Transfusion-Related Acute Lung Injury: An Update Mark A. Popovsky, M.D.

Blood Safety & Availability Committee Health & Human Services Department August 26, 2004

Transfusion Complications & Lung

- Lung not typically viewed as a target of injury
- Pulmonary complications include
 - Anaphylactic and allergic reactions
 - Circulatory overload
 - Hemolytic transfusion reactions (infrequent)
 - Bacterial contamination (rare)
 - > Transfusion-related acute lung injury

TRALI: Clinical/Laboratory Features

Symptom/Sign	Frequently
Dyspnea/respiratory distress	Very common
Hypoxemia	Very common
Pulmonary edema	Very common
Hypotension	Very common
Fever (1-2° increase)	Very common
Tachycardia	Common
Cyanosis	Common
Hypertension	Uncommon
Leucopenia	?
Hypocomplementemia	?
Monocytopenia	?
Adapted from Webert K & Bla	ichman TMR 2003.17 3

Adapted from Webert K & Blajchman. TMR 2003;17

What is TRALI?

Predominant presenting symptoms (N=46)

Sign/Symptoms%Respiratory distress76Hypotension15Hypertension15

[Popovsky & Haley, Immunohematology 2000;16]

Clinical Features

- Timeline: Symptoms from onset of transfusion
 - >90% of cases within 1-2 hours
 - > 100% of cases within 6 hours
- Plasma-containing transfusions

Popovsky MA & Moore SB. Transfusion 1985;25:573-577

Chest X-ray

Clinical Features (cont.)

- Hypotension does not respond to intravenous fluids
- Rales and diminished breath sounds
- Normal jugular venous pressure
 - Absent S3
 - Normal/low pulmonary wedge pressure

No fluid overload

Implicated Blood Products

Whole blood

FFP

- RBC (all anticoagulant/preservatives)
- Granulocytes (by apheresis)
- Cryoprecipitate (rare)
- Platelet concentrate
- Plateletpheresis
- IVIG (rare)

Most Frequent Implicated Blood Products

- Red Blood Cells
- Fresh Frozen Plasma
- Apheresis platelets
- Platelet concentrates

TRALI: The Earliest Definition

- Acute respiratory distress
- Hypoxemia: Pa0₂ of 30-50 torr
- Bilateral pulmonary edema: rapid onset
- Hypotension: moderate
- Fever
- Within 6 hours of a plasma-containing transfusion
- Exclusions: Underlying cardiac failure/respiratory disease

Popovsky & Moore: 1983 & 1985 (Transfusion & Amer Rev Resp Disease) 10 HAEMONETICS®

<u>Clinical Course</u>

<u>Morbidity</u>	<u>N</u>	<u>%</u>
Required oxygen support	36	100
Required mechanical ventilation	26	72
Pulmonary infiltrates		
Rapid resolution (\leq 96 hrs)	29	81
Slow resolution (> 7 days)	6	17
Mortality	2	6
Long-term sequelae	0	

Popovsky & Moore, Transfusion 1985;25:573-577

FDA: Average of Key Causes of Death FY01 – FY03

• TRALI

✓ 16.3%

ABO/Hemolytic Transfusion Reactions

✓ 14.3%

Bacterial Contamination

✓ 14.1%

Mortality Rate

- Popovsky
- Silliman
- Holness
- Wallis

 $> 6 \rightarrow 23\%$

TRALI: Incidence

- 1982 -1985: 1:5,000 plasma-containing transfusions
 - Mayo Clinic: "Educated" Medical Center
 - Specially trained nurses administer nonoperating room transfusions
- Current incidence unknown

TRALI: Incidence

Risks per 100,000 Units & Patients for TRALI				
Study	Years	# cases	Risk per 100,000 units	Per 100,000 Patients
Popovsky	1982-1985	36	20	160
Weber	1985-1993	8		42
Clarke	1991-1993	46	320	
French Hemovigilance	1995-2000	7		1.4
SHOT	2000-2001	RBC 6	0.25	
		PLT 3	1.38	

Adapted from Kleinman S. TMR 2003;17:120-162

HAEMONETICS®

Under-reported

- Retrospective chart review of 50 patients receiving blood from a donor linked to fatal TRALI
- > Outcome measure:
 - Mild/moderate: dyspnea/hypotension, +/- hypoxemia
 - Severe: Acute pulmonary edema/mechanical ventilation

Kopko et al. JAMA 2002;287:1968

Under-reported (cont.)

- > 36 chart reviews included
- > 7 mild/moderate reactions (16.7%)
- > 8 severe reactions (22.2%)
- 2 had 2 reactions
- Only 2 of 8 severe reactions reported to transfusion service

Kopko et al. JAMA 2002;287:1968

HAEMONETICS®

Who is at Risk?

- Male: Female = 1:1
- No age predilection
- No disease or diagnosis predilection
- No medication pattern
- Multiple transfusions?
- Transfusion?

Admitting Diagnosis of 58 TRALI Fatalities

Diagnoses (n = 58)	Number	Percent
Cardiopulmonary	20	36
Hematological disorder	19	32
Diabetes and end-stage renal disease	5	9
Cancer	4	7
Other (fever, gastrointestinal bleeding, AIDS)	6	10
Diagnosis not provided	4	7

L Holness et al. Transfusion Medicine Reviews 2004;18:184-188

Spectrum of Clinical Presentation

Mild	Severe
Dyspnea	Dyspnea
Fever	Hypoxemia
	Pulmonary Edema
	Hypotension
	Fever

Laboratory Findings

Pre-Mayo Studies (before 1983 – 1985)

	Leukoagglutinating Antibodies	Lymphocytotoxic
Donor	+	+
Recipient	+	+

Laboratory Findings (cont.) 1980's Mayo Clinic Studies

Reference	Findings
1983 (N = 5)	 Donor Class I HI A antibodies in 4/5
	 Leukoagglutinating Antibodies in 5/5 Antibody/Antigen correspondence in 3/5
1985 (N = 36)	 Donor Class I HLA/leukoagglutinating in 89% Aby/Ag correspondence in 59% Recipient antibody in 6%

TRALI: Pathogenesis

Increased Microvascular Permeability

Leukocyte Antibodies

Bioactive Lipids (2 "hit" model)

Pathogenesis

HLA Class I/Granulocyte Antibodies

- Precise mechanism is unknown
- Donor HLA or granulocyte-specific antibodies (anti-NB2, -NA2, -5b): 60-85% of cases
- HLA antibody/antigen correspondence: 50% of cases
- Antibodies activate complement

Pathogenesis (1)

HLA Class I/Granulocyte Antibodies

- C5a promotes neutrophil aggregation/sequestration in microvasculature of lung
- There is margination of neutrophils in pulmonary microvasculature
- Activated neutrophils release proteases, superoxide radicals: results in endothelial cell injury → pulmonary edema

Pathogenesis (2)

HAEMONETICS®

Pathogenesis (3)

HAEMONETICS®

Pathogenesis (4)

- 14 of 16 cases (87.5%) demonstrated antigen-antibody correlation (class I or II)
- In 6 cases TRALI monocytes incubated with <u>implicated</u> TRALI serum, expressed significantly greater cytokine and tissue factor

(Transfusion 2003;43:177-184)

Pathogenesis (5)

Role of Multiparous donor plasma

- Prospective, randomized study
- 102 ICU patients receiving ≥ 2 units FFP
- Multiparous (≥ 3 pregnancies) donors vs. controls
- 5 patients had clinical reactions \rightarrow 1 TRALI
 - Donor was multiparous
- \downarrow PaO₂/FiO₂ (p< 0.05) in multiparous-donor vs. control plasma

(Palfi et al, Transfusion 2001:41) HAEMONETICS[®]

TRALI: Antibody & Severity

	% with Antibody
Recovered without ventilation	45%
Recovered with ventilation	69%
Death	77%

J Freedman (Hema Quebec): Personal correspondence

Pathogenesis: 2-Hit Model

1st Event Pulmonary endothelial activation (underlying condition) 2nd Event Infusion of BRM from stored blood Acute Lung Injury

U.K. Developments

- 89% of investigated TRALI cases associated with leukocyted antibodies
- Excess of cases attributed to FFP or platelets (47%) compared to total units issued (25%)
- Of FFP & platelet cases, 91% included leukocyte antibody-positive female donors
- Now "diverting" female plasma away from FFP production
- "Male only" FFP

What Needs To Be Done?

- Identify patients at risk
- Identify donors at risk
 - Screen multiparous donors (for platelet/FFP products) for HLA/granulocyte antibodies?
 - Screen transfused donors?
- Develop a product management scheme
 - Defer implicated donors
 - Wash/freeze RBC from implicated donors
 - Divert plasma from females or antibodypositives?

Conclusion

- TRALI is an under-diagnosed, under-reported serious problem
- Represents a spectrum of lung injury (NCPE \rightarrow ARDS)
- Antibody-mediated injury is primary mechanism of injury
- Several pathogenic models may be operative
- Prospective, multicenter studies needed

Proactive steps are needed to reduce risk HAEMONETICS[®]