ok or subjected to 

the environmental stress of ionizing radiation exhibit cer- 

amide generation via sphingomyelinase activation [20, 291, 

and can initiate nuclear apoptosis when combined with 

cytosol and nuclei from untreated cells (Mathias S, Billis W 

and Kolesnick R, unpublished observations). More impor- 

tantly, ceramide analogs, when added directly to the cell- 

free system, can also initiate the apoptotic program [31]. 

These latter data are consistent with activation by ceramide 

of a pre-programmed signaling pathway for induction of 

apoptosis. 

The most convincing evidence that ceramide is critical 

for induction of apoptosis is derived from studies using two 

genetic models of ASMase deficiency. Lymphoblasts from 

patients with NPD [41], an inherited deficiency of ASMase, 

and from transgenic ASM-KO mice [35, 361 manifest de- 

fects in the apoptotic response [42]. NPD lymphoblasts fail 

to respond to ionizing radiation with ceramide generation 

and apoptosis, whereas normal cells generate ceramide and 

are killed. These abnormalities were reversible in NPD lym- 

phoblasts upon restoration of ASMase activity by retroviral 

transduction of human ASMase cDNA [42]. Similarly, 

ASM-KO mice failed to exhibit the apoptotic response to 

radiation observed in several types of normal tissues. When 

compared with the ~53 knockout mouse, the patterns of 

defects in the apoptotic response were markedly different. 

In some tissues such as the endothelium of the lung and 

heart, and the mesothelium of the pleura and pericardium, 

radiation-induced apoptosis appears primarily dependent 

on ASMase and, for the most part, independent of ~53. In 

contrast, thymic apoptosis appears highly dependent on 

p53 and, for the most part, independent of ASMase. Hence, 

radiation appears capable of activating two apparently in- 

dependent signaling mechanisms for induction of apoptosis. 

These genetic models provide definitive evidence for the 

involvement of ASMase in at least one form of stress- 

induced apoptosis. 

Although the immediate target for ceramide in induction 

of the apoptotic response is at present uncertain, a number 

of direct cellular ceramide targets have been defined. One 

target is a proline-directed, serine/threonine-specific cer- 

amide-activated protein kinase (CAPK) [43, 441. CAPK 
phosphorylates and activates Raf-1 [45], and is thought 

to mediate proliferative and pro-inflammatory responses to 

TNF-ok via the ERK cascade. For several years, a ceramide- 

activated protein phosphatase (CAPP) with PPZA activity 
(serine/threonine specific) has been known [46], but mo- 
lecular characterization of CAPP was achieved only re- 

cently after genetic screening of yeast mutants resistant to 
ceramide inhibition of growth [47]. Yeast CAPP is a het- 
erotrimer of previously known proteins, consisting of two 
regulatory subunits and a catalytic subunit. Ceramide ap- 

parently activates the B subunit (Cdc55p), whereas the A 
subunit (Tpd3p) is required to bring the B subunit into 
association with the catalytic C subunit (Sit4p). Other tar- 
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gets of ceramide activation include an isoform of protein 
kinase C, PKC-5, which is coordinately regulated by cer- 
amide and arachidonic acid [48, 491, and the putative gua- 

nine-nucleotide exchange factor Vav [50]. Which, if any, of 
these ceramide targets initiate the apoptotic response is 
presently an area of active investigation. 

CERAMIDE AND THE SAPK/JNK PATHWAY 

Protein kinase cascades commonly serve as downstream 
effector systems linking cell surface receptors to cellular 

activation via second messengers. In particular, mito- 
gen-activated protein (MAP) kinase cascades have been 

associated recently with apoptosis. These cascades are com- 
prised of sets of protein kinases that are sequentially phos- 

phorylated and activated, resulting in transmission of the 
signal from the cell surface through the cytoplasm (Fig. 2). 

Eventually, cell-type specific substrates are targeted. The 
ERK cascade has been shown to communicate growth fac- 
tor- and phorbol ester-induced proliferative signals. Re- 

cently, stress-activated protein kinase or SAPK (also 
known as c-Jun kinase, or JNK), and p38 cascades have 
been defined. These cascades, activated by environmental 
stresses such as inflammatory cytokines, ATP depletion, 

heat and osmotic shock, ionizing and UV irradiation, and 
endotoxin have been shown to transmit growth arrest, dif- 

ferentiation, or apoptotic signals [51-531. 
Recent evidence links ceramide-induced apoptosis to the 

SAPK/JNK protein kinase cascade in a variety of cell types. 
Verheij et al. [32] reported that ionizing radiation, ultra- 

violet C radiation, H,O,, heat shock, and TNF-cc induce 
ceramide generation within seconds in primary cultures of 

bovine endothelial cells and U937 monoblastic leukemia 
cells, prior to activating the SAPK/JNK pathway. Further, 
a number of studies showed that ceramide analogs, like 

stress, activated the SAPK/JNK cascade [32, 54-571. Dis- 
ruption of signaling down the SAPK/JNK cascade but not 

the ERK cascade, by overexpression of dominant negative 
mutants, abrogated TNF-, stress- and ceramide-induced 

apoptosis. These studies provided evidence that the 
SAPK/JNK cascade was a downstream effector system for 

induction of apoptosis via ceramide. 
In contrast, ceramide and stress result in little or no 

change in ERK pathway activation in cells undergoing ap- 
optosis [32, 56, 571. In fact, evidence has been provided 
that the ERK cascade is anti-apoptotic. Greenberg and co- 
workers [58] showed that withdrawal of nerve growth factor 
from PC-12 cells resulted in activation of both SAPK/JNK 
and ~38 signaling systems coordinated with inactivation of 
ERK, and apoptosis. Using dominant-interfering or consti- 
tutively activated forms of these enzymes, it was demon- 
strated that the inactivation of the ERK cascade was re- 
quired in addition to activation of the SAPK/JNK and p38 
cascades for apoptosis to proceed in these cells. This sug 
gests that a balance between SAPK/JNK and ERK may be 
critical in effecting the apoptotic outcome. 

Taken together, these data may suggest a mechanism by 
which the SAPK/JNK signaling system may link ceramide 
signaling at the cell surface through to ICE/cede3 proteases 

to effect the apoptotic response. Consistent with this hy- 

pothesis, Hannun and co-workers recently reported that 
ceramide-initiated apoptosis was mediated by a CPP32-like 
protease, which was inhibitable by Bcl-2 [33, 591. Cells 
overexpressing Bcl-2, like wild-type cells, still responded to 
vincristine treatment with ceramide generation, but failed 
to show CPP32 activation and apoptosis in response to 
vincristine or a C6-ceramide analog. 

The concept that SAPK/JNK signaling might be obliga- 

tory for TNF-induced apoptosis was addressed in recent 
studies by Spiegel and co-workers [55]. Treatment of U937 
monoblastic leukemia cells with TNF-c~ or ceramide ana- 

logs induced SAPK/JNK activation and apoptosis, while 
SPP (Fig. l), a lipid second messenger associated with cal- 

cium mobilization, activated the ERK cascade and stimu- 
lated proliferation. Addition of SPP concomitant with TNF 

or ceramide analogs blocked signaling through the 
SAPK/JNK cascade for both agonists, and inhibited apop- 
tosis. However, SPP did not affect TNF-induced ceramide 
generation. The fact that SPP inhibited the apoptotic re- 

sponse to TNF suggests either that transmodulatory inacti- 
vation of SAPK/JNK blocks apoptosis, or that SPP inter- 
feres with the assembly or function of the TNF receptor 

death domain-adaptor protein system. The most likely in- 
terpretation of these observations is that the apoptotic re- 

sponse to TNF requires SAPK/JNK signaling in addition to 
that of adaptor proteins (see below). Consistent with this 

hypothesis are the preliminary studies that show that 
CD95-induced apoptosis is impaired in NPD cells and that 
this defect is reversed upon restoration of ASMase activity 
by retroviral transduction of the ASMase gene (Pena LA 
and Kolesnick R, unpublished observation). 

LINKING THE SAPWJNK PATHWAY, 
ICE/ted3 PROTEASES, AND APOPTOSIS 

The data described above indicate that transmembrane sig- 
naling initiated by cytokines and environmental stress in- 
volves the activation of the sphingomyelin pathway to ef- 
fect apoptosis. However, recent studies also show that cy- 

tokine receptors respond to ligand by formation of 
multiprotein complexes at the receptor, which mediate the 
apoptotic response. In the case of CD95 and the TNF re- 
ceptor, complex formation occurs by the binding of cyto- 
plasmic proteins containing death domains to the death 
domain of these receptors (Fig. 2). In the case of the TNF 
receptor, a protein termed TRADD binds via its death do- 
main to the receptor and to another adaptor protein termed 
FADD (also termed MORTl) [7, 8, 601. CD95, however, 
does not require TRADD and binds FADD/MORTl di- 
rectly. In addition to its death domain, FADD/MORTl 
contains a region termed a DED, another protein-protein 
interaction motif, which links to the DED of an ICE-like 
protease termed FLICE/MACHl. Ligand binding to the 
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TNF receptor and CD95 induces the formation of the death 
domain adaptor protein complex within seconds to min- 

utes. Further, overexpression of these proteins individually 
initiates apoptosis and dominant-interfering mutations 

block ligand-induced apoptosis. Hence, it has been postu- 
lated that formation of the ligand-dependent multi-protein 
complex that links directly to an ICE protease is sufficient 
to initiate a protease cascade that effects apoptosis directly. 
This mechanism would be analogous to that of complement 

or clotting. 

versies and uncertainties that exist in the field. Since ap- 
optosis plays a major role in the pathogenesis of disease and 
its management, it is important to advance the knowledge 
in this field. Improved understanding of various apoptotic 
signaling mechanisms and their coordinated function may 
yield opportunities for pharmacological interventions with 
important potentials for clinical application. 
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