Application of FTLOADDS to Simulate Flow, Salinity, and Surface-Water Stage in the Southern Everglades, Florida

By John D. Wang, Eric D. Swain, Melinda A. Wolfert, Christian D. Langevin, Dawn E. James, and Pamela A. Telis

Prepared in cooperation with the South Florida Water Management District as part of the Comprehensive Everglades Restoration Plan

Scientific Investigations Report 2007–5010

U.S. Department of the Interior U.S. Geological Survey

U.S. Department of the Interior

DIRK KEMPTHORNE, Secretary

U.S. Geological Survey

Mark D. Myers, Director

U.S. Geological Survey, Reston, Virginia: 2007

For product and ordering information: World Wide Web: *http://www.usgs.gov/pubprod* Telephone: 1-888-ASK-USGS

For more information on the USGS--the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS

Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report.

Suggested citation:

Wang, J.D., Swain, E.D., Wolfert, M.A., Langevin, C.D., James, D.E., and Telis, P.A., 2007, Application of FTLOADDS to Simulate Flow, Salinity, and Surface-Water Stage in the Southern Everglades, Florida: U.S. Geological Survey Scientific Investigations Report 2007–5010, 114 p.

Contents

Abstract	1
1 - Introduction	2
1.1 - Purpose and Scope	2
1.2 - Description of Study Area	2
1.3 - Acknowledgments	3
2 - Development of the FTLOADDS Model Code	4
2.1 - Version 2.1 of the FTLOADDS Code	4
2.2 - Version 2.2 of the FTLOADDS Code	4
2.2.1 - Drying and Flooding	4
2.2.2 - Friction Coefficient	5
2.2.3 - Evapotranspiration	5
3 - Application of FTLOADDS to TIME	8
3.1 - Simulation Period	9
3.2 - Model Grid	9
3.3 - Model Input	11
3.3.1 - Topography and Bathymetry	11
3.3.2 - Defining Manning's <i>n</i> at Cell Faces	11
3.3.3 - Soil Stratigraphy, Hydraulic Conductivities, and Thin Layer Characteristics	11
3.3.4 - Incorporation of Roads, Bridges, Culverts, and Structure Flows	12
3.3.5 - Stage Data for Boundaries	14
3.3.6 - Rainfall Data	17
3.3.7 - Potential Evapotranspiration Parameters	17
3.3.8 - Wind Data	22
3.3.9 - Coastal Water Levels and Salinities	22
3.3.10 - Ground-Water Boundary Conditions	23
3.4 - Freshwater Flux Output at the TIME Application Boundary	23
3.5 - Model Initialization	24
3.6 - Initial Model Calibration	24
3.6.1 - Wetlands Water Levels	24
3.6.2 - West Coast River Stages and Flows	30
3.6.3 - Stages and Flows at Taylor Slough	35
3.6.4 - Surface-Water Depths, Flows, and Salinities	35
3.6.5 - Leakage and Evapotranspiration Rates	45
3.6.6 - Ground-Water Flows and Salinities	46
3.7 - Model Sensitivity Studies	46
3.7.1 - Comparison of Versions 2.1 and 2.2 of the FTLOADDS Code	47
3.7.2 - Sensitivity to Manning's <i>n</i> Adjustment	50
3.7.3 - Neglecting Ground-Water Leakage Effects	50
3.7.4 - Sensitivity to Incorporation of Main Park Road as a Barrier	65
3.7.5 - Sensitivity to Lowering of Land-Surface Altitude	65

3.8 - Final Model Calibration – Run 157	65
3.8.1 - Northwestern Region	65
3.8.2 - Levee 31 Area	65
3.8.3 - C-111 Area	74
3.8.4 - Results of Final Calibration	74
3.9 - Future Uses of TIME Application	85
4 - Summary	87
5 - References Cited	
Appendix 1: SICS Application Scenarios	
Appendix 2: Parameters for FTLOADDS Input Files	

Figures

1.	Map showing location of the TIME and SICS domains, geographic features, and water-management features	3
2.	Flowchart showing linkage between models used to simulate various restoration scenarios	8
3-7.	Maps showing:	
	3. Extent of active cells and land-surface altitudes in the TIME area	10
	4. Distribution of Manning's <i>n</i> values in the TIME area	12
	5. Adjustments to Manning's <i>n</i> values in the TIME area	13
	6. Hydraulic conductivities in layer 1 in the TIME area	14
	7. Transmissivity in layer 5 in the TIME area	15
8.	Graph showing cumulative flows at selected control structures in the TIME area	15
9-11.	Maps showing:	
	9. Location of stage recording stations in the TIME area	16
	10. Distribution of annual average rainfall in the TIME area	18
	11. Location of rainfall stations within the rainfall zones of the TIME area	19
12.	Graphs showing comparison between cumulative rainfall for the six zones and average rainfall computed by the dynamic Thiessen polygon method	20
13.	Graph showing cumulative evapotranspiration in the TIME area	22
14.	Diagram of freshwater flux cases	24
15.	Graphs showing comparison of water levels at selected gaging stations in the TIME area	25
16.	Map showing spatial distribution of model mean stage bias in the TIME area for run 142	29
17.	Map showing spatial distribution of percentage of explained variance in the TIME area for run 142	30
18.	Time-series plots showing measured and computed stage at selected west coast rivers over time	31
19.	Time-series plots showing river flow over neap-spring cycle at selected west coast rivers	33
20.	Graphs showing cumulative flows at selected west coast rivers over time	34

21-23.	Model-grid maps showing:	
	21. Spatial and temporal distribution of surface-water depth and velocity in the TIME area	35
	22. Spatial and temporal distribution of surface-water salinity in the TIME area	40
	23. Average leakage rates in the TIME area	45
24.	Graph showing cumulative leakage and evapotranspiration from ground water in the TIME area for the standard data period	46
25.	Graph showing average flows to the coast for the standard data period	47
26.	Model-grid map showing area of the TIME domain used to create the ESICS domain	48
27-29.	Graphs showing:	
	27. Comparison of flows from field data and the SICS and ESICS applications at selected coastal creeks, 1996-2002	51
	28. Comparison of wetland stages using constant and variable Manning's <i>n</i> values at selected sites	52
	29. Comparison of stages between the SICS and ESICS applications at selected wetland stations	53
30-33.	Maps showing:	
	30. Spatial distribution of mean stage difference between simulations with adjusted Manning's <i>n</i>	60
	31. Spatial distribution of mean stage difference between simulations with and without leakage	61
	32. Spatial distribution of mean stage difference between simulations with and without the Main Park Road as a barrier	69
	33. Spatial distribution of mean stage difference between simulations with and without lowered land surface	73
34.	Hydrographs showing comparison of water levels at selected stations in the TIME area for run 157	75
35.	Map showing spatial distribution of model mean stage bias in the TIME area for run 157	84
36.	Map showing spatial distribution of percentage of explained variance in the TIME area for run 157	85
37.	Graphs showing comparison of salinities at Trout Creek for runs 142 and 157	86

Appendix Figures

A1.	Map showing boundary conditions for the SICS domain	92
A2.	Map showing overlay of the SFWMM grid on the SICS model grid	93
A3-A5.	Graphs showing:	
	A3. Flow from the calibrated and verification linked model runs at selected coastal creeks along northeastern Florida Bay, 1996-2000, using FTLOADDS	94
	A4. Cumulative flow from the calibrated and verification linked model runs at five coastal creeks along northeastern Florida Bay, 1996-2000, using FTLOADDS	96

	A5.	Salinity from the calibrated and verification linked model runs at selected coastal creeks along northeastern Florida Bay, 1996-2000, using FTLOADDS	
A6.	Map wat	o showing location of surface-water stations used for determination of er-level and discharge data in the SICS domain	
A7.	Graj linke Parl	ohs showing surface-water stage from the calibrated and verification ed model runs at selected wetland stations in Everglades National <, 1996-2000, using FTLOADDS	
A8-A13.	Plot	s showing:	
	A8.	Simulated flow for scenario 1 (2000B2_SICS) at selected coastal creeks along northeastern Florida Bay, 1996-2000	102
	A9.	Simulated salinity for scenario 1 (2000B2_SICS) at selected coastal creeks along northeastern Florida Bay, 1996-2000	104
	A10.	Simulated surface-water stage for scenario 1 (2000B2_SICS) at selected wetland stations in Everglades National Park, 1996-2000	106
	A11.	Effects of sea-level rise on flows at selected coastal creeks along northeastern Florida Bay, 1996-2000	108
	A12.	Effects of sea-level rise on salinities at selected coastal creeks along northeastern Florida Bay, 1996-2000	110
	A13.	Effects of sea-level rise on stages at selected wetland stations in Everglades National Park, 1996-2000	112

Tables

1.	Evapotranspiration monitoring site characteristics	7
2.	Net average total flow and freshwater flow toward the coast for the standard data period	15
3.	Calculated evapotranspiration values as a function of aerodynamic roughness at vegetated sites in southern Florida	21
4.	Calculated evapotranspiration values as a function of aerodynamic roughness and water heat-storage	21
5.	Summary statistics of stage comparisons for station data used in the TIME application	28
6.	West coast river stage comparison statistics for run 142	32
7.	Comparison statistics for measured and simulated west coast river flows	34
8.	Comparison of SICS and ESICS applications	48
9.	Water-level comparison statistics for run 139, local Manning's n adjustments	54
10.	Water-level comparison statistics for run 142, base case simulation	57
11.	Water-level comparison statistics for run 145, leakage neglected	62
12.	Water-level comparison statistics for run 143, Main Park Road as a barrier	66
13.	Water-level comparison statistics for run 146, land-surface altitude lowered	
	0.1 meter	70
14.	Water-level comparison statistics for run 157, final calibration	78
15.	Water-level comparison statistics for run 157GW, model ground water only	81

Conversion Factors, Acronyms, and Abbreviations

Multiply	Ву	To Obtain
centimeter (cm)	0.3937	inch (in.)
meter (m)	3.281	foot (ft)
meter per day (m/d)	3.281	foot per day (ft/d)
meter per second (m/s)	3.281	foot per second (ft/s)
meter per year (m/yr)	3.281	foot per year (ft/yr)
kilometer (km)	0.6214	mile (mi)
square kilometer (km ²)	0.3861	square mile (mi ²)
cubic meter (m ³)	264.2	gallon (gal)
cubic meter per second (m ³ /s)	264.2	gallon per second (gal/s)
cubic meter per day (m ³ /d)	264.2	gallon per day (gal/d)

Acronyms

ADAPS	Automated Data Processing System
ADI	Alternating Direct Implicit
CERP	Comprehensive Everglades Restoration Plan
DIFMEAN	difference in means
DTPM	Dynamic Thiessen polygon method
EFDC	Environmental Fluid Dynamics Code
ESICS	Embedded Southern Inland and Coastal Systems application
ET	evapotranspiration
FBFKFS	Florida Bay Florida Keys Feasibility Study
FTLOADDS	Flow and Transport in a Linked Overland/Aquifer Density Dependent System
GHB	general-head boundary
JBWS	Joe Bay Weather Station
MAE	mean absolute error
MB	Manatee Bay
NOAA	National Oceanic and Atmospheric Administration
OIH	Old Ingraham Highway
PET	potential evapotranspiration
PEV	percentage of explained variance
PM	Penman-Monteith evapotranspiration equation
ppt	parts per thousand
psu	practical salinity units
PT	Priestley-Taylor evapotranspiration equation
SDP	standard data period

SFNRC	South Florida Natural Resources Center
SFWMD	South Florida Water Management District
SFWMM	South Florida Water Management Model
SICS	Southern Inland and Coastal Systems
SOFIA	South Florida Information Access
SWIFT2D	Surface-Water Integrated Flow and Transport in Two Dimensions
s/m	seconds per meter
TIME	Tides and Inflows in the Mangroves of the Everglades
TSB	Taylor Slough Bridge
USACE	U.S. Army Corps of Engineers
USGS	U.S. Geological Survey
UTM	Universal Transverse Mercator

Vertical coordinate information is referenced to the North American Vertical Datum of 1988 (NAVD 88); horizontal coordinate information is referenced to the North American Datums of 1927 and 1983 (NAD 27 and NAD 83).