3.6.5 - Leakage and Evapotranspiration Rates

Maps of average calculated leakage rates for the SDP show a zone of strong upward leakage on the southern side of Tamiami Trail (figs. 1 and 23). This zone of upward leakage is created by ground water flowing beneath the trail as a result of higher ground-water heads on the northern side of the trail. Conversely, a zone of strong downward leakage and eastward ground-water flow exists along Levee 31, and results from the drained conditions in developed coastal areas east of the levee. Zones of relatively minor upward leakage occur where relatively low land-surface altitudes are present south and west of the C-111 Canal and in waterways along the coast.

Total flux, including (1) upward and downward surfaceand ground-water leakage, and (2) ground-water ET during the SDP, was summed spatially and temporally (fig. 24). Consumptive ground-water use due to evapotranspiration during a period of 7 years $(3.64 \times 10^9 \text{ m}^3)$ exceeds losses asociated with upward ground-water leakage $(2.40 \times 10^9 \text{ m}^3)$; the sum of vertical flux and consumptive losses closely corresponds to downward vertical leakage of surface water $(5.94 \times 10^9 \text{ m}^3)$. Head-dependent ground-water boundary flux across all GHBs should equal the net volume of vertical flow. In this instance:

 5.94×10^9 m³ (downward vertical surface-water leakage) - 3.64×10^9 m³ (consumptive losses by evapotranspiration) - 2.40×10^9 m³ (head-dependent ground-water boundary flux)

-0.10 x10⁹ m³ (negative sign indicates leakage of ground water from aquifer to surface)

The model budget shows a head-dependent flow into the aquifer of 2.07×10^9 m³ compared to an outflow of 1.9637×10^9 m³, which is presumed to be leakage to coastal canals, resulting in a net inflow to the aquifer of about 0.10×10^9 m³. This

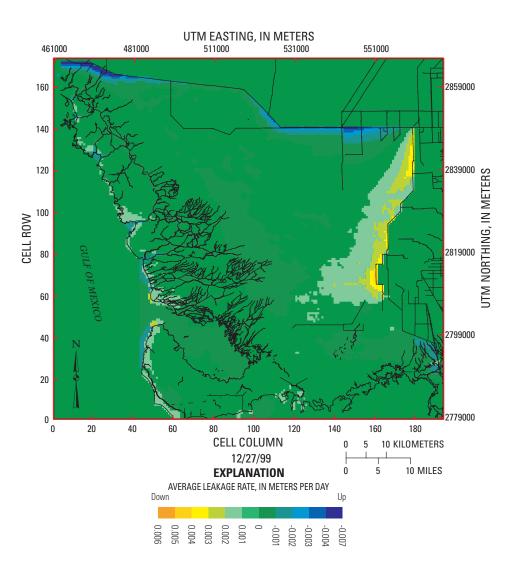
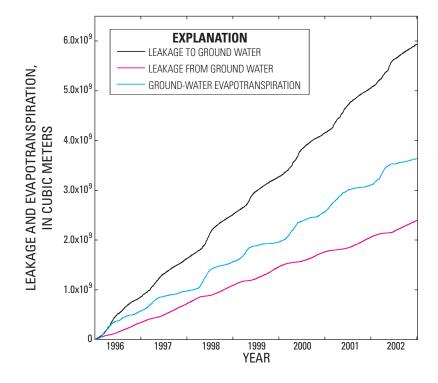
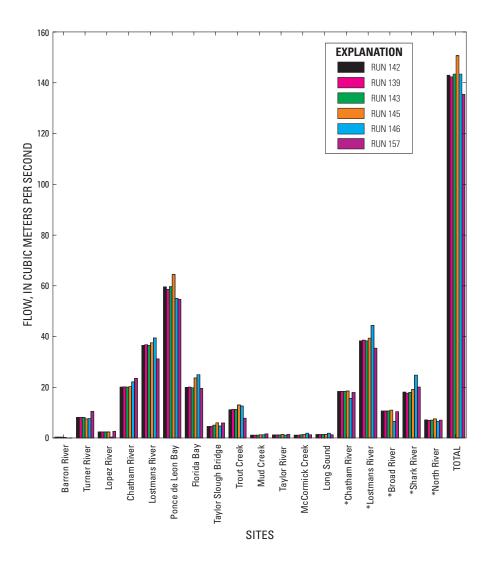



Figure 23. Average leakage rates in the TIME area.

Figure 24. Cumulative leakage and evapotranspiration from ground water in the TIME area for the standard data period.

is equal and opposite to the net vertical volume flow and is relatively small compared to leakage or ET from ground water.


Nemeth and others (2000) estimated that leakage beneath Levee 31N ranges from -18.7 to +46.5 m³/d per meter of levee. Assuming an average leakage of 30 m³/d per meter and a levee length of 25 km yields a total leakage of 1.92×10^9 m³ for the SDP, which is in good agreement with the model result noted earlier. In contrast, the total flow from S-12D noted earlier is 2×10^9 m³, which is an order of magnitude greater than the net head-dependent ground-water inflow. Thus, the ground acts as a surface-water sink, with total volume into ground water equal to 2.3×10^9 m³. This is a small fraction of the total flow from all culverts and structures, and therefore, perhaps of secondary importance.

3.6.6 - Ground-Water Flows and Salinities

The ground-water flows in layer 1 of the model reflect the leakage pattern, with flows directed toward the east along most of Levee 31 and toward the south along Tamiami Trail. In lower layers, flow divergence is evident along the salinity front. The flows at the beginning and end of the simulation are similar, indicating that ground-water flow adjustments occur slowly and may take several decades to reach equilibrium. Ground-water salinities are influenced by the assumed initial conditions and additionally are affected by open-boundary conditions in the surface-water model. The simulations, however, show that the salinity front is far inland on the western side of the domain as indicated by resistivity studies (Fitterman and Deszcz-Pan, 2002). Until better boundary conditions can be prescribed and simulations can be run for longer time periods, computed ground-water salinities are not significant, and therefore, are not shown.

3.7 - Model Sensitivity Studies

To better understand model response and the robustness of calculated flows to the coast, a number of runs were conducted in which the major assumptions and parameters were varied. Several indices were used to measure model performance: (1) the sum of the absolute values of the difference in means, (2) the sum of squares of the difference in means, (3) the sum of correlations, and (4) the sum of PEV values for all 105 stage stations for which comparisons were made between model output and field data. These measures are not completely independent, but are reported in table 5 to accommodate different aspects of the analysis. Additionally, the average flows to the coast for the SDP are compared in figure 25, which shows the average flow at: (1) open-boundary

Figure 25. Average flows to the coast for the standard data period. Asterisk indicates flow at location of U.S. Geological Survey monitoring station.

locations, (2) mouths of creeks along the Florida Bay coastline, (3) USGS monitoring stations along the west coast rivers, and (4) TSB.

3.7.1 - Comparison of Versions 2.1 and 2.2 of the FTLOADDS Code

The TIME application can be further examined in the Taylor Slough area by comparison to the previous SICS application. Toward this end, a simulation was developed that isolates the SICS domain within the TIME domain. This simulation permitted direct comparison between applications using the same domain and boundary conditions, but with somewhat different model formulations, rainfall distributions, and grid resolutions.

As discussed in section 2.2, the FTLOADDS code version 2.2 in the TIME application includes several modifications not available in the version 2.1 SICS application. The TIME application also has inherent differences in grid spacing, time-step length, creek representation, and boundary conditions. It was, therefore, of interest to compare the new and old formulations and applications. To accomplish this, the area of the TIME application grid outside the domain of the original SICS application was made inactive, and boundaries around the active region were defined with the same flow and water-level conditions used in the SICS application. This modified application is referred to as the Embedded SICS (ESICS) application, the domain of which is shown in figure 26. Boundaries were modified by specifying: flow at TSB, Levee 31W Canal, and C-111 Canal, water levels along Old Ingraham Highway, and ground-water heads beneath the levee along the northern part of C-111 Canal. The

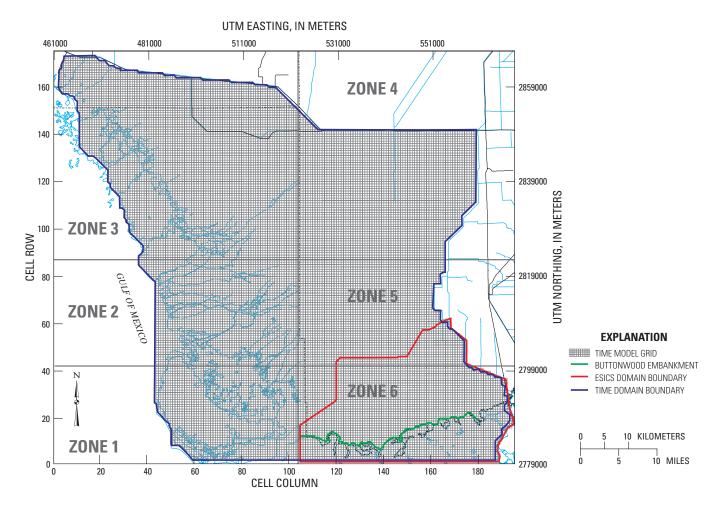


Figure 26. Area of the TIME domain used to create the ESICS domain.

Table 8. Comparison of SICS and ESICS applications.

[SICS, Southern Inland and Coastal Systems; ESICS, Embedded Southern Inland and Coastal Systems]

Model	Model									
characteristic	SICS	ESICS								
Grid Spacing	305 meters	500 meters								
Rainfall	Specified at 15-minute intervals and spatially interpolated for each model cell	Specified as 6-hour averages and partially uniform over zones defined for the TIME application.								
Evapotranspiration	Computed cell-by-cell according to the best-fit equation discussed by Swain and others (2004)	Computed using the modified Penman method								
Wetting and drying	Model cell removed from computational domain when water- level drops below user-defined depth	Algorithm modified to allow for rewetting directly from rainfall recharge and evapotranspiration from residual water								
Frictional- resistance terms	Defined at cell centers	Defined at cell faces								
Coastal embankment	Defined by the formulation of barriers originally designed to represent weirs; coastal rivers are defined as low barriers with a representative flow coefficient	Defined by modified cell-face frictional- resistance terms; coastal creeks are defined as gaps with specified friction terms								

boundary conditions of the ESICS application were defined with the same field time-series data used for the original SICS application. The basic differences between the SICS and ESICS applications are the same as those between SICS and TIME, and versions 2.1 and 2.2 of FTLOADDS (table 8).

The ESICS and TIME applications are identical (or nearly so) in several respects:

- The TIME grid is retained in ESICS; therefore, the same 500-m grid spacing is used.
- Rainfall zonation is identical in ESICS and TIME, although only rainfall zones 5 and 6 have portions within the ESICS domain.
- Evapotranspiration is identical for equivalent cells in ESICS and TIME.
- Frictional terms used at the cell faces are identical in ESICS and TIME. The terms are varied at the coastal embankment and at the coastal creeks as part of the calibration procedure. After the terms are calibrated in the ESICS application, they are transferred to the TIME application for use in representing the embankment and creeks.

SICS and ESICS application results were compared to evaluate the implications of differences between versions 2.1 and 2.2 of the FTLOADDS code. The comparison also provides insight into the relative accuracy of the TIME and SICS applications. One of the version differences is in the representation of coastal creeks. The calibrated frictional values (Manning's n) at the cell faces representing the creeks cannot be equated directly to the properties of the actual creeks, primarily because cell cross-sectional areas are greater than the actual creeks and cell depths are generally less than the actual creeks. Additionally, a given creek may occupy only a fraction of the distance between centers of adjacent cells. In order to relate cell frictional resistance to the actual creek, it is useful to visualize the total head loss between the two cells representing the creek in three parts: head loss between the upstream cell center and the upstream end of the creek, h_i ; head loss through the creek, h_2 ; and head loss between the end of the creek and the center of the downstream cell, h_3 . Using Manning's equation, the sum of these three variables must equal the head loss depicted in the model:

$$h_1 + h_2 + h_3 = \frac{Q^2 n_{cell}^2 l_{cell}}{d_{cell}^{10/3} w_{cell}^2},$$
(5)

where *Q* is flow rate, n_{cell} is Manning's *n* in the cell, l_{cell} is length dimension of the cell, d_{cell} is cell depth, and w_{cell} is cell width (the same as the cell length for a square cell). The head loss terms take the form:

$$h_{\rm l} = \frac{Q^2 n_{up}^2 \stackrel{\text{ad}_{cell}}{\subseteq} - l_{creek} / 2 \stackrel{\text{i}}{\underset{\emptyset}{\stackrel{\otimes}{\geq}}}}{d_{cell}^{10/3} w_{cell}^2}, \qquad (6)$$

and:

$$h_{3} = \frac{Q^{2} n_{dn}^{2} \underbrace{\overleftarrow{g}}_{cell}^{2} - l_{creek}}{d_{cell}^{10/3} w_{cell}^{2}}, \qquad (8)$$

(7)

where

 n_{up} is Manning's *n* in the upstream cell area,

 $h_2 = \frac{Q^2 n_{creek}^2 l_{creek}}{d_{creek}^{10/3} w_{creek}^2}$

 l_{creek} is creek length,

 n_{creek} is Manning's *n* in the creek,

 n_{dn} is Manning's *n* in the downstream cell area,

 d_{creek} is creek depth, and

 w_{creek} is cell depth.

Combining these three equations yields:

$$n_{creek} = \sqrt{\frac{n_{cell}^2 l_{rat} - (n_{up} + n_{dn})/2 (l_{rat} - 1)}{d_{rat}^{10/3} w_{rat}^2}}, \qquad (9)$$

where l_{rat} is the ratio of cell length to creek length, d_{rat} is the ratio of cell depth to creek depth, and w_{rat} is the ratio of cell width to creek width. Using a model cell width of 500 m and known creek widths from Swain and others (2004), the ratios of cell to creek widths are as follows: McCormick Creek w_{rat} is 29.76, Taylor River w_{rat} is 74.63, Mud Creek w_{rat} is 40.98, Trout Creek w_{rat} is 13.66, and West Highway Creek w_{rat} is 23.47.

The ratios of cell to creek depths vary with water level, thus a representative mean stage must be used. With an assigned stage of about 0 m relative to NAVD 88, the ratios are as follows: McCormick Creek d_{rat} is 0.658, Taylor River d_{rat} is 0.691, Mud Creek d_{rat} is 0.592, Trout Creek d_{rat} is 0.789, and West Highway Creek d_{rat} is 1.0.

Creek length was determined from digital maps of the area. For a creek longer than a cell dimension, the cell dimension was used because it is the relevant distance over which the water-level difference is represented. The following ratios of cell length to creek length were then calculated: McCormick $l_{rat} = 1.0$, Taylor $l_{rat} = 1.0$, Mud $l_{rat} = 1.21$, Trout $l_{rat} = 3.29$, and West Highway $l_{rat} = 1.66$. This results in the following *n* values: McCormick Creek $n_{cell} = 0.7$, $n_{creek} = 0.047$; Taylor River $n_{cell} = 1.0$, $n_{creek} = 0.047$; Mud Creek $n_{cell} = 0.7$, $n_{creek} = 0.045$; Trout Creek $n_{cell} = 0.08$, $n_{creek} = 0.015$; and West Highway Creek $n_{cell} = 0.4$, $n_{creek} = 0.022$.

This computation yields low Manning's *n* values compared to previously accepted values (Swain and others, 2004); however, this easily could be due to the different representation of the creeks. The ability of the model to represent coastal flow conditions is the best measure of the utility of each method.

The primary model output used for comparison is the discharge at the coastal creeks, primarily McCormick Creek, Taylor River, Mud Creek, Trout Creek, and West Highway Creek. It is generally more difficult to represent discharge than water levels in numerical models. Coastal discharges are of primary interest, however, to the restoration efforts as a measure of freshwater flow to the estuaries. A comparison between flows from field data, the original SICS application, and ESICS is shown in figure 27. The improvement with ESICS is apparent, especially in the representation of flow peaks. Computing the mean absolute error (MAE) between each of the applications (SICS and ESICS) and the field data yields the following results:

Creek	Mean absolute error (cubic meter per second)						
	SICS	ESICS					
McCormick Creek	1.69	1.27					
Taylor River	.928	.900					
Mud Creek	.962	.801					
Trout Creek	6.20	5.07					
West Highway Creek	1.42	1.27					

A consistent reduction in the MAE occurs at all flow locations with ESICS versions 2.1 and 2.2

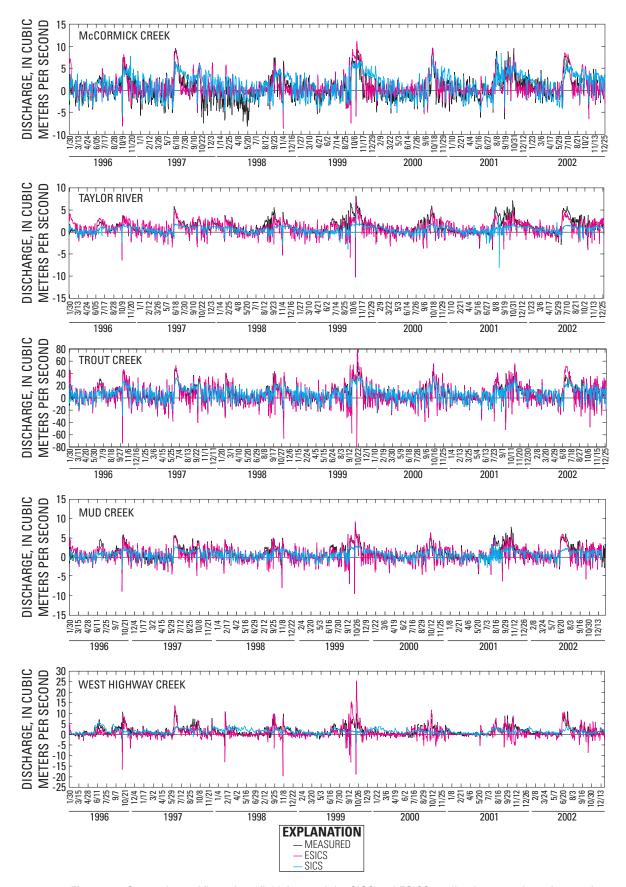
Two different methods for representing the frictional-resistance term are used in the ESICS comparison. The constant Manning's n representation uses the standard representation of Manning's frictional resistance with a constant value to compute the Chezy C value (Swain, 2005, p. 11). The variable Manning's n representation uses the empirically derived variation of n with depth from Swain and others (2004). This variable formulation is designed to approximate the effects of emergent vegetation and microtopography on the frictional resistance. The coefficients in the formulation were varied empirically, however, to obtain the best fit with the original SICS application, and thus the method had no theoretical foundation. The comparison of these two methods is shown in figure 28. The variable Manning's *n* method provides results that are closer to field measurements, but still reduces the rapid recessions when regional drying occurs. A comparison of stages produced by SICS and ESICS at selected wetland stations is shown in figure 29. Although model performance is demonstrated more critically with comparisons of volume fluxes, the ability to represent similar stage values also indicates coherence and agreement between SICS and ESICS.

3.7.2 - Sensitivity to Manning's *n* Adjustment

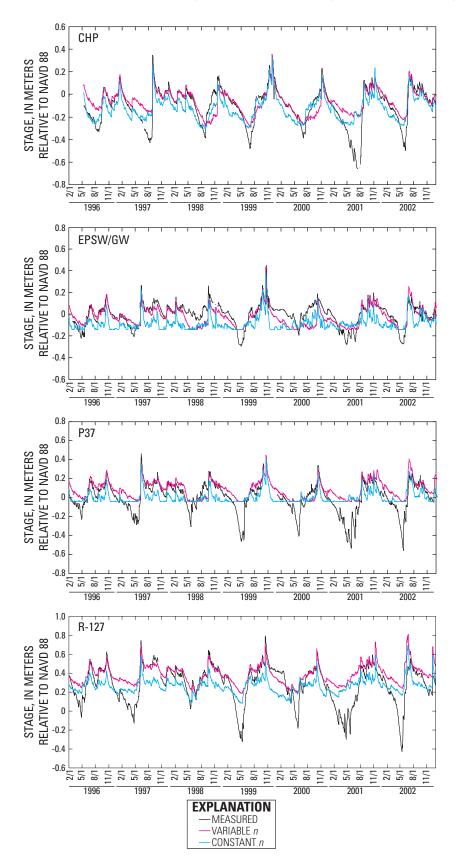
In run 139, Manning's n is adjusted in the arbitrary rectangles shown in figure 5 to determine the effects of gross changes in friction. The locations of the rectangles

were chosen to affect the mean bias at NP201, S12B, S12C, NE2, and P34 (fig. 9). As evidenced by the stage comparison statistics for runs 139 and 142 (the base run) in tables 9 and 10, respectively, the simulated mean (compared to the measured mean) changes at these sites as follows:

Site	Model mean compared to measured mean (meters)							
	Original Manning's <i>n</i>	Adjusted Manning's <i>n</i>						
NP201	0.04 low	0.06 high						
S-12B	.15 low	.06 high						
S-12C	.06 low	.05 low						
NE2	.11 high	.09 high						
P34	.004 high	.106 high						


There are few substantial changes in mean stage difference other than at stations NP201, S12B, S12C, NE2, and P34, and these represent mixed results. The spatial distribution of mean stage difference, defined as abs[DIFMEAN(run 142)-abs(DIFMEAN(run 139)], is shown in figure 30. The map shows improvements in stage mean differences, which are defined as being closer to the data mean, as positive values and deteriorations in stage mean differences as negative values. The local changes to Manning's *n* result in local changes to (mean) stages, such as those south of the S-12 structures (figs. 1 and 30).

The improvements achieved at some locations were not sufficient to improve substantially the overall performance indices because these improvements are cancelled effectively by deteriorations at other locations (table 9) and coastal discharges probably are not affected substantially. Any applicable change in Manning's n would have to be more physically based than this sensitivity test.


3.7.3 - Neglecting Ground-Water Leakage Effects

A scenario also was made with TIME to investigate the effect of neglecting surface-water and ground-water leakage (run 145). Net-average flows were reduced up to 20 percent in Barron River and 7 percent in Turner River, whereas flows into Ponce De Leon Bay and Florida Bay increased by 8 and 20 percent, respectively.

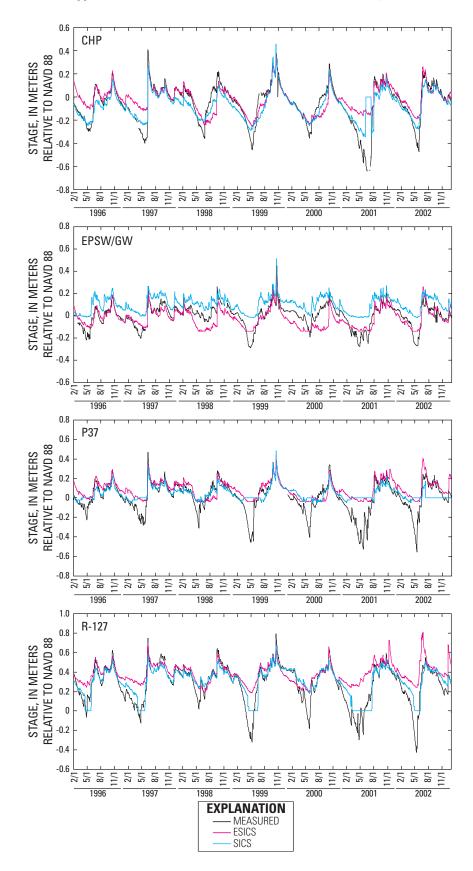

The spatial distribution of mean stage differences [mean(R142)-mean (R145)] is shown in figure 31, which indicates that neglecting leakage adversely affects all model performance indices (stage means, correlation, and PEV). This effect is due primarily to the substantial changes that occur in ground-water heads, which differ substantially when leakage is neglected. Surface-water stages change slightly at most sites, although substantial differences occur at some locations (table 11). At these sites, however, stage is influenced strongly by ground-water head. By not having any vertical leakage, surface water along the eastern domain boundary flows

Figure 27. Comparison of flows from field data and the SICS and ESICS applications at selected coastal creeks, 1996-2002.

Figure 28. Comparison of wetland stages using constant and variable Manning's *n* values at selected sites.

Figure 29. Comparison of stages between the SICS and ESICS applications at selected wetland stations.

Table 9. Water-level comparison statistics for run 139, local Manning's n adjustments.

Station		stage /D 88)	Stage standard deviation		- Correlation	measu compute	ence between red and ed values	Percentage		Land so altiti (NAV)	ude
Station	Measured (meters)	Computed (meters)	Measured (meters)	Computed (meters)	coefficient	Stage (meters)	Standard deviation (meters)	explained variance	n	Model input (meters)	Measured (meters)
A13	0.968	1.091	0.259	0.144	0.867	-0.123	0.152	65.4	2197	0.980	0.969
Angels	1.329	1.500	.264	.282	.741	171	.197	44.3	2557	1.730	1.451
BD	.826	.062	.123	.088	.412	.764	.118	7.4	1945	.010	2.612
BICYA8	.215	.850	.328	.457	.217	635	.501	-133.9	1959	.270	
BICYA9	1.726	1.853	.211	.189	.763	126	.139	56.3	1869	2.060	
BICYA10	.718	.788	.303	.228	.780	071	.190	60.8	1854	.890	
BICYA11	.920	.938	.380	.172	.718	017	.283	44.4	1883	.880	
BR	1.074	.025	.131	.114	.837	1.049	.072	69.8	2331	150	1.838
CN	.713	.025	.123	.079	.860	.688	.068	69.1	2447	080	1.323
СР	056	081	.169	.120	.879	.025	.085	74.4	2479	440	503
CR2	1.121	1.283	.307	.289	.895	162	.138	79.9	2161	1.330	1.231
CR3	1.119	1.270	.298	.228	.879	151	.146	75.9	2212	1.310	1.234
CT27R	.143	.082	.148	.126	.570	.062	.128	24.8	1903	060	085
CT50R	.106	.100	.140	.091	.859	.005	.078	69.3	1896	.010	.088
CV1NR	.121	.080	.149	.128	.400	.041	.153	-5.3	1840	060	
CV5S	.123	.115	.132	.103	.441	.008	.127	7.9	601	060	
CW	048	065	.103	.126	.486	.017	.118	-31.0	2261	-1.830	
CYP2	.235	.292	.206	.205	.787	057	.134	57.5	2157	.480	1.643
CY3	.202	.195	.214	.169	.785	.008	.133	61.6	2206	.280	1.518
DK	207	177	.118	.096	.712	030	.083	49.6	1317	-1.860	
DO1	.349	.479	.267	.181	.845	130	.149	68.6	2451	.560	.567
DO2	.432	.450	.278	.199	.825	018	.160	67.0	2237	.700	.570
E112	.846	.979	.301	.406	.880	133	.201	55.7	2320	1.050	.527
E146	096	083	.147	.132	.864	013	.074	74.5	2435	210	369
EP1R	.044	.065	.132	.120	.415	021	.137	-7.1	2406	060	262
EP9R	159	117	.087	.057	.840	042	.050	67.2	366	160	314
EPGW/ SW	015	066	.099	.074	.696	.051	.071	48.1	2387	110	158
EVER4	.170	.327	.145	.174	.925	157	.068	78.2	2521	.240	.085
EVER5A	097	026	.153	.101	.829	071	.089	66.0	1945	080	174
EVER6	.141	.033	.126	.083	.780	.107	.080	59.4	2294	.000	006
EVER7	.201	.103	.120	.109	.891	.098	.054	79.3	2342	.040	.131
G1251	.185	.230	.168	.178	.901	045	.078	78.7	2026	.230	.390
G1502	1.485	1.697	.242	.143	.780	211	.158	57.3	2453	1.580	2.060
G3272	1.491	1.699	.247	.144	.821	208	.153	61.8	2528	1.570	1.612
G3273	1.476	1.695	.239	.147	.822	219	.145	63.2	2557	1.600	1.667

Table 9. Water-level comparison statistics for run 139, local Manning's n adjustments.—Continued

Station	Mean stage (NAVD 88)		Stage standard deviation		– Correlation -	measu compute	nce between red and ed values	Percentage of		Land su altitu (NAVI	ıde
Station	Measured (meters)	Computed (meters)	Measured (meters)	Computed (meters)	coefficient	Stage (meters)	Standard deviation (meters)	explained variance	n	Model input (meters)	Measured (meters)
G3353	-0.058	-0.001	0.137	0.108	0.858	-0.057	0.071	73.0	2519	-0.020	1.149
G3437	1.194	1.124	.259	.273	.682	.070	.213	32.4	2510	1.850	1.615
G3576	1.562	1.698	.207	.113	.898	136	.117	68.2	1965	1.370	1.353
G3577	1.426	1.703	.272	.112	.849	277	.186	53.0	2014	1.360	1.356
G3578	1.520	1.710	.213	.103	.887	190	.131	62.3	2494	1.370	1.356
G3619	.326	.391	.147	.155	.894	065	.070	77.5	2446	.210	.579
G3622	.879	1.231	.239	.418	.677	352	.311	-68.8	2306	1.390	1.347
G3626	.975	1.122	.174	.304	.409	147	.282	-161.8	2357	2.030	1.743
G3627	.860	1.247	.167	.264	.534	386	.225	-81.3	2368	1.910	1.942
G3628	1.011	1.473	.203	.396	.497	462	.343	-186.0	2336	1.730	1.667
G596	1.146	1.292	.197	.313	.595	146	.252	-62.7	2546	1.810	1.753
G618	1.696	1.714	.146	.088	.731	018	.101	51.9	2457	1.480	1.466
G620	1.574	1.680	.205	.192	.930	106	.075	86.6	2451	1.380	1.311
GI	1.363	081	.113	.179	.378	1.444	.172	-130.0	1616	-2.500	
HC	186	.158	.111	.222	.599	344	.179	-159.2	1434	.560	
HR	.931	.017	.119	.144	.624	.915	.116	5.3	1461	.120	
L67XW	1.761	1.706	.237	.098	.832	.055	.165	51.5	1883	1.350	
LN	1.524	033	.120	.100	.821	1.557	.069	67.4	1430	410	
LO	.818	069	.119	.249	.145	.887	.260	-378.1	1335	-2.000	
LOOP1T	1.910	1.841	.158	.172	.727	.070	.123	39.8	2024	1.860	
LOOP2T	1.540	1.498	.220	.178	.698	.042	.159	47.4	2086	1.480	
LS	190	174	.106	.099	.775	016	.069	57.5	1461	-1.520	
NCL	015	086	.190	.161	.834	.071	.105	69.5	2390	240	
NE1	1.664	1.711	.131	.093	.903	047	.062	77.7	2509	1.290	1.314
NE2	1.627	1.713	.156	.090	.890	087	.086	69.4	2503	1.340	1.241
NE3	1.695	1.721	.115	.075	.808	027	.070	63.0	1838	1.340	
NE4	1.606	1.706	.158	.095	.882	100	.087	70.0	2416	1.260	1.213
NE5	1.601	1.700	.146	.096	.895	100	.074	74.5	2539	1.270	
NMP	118	106	.151	.167	.856	012	.087	67.1	2113	.010	
NP201	1.869	1.934	.257	.236	.865	065	.130	74.7	2439	1.650	1.420
NP202	1.679	1.752	.196	.183	.970	073	.048	94.0	2309	1.350	1.164
NP203	1.471	1.508	.181	.124	.938	038	.078	81.6	2426	1.220	.890
NP205	1.478	1.520	.264	.165	.853	042	.150	67.6	2447	1.440	1.332
NP206	1.282	1.425	.272	.136	.819	143	.179	56.8	2453	1.380	1.366
NP44	.636	.783	.351	.232	.765	147	.229	57.4	2342	1.270	1.073
NP46	0.018	-0.018	0.171	0.147	0.740	0.036	0.117	53.3	2429	0.050	-0.052

Table 9. Water-level comparison statistics for run 139, local Manning's n adjustments.—Continued

Station		stage /D 88)	Stage standard deviation		- Correlation	measu	ence between red and ed values	Percentage of		Land so altite (NAV)	ude
Station	Measured (meters)	Computed (meters)	Measured (meters)	Computed (meters)	coefficient	Stage (meters)	Standard deviation (meters)	explained variance	n	Model input (meters)	Measured (meters)
NP62	.399	.417	.197	.120	.798	018	.124	60.1	2229	.310	.835
NP67	.215	.274	.179	.151	.899	059	.079	80.4	2406	.240	.582
NP72	.503	.613	.316	.221	.788	110	.197	61.3	2222	.980	.899
NR	1.181	049	.117	.109	.772	1.230	.077	56.9	1380	-1.200	1.682
NTS1	.841	1.171	.293	.302	.766	330	.204	51.7	2457	1.020	1.076
NTS10	.927	1.060	.310	.369	.889	133	.170	70.0	2152	1.270	1.237
NTS14	.732	.863	.386	.339	.787	131	.241	61.1	2395	1.380	.756
OL1	059	089	.160	.121	.898	.030	.074	78.7	2447	220	
ОТ	.251	.152	.189	.150	.916	.099	.079	82.4	2464	170	
P33	1.509	1.558	.148	.095	.930	049	.070	78.0	2406	1.230	1.024
P34	.419	.312	.213	.172	.890	.108	.099	78.5	2428	.160	.119
P35	.118	.174	.171	.129	.945	056	.065	85.6	2552	400	195
P36	.868	.886	.146	.094	.920	018	.070	77.0	2407	.630	.530
P37	.002	.014	.155	.116	.867	012	.079	73.7	2465	140	183
P38	.069	.047	.148	.110	.836	.022	.082	68.9	2360	130	192
R127	.267	.363	.197	.147	.932	096	.080	83.4	2384	.060	
R158	.416	.665	.239	.380	.810	250	.233	5.2	2445	.980	.927
R3110	.919	1.010	.331	.346	.893	091	.157	77.4	2456	1.240	1.094
RG1	1.242	1.605	.284	.124	.723	363	.212	44.1	1941	1.460	1.061
RG2	1.138	1.401	.286	.260	.852	264	.151	72.2	2108	1.450	1.390
Rutzke	.940	1.089	.260	.390	.804	149	.238	16.2	2432	1.510	1.103
S12AT	2.182	2.091	.288	.191	.878	.091	.151	72.5	2530	1.870	
S12BT	2.205	2.142	.317	.248	.956	.063	.108	88.4	2532	1.860	
S12CT	2.239	2.288	.323	.250	.829	049	.181	68.5	2520	1.870	
S12DT	2.209	2.140	.419	.279	.819	.069	.249	64.7	2526	1.690	
SP	.211	.263	.217	.176	.770	052	.139	59.2	2188	.480	.280
SR	.886	097	.109	.216	.260	.983	.215	-290.9	1354	-2.800	
TE	1.242	.016	.127	.093	.857	1.226	.067	71.9	1438	190	
TMC	.902	.894	.239	.133	.892	.008	.135	68.3	2232	.770	.732
TSB	.628	.854	.278	.248	.961	226	.080	91.8	1327	.490	.610
TSH	.156	.178	.163	.141	.911	022	.068	82.7	2445	.000	021
WE	1.611	053	.114	.122	.631	1.664	.102	20.3	1461	-1.610	
WP	1.365	029	.128	.171	.385	1.394	.169	-74.6	1096	-1.870	
WW	1.435	.047	.151	.144	.853	1.388	.080	71.8	1461	230	

Table 10. Water-level comparison statistics for run 142, base case simulation.

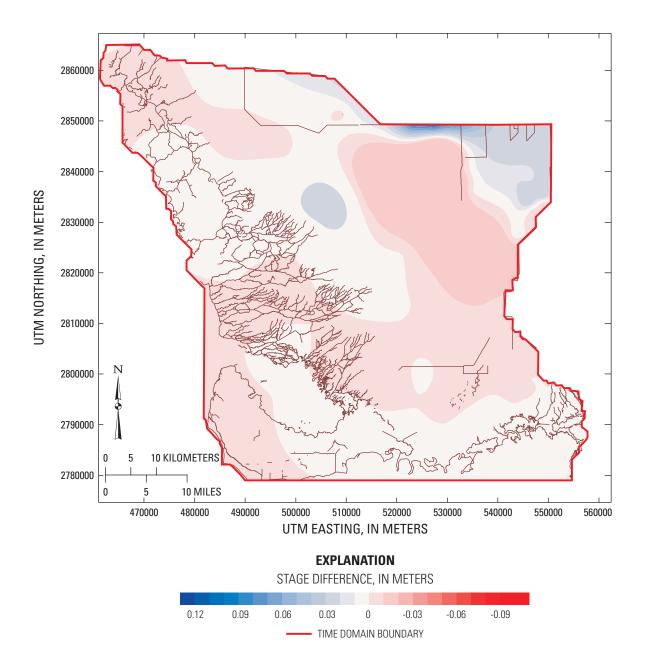

64-4		i stage /D 88)	•	tandard ation	Correlation	measu	ence between red and ed values	Percentage of		Land su altitu (NAVI	ıde
Station	Measured (meters)	Computed (meters)	Measured (meters)	Computed (meters)	coefficient	Stage (meters)	Standard deviation (meters)	explained variance	n	Model input (meters)	Measured (meters)
A13	0.968	1.077	0.259	0.161	0.861	-0.109	0.145	68.5	2,197	0.980	0.969
Angels	1.329	1.534	.264	.285	.719	206	.207	38.9	2,557	1.730	1.451
BD	.826	.062	.123	.089	.407	.764	.119	6.1	1,945	.010	2.612
BICYA8	.215	.848	.328	.457	.223	633	.499	-132.6	1,959	.270	
BICYA9	1.726	1.849	.211	.188	.761	123	.139	56.3	1,869	2.060	
BICYA10	.718	.786	.303	.228	.781	068	.189	61.0	1,854	.890	
BICYA11	.920	.938	.380	.171	.715	018	.284	44.2	1,883	.880	
BR	1.074	.026	.131	.116	.837	1.048	.072	69.8	2,331	150	1.838
CN	.713	.026	.123	.082	.867	.688	.066	71.1	2,447	080	1.323
СР	056	081	.169	.120	.879	.025	.085	74.4	2,479	440	503
CR2	1.121	1.256	.307	.302	.896	136	.139	79.6	2,161	1.330	1.231
CR3	1.119	1.249	.298	.244	.868	130	.149	75.1	2,212	1.310	1.234
CT27R	.143	.082	.148	.126	.570	.062	.128	24.8	1,903	060	085
CT50R	.106	.100	.140	.091	.858	.006	.078	69.1	1,896	.010	.088
CV1NR	.121	.080	.149	.128	.399	.041	.153	-5.4	1,840	060	
CV5S	.123	.115	.132	.103	.441	.008	.127	7.9	601	060	
CW	048	065	.103	.126	.485	.017	.118	-31.3	2,261	-1.830	
CYP2	.235	.290	.206	.206	.787	055	.134	57.2	2,157	.480	1.643
CY3	.202	.194	.214	.170	.783	.008	.133	61.2	2,206	.280	1.518
DK	207	177	.118	.096	.712	030	.083	49.7	1,317	-1.860	
DO1	.349	.477	.267	.182	.844	129	.149	68.6	2,451	.560	.567
DO2	.432	.448	.278	.202	.828	016	.158	67.5	2,237	.700	.570
E112	.846	.976	.301	.406	.875	130	.204	54.3	2,320	1.050	.527
E146	096	083	.147	.133	.863	012	.075	74.2	2,435	210	369
EP1R	.044	.065	.132	.120	.415	021	.137	-7.0	2,406	060	262
EP9R	159	117	.087	.057	.838	042	.050	66.8	366	160	314
EPGW/ SW	015	066	.099	.074	.696	.051	.071	48.2	2,387	110	158
EVER4	.170	.326	.145	.175	.924	156	.069	77.7	2,521	.240	.085
EVER5A	097	027	.153	.101	.830	070	.089	66.1	1,945	080	174
EVER6	.141	.033	.126	.083	.777	.107	.081	59.0	2,294	.000	006
EVER7	.201	.103	.120	.109	.889	.099	.055	79.0	2,342	.040	.131
G1251	.185	.230	.168	.178	.899	044	.078	78.4	2,026	.230	.390
G1502	1.485	1.700	.242	.132	.749	214	.168	51.9	2,453	1.580	2.060
G3272	1.491	1.716	.247	.143	.792	225	.160	58.1	2,528	1.570	1.612
G3272 G3273	1.476	1.705	.239	.138	.792	229	.155	58.3	2,520	1.600	1.667
G3353	-0.058	-0.002	0.137	0.108	0.857	-0.056	0.071	72.9	2,519	-0.020	1.149
05555	-0.030	-0.002	0.137	0.100	0.007	-0.050	0.071	12.9	2,519	-0.020	1.149

Table 10. Water-level comparison statistics for run 142, base case simulation.—Continued

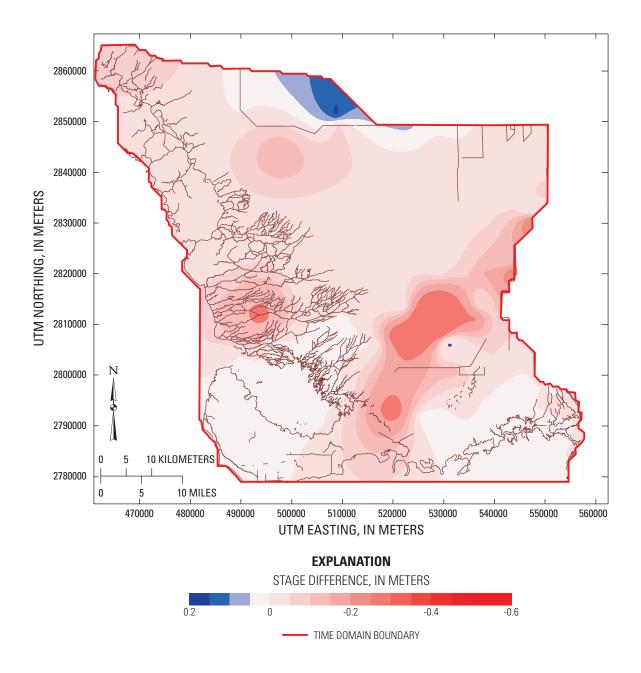

Chatier	Mean stage (NAVD 88)		Stage standard deviation		Correlation	n computed values		Percentage of n explained	Land surface altitude (NAVD 88)		
Station	Measured (meters)	Computed (meters)	Measured (meters)	Computed (meters)	coefficient	Stage (meters)	Standard deviation (meters)	explained variance	n	Model input (meters)	Measured (meters)
G3437	1.194	1.118	.259	.277	.683	.076	.214	31.6	2,510	1.850	1.615
G3576	1.562	1.725	.207	.105	.902	163	.121	65.8	1,965	1.370	1.353
G3577	1.426	1.728	.272	.096	.885	302	.193	49.8	2,014	1.360	1.356
G3578	1.520	1.733	.213	.094	.872	214	.139	57.4	2,494	1.370	1.356
G3619	.326	.390	.147	.154	.894	064	.070	77.5	2,446	.210	.579
G3622	.879	1.218	.239	.419	.670	339	.314	-72.5	2,306	1.390	1.347
G3626	.975	1.111	.174	.287	.423	136	.265	-131.9	2,357	2.030	1.743
G3627	.860	1.247	.167	.263	.558	387	.219	-71.8	2,368	1.910	1.942
G3628	1.011	1.466	.203	.398	.482	455	.349	-194.9	2,336	1.730	1.667
G596	1.146	1.330	.197	.334	.598	184	.268	-84.1	2,546	1.810	1.753
G618	1.696	1.740	.146	.087	.804	044	.092	60.4	2,457	1.480	1.466
G620	1.574	1.578	.205	.179	.928	004	.078	85.7	2,451	1.380	1.311
GI	1.363	082	.113	.179	.385	1.445	.171	-126.7	1,616	-2.500	
HC	186	.158	.111	.221	.599	343	.178	-157.7	1,434	.560	
HR	.931	.018	.119	.144	.626	.913	.116	5.0	1,461	.120	
L67XW	1.761	1.720	.237	.090	.743	.040	.181	41.9	1,883	1.350	
LN	1.524	033	.120	.101	.821	1.557	.069	67.3	1,430	410	
LO	.818	070	.119	.248	.141	.888	.260	-377.9	1,335	-2.000	
LOOP1T	1.910	1.837	.158	.170	.722	.073	.123	39.7	2,024	1.860	
LOOP2T	1.540	1.494	.220	.181	.712	.046	.156	49.5	2,086	1.480	
LS	190	173	.106	.098	.777	017	.069	58.0	1,461	-1.520	
NCL	015	086	.190	.162	.834	.071	.105	69.5	2,390	240	
NE1	1.664	1.727	.131	.088	.853	063	.072	69.4	2,509	1.290	1.314
NE2	1.627	1.737	.156	.087	.863	110	.092	65.2	2,503	1.340	1.241
NE3	1.695	1.748	.115	.069	.774	054	.075	56.9	1,838	1.340	
NE4	1.606	1.705	.158	.086	.835	099	.098	61.4	2,416	1.260	1.213
NE5	1.601	1.687	.146	.085	.854	086	.086	65.6	2,539	1.270	
NMP	118	106	.151	.167	.856	012	.087	66.9	2,113	.010	
NP201	1.869	1.825	.257	.183	.855	.044	.139	71.0	2,439	1.650	1.420
NP202	1.679	1.646	.196	.156	.960	.033	.063	89.5	2,309	1.350	1.164
NP203	1.471	1.467	.181	.126	.920	.004	.082	79.7	2,426	1.220	.890
NP205	1.478	1.484	.264	.179	.828	006	.153	66.2	2,447	1.440	1.332
NP206	1.282	1.380	.272	.170	.851	098	.156	67.2	2,453	1.380	1.366
NP44	.636	.777	.351	.237	.771	141	.226	58.5	2,342	1.270	1.073
NP46	.018	017	.171	.148	.742	.035	.117	53.6	2,429	.050	052
NP62	0.399	0.418	0.197	0.128	0.811	-0.019	0.119	63.2	2,229	0.310	0.835
NP67	.215	.273	.179	.151	.899	058	.079	80.5	2,406	.240	.582

Table 10. Water-level comparison statistics for run 142, base case simulation.—Continued

0		stage /D 88)		tandard ation	Correlation	measu	ence betweer red and ed values	Percentage of		Land s altit (NAV	ude
Station	Measured (meters)	Computed (meters)	Measured (meters)	Computed (meters)	coefficient	Stage (meters)	Standard deviation (meters)	explained variance	n	Model input (meters)	Measured (meters)
NP72	.503	.610	.316	.223	.785	107	.198	60.9	2,222	.980	.899
NR	1.181	048	.117	.110	.773	1.230	.077	56.9	1,380	-1.200	1.682
NTS1	.841	1.168	.293	.302	.765	327	.204	51.3	2,457	1.020	1.076
NTS10	.927	1.047	.310	.370	.884	120	.174	68.6	2,152	1.270	1.237
NTS14	.732	.856	.386	.339	.787	124	.241	61.2	2,395	1.380	.756
OL1	059	090	.160	.121	.897	.031	.074	78.6	2,447	220	
OT	.251	.149	.189	.160	.905	.102	.081	81.5	2,464	170	
P33	1.509	1.532	.148	.104	.919	023	.067	79.6	2,406	1.230	1.024
P34	.419	.259	.213	.156	.855	.160	.113	71.6	2,428	.160	.119
P35	.118	.176	.171	.141	.947	058	.059	88.2	2,552	400	195
P36	.868	.888	.146	.109	.908	020	.066	79.7	2,407	.630	.530
P37	.002	.013	.155	.116	.866	012	.080	73.6	2,465	140	183
P38	.069	.049	.148	.115	.849	.020	.079	71.5	2,360	130	192
R127	.267	.362	.197	.147	.931	095	.081	83.3	2,384	.060	
R158	.416	.664	.239	.380	.810	248	.233	4.8	2,445	.980	.927
R3110	.919	.999	.331	.349	.893	080	.159	77.0	2,456	1.240	1.094
RG1	1.242	1.589	.284	.128	.673	347	.219	40.4	1,941	1.460	1.061
RG2	1.138	1.357	.286	.278	.828	220	.166	66.4	2,108	1.450	1.390
Rutzke	.940	1.068	.260	.385	.800	128	.236	17.6	2,432	1.510	1.103
S12AT	2.182	2.069	.288	.173	.811	.113	.179	61.5	2,530	1.870	
S12BT	2.205	2.051	.317	.172	.886	.154	.183	66.7	2,532	1.860	
S12CT	2.239	2.182	.323	.184	.484	.057	.284	22.6	2,520	1.870	
S12DT	2.209	2.064	.419	.222	.686	.144	.311	44.7	2,526	1.690	
SP	.211	.262	.217	.180	.777	052	.137	60.0	2,188	.480	.280
SR	.886	097	.109	.216	.264	.983	.215	-290.6	1,354	-2.800	
TE	1.242	.016	.127	.095	.858	1.226	.067	72.3	1,438	190	
TMC	.902	.894	.239	.153	.885	.008	.126	72.3	2,232	.770	.732
TSB	.628	.852	.278	.247	.959	224	.082	91.4	1,327	.490	.610
TSH	.156	.176	.163	.142	.910	020	.068	82.6	2,445	.000	021
WE	1.611	054	.114	.122	.632	1.664	.101	20.5	1,461	-1.610	
WP	1.365	031	.128	.167	.376	1.396	.168	-71.8	1,096	-1.870	
WW	1.435	.043	.151	.145	.856	1.392	.080	72.1	1,461	230	

Figure 30. Spatial distribution of mean stage difference between simulations with adjusted Manning's *n*. Positive values indicate better fit, and negative values indicate a poorer fit.

Figure 31. Spatial distribution of mean stage difference between simulations with and without leakage. Positive values indicate better fit, and negative values indicate a poorer fit.

Table 11. Water-level comparison statistics for run 145, leakage neglected.

64-4	Mean (NAV	•	Stage standard deviation		Correlation	measu	ence between red and ed values	Percentage of		Land so altite (NAV)	ude
Station	Measured (meters)	Computed (meters)	Measured (meters)	Computed (meters)	coefficient	Stage (meters)	Standard deviation (meters)	explained variance	n	Model input (meters)	Measured (meters)
A13	0.968	1.093	0.259	0.221	0.664	-0.125	0.200	40.5	2,197	0.980	0.969
Angels	1.329	1.545	.264	.383	.656	216	.289	-19.9	2,557	1.730	1.451
BD	.826	006	.123	.247	.412	.832	.226	-240.6	1,945	.010	2.612
BICYA8	.215	.934	.328	.462	.283	718	.485	-119.3	1,959	.270	
BICYA9	1.726	1.691	.211	.282	.614	.035	.225	-14.3	1,869	2.060	
BICYA10	.718	.616	.303	.406	.633	.101	.317	-9.8	1,854	.890	
BICYA11	.920	.932	.380	.208	.588	012	.308	34.4	1,883	.880	
BR	1.074	.011	.131	.160	.767	1.063	.103	38.0	2,331	150	1.838
CN	.713	.017	.123	.123	.760	.696	.085	52.0	2,447	080	1.323
СР	056	053	.169	.101	.828	003	.102	63.4	2,479	440	503
CR2	1.121	1.409	.307	.237	.610	289	.248	34.7	2,161	1.330	1.231
CR3	1.119	1.335	.298	.266	.613	215	.249	29.8	2,212	1.310	1.234
CT27R	.143	.088	.148	.142	.593	.055	.131	21.5	1,903	060	085
CT50R	.106	.119	.140	.092	.853	013	.078	68.9	1,896	.010	.088
CV1NR	.121	.091	.149	.136	.455	.029	.149	-0.5	1,840	060	
CV5S	.123	.128	.132	.119	.480	005	.129	5.5	601	060	
CW	048	064	.103	.127	.485	.016	.119	-32.9	2,261	-1.830	
CYP2	.235	.153	.206	.336	.603	.082	.268	-70.1	2,157	.480	1.643
CY3	.202	.001	.214	.323	.531	.201	.277	-67.3	2,206	.280	1.518
DK	207	177	.118	.096	.713	030	.083	49.8	1,317	-1.860	
DO1	.349	.281	.267	.335	.548	.068	.292	-20.1	2,451	.560	.567
DO2	.432	.011	.278	.310	.354	.421	.335	-45.7	2,237	.700	.570
E112	.846	1.058	.301	.401	.870	212	.204	54.3	2,320	1.050	.527
E146	096	062	.147	.140	.768	034	.098	55.6	2,435	210	369
EP1R	.044	.076	.132	.130	.462	032	.136	-5.7	2,406	060	262
EP9R	159	118	.087	.070	.864	041	.044	74.3	366	160	314
EPGW/ SW	015	072	.099	.093	.758	.057	.067	54.0	2,387	110	158
EVER4	.170	.374	.145	.160	.881	204	.076	72.7	2,521	.240	.085
EVER5A	097	044	.153	.134	.899	053	.067	80.8	1,945	080	174
EVER6	.141	.033	.126	.096	.816	.108	.073	66.3	2,294	.000	006
EVER7	.201	.123	.120	.118	.872	.078	.060	74.8	2,342	.040	.131
G1251	.185	.245	.168	.208	.873	060	.102	63.2	2,026	.230	.390
G1502	1.485	1.736	.242	.103	.627	250	.195	35.2	2,453	1.580	2.060
G3272	1.491	1.744	.247	.144	.734	253	.172	51.6	2,528	1.570	1.612
G3272 G3273	1.476	1.732	.239	.151	.703	256	.172	48.9	2,520	1.600	1.667
G3273 G3353	-0.058	-0.020	0.137	0.142	0.891	-0.038	0.065	77.3	2,519	-0.020	1.149

Table 11. Water-level comparison statistics for run 145, leakage neglected.—Continued

Station	Mean stage (NAVD 88)		Stage standard deviation		Correlation	measu	ence between red and ed values	Percentage of		altit	Land surface altitude (NAVD 88)	
Station	Measured (meters)	Computed (meters)	Measured (meters)	Computed (meters)	coefficient	Stage (meters)	Standard deviation (meters)	explained variance	n	Model input (meters)	Measured (meters)	
G3437	1.194	.968	.259	.353	.557	.226	.300	-34.3	2,510	1.850	1.615	
G3576	1.562	1.747	.207	.092	.861	185	.136	56.7	1,965	1.370	1.353	
G3577	1.426	1.750	.272	.089	.861	324	.201	45.5	2,014	1.360	1.356	
G3578	1.520	1.757	.213	.088	.829	237	.148	51.4	2,494	1.370	1.356	
G3619	.326	.431	.147	.149	.886	105	.071	76.9	2,446	.210	.579	
G3622	.879	1.469	.239	.205	.515	591	.221	14.6	2,306	1.390	1.347	
G3626	.975	1.095	.174	.345	.388	120	.321	-239.2	2,357	2.030	1.743	
G3627	.860	1.166	.167	.391	.418	305	.355	-352.0	2,368	1.910	1.942	
G3628	1.011	1.721	.203	.273	.342	710	.279	-88.4	2,336	1.730	1.667	
G596	1.146	1.402	.197	.420	.531	256	.357	-227.0	2,546	1.810	1.753	
G618	1.696	1.753	.146	.089	.783	058	.094	58.3	2,457	1.480	1.466	
G620	1.574	1.545	.205	.247	.886	.029	.115	68.4	2,451	1.380	1.311	
GI	1.363	079	.113	.179	.378	1.442	.172	-129.5	1,616	-2.500		
HC	186	.184	.111	.241	.567	370	.200	-224.8	1,434	.560		
HR	.931	320	.119	.422	.573	1.251	.367	-846.6	1,461	.120		
L67XW	1.761	1.735	.237	.089	.694	.025	.187	38.0	1,883	1.350		
LN	1.524	030	.120	.100	.821	1.554	.069	67.3	1,430	410		
LO	.818	068	.119	.249	.147	.886	.260	-376.4	1,335	-2.000		
LOOP1T	1.910	1.779	.158	.261	.682	.131	.192	-47.0	2,024	1.860		
LOOP2T	1.540	1.480	.220	.250	.526	.060	.230	-9.9	2,086	1.480		
LS	190	178	.106	.103	.786	011	.068	58.3	1,461	-1.520		
NCL	015	051	.190	.153	.730	.036	.130	52.7	2,390	240		
NE1	1.664	1.744	.131	.087	.805	081	.080	62.8	2,509	1.290	1.314	
NE2	1.627	1.756	.156	.085	.801	129	.101	57.7	2,503	1.340	1.241	
NE3	1.695	1.766	.115	.070	.718	071	.081	50.5	1,838	1.340		
NE4	1.606	1.722	.158	.085	.788	116	.105	55.9	2,416	1.260	1.213	
NE5	1.601	1.703	.146	.084	.810	103	.093	59.9	2,539	1.270		
NMP	118	444	.151	.386	.683	.326	.304	-304.7	2,113	.010		
NP201	1.869	1.807	.257	.205	.865	.061	.130	74.4	2,439	1.650	1.420	
NP202	1.679	1.644	.196	.158	.957	.036	.064	89.4	2,309	1.350	1.164	
NP203	1.471	1.471	.181	.126	.912	.000	.084	78.4	2,426	1.220	.890	
NP205	1.478	1.448	.264	.260	.722	.031	.195	45.2	2,447	1.440	1.332	
NP206	1.282	1.414	.272	.222	.614	133	.222	33.8	2,453	1.380	1.366	
NP44	.636	.187	.351	.279	.050	.449	.438	-55.2	2,342	1.270	1.073	
NP46	.018	241	.171	.322	.556	.259	.268	-145.0	2,429	.050	052	
NP62	0.399	0.402	0.197	0.206	0.745	-0.003	0.144	46.3	2,229	0.310	0.835	
NP67	.215	.302	.179	.172	.790	086	.114	59.4	2,406	.240	.582	

Table 11. Water-level comparison statistics for run 145, leakage neglected. Continued

0		stage /D 88)	•	tandard ation	Correlation	measu	ence between red and ed values	Percentage of		Land s altit (NAV	ude
Station	Measured (meters)	Computed (meters)	Measured (meters)	Computed (meters)	coefficient	Stage (meters)	Standard deviation (meters)	explained variance	n	Model input (meters)	Measured (meters)
NP72	.503	.168	.316	.353	.277	.335	.403	-62.6	2,222	.980	.899
NR	1.181	046	.117	.110	.772	1.228	.077	56.8	1,380	-1.200	1.682
NTS1	.841	1.292	.293	.133	.920	451	.178	62.9	2,457	1.020	1.076
NTS10	.927	1.185	.310	.404	.748	258	.268	25.4	2,152	1.270	1.237
NTS14	.732	.591	.386	.540	.596	.141	.439	-28.9	2,395	1.380	.756
OL1	059	075	.160	.128	.863	.016	.081	74.1	2,447	220	
OT	.251	.152	.189	.154	.877	.098	.092	76.5	2,464	170	
P33	1.509	1.540	.148	.102	.902	031	.072	76.7	2,406	1.230	1.024
P34	.419	.240	.213	.197	.823	.179	.123	66.8	2,428	.160	.119
P35	.118	.187	.171	.141	.945	069	.059	87.9	2,552	400	195
P36	.868	.900	.146	.108	.889	032	.071	76.7	2,407	.630	.530
P37	.002	.040	.155	.105	.804	039	.094	63.0	2,465	140	183
P38	.069	.045	.148	.148	.802	.024	.093	60.4	2,360	130	192
R127	.267	.413	.197	.123	.902	146	.101	73.6	2,384	.060	
R158	.416	.734	.239	.401	.735	319	.277	-34.6	2,445	.980	.927
R3110	.919	.986	.331	.497	.881	067	.259	38.8	2,456	1.240	1.094
RG1	1.242	1.644	.284	.073	.681	402	.240	28.3	1,941	1.460	1.061
RG2	1.138	1.464	.286	.289	.588	326	.261	16.7	2,108	1.450	1.390
Rutzke	.940	1.174	.260	.478	.754	234	.330	-61.0	2,432	1.510	1.103
S12AT	2.182	2.122	.288	.197	.514	.060	.252	23.5	2,530	1.870	
S12BT	2.205	2.116	.317	.197	.480	.089	.282	21.1	2,532	1.860	
S12CT	2.239	2.195	.323	.183	.411	.044	.299	14.4	2,520	1.870	
S12DT	2.209	2.076	.419	.221	.607	.133	.335	36.2	2,526	1.690	
SP	.211	089	.217	.283	.313	.299	.298	-88.8	2,188	.480	.280
SR	.886	096	.109	.216	.267	.982	.214	-288.9	1,354	-2.800	
TE	1.242	.019	.127	.095	.856	1.223	.067	72.2	1,438	190	
TMC	.902	.877	.239	.219	.759	.025	.160	55.1	2,232	.770	.732
TSB	.628	.950	.278	.186	.957	322	.114	83.2	1,327	.490	.610
TSH	.156	.216	.163	.136	.855	060	.085	73.1	2,445	.000	021
WE	1.611	052	.114	.122	.635	1.663	.101	20.9	1,461	-1.610	
WP	1.365	029	.128	.169	.383	1.394	.169	-72.8	1,096	-1.870	
WW	1.435	.047	.151	.143	.857	1.389	.079	72.7	1,461	230	

westward and southward instead of recharging the aquifer and moving eastward. This "surplus" surface water primarily increases flows to Florida Bay and Ponce de Leon Bay (fig. 1). Mean stage improves locally near OIH and Forty-Mile Bend; these areas may have less conductive peat layers, which if confirmed, could be placed in the model.

3.7.4 - Sensitivity to Incorporation of Main Park Road as a Barrier

A scenario (run 143) was made to investigate the effect of Main Park Road (fig. 1) functioning as a complete barrier to flow. Redirection of Main Park Road flows caused TSB flows to increase by 10 percent; however, total flow to Florida Bay remained unchanged. The presence of the road influenced the local distribution and timing of flow; however, the changes in total flow and individual creekflows were negligible. The TSB flows are in better agreement with observations when the road is not included as a barrier in the model, indicating that the culverts convey enough flow to prevent the road from being an effective barrier. The model results are consistent with the earlier assumption that the road is not a substantial barrier to coastal flows. Stage comparison statistics are provided in table 12, and a comparison of all stage means with those from run 142 is shown in figure 32. The only noticeable changes occur near Main Park Road; therefore, including this road as a barrier has a negligible effect on overall model performance indices (table 12).

3.7.5 - Sensitivity to Lowering of Land-Surface Altitude

To test the sensitivity of model response to a vertical shift in topography, the model land surface was lowered by 0.1 m throughout the model domain in run 146. Subgrid-scale topographic variations could be on this order of magnitude. As expected, the stages also were lowered by about 0.1 m in most places, except near the coast where the prescribed sea-level conditions at the boundaries control stages. Although some stage differences showed substantial deterioration, others such as RG1 (location shown in fig. 3) improved. Overall, the stage comparison statistics in table 13 do not improve definitively compared to the base run. The spatial plot of the mean stage difference is more informative; lowering the land surface improves the predicted mean stage in the eastern and northwestern areas of the domain, and worsens mean stage in the Shark River Slough area (figs. 1 and 33). This result may indicate that the model topography does not match the true topography uniformly well around the study area. A better fit with recorded stages might be achieved with further adjustment of the model land-surface altitudes and friction coefficients; however, such adjustments were not made because an objective procedure has yet to be devised. The topographic shift affected flows by redistributing volumes between the different rivers, although total flow to the coast was minimally affected. Runoff from Chatham and Lostmans Rivers increased by about 10 percent, runoff to Ponce de Leon Bay decreased by 10 percent, and runoff to Florida Bay increased by 20 percent.

3.8 - Final Model Calibration – Run 157

Based on the results from the base run and sensitivity analyses, a final model calibration (run 157) was performed to improve model performance prior to scenario simulation. The final model calibration addressed the following problems with the initially calibrated TIME model (run 142): (1) underprediction of stage in the northwestern region of the TIME domain; (2) discrepancies in mean stage values and explained variances near parts of Levee 31N Canal, Levee-31W Canal and C-111 Canal; and (3) a tendency to underpredict the ground-water table decline during dry seasons, especially in areas where unsaturated zones of substantial depth, on the order of 1 m, are present.

3.8.1 - Northwestern Region

Few surface-water stage measurement sites exist in the northwestern region of the domain (fig. 9). Consequently, model comparison results in this area (fig. 16) are based entirely on measured data from gage BICYA8 (fig. 9) and indicate that model mean stage is higher than observed stage. Gage BICYA8 is located along Turner River just north of U.S. Highway 41. Turner River Road to the east (fig. 1) obstructs flow; and stage on the east side of the road is usually much higher (R. Sobczak, Big Cypress National Preserve, oral commun., 2005). The gage more closely represents river stage than wetland stage and thus, is lower because of the hydraulic connection between the river and ocean. Based on this information, Turner River was included in the model topography and the model cell used to compare computed stage to BICYA8 was placed in the river at row 168, column 24 of the model grid (fig. 3). The results in table 5 show a much better model fit in stage mean bias and explained variance.

3.8.2 - Levee 31 Area

In the area just west of Levee 31 (fig. 1), computed mean stage is too high (fig. 16). It is difficult to identify with complete certainty the factors that contribute to these discrepancies. Gage information taken from the station descriptions indicates that the model-input land-surface altitude used in the TIME application may be substantially higher than the actual land-surface altitude at the gage. This would allow standing surface water at a gage located in a dry model cell. If surface water was present, computed stage was used to compute statistics; however, some gages are believed to measure only ground water even when surface water is present (that is, G-prefix gages). In addition to these inherent problems, adequate data are not available to fully prescribe boundary stages.

Table 12. Water-level comparison statistics for run 143, Main Park Road as a barrier.

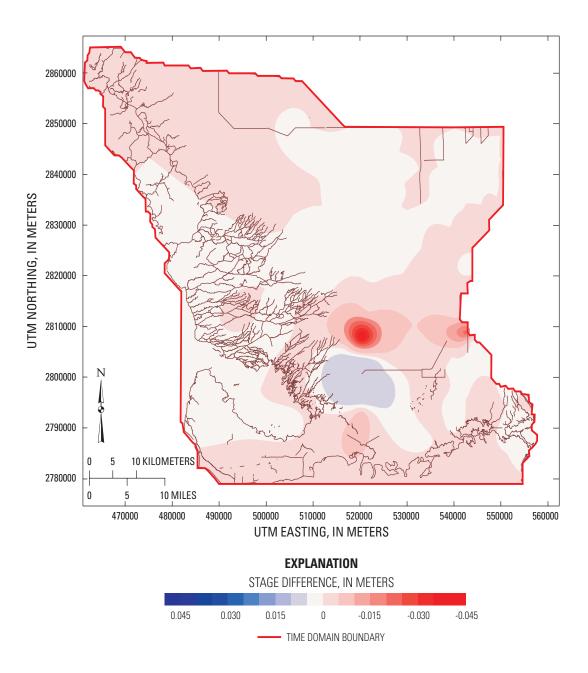

Station	Mean stage (NAVD 88)		Stage s devi	tandard ation	Correlation	measu	ence between red and ed values	Percentage of		Land s altit (NAV	ude
Station	Measured (meters)	Computed (meters)	Measured (meters)	Computed (meters)	coefficient	Stage (meters)	Standard deviation (meters)	explained variance	n	Model input (meters)	Measured (meters)
A13	0.968	1.077	0.259	0.162	0.861	-0.110	0.145	68.6	2,197	0.980	0.969
Angels	1.329	1.534	.264	.285	.721	206	.206	39.2	2,557	1.730	1.451
BD	.826	.063	.123	.090	.405	.763	.119	5.4	1,945	.010	2.612
BICYA8	.215	.852	.328	.457	.219	637	.500	-133.3	1,959	.270	
BICYA9	1.726	1.849	.211	.187	.760	123	.140	56.1	1,869	2.060	
BICYA10	.718	.788	.303	.227	.777	070	.191	60.3	1,854	.890	
BICYA11	.920	.939	.380	.170	.711	018	.285	43.6	1,883	.880	
BR	1.074	.026	.131	.116	.836	1.048	.072	69.7	2,331	150	1.838
CN	.713	.026	.123	.082	.866	.688	.066	71.0	2,447	080	1.323
СР	056	078	.169	.122	.886	.022	.083	76.0	2,479	440	503
CR2	1.121	1.257	.307	.303	.897	136	.139	79.6	2,161	1.330	1.231
CR3	1.119	1.250	.298	.244	.870	130	.148	75.4	2,212	1.310	1.234
CT27R	.143	.083	.148	.126	.580	.060	.127	26.2	1,903	060	085
CT50R	.106	.100	.140	.090	.858	.006	.078	69.0	1,896	.010	.088
CV1NR	.121	.081	.149	.129	.401	.040	.153	-5.2	1,840	060	
CV5S	.123	.116	.132	.103	.458	.007	.125	10.5	601	060	
CW	048	065	.103	.126	.491	.017	.117	-29.0	2,261	-1.830	
CYP2	.235	.292	.206	.206	.792	057	.133	58.2	2,157	.480	1.643
CY3	.202	.199	.214	.171	.791	.003	.131	62.6	2,206	.280	1.518
DK	207	177	.118	.096	.712	030	.083	49.6	1,317	-1.860	
DO1	.349	.480	.267	.182	.845	131	.149	68.7	2,451	.560	.567
DO2	.432	.458	.278	.206	.833	026	.156	68.6	2,237	.700	.570
E112	.846	.981	.301	.408	.875	135	.205	53.8	2,320	1.050	.527
E146	096	081	.147	.134	.865	015	.074	74.7	2,435	210	369
EP1R	.044	.066	.132	.120	.414	022	.137	-7.2	2,406	060	262
EP9R	159	116	.087	.056	.837	042	.051	66.4	366	160	314
EPGW/SW	015	066	.099	.074	.694	.051	.072	47.9	2,387	110	158
EVER4	.170	.325	.145	.173	.924	155	.068	78.1	2,521	.240	.085
EVER5A	097	027	.153	.101	.828	070	.089	65.8	1,945	080	174
EVER6	.141	.033	.126	.083	.777	.108	.081	59.0	2,294	.000	006
EVER7	.201	.102	.120	.109	.891	.099	.054	79.3	2,342	.040	.131
G1251	.185	.229	.168	.177	.899	044	.078	78.5	2,02,6	.230	.390
G1201 G1502	1.485	1.700	.242	.132	.749	214	.168	51.9	2,453	1.580	2.060
G3272	1.491	1.716	.247	.144	.790	225	.160	58.2	2,528	1.570	1.612
G3273	1.476	1.705	.239	.139	.793	229	.154	58.3	2,557	1.600	1.667
G3353	058	002	.137	.107	.857	056	.071	72.9	2,519	020	1.149
G3437	1.194	1.117	0.259	0.275	0.680	0.077	0.214	31.8	2,510	1.850	1.615
0,101	1.174	1.11/	0.237	0.275	0.000	0.077	0.214	51.0	2,510	1.000	1.015

Table 12. Water-level comparison statistics for run 143, Main Park Road as a barrier.—Continued

G3577 1.426 1.728 2.72 0.96 8.85 302 1.93 4.9.8 2.014 1.360 1.356 G3578 1.520 1.733 2.13 0.94 8.72 -214 1.39 57.4 2.444 0.10 0.79 G3622 .879 1.218 2.39 4.19 6.60 339 3.14 -72.8 2.306 1.390 1.743 G3626 .975 1.113 1.174 2.289 .424 138 2.67 -2.68 1.730 1.667 G3626 .975 1.113 .174 .289 .424 .184 2.68 -84.5 2.368 1.730 1.667 G3618 1.696 1.740 .466 .670 .600 2.457 1.480 1.741 G4 1.537 .025 .180 .927 004 .078 85.7 2.451 1.380 1.311 G4 1.536 .0131 1.57 .000	Station	Mean stage (NAVD 88)		•	tandard ation	Correlation	measu	ence between red and ed values	Percentage of	_	Land su altitu (NAV)	ude
G3577 1.426 1.728 2.72 0.96 8.85 302 1.93 4.9.8 2.014 1.360 1.356 G3578 1.520 1.733 2.13 0.94 8.72 214 1.39 57.4 2.444 1.30 1.356 G3619 3.26 .388 1.417 1.52 8.96 062 0.68 78.4 2.446 2.100 1.379 G3622 .879 1.113 1.747 2.89 4.24 138 2.67 -135.0 2.357 2.000 1.743 G3626 .975 1.113 1.747 2.66 .551 389 2.23 777 2.368 1.730 1.667 G3626 1.011 1.466 0.23 .394 .443 2.68 .84.5 2.546 1.810 1.753 G618 1.696 1.740 .468 .872 .24.51 1.830 1.311 G14 1.363 .0131 .173 .344	Station					coefficient	-	deviation		n		
G3578 1.520 1.733 2.13 0.94 8.72 -2.14 1.39 57.4 2.494 1.370 1.356 G3619 326 338 1.47 1.52 896 -062 0.68 78.4 2.446 2.10 579 G3626 9.75 1.113 1.74 2.289 4.42 -1.38 2.23 7.77 2.368 1.910 1.942 G3627 8.60 1.249 1.67 2.66 5.51 -3.38 2.23 7.77 2.368 1.910 1.942 G3628 1.011 1.466 2.03 3.98 4.82 -4.55 3.49 -194.9 2.36 1.730 1.667 G3618 1.696 1.740 1.446 9.06 -9.475 1.480 1.431 1.70 1.380 1.616 2.500 - G1 1.363 081 1.113 1.77 3.84 1.413 1.71 -1.84 1.434 .560 - - <td>G3576</td> <td>1.562</td> <td>1.725</td> <td>.207</td> <td>.105</td> <td>.902</td> <td>163</td> <td>.121</td> <td>65.8</td> <td>1,965</td> <td>1.370</td> <td>1.353</td>	G3576	1.562	1.725	.207	.105	.902	163	.121	65.8	1,965	1.370	1.353
G3619 .326 .388 .147 .152 .896 .062 .068 78.4 2.446 .210 .579 G3622 .879 1.121 .174 .289 .424 .138 .267 .155.0 .2357 .2030 1.743 G3626 .071 1.249 .167 .266 .551 .389 .223 .77.7 .2,368 1.910 1.667 G3628 1.011 .1.466 .203 .398 .482 455 .349 .1949 2.336 1.730 1.667 G3628 1.014 .1.466 .203 .398 .482 455 .349 .1949 2.336 1.730 1.667 G618 1.696 1.749 .146 .087 .800 044 .092 60.0 2.451 1.466 G620 1.574 .157 .616 .2500 <td>G3577</td> <td>1.426</td> <td>1.728</td> <td>.272</td> <td>.096</td> <td>.885</td> <td>302</td> <td>.193</td> <td>49.8</td> <td>2,014</td> <td>1.360</td> <td>1.356</td>	G3577	1.426	1.728	.272	.096	.885	302	.193	49.8	2,014	1.360	1.356
G3622 .8.79 1.218 .2.39 .4.19 .6.69 3.39 .3.14 .72.8 2.306 1.390 1.4.47 G3626 .975 1.113 .174 .289 .424 138 .267 .135.0 2.357 2.030 1.743 G3627 .860 1.249 .167 .266 .551 389 .223 .77.7 2.368 1.910 1.946 G3628 1.011 1.466 .037 .396 .482 .455 .349 .9445 .246 1.810 1.667 G3618 1.666 1.740 .146 .087 .800 .044 .092 60.0 2.457 1.480 1.416 G161 1.363 .081 .113 .179 .384 1.443 .171 .128.7 1.616 .200 L67XW 1.761 .172 .237 .090 .743 .040 .181 41.9 .483 .350 <	G3578	1.520	1.733	.213	.094	.872	214	.139	57.4	2,494	1.370	1.356
G3626 9.75 1.113 1.74 2.89 4.24 138 2.67 -135.0 2.377 2.030 1.743 G3627 .860 1.249 1.67 2.66 .551 389 .223 -77.7 2.368 1.910 1.942 G3628 1.011 1.466 .203 .398 .482 455 .349 -194.9 2.366 1.730 1.667 G3618 1.696 1.740 .146 .087 .800 044 .092 6.00 2.457 1.480 1.450 G618 1.696 1.74 .157 .205 .180 .927 004 .078 .85.7 2.451 1.380 1.311 G1 1.363 081 .111 .212 .598 343 .179 -158.4 1.434 .560 LC7 .161 .720 .237 .090 .743 .040 .181 .143 .410 LD7 </td <td>G3619</td> <td>.326</td> <td>.388</td> <td>.147</td> <td>.152</td> <td>.896</td> <td>062</td> <td>.068</td> <td>78.4</td> <td>2,446</td> <td>.210</td> <td>.579</td>	G3619	.326	.388	.147	.152	.896	062	.068	78.4	2,446	.210	.579
G3627 .860 1.249 .167 .266 .551 389 .223 .77.7 2.368 1.910 1.942 G3628 1.011 1.466 .203 .398 .482 455 .349 .194.9 2,336 1.730 1.667 G396 1.146 1.330 .197 .334 .596 .184 .268 .845.5 .2,451 1.810 1.733 G618 1.666 1.740 .146 .087 .800 .044 .092 6.00 2,457 1.480 1.466 G620 1.574 1.577 .205 .181 .4143 .171 .161 .2500 HR .931 .017 .119 .145 .623 .915 .117 4.3 1,461 .120 L67XW 1.761 1.720 .237 .090 .743 .040 .181 41.9 .833 1.30 L67XW 1.761 .120	G3622	.879	1.218	.239	.419	.669	339	.314	-72.8	2,306	1.390	1.347
G3628 1.011 1.466 .203 .398 .482 .455 .349 -194.9 2,36 1.730 1.667 G596 1.146 1.330 .197 .334 .596 .184 .268 -84.5 2,546 1.810 1.753 G618 1.696 1.740 .146 0.87 .800 .044 0.92 60.0 2,457 1.480 1.466 G620 1.574 1.577 .205 .180 .927 .004 .078 845.7 .2,451 1.380 1.311 G1 .363 .017 .119 .384 1.443 .171 .128.7 .4451 .143 .560 L67XW 1.761 1.720 .237 .090 .743 .040 .181 41.9 .183 1.350 L0 .818 .007 .133 .040 .181 41.9 .183 .130 L07D11 1.51 .161	G3626	.975	1.113	.174	.289	.424	138	.267	-135.0	2,357	2.030	1.743
G396 1.146 1.330 .197 .334 .596 184 .268 -84.5 2.546 1.810 1.753 G618 1.696 1.740 .146 .087 .800 044 .092 60.0 2.457 1.480 1.466 G620 1.574 1.577 .205 .180 .927 044 .078 .85.7 2.451 1.380 1.311 G1 1.363 081 .113 .179 .384 1.443 .171 -128.7 1.616 -2.500 HC .186 .158 .111 .221 .598 .343 .179 .158.4 1.433 .130 L67XW 1.761 1.720 .237 .090 .743 .040 .181 41.9 .183 .130 L0 .818 .069 .119 .247 .721 .073 .123 .394 .2024 .180 L0OP17 1.910	G3627	.860	1.249	.167	.266	.551	389	.223	-77.7	2,368	1.910	1.942
G618 1.696 1.740 .146 .087 .800 044 .092 60.0 2.457 1.480 1.466 G620 1.574 1.577 .205 .180 .927 004 .078 85.7 2.451 1.380 1.311 GI 1.363 081 .113 .179 .384 1.443 .171 -128.7 1.616 -2.500 HC 186 .158 .111 .221 .598 343 .170 -158.4 1.434 .560 HR .931 .017 .119 .145 .623 .915 .117 4.3 1.461 .120 L67XW 1.761 .172 .233 .120 .131 .181 .164 .133 .400 L0 .818 .069 .119 .249 .147 .887 .260 .736.8 .133 .400 L0 .181 .163 <td>G3628</td> <td>1.011</td> <td>1.466</td> <td>.203</td> <td>.398</td> <td>.482</td> <td>455</td> <td>.349</td> <td>-194.9</td> <td>2,336</td> <td>1.730</td> <td>1.667</td>	G3628	1.011	1.466	.203	.398	.482	455	.349	-194.9	2,336	1.730	1.667
G620 1.574 1.577 2.05 .180 9.27 004 .078 85.7 2.451 1.380 1.311 GI 1.363 081 .113 .179 .384 1.443 .171 -128.7 1.616 -2.500 HC 186 .158 .111 .221 .598 343 .179 -158.4 1.434 .560 HR .931 .017 .119 .145 .623 .915 .117 4.3 1.461 .120 L67XW 1.761 1.720 .237 .090 .743 .040 .181 41.9 .183 .1.50 L0 .818 .069 .110 .819 1.57 .060 .66.9 1.430 .410 L0OP1T 1.910 1.483 .150 .707 .716 .045 .155 50.3 2.086 1.480 LOOP1T 1.50 .143 <td>G596</td> <td>1.146</td> <td>1.330</td> <td>.197</td> <td>.334</td> <td>.596</td> <td>184</td> <td>.268</td> <td>-84.5</td> <td>2,546</td> <td>1.810</td> <td>1.753</td>	G596	1.146	1.330	.197	.334	.596	184	.268	-84.5	2,546	1.810	1.753
GI 1.363 081 .113 .179 .384 1.443 .171 -128.7 1.616 -2.500 HC 186 .158 .111 .221 .598 343 .179 -158.4 1.434 .560 HR .931 .017 .119 .145 .623 .915 .117 4.3 1.461 .120 L67XW 1.761 1.720 .237 .090 .743 .040 .181 41.9 1.833 1.350 L0 .818 069 .119 .249 .147 .887 .260 -376.8 1.335 -2.000 LOOP1T 1.910 1.837 .158 .170 .721 .073 .123 .39.4 2.024 1.480 LOOP1T 1.910 1.435 .200 .171 .015 .065 .160 1.65 .172 .230 .240 NCL <td>G618</td> <td>1.696</td> <td>1.740</td> <td>.146</td> <td>.087</td> <td>.800</td> <td>044</td> <td>.092</td> <td>60.0</td> <td>2,457</td> <td>1.480</td> <td>1.466</td>	G618	1.696	1.740	.146	.087	.800	044	.092	60.0	2,457	1.480	1.466
HC .186 .158 .111 .221 .598 343 .179 -158.4 1,434 .560 HR .931 .017 .119 .145 .623 .915 .117 4.3 1,461 .120 L67XW 1.761 1.720 .237 .090 .743 .040 .181 41.9 1,833 1.350 L0 .818 069 .119 .249 .147 .887 .260 -376.8 1,335 -2.000 LOOP1T 1.910 1.837 .158 .170 .721 .073 .123 39.4 2.024 1.860 LOOP1T 1.910 1.837 .158 .170 .721 .073 .123 39.4 2.024 1.860 LOOP1T 1.910 .1.437 .156 .057 .155 50.3 2.086 1.430 LOP .1.57 .063 .167 </td <td>G620</td> <td>1.574</td> <td>1.577</td> <td>.205</td> <td>.180</td> <td>.927</td> <td>004</td> <td>.078</td> <td>85.7</td> <td>2,451</td> <td>1.380</td> <td>1.311</td>	G620	1.574	1.577	.205	.180	.927	004	.078	85.7	2,451	1.380	1.311
HR .931 .017 .119 .145 .623 .915 .117 4.3 1.461 .120 L67XW 1.761 1.720 .237 .090 .743 .040 .181 41.9 1.883 1.350 LN 1.524 033 .120 .101 .819 1.557 .069 66.9 1.430 410 LO .818 069 .119 .249 .147 .887 .260 -376.8 1.335 -2.00 LOOP1T 1.910 1.837 .158 .170 .711 .073 .123 39.4 2.024 1.860 LOOP1T 1.910 1.455 .220 .179 .716 .045 .155 50.3 2.086 1.480 LS .190 .166 .850 .068 .100 72.2 2.390 .240 NE1 1.664 1.777 .131	GI	1.363	081	.113	.179	.384	1.443	.171	-128.7	1,616	-2.500	
L67XW1.7611.720.237.090.743.040.18141.91.8831.350LN1.524033.120.101.8191.557.06966.91.430410LO.818069.119.249.147.887.260-376.81.335-2.000LOOP1T1.9101.837.158.170.721.073.12339.42.0241.860LOOP2T1.5401.495.220.179.716.045.15550.32.0861.480LS190174.106.099.778015.06958.01.461-1.520NCL015083.190.166.850.068.10072.22.390240NE11.6641.727.131.088.853064.07269.42.5091.2901.314NE21.6271.737.156.087.862110.09265.22.5031.340NE41.6061.705.158.069.774054.07556.91.8381.340NP2011.8691.825.257.183.855021.08965.12.113.010NP2011.8691.825.257.183.855.044.13971.02.4391.6501.420NP2021	HC	186	.158	.111	.221	.598	343	.179	-158.4	1,434	.560	
LN 1.524 033 .120 .101 .819 1.557 .069 66.9 1,430 410 LO .818 069 .119 .249 .147 .887 .260 -376.8 1,335 -2.000 LOOP1T 1.910 1.837 .158 .170 .721 .073 .123 39.4 2.024 1.860 LOOP2T 1.540 1.495 .220 .179 .716 .045 .155 50.3 2.086 1.480 LS 190 174 .106 .099 .778 015 .069 58.0 1.461 -1.520 NCL 015 083 .190 .166 .850 .068 .100 72.2 2.390 .240 NE1 1.664 1.727 .131 .088 .853 064 .075 56.9 1.838 1.340 NE4 1.606<	HR	.931	.017	.119	.145	.623	.915	.117	4.3	1,461	.120	
LO .818 069 .119 .249 .147 .887 .260 -376.8 1,335 -2.000 LOOP1T 1.910 1.837 .158 .170 .721 .073 .123 39.4 2,024 1.860 LOOP2T 1.540 1.495 .220 .179 .716 .045 .155 50.3 2,086 1.480 LS 100 174 .106 .099 .778 015 .069 58.0 1.461 -1.520 NCL 015 083 .190 .166 .850 .068 .100 72.2 2,390 240 NE1 1.664 1.727 .131 .088 .853 064 .072 69.4 2,509 1.290 1.314 NE2 1.627 1.737 .156 .087 .852 015 .075 56.9 1.838 1.340 NE4 1	L67XW	1.761	1.720	.237	.090	.743	.040	.181	41.9	1,883	1.350	
LOOP1T1.9101.837.158.170.721.073.12339.42.0241.860LOOP2T1.5401.495.220.179.716.045.15550.32.0861.480LS190174.106.099.778015.06958.01.461-1.520NCL.015083.190.166.850.068.10072.22.390240NE11.6641.727.131.088.853064.07269.42.5091.2901.314NE21.6271.737.156.087.862110.09265.22.5031.3401.241NE31.6951.748.115.069.774054.07556.91.8381.340NE41.6061.705.158.086.835099.09861.42.4161.2601.213NE51.6011.687.146.085.855086.08665.62.5391.270NMP118.097.151.171.855.021.08965.12.113.010NP2011.8691.825.257.183.855.044.13971.02.4391.6501.420NP2031.4711.467.181.126.920.004.08279.72.4261.220.890NP205<	LN	1.524	033	.120	.101	.819	1.557	.069	66.9	1,430	410	
LOOP2T1.5401.495.220.179.716.045.15550.32,0861.480LS190174.106.099.778015.06958.01,461-1.520NCL015083.190.166.850.068.10072.22,390240NE11.6641.727.131.088.853064.07269.42,5091.2901.314NE21.6271.737.156.087.862110.09265.22,5031.3401.241NE31.6951.748.115.069.774054.07556.91,8381.340NE41.6061.705.158.086.835099.09861.42,4161.2601.213NE51.6011.687.146.085.855086.08665.62,5391.270NMP118097.151.171.855021.08965.12,113.010NP2011.8691.825.257.183.855.044.13971.02,4391.6501.420NP2021.6791.646.196.156.960.033.06389.52,3091.3501.164NP2051.4781.484.264.179.828006.15366.22,4471.4401.332NP20	LO	.818	069	.119	.249	.147	.887	.260	-376.8	1,335	-2.000	
LS 190 174 .106 .099 .778 015 .069 58.0 1,461 -1.520 NCL 015 083 .190 .166 .850 .068 .100 72.2 2,390 240 NE1 1.664 1.727 .131 .088 .853 064 .072 69.4 2,509 1.290 1.314 NE2 1.627 1.737 .156 .087 .862 110 .092 65.2 2,503 1.340 1.241 NE3 1.695 1.748 .115 .069 .774 054 .075 56.9 1.838 1.340 NE4 1.606 1.705 .158 .086 .835 099 .098 61.4 2,416 1.260 1.213 NE5 1.601 1.687 .146 .085 .855 021 .089 65.1 2,113 .010 NP201 1.869 1.825 .257 .183 .855 .044 .139 71.0 <t< td=""><td>LOOP1T</td><td>1.910</td><td>1.837</td><td>.158</td><td>.170</td><td>.721</td><td>.073</td><td>.123</td><td>39.4</td><td>2,024</td><td>1.860</td><td></td></t<>	LOOP1T	1.910	1.837	.158	.170	.721	.073	.123	39.4	2,024	1.860	
NCL 015 083 .190 .166 .850 .068 .100 72.2 2,390 240 NE1 1.664 1.727 .131 .088 .853 064 .072 69.4 2,509 1.290 1.314 NE2 1.627 1.737 .156 .087 .862 110 .092 65.2 2,503 1.340 1.241 NE3 1.695 1.748 .115 .069 .774 054 .075 56.9 1.838 1.340 NE4 1.606 1.705 .158 .086 .835 099 .098 61.4 2,416 1.260 1.213 NE5 1.601 1.687 .146 .085 .855 021 .089 65.1 2,113 .010 NP201 1.869 1.825 .257 .183 .855 .044 .139 71.0 2,439 1.650 1.420 NP202 1.679 1.646 .196 .156 .960 .033 .063 .89.5	LOOP2T	1.540	1.495	.220	.179	.716	.045	.155	50.3	2,086	1.480	
NE11.6641.727.131.088.853064.07269.42,5091.2901.314NE21.6271.737.156.087.862110.09265.22,5031.3401.241NE31.6951.748.115.069.774054.07556.91.8381.340NE41.6061.705.158.086.835099.09861.42,4161.2601.213NE51.6011.687.146.085.855086.08665.62,5391.270NMP118097.151.171.855021.08965.12,113.010NP2011.8691.825.257.183.855.044.13971.02,4391.6501.420NP2021.6791.646.196.156.960.033.06389.52,3091.3501.164NP2031.4711.467.181.126.920.004.08279.72,4261.220.890NP2051.4781.484.264.179.828.006.15366.22,4471.4401.332NP2061.2821.380.272.169.846098.15866.52,4531.3801.366NP44.636.782.351.238.769145.22758.32,3421.2701.073	LS	190	174	.106	.099	.778	015	.069	58.0	1,461	-1.520	
NE2 1.627 1.737 1.156 .087 .862 110 .092 65.2 2,503 1.340 1.241 NE3 1.695 1.748 .115 .069 .774 054 .075 56.9 1,838 1.340 NE4 1.606 1.705 .158 .086 .835 099 .098 61.4 2,416 1.260 1.213 NE5 1.601 1.687 .146 .085 .855 021 .089 65.1 2,113 .010 NMP 118 097 .151 .171 .855 021 .089 65.1 2,113 .010 NP201 1.869 1.825 .257 .183 .855 .044 .139 71.0 2,439 1.650 1.420 NP202 1.679 1.646 .196 .156 .960 .033 .063 .89.5 2,309 1.350 1.164 NP203 1.471 1.467 .181 .126 .920 .004 .082 .79.7	NCL	015	083	.190	.166	.850	.068	.100	72.2	2,390	240	
NE3 1.695 1.748 .115 .069 .774 054 .075 56.9 1.838 1.340 NE4 1.606 1.705 .158 .086 .835 099 .098 61.4 2,416 1.260 1.213 NE5 1.601 1.687 .146 .085 .855 086 .086 65.6 2,539 1.270 NMP 118 097 .151 .171 .855 021 .089 65.1 2,113 .010 NP201 1.869 1.825 .257 .183 .855 .044 .139 71.0 2,439 1.650 1.420 NP202 1.679 1.646 .196 .156 .960 .033 .063 89.5 2,309 1.350 1.164 NP203 1.471 1.467 .181 .126 .920 .004 .082 79.7 2,426 1.220 .890 NP205	NE1	1.664	1.727	.131	.088	.853	064	.072	69.4	2,509	1.290	1.314
NE41.6061.705.158.086.835099.09861.42,4161.2601.213NE51.6011.687.146.085.855086.08665.62,5391.270NMP118097.151.171.855021.08965.12,113.010NP2011.8691.825.257.183.855.044.13971.02,4391.6501.420NP2021.6791.646.196.156.960.033.06389.52,3091.3501.164NP2031.4711.467.181.126.920.004.08279.72,4261.220.890NP2051.4781.484.264.179.828006.15366.22,4471.4401.332NP2061.2821.380.272.169.846098.15866.52,4531.3801.366NP44.636.782.351.238.769145.22758.32,3421.2701.073NP46.018.033.171.166.751015.11951.72,429.050052NP67.0.215.0.273.0.179.0.151.0.898-0.0580.07980.42,4060.2400.582	NE2	1.627	1.737	.156	.087	.862	110	.092	65.2	2,503	1.340	1.241
NE5 1.601 1.687 .146 .085 .855 086 .086 65.6 2,539 1.270 NMP 118 097 .151 .171 .855 021 .089 65.1 2,113 .010 NP201 1.869 1.825 .257 .183 .855 .044 .139 71.0 2,439 1.650 1.420 NP202 1.679 1.646 .196 .156 .960 .033 .063 89.5 2,309 1.350 1.164 NP203 1.471 1.467 .181 .126 .920 .004 .082 79.7 2,426 1.220 .890 NP205 1.478 1.484 .264 .179 .828 006 .153 66.2 2,447 1.440 1.332 NP206 1.282 1.380 .272 .169 .846 098 .158 66.5 2,453 1.380 1.366 NP44 .636 .782 .351 .238 .769 145 .227 58.3 <td>NE3</td> <td>1.695</td> <td>1.748</td> <td>.115</td> <td>.069</td> <td>.774</td> <td>054</td> <td>.075</td> <td>56.9</td> <td>1,838</td> <td>1.340</td> <td></td>	NE3	1.695	1.748	.115	.069	.774	054	.075	56.9	1,838	1.340	
NMP118097.151.171.855021.08965.12,113.010NP2011.8691.825.257.183.855.044.13971.02,4391.6501.420NP2021.6791.646.196.156.960.033.06389.52,3091.3501.164NP2031.4711.467.181.126.920.004.08279.72,4261.220.890NP2051.4781.484.264.179.828006.15366.22,4471.4401.332NP2061.2821.380.272.169.846098.15866.52,4531.3801.366NP44.636.782.351.238.769145.22758.32,3421.2701.073NP46.018.033.171.166.751015.11951.72,429.050052NP62.399.420.197.127.814021.11963.42,229.310.835NP670.2150.2730.1790.1510.898-0.0580.07980.42,4060.2400.582	NE4	1.606	1.705	.158	.086	.835	099	.098	61.4	2,416	1.260	1.213
NP2011.8691.825.257.183.855.044.13971.02,4391.6501.420NP2021.6791.646.196.156.960.033.06389.52,3091.3501.164NP2031.4711.467.181.126.920.004.08279.72,4261.220.890NP2051.4781.484.264.179.828006.15366.22,4471.4401.332NP2061.2821.380.272.169.846098.15866.52,4531.3801.366NP44.636.782.351.238.769145.22758.32,3421.2701.073NP46.018.033.171.166.751015.11951.72,429.050052NP62.399.420.197.127.814021.11963.42,229.310.835NP670.2150.2730.1790.1510.898-0.0580.07980.42,4060.2400.582	NE5	1.601	1.687	.146	.085	.855	086	.086	65.6	2,539	1.270	
NP202 1.679 1.646 .196 .156 .960 .033 .063 89.5 2,309 1.350 1.164 NP203 1.471 1.467 .181 .126 .920 .004 .082 79.7 2,426 1.220 .890 NP205 1.478 1.484 .264 .179 .828 006 .153 66.2 2,447 1.440 1.332 NP206 1.282 1.380 .272 .169 .846 098 .158 66.5 2,453 1.380 1.366 NP44 .636 .782 .351 .238 .769 145 .227 58.3 2,342 1.270 1.073 NP46 .018 .033 .171 .166 .751 015 .119 51.7 2,429 .050 052 NP62 .399 .420 .197 .127 .814 .021 .119 63.4 2,229 .310 .835 NP67 0.215 0.273 0.179 0.151 0.898 -0.058 0.079 8	NMP	118	097	.151	.171	.855	021	.089	65.1	2,113	.010	
NP2031.4711.467.181.126.920.004.08279.72,4261.220.890NP2051.4781.484.264.179.828006.15366.22,4471.4401.332NP2061.2821.380.272.169.846098.15866.52,4531.3801.366NP44.636.782.351.238.769145.22758.32,3421.2701.073NP46.018.033.171.166.751015.11951.72,429.050052NP62.399.420.197.127.814021.11963.42,229.310.835NP670.2150.2730.1790.1510.898-0.0580.07980.42,4060.2400.582	NP201	1.869	1.825	.257	.183	.855	.044	.139	71.0	2,439	1.650	1.420
NP205 1.478 1.484 .264 .179 .828 006 .153 66.2 2,447 1.440 1.332 NP206 1.282 1.380 .272 .169 .846 098 .158 66.5 2,453 1.380 1.366 NP44 .636 .782 .351 .238 .769 145 .227 58.3 2,342 1.270 1.073 NP46 .018 .033 .171 .166 .751 015 .119 51.7 2,429 .050 052 NP62 .399 .420 .197 .127 .814 021 .119 63.4 2,229 .310 .835 NP67 0.215 0.273 0.179 0.151 0.898 -0.058 0.079 80.4 2,406 0.240 0.582	NP202	1.679	1.646	.196	.156	.960	.033	.063	89.5	2,309	1.350	1.164
NP2061.2821.380.272.169.846098.15866.52,4531.3801.366NP44.636.782.351.238.769145.22758.32,3421.2701.073NP46.018.033.171.166.751015.11951.72,429.050052NP62.399.420.197.127.814021.11963.42,229.310.835NP670.2150.2730.1790.1510.898-0.0580.07980.42,4060.2400.582	NP203	1.471	1.467	.181	.126	.920	.004	.082	79.7	2,426	1.220	.890
NP44 .636 .782 .351 .238 .769 145 .227 58.3 2,342 1.270 1.073 NP46 .018 .033 .171 .166 .751 015 .119 51.7 2,429 .050 052 NP62 .399 .420 .197 .127 .814 021 .119 63.4 2,229 .310 .835 NP67 0.215 0.273 0.179 0.151 0.898 -0.058 0.079 80.4 2,406 0.240 0.582	NP205	1.478	1.484	.264	.179	.828	006	.153	66.2	2,447	1.440	1.332
NP46.018.033.171.166.751015.11951.72,429.050052NP62.399.420.197.127.814021.11963.42,229.310.835NP670.2150.2730.1790.1510.898-0.0580.07980.42,4060.2400.582	NP206	1.282	1.380	.272	.169	.846	098	.158	66.5	2,453	1.380	1.366
NP62 .399 .420 .197 .127 .814 021 .119 63.4 2,229 .310 .835 NP67 0.215 0.273 0.179 0.151 0.898 -0.058 0.079 80.4 2,406 0.240 0.582	NP44	.636	.782	.351	.238	.769	145	.227	58.3	2,342	1.270	1.073
NP67 0.215 0.273 0.179 0.151 0.898 -0.058 0.079 80.4 2,406 0.240 0.582	NP46	.018	.033	.171	.166	.751	015	.119	51.7	2,429	.050	052
	NP62	.399	.420	.197	.127	.814	021	.119	63.4	2,229	.310	.835
NP72 .503 .615 .316 .222 .786111 .197 61.1 2,222 .980 .899	NP67	0.215	0.273	0.179	0.151	0.898	-0.058	0.079	80.4	2,406	0.240	0.582
	NP72	.503	.615	.316	.222	.786	111	.197	61.1	2,222	.980	.899

Table 12. Water-level comparison statistics for run 143, Main Park Road as a barrier.—Continued

Station		Mean stage (NAVD 88)		tandard ation	Correlation	measu	ence betweer red and ed values	n Percentage of		Land s altit (NAV	ude
Station	Measured (meters)	Computed (meters)	Measured (meters)	Computed (meters)	coefficient	Stage (meters)	Standard deviation (meters)	explained variance	n	Model input (meters)	Measured (meters)
NR	1.181	049	.117	.110	.773	1.230	.077	56.9	1,380	-1.200	1.682
NTS1	.841	1.169	.293	.303	.767	328	.203	51.7	2,457	1.020	1.076
NTS10	.927	1.048	.310	.372	.887	121	.173	68.9	2,152	1.270	1.237
NTS14	.732	.863	.386	.345	.788	131	.241	61.0	2,395	1.380	.756
OL1	059	089	.160	.121	.897	.030	.074	78.6	2,447	220	
ОТ	.251	.149	.189	.160	.905	.102	.081	81.6	2,464	170	
P33	1.509	1.532	.148	.104	.919	023	.067	79.6	2,406	1.230	1.024
P34	.419	.259	.213	.156	.856	.160	.113	71.7	2,428	.160	.119
P35	.118	.176	.171	.141	.946	057	.059	88.0	2,552	400	195
P36	.868	.888	.146	.109	.908	020	.066	79.7	2,407	.630	.530
P37	.002	.014	.155	.117	.866	012	.079	73.8	2,465	140	183
P38	.069	.048	.148	.113	.851	.021	.079	71.6	2,360	130	192
R127	.267	.362	.197	.147	.932	095	.081	83.3	2,384	.060	
R158	.416	.687	.239	.401	.834	272	.241	-1.6	2,445	.980	.927
R3110	.919	1.001	.331	.351	.890	082	.161	76.4	2,456	1.240	1.094
RG1	1.242	1.589	.284	.128	.673	347	.219	40.4	1,941	1.460	1.061
RG2	1.138	1.358	.286	.278	.829	220	.165	66.6	2,108	1.450	1.390
Rutzke	.940	1.067	.260	.385	.801	127	.236	17.9	2,432	1.510	1.103
S12AT	2.182	2.069	.288	.173	.809	.113	.179	61.1	2,530	1.870	
S12BT	2.205	2.051	.317	.172	.887	.154	.183	66.7	2,532	1.860	
S12CT	2.239	2.182	.323	.185	.480	.056	.285	22.2	2,520	1.870	
S12DT	2.209	2.064	.419	.222	.685	.144	.312	44.5	2,526	1.690	
SP	.211	.306	.217	.210	.788	095	.139	58.9	2,188	.480	.280
SR	.886	096	.109	.216	.265	.983	.214	-289.7	1,354	-2.800	
TE	1.242	.017	.127	.095	.857	1.226	.067	72.2	1,438	190	
TMC	.902	.894	.239	.153	.886	.008	.125	72.5	2,232	.770	.732
TSB	.628	.865	.278	.259	.962	237	.076	92.5	1,327	.490	.610
TSH	.156	.177	.163	.141	.909	021	.069	82.3	2,445	.000	021
WE	1.611	053	.114	.122	.636	1.664	.101	21.0	1,461	-1.610	
WP	1.365	031	.128	.170	.383	1.396	.169	-73.6	1,096	-1.870	
WW	1.435	.043	.151	.145	.855	1.392	.080	72.1	1,461	230	

Figure 32. Spatial distribution of mean stage difference between simulations with and without the Main Park Road as a barrier. Positive values indicate better fit, and negative values indicate a poorer fit.

Table 13. Water-level comparison statistics for run 146, land-surface altitude lowered 0.1 meter.

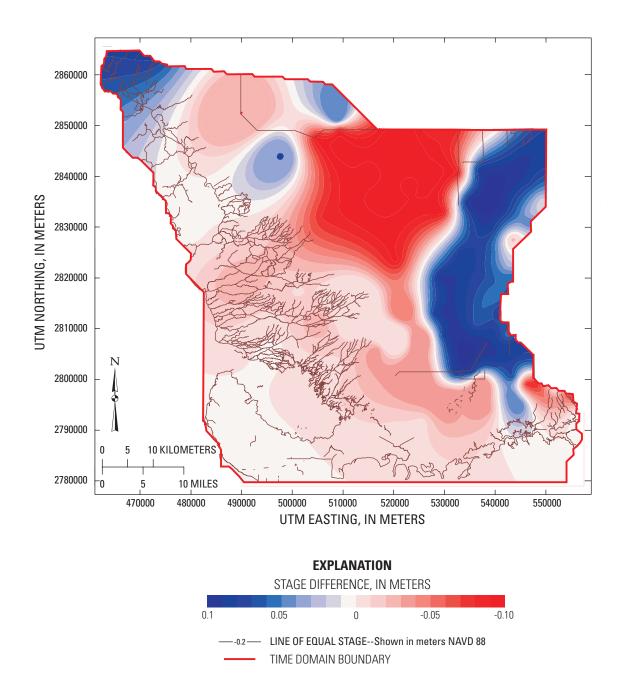

Station	Mean stage (NAVD 88)		•	tandard ation	Correlation	between m	ifference easured and ed values	Percentage of		Land s altit (NAV	ude
Station	Measured (meters)	Computed (meters)	Measured (meters)	Computed (meters)	coefficient	Stage (meters)	Standard deviation (meters)	explained variance	n	Model input (meters)	Measured (meters)
A13	0.968	0.259	0.985	0.157	0.861	-0.017	0.147	67.7	2,197	0.880	0.969
Angels	1.329	.264	1.493	.256	.726	165	.193	46.9	2,557	1.630	1.451
BD	.826	.123	.029	.099	.427	.797	.120	3.4	1,945	090	2.612
BICYA8	.215	.328	.764	.486	.099	549	.559	-190.9	1,959	.170	
BICYA9	1.726	.211	1.763	.175	.784	036	.131	61.3	1,869	1.960	
BICYA10	.718	.303	.693	.225	.775	.025	.192	60.0	1,854	.790	
BICYA11	.920	.380	.844	.164	.719	.076	.286	43.5	1,883	.780	
BR	1.074	.131	.018	.112	.844	1.056	.070	71.3	2,331	250	1.838
CN	.713	.123	005	.087	.864	.719	.065	72.0	2,447	180	1.323
СР	056	.169	106	.112	.792	.050	.105	61.0	2,479	540	503
CR2	1.121	.307	1.185	.278	.900	064	.134	81.0	2,161	1.230	1.231
CR3	1.119	.298	1.166	.230	.872	047	.149	75.0	2,212	1.210	1.234
CT27R	.143	.148	.085	.141	.597	.058	.130	23.0	1,903	160	085
CT50R	.106	.140	.020	.081	.785	.086	.092	57.3	1,896	090	.088
CV1NR	.121	.149	.003	.128	.109	.118	.185	-54.8	1,840	160	
CV5S	.123	.132	.129	.109	.651	006	.103	39.5	601	160	
CW	048	.103	067	.114	.520	.019	.107	-7.4	2,261	-1.930	
CYP2	.235	.206	.205	.195	.790	.030	.130	59.9	2,157	.380	1.643
CY3	.202	.214	.116	.154	.782	.087	.134	60.7	2,206	.180	1.518
DK	207	.118	177	.096	.710	030	.084	49.4	1,317	-1.960	
DO1	.349	.267	.390	.174	.843	041	.152	67.5	2,451	.460	.567
DO2	.432	.278	.360	.196	.828	.072	.159	67.1	2,237	.600	.570
E112	.846	.301	.908	.371	.888	062	.173	67.0	2,320	.950	.527
E146	096	.147	112	.113	.831	.016	.082	68.6	2,435	310	369
EP1R	.044	.132	005	.118	.093	.049	.169	-63.7	2,406	160	262
EP9R	159	.087	183	.061	.726	.024	.060	52.7	366	260	314
EPGW/ SW	015	.099	117	.077	.579	.102	.083	29.4	2,387	210	158
EVER4	.170	.145	.250	.149	.926	080	.057	84.8	2,521	.140	.085
EVER5A	097	.153	083	.091	.741	014	.105	52.9	1,945	180	174
EVER6	.141	.126	028	.071	.577	.169	.103	33.2	2,294	100	006
EVER7	.201	.120	.025	.091	.877	.176	.059	75.6	2,342	060	.131
G1251	.185	.168	.157	.153	.906	.028	.071	82.2	2,026	.130	.390
G1502	1.485	.242	1.613	.122	.760	128	.169	51.1	2,453	1.480	2.060
G3272	1.491	.247	1.633	.128	.797	142	.164	55.8	2,528	1.470	1.612
G3273	1.476	.239	1.621	.126	.792	145	.159	55.6	2,557	1.500	1.667
G3353	058	.137	060	.090	.794	.002	.086	61.1	2,519	120	1.149

Table 13. Water-level comparison statistics for run 146, land-surface altitude lowered 0.1 meter.—Continued

Station	Mean stage (NAVD 88)		•	tandard ation	Correlation	between m	ifference easured and ed values	Percentage of	_	Land so altite (NAV)	ude
Station	Measured (meters)	Computed (meters)	Measured (meters)	Computed (meters)	coefficient	Stage (meters)	Standard deviation (meters)	explained variance	n	Model input (meters)	Measured (meters)
G3437	1.194	0.259	1.089	0.259	0.704	0.105	0.199	40.9	2,510	1.750	1.615
G3576	1.562	.207	1.640	.096	.898	078	.128	61.9	1,965	1.270	1.353
G3577	1.426	.272	1.642	.093	.876	216	.196	48.1	2,014	1.260	1.356
G3578	1.520	.213	1.647	.090	.866	127	.142	55.4	2,494	1.270	1.356
G3619	.326	.147	.303	.142	.878	.024	.072	76.4	2,446	.110	.579
G3622	.879	.239	1.160	.375	.689	282	.273	-30.1	2,306	1.290	1.347
G3626	.975	.174	1.099	.267	.435	124	.248	-102.3	2,357	1.930	1.743
G3627	.860	.167	1.216	.242	.558	356	.203	-48.5	2,368	1.810	1.942
G3628	1.011	.203	1.410	.355	.496	399	.310	-132.4	2,336	1.630	1.667
G596	1.146	.197	1.312	.306	.603	165	.244	-53.0	2,546	1.710	1.753
G618	1.696	.146	1.652	.086	.773	.044	.096	56.5	2,457	1.380	1.466
G620	1.574	.205	1.482	.177	.924	.092	.080	85.0	2,451	1.280	1.311
GI	1.363	.113	079	.166	.414	1.442	.158	-93.3	1,616	-2.600	
HC	186	.111	.147	.201	.605	332	.161	-109.3	1,434	.460	
HR	.931	.119	.012	.099	.663	.919	.092	41.1	1,461	.020	
L67XW	1.761	.237	1.633	.089	.743	.128	.181	41.6	1,883	1.250	
LN	1.524	.120	046	.102	.823	1.570	.068	67.6	1,430	510	
LO	.818	.119	072	.250	.152	.890	.260	-377.3	1,335	-2.100	
LOOP1T	1.910	.158	1.747	.161	.715	.164	.120	42.1	2,024	1.760	
LOOP2T	1.540	.220	1.399	.174	.705	.140	.157	48.9	2,086	1.380	
LS	190	.106	173	.099	.813	017	.063	64.7	1,461	-1.620	
NCL	015	.190	091	.119	.770	.076	.124	57.4	2,390	340	
NE1	1.664	.131	1.639	.087	.849	.025	.073	68.5	2,509	1.190	1.314
NE2	1.627	.156	1.649	.085	.853	022	.094	63.4	2,503	1.240	1.241
NE3	1.695	.115	1.661	.068	.756	.033	.077	54.6	1,838	1.240	
NE4	1.606	.158	1.616	.085	.832	010	.099	60.6	2,416	1.160	1.213
NE5	1.601	.146	1.597	.084	.852	.004	.087	64.8	2,539	1.170	
NMP	118	.151	093	.124	.807	024	.089	65.2	2,113	090	
NP201	1.869	.257	1.730	.178	.847	.139	.142	69.4	2,439	1.550	1.420
NP202	1.679	.196	1.550	.155	.958	.129	.065	89.0	2,309	1.250	1.164
NP203	1.471	.181	1.372	.126	.918	.099	.083	79.2	2426	1.120	.890
NP205	1.478	.264	1.389	.175	.827	.090	.155	65.7	2,447	1.340	1.332
NP206	1.282	.272	1.298	.155	.837	017	.166	62.8	2,453	1.280	1.366
NP44	.636	.351	.691	.231	.769	055	.228	57.9	2,342	1.170	1.073
NP46	.018	.171	056	.122	.742	.074	.115	55.0	2,429	050	052
NP62	.399	.197	.327	.129	.815	.072	.118	63.8	2,229	.210	.835
NP67	.215	.179	.185	.141	.899	.030	.081	79.7	2,406	.140	.582

Table 13. Water-level comparison statistics for run 146, land-surface altitude lowered 0.1 meter.—Continued

Station		Mean stage (NAVD 88)		tandard ation	Correlation	between m	ifference easured and ed values	Percentage of		Land s altit (NAV	ude
Station	Measured (meters)	Computed (meters)	Measured (meters)	Computed (meters)	coefficient	Stage (meters)	Standard deviation (meters)	explained variance	n	Model input (meters)	Measured (meters)
NP72	0.503	0.316	0.527	0.217	0.790	-0.024	0.197	61.3	2,222	0.880	0.899
NR	1.181	.117	053	.106	.775	1.234	.075	58.4	1,380	-1.300	1.682
NTS1	.841	.293	1.083	.279	.786	242	.187	59.0	2,457	.920	1.076
NTS10	.927	.310	.997	.340	.888	070	.156	74.6	2,152	1.170	1.237
NTS14	.732	.386	.791	.328	.793	059	.236	62.6	2,395	1.280	.756
OL1	059	.160	126	.111	.833	.067	.091	67.6	2,447	320	
ОТ	.251	.189	.091	.151	.864	.159	.096	74.2	2,464	270	
P33	1.509	.148	1.438	.103	.916	.071	.068	79.0	2,406	1.130	1.024
P34	.419	.213	.177	.152	.852	.243	.115	70.7	2,428	.060	.119
P35	.118	.171	.113	.137	.950	.005	.059	88.0	2,552	500	195
P36	.868	.146	.794	.109	.905	.074	.066	79.4	2,407	.530	.530
P37	.002	.155	060	.113	.867	.062	.080	73.4	2,465	240	183
P38	.069	.148	.009	.109	.802	.060	.089	63.9	2,360	230	192
R127	.267	.197	.272	.141	.928	005	.085	81.6	2,384	040	
R158	.416	.239	.612	.340	.812	196	.202	28.5	2,445	.880	.927
R3110	.919	.331	.940	.327	.896	021	.150	79.5	2,456	1.140	1.094
RG1	1.242	.284	1.504	.114	.692	262	.221	39.4	1,941	1.360	1.061
RG2	1.138	.286	1.299	.250	.817	161	.166	66.4	2,108	1.350	1.390
Rutzke	.940	.260	1.042	.357	.813	102	.210	34.9	2,432	1.410	1.103
S12AT	2.182	.288	1.971	.177	.779	.211	.186	58.0	2,530	1.770	
S12BT	2.205	.317	1.947	.172	.913	.257	.175	69.7	2,532	1.760	
S12CT	2.239	.323	2.103	.201	.337	.135	.317	3.2	2,520	1.770	
S12DT	2.209	.419	1.974	.230	.609	.235	.333	36.7	2,526	1.590	
SP	.211	.217	.184	.171	.779	.026	.136	60.7	2,188	.380	.280
SR	.886	.109	098	.215	.268	.984	.213	-285.4	1,354	-2.900	
TE	1.242	.127	009	.101	.855	1.252	.066	72.8	1,438	290	
TMC	.902	.239	.797	.150	.882	.105	.128	71.3	2,232	.670	.732
TSB	.628	.278	.766	.236	.965	138	.080	91.8	1,327	.390	.610
TSH	.156	.163	.089	.134	.903	.067	.072	80.8	2,445	100	021
WE	1.611	.114	056	.116	.642	1.667	.097	26.5	1,461	-1.710	
WP	1.365	.128	026	.159	.414	1.391	.157	-50.8	1,096	-1.970	
WW	1.435	.151	.027	.136	.872	1.408	.074	76.0	1,461	330	

Figure 33. Spatial distribution of mean stage difference between simulations with and without lowered land surface. Positive values indicate better fit, and negative values indicate a poorer fit.

The station information for gage G-1502 (fig. 9) indicates the land-surface altitude near the gage is 2.06 m NAVD 88; therefore, the recorded water level for the entire data record is below land surface. The TIME application land-surface altitude at this location, however, is 1.58 m NAVD 88 based on the regional topography. Using this lower altitude, the TIME application shows surface water present most of the time, and consequently, the statistics routine compares mostly computed surface-water stage with measured groundwater head. This illustrates the problems that result from discrepancies between measured and model land-surface altitudes and from uncertainties in interpreting gage records. Similar discrepancies exist at other locations where the mean model and measured stage differ by 0.1 m; for example, CR2, CR3, RG1, RG2, and many of the G-prefix gages in the area.

Examples of how model results at many locations with substantial ponding could improve by lowering the model landsurface altitude can be seen by comparing the statistics for runs 142 and 146 (tables 10 and 13) for CR2, CR3, NTS10, NTS14, RG1, and RG2. In these cases, the simulated surface-water depth agrees reasonably well with the field data although stages are too high, indicating that land-surface altitude at the gage is higher in the model than measured in the field. Reducing stage by decreasing the frictional component is not feasible because stage at P33 is higher than RG1, indicating the flow gradient is to the southeast. The only apparent alternatives are to lower land-surface altitudes in the model and/or promote more flow through Taylor Slough. Because the model overestimates stage near TSB (figs. 9 and 16), an adjustment is made for the final calibration to facilitate flow through the slough, thereby lowering surface-water stages within it.

3.8.3 - C-111 Area

At gage HC (fig. 9) near the C-111 Canal (fig. 1), model response is controlled mainly by the prescribed ground-water head boundary because the water level is entirely below land surface. For previously reported runs, the prescribed groundwater head is equivalent to the measurement at EVER3 since there is a lack of other data. If data from HC were to be used to prescribe stage, the model fit likely would improve substantially; however, using HC to prescribe model boundary stage eliminates this gage as a calibration comparison site. Because these are boundary data issues in a calibration run using field-measured data, these issues should be nonexistent for model scenario runs that do not use field-measured data for boundaries.

The following calibration stations given in table 10 have: (1) an absolute value of mean bias (DIFMEAN) greater than 0.1 m, (2) a correlation of less than 0.8, and (3) an error standard deviation greater than 0.1 m or explained variance of less than 0.7 (DO1, DO2, E112, EP9R, EPGW/SW, EVER4, EVER5A, EVER6, EVER7, NCL, NMP, NP44, NP72, NTS10, NTS14, R127, and TSB). An examination of these statistics yields information that is useful for further calibration.

For run 142, mean biases at DO1, E112, EVER4, NP44, NP72, NTS10, NTS14, R127, and TSB are negative, which means the model overestimates mean stage (table 10). This indicates that statistics at these sites should improve if model land-surface altitudes are adjusted downward or friction is reduced; for EVER6 and EVER7, the opposite is true. It is undesirable to adjust land-surface altitudes without a careful field verification, however, and adjusting friction coefficients is considered more justifiable. At EVER4, computed stage is too high, but the model land-surface altitude is also high by 0.15 m. The neighboring station G-1251 shows a better fit, and the associated model land-surface altitude is below the corresponding observed altitude. The computed mean stage is reasonable at EPGW/SW, but the correlation and explained variance are lower than normal.

At stations EVER5A, EP9R, and G-3353, the modelinput land-surface altitudes are higher than those measured at the stations. Model land-surface altitudes at EVER5A, EP9R, and G-3353 are higher by 0.09 m, 0.15 m, and 1.169 m, respectively. Figure 15 shows that the model reasonably simulates stage at these sites, except during periods of low water levels (below land surface), which may indicate inadequate simulated ground-water drainage or a combination of inadequate ET and an excessive aquifer specific yield.

The comparison at NCL in figure 15 is degraded by a relatively poor fit for the first 2 years, which also occurred at other locations in Everglades National Park. The model performance is substantially better for the later 5 years.

Assessing the fit between simulated and measured stage values at DO1, DO2, NMP, NP44, NP72, NTS10 and NTS14 (table 10) is problematic, owing to the difficulty of comparing simulated surface-water stage with measured data that most likely represent ground-water head. In this case, the water-table decline during the annual dry season is underestimated.

3.8.4 - Results of Final Calibration

A number of runs were made that incorporate the findings just described; specifically, the friction was reduced through TSB, the ET extinction function and depth were varied, and the friction coefficient was increased just south of the degraded portion of C-111 Canal. Additional stage data from stations CV1NR and HC were used for GHBs from east of EVER3 to Florida Bay. Finally, the friction coefficient was increased from 0.008 to 0.2 for Trout Creek to divert some of its flow to other creeks.

This final calibration (run 157) incorporates a modified ET extinction function for ground water in order to improve the model ground-water head response during the dry season. The actual ET equals PET(1-DIST²), if DIST is less than or equal to 1 m, where PET is potential ET and DIST is the distance between the land surface and water table. The open-boundary conditions are based on the hydrodynamic model of Florida Bay using the Environmental Fluid Dynamic Code (EFDC) (John Hamrick, Tetra Tech, written commun., 2005). Hydrographs for water-level stations based on model output are provided in figure 34.

Comparisons with measured data are quantified as in previous runs (table 14). Table 15, however, presents recalculated statistics using only computed ground-water head for every station where the computed land-surface altitude is higher than the mean observed stage. This is referred to as run 157GW and is an attempt to identify ground-water gages (as opposed to surface-water gages) and avoid comparisons between model surface-water stages with what may be measured ground-water heads. Statistics for run 157 indicate tangible model improvements and bring the majority of stations to the desired levels of correlation and explained variance. Figures 35 and 36 show the spatial distribution of the mean stage bias and PEV, respectively, for run 157. The degree of model improvement is illustrated also by the

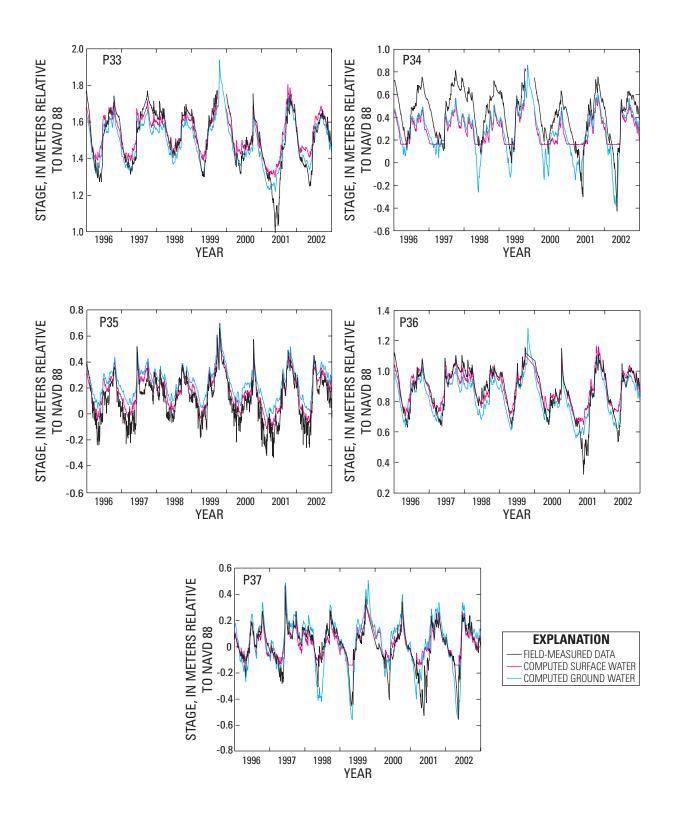


Figure 34. Comparison of water levels at selected stations in the TIME area for run 157.

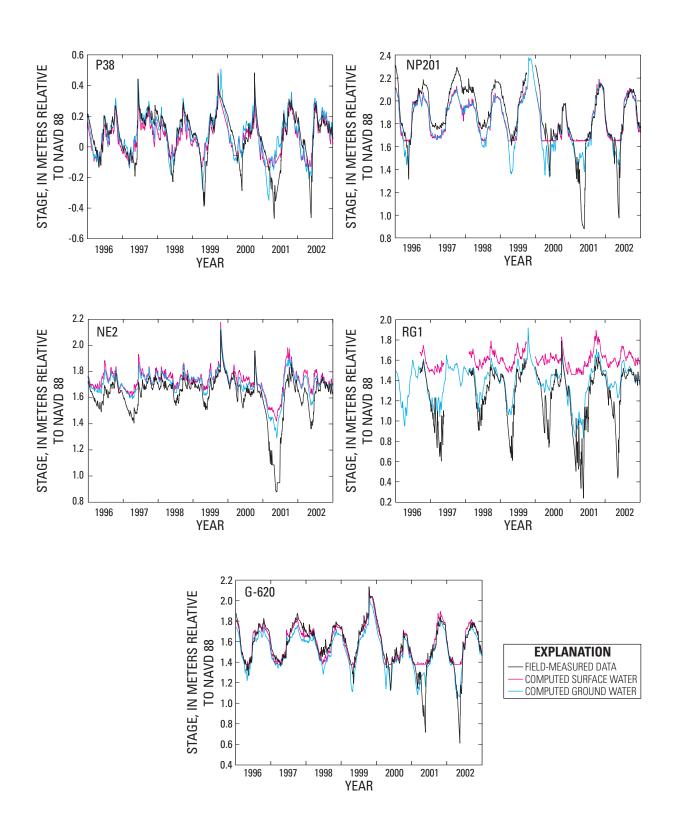


Figure 34. Comparison of water levels at selected stations in the TIME area for run 157.—Continued

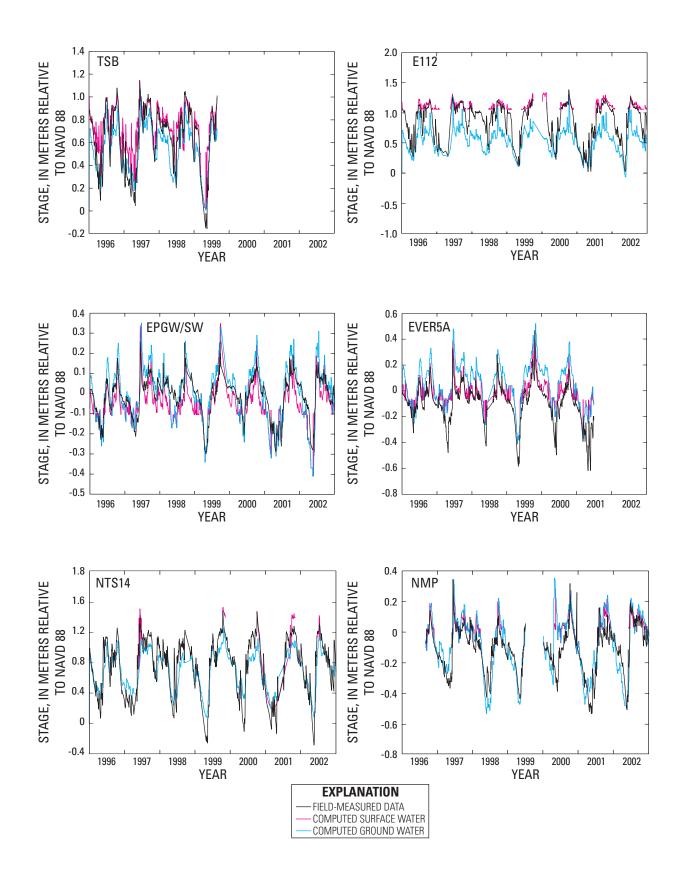


Figure 34. Comparison of water levels at selected stations in the TIME area for run 157.—Continued

Table 14. Water level comparison statistics for run 157, final calibration.

Cé-sti-		Mean stage (NAVD 88)		tandard ation	Correlation	measu	ence between red and ed values	Percentage of		Land si altit (NAV	ude
Station	Measured (meters)	Computed (meters)	Measured (meters)	Computed (meters)	coefficient	Stage (meters)	Standard deviation (meters)	explained variance	n	Model input (meters)	Measured (meters)
A13	0.968	1.057	0.259	0.190	0.862	-0.090	0.135	72.7	2,197	0.980	0.969
Angels	1.329	1.302	.264	.122	.774	.026	.186	50.2	2,557	1.730	1.451
BD	.826	.090	.123	.095	.505	.736	.111	17.9	1,945	.010	2.612
BICYA10	.718	.721	.303	.286	.837	004	.169	68.8	1,854	.890	
BICYA11	.920	.919	.380	.213	.727	.001	.268	50.1	1,883	.880	
BICYA8	.215	008	.328	.159	.648	.223	.255	39.3	1,959	-1.000	
BICYA9	1.726	1.803	.211	.215	.813	077	.130	61.8	1,869	2.060	
BR	1.074	.040	.131	.117	.902	1.034	.056	81.4	2,331	150	1.838
CN	.713	.036	.123	.084	.900	.677	.060	76.3	2,447	080	1.323
СР	056	052	.169	.122	.826	004	.097	67.1	2,479	440	503
CR2	1.121	1.055	.307	.256	.925	.066	.120	84.7	2,161	1.330	1.231
CR3	1.119	1.219	.298	.282	.863	100	.152	73.8	2,212	1.310	1.234
CT27R	.143	005	.148	.096	.707	.148	.105	49.7	1,903	060	085
CT50R	.106	.120	.140	.142	.889	014	.067	77.5	1,896	.010	.088
CW	048	058	.103	.146	.754	.010	.096	12.8	2,261	-1.830	
CY3	.202	.150	.214	.226	.810	.053	.136	59.7	2,206	.280	1.518
CYP2	.235	.206	.206	.222	.855	.029	.116	68.1	2,157	.480	1.643
DK	207	202	.118	.190	.861	005	.107	17.6	1,317	-1.860	
DO1	.349	.202	.267	.230	.858	047	.137	73.6	2,451	.560	.567
DO1 DO2	.432	.361	.278	.230	.853	.071	.146	72.5	2,131	.700	.570
E112	.846	.907	.301	.356	.833	061	.203	54.5	2,320	1.050	.570
E112 E146	096	059	.147	.140	.831	037	.084	67.7	2,320	210	369
EP1R	.044	033	.147	.093	.831	.077	.034	65.4	2,406	210	262
EP1R EP9R	159	107	.132	.093	.810	052	.078	64.7	366	160	202
EPGW/ SW	015	056	.087	.103	.804	.041	.052	66.9	2,387	110	158
EVER4	.170	.232	.145	.176	.894	062	.080	69.8	2,521	.240	.085
EVER5A	097	018	.153	.119	.838	079	.084	69.9	1,945	080	174
EVER6	.141	.023	.126	.101	.874	.118	.062	75.9	2,294	.000	006
EVER7	.201	.100	.120	.123	.891	.102	.057	77.5	2,342	.040	.131
G1251	.185	.100	.120	.123	.891	.012	.097	71.1	2,026	.230	.390
G1251 G1502	1.485	1.461	.242	.195	.821	.012	.148	62.4	2,020	.230 1.580	2.060
G1302 G3272	1.405	1.401	.242	.145	.766	.024	.148	48.6	2,433	1.570	1.612
G3272 G3273	1.491	1.471	.247	.111	.818	033	.177	48.0 59.6	2,528	1.600	1.667
		.000						59.6 76.5			
G3353	058		.137	.127	.876	058	.066		2,519	020	1.149
G3437	1.194	1.048	.259	.184	.855	.146	.139	71.1	2,510	1.850	1.615
G3576	1.562	1.724	0.207	0.105	0.901	-0.161	0.121	65.9	1,965	1.370	1.353

Table 14. Water level comparison statistics for run 157, final calibration.—Continued

0		i stage /D 88)	•	tandard ation	Correlation	measu	ence between red and ed values	Percentage of		Land so altit (NAV	ude
Station	Measured (meters)	Computed (meters)	Measured (meters)	Computed (meters)	coefficient	Stage (meters)	Standard deviation (meters)	explained variance	n	Model input (meters)	Measured (meters)
G3577	1.426	1.726	.272	.096	.885	300	.192	50.0	2,014	1.360	1.356
G3578	1.520	1.732	.213	.095	.870	212	.138	57.8	2,494	1.370	1.356
G3619	.326	.390	.147	.162	.892	063	.073	75.2	2,446	.210	.579
G3622	.879	.735	.239	.205	.817	.144	.138	66.5	2,306	1.390	1.347
G3626	.975	1.034	.174	.118	.440	059	.162	13.7	2,357	2.030	1.743
G3627	.860	1.157	.167	.116	.618	296	.132	37.6	2,368	1.910	1.942
G3628	1.011	1.039	.203	.127	.732	028	.140	52.5	2,336	1.730	1.667
G596	1.146	1.141	.197	.109	.562	.005	.163	31.5	2,546	1.810	1.753
G618	1.696	1.739	.146	.087	.800	043	.092	60.0	2,457	1.480	1.466
G620	1.574	1.573	.205	.185	.931	.001	.075	86.5	2,451	1.380	1.311
GI	1.363	069	.113	.206	.627	1.432	.161	-101.5	1,616	-2.500	
HC	186	212	.111	.114	.823	.027	.067	63.6	1,434	.560	
HR	.931	.052	.119	.144	.668	.880	.110	15.5	1,461	.120	
L67XW	1.761	1.719	.237	.090	.739	.042	.181	41.7	1,883	1.350	
LN	1.524	019	.120	.104	.922	1.543	.047	84.7	1,430	410	
LO	.818	045	.119	.283	.363	.864	.264	-393.3	1,335	-2.000	
LOOP1T	1.910	1.818	.158	.203	.726	.092	.140	22.0	2,024	1.860	
LOOP2T	1.540	1.474	.220	.225	.748	.066	.158	48.3	2,086	1.480	
LS	190	156	.106	.131	.723	033	.091	25.8	1,461	-1.520	
NCL	015	061	.190	.164	.775	.047	.121	59.3	2,390	240	
NE1	1.664	1.726	.131	.088	.851	062	.073	69.2	2,509	1.290	1.314
NE2	1.627	1.736	.156	.087	.862	109	.092	65.3	2,503	1.340	1.241
NE3	1.695	1.747	.115	.069	.776	052	.075	57.2	1,838	1.340	
NE4	1.606	1.704	.158	.087	.834	097	.099	61.3	2,416	1.260	1.213
NE5	1.601	1.686	.146	.085	.853	085	.086	65.4	2,539	1.270	
NMP	118	087	.151	.190	.781	031	.118	38.4	2,113	.010	
NP201	1.869	1.823	.257	.185	.857	.046	.137	71.5	2,439	1.650	1.420
NP202	1.679	1.645	.196	.156	.960	.034	.063	89.5	2,309	1.350	1.164
NP203	1.471	1.466	.181	.126	.921	.005	.082	79.8	2,426	1.220	.890
NP205	1.478	1.466	.264	.213	.827	.012	.148	68.4	2,447	1.440	1.332
NP206	1.282	1.280	.272	.186	.869	.002	.144	72.1	2,453	1.380	1.366
NP44	.636	.677	.351	.241	.864	041	.187	71.6	2,342	1.270	1.073
NP46	.018	029	.171	.170	.748	.047	.121	49.8	2,429	.050	052
NP62	.399	.399	.197	.148	.817	.000	.114	66.3	2,229	.310	.835
NP67	.215	.256	.179	.183	.895	041	.083	78.4	2,406	.240	.582
NP72	0.503	0.505	0.316	0.222	0.849	-0.002	0.173	70.0	2,222	0.980	0.899
NR	1.181	037	.117	.125	.907	1.218	.053	79.6	1,380	-1.200	1.682
				.120		1.210			1,000	1.200	1.002

Table 14. Water level comparison statistics for run 157, final calibration.—Continued

0		Mean stage (NAVD 88)		tandard ation	Correlation	measu	ence betweer Ired and ed values	Percentage of		Land s altit (NAV	ude
Station	Measured (meters)	Computed (meters)	Measured (meters)	Computed (meters)	coefficient	Stage (meters)	Standard deviation (meters)	explained variance	n	Model input (meters)	Measured (meters)
NTS1	.841	.517	.293	.213	.768	.323	.188	58.8	2,457	1.020	1.076
NTS10	.927	.792	.310	.236	.902	.135	.141	79.3	2,152	1.270	1.237
NTS14	.732	.704	.386	.254	.909	.028	.188	76.2	2,395	1.380	.756
OL1	059	063	.160	.136	.864	.004	.080	74.7	2,447	220	
OT	.251	.153	.189	.159	.902	.098	.082	81.0	2,464	170	
P33	1.509	1.531	.148	.104	.919	022	.067	79.6	2,406	1.230	1.024
P34	.419	.251	.213	.171	.864	.168	.108	74.2	2,428	.160	.119
P35	.118	.179	.171	.139	.952	061	.057	88.8	2,552	400	195
P36	.868	.886	.146	.109	.909	018	.065	80.0	2,407	.630	.530
P37	.002	.014	.155	.134	.855	012	.080	73.0	2,465	140	183
P38	.069	.057	.148	.113	.823	.012	.085	67.4	2,360	130	192
R127	.267	.360	.197	.163	.922	093	.079	84.0	2,384	.060	
R158	.416	.390	.239	.191	.867	.025	.120	74.7	2,445	.980	.927
R3110	.919	.826	.331	.261	.915	.093	.140	82.1	2,456	1.240	1.094
RG1	1.242	1.372	.284	.171	.855	130	.164	66.7	1,941	1.460	1.061
RG2	1.138	1.183	.286	.218	.894	045	.133	78.3	2,108	1.450	1.390
Rutzke	.940	.881	.260	.210	.866	.059	.131	74.6	2,432	1.510	1.103
S12AT	2.182	2.070	.288	.173	.807	.113	.180	60.9	2,530	1.870	
S12BT	2.205	2.050	.317	.171	.889	.154	.182	66.9	2,532	1.860	
S12CT	2.239	2.182	.323	.184	.480	.056	.285	22.2	2,520	1.870	
S12DT	2.209	2.065	.419	.222	.684	.144	.312	44.4	2,526	1.690	
SP	.211	.196	.217	.192	.831	.014	.121	68.8	2,188	.480	.280
SR	.886	076	.109	.247	.482	.962	.216	-296.9	1,354	-2.800	
TE	1.242	.029	.127	.102	.933	1.213	.049	85.3	1,438	190	
TMC	.902	.884	.239	.174	.892	.018	.115	76.8	2,232	.770	.732
TSB	.628	.709	.278	.214	.926	081	.114	83.2	1,327	.490	.610
TSH	.156	.169	.163	.164	.903	013	.072	80.5	2,445	.000	021
WE	1.611	044	.114	.142	.825	1.655	.081	49.6	1,461	-1.610	
WP	1.365	052	.128	.203	.709	1.417	.144	-25.6	1,096	-1.870	
WW	1.435	.060	.151	.142	.883	1.375	.071	77.7	1,461	230	

Table 15. Water-level comparison statistics for run 157GW, model ground water only.

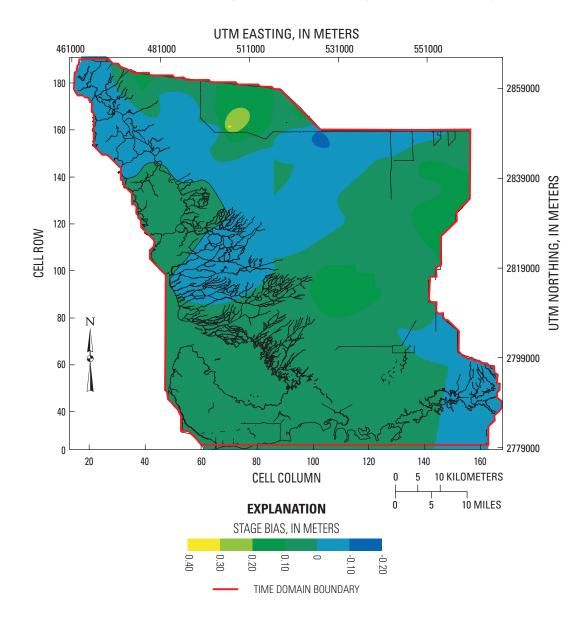
64 ···		Mean stage (NAVD 88)		deviation tage	Correlation	Mean differe measur compute	red and	Percentage of		alti	surface tude /D 88)
Station	Measured (meters)	Computed (meters)	Measured (meters)	Computed (meters)	coefficient	Stage (me- ters)	Standard deviation (meters)	explained variance	n	Model input (meters)	Measured (meters)
A13	0.968	1.017	0.259	0.210	0.881	-0.050	0.124	77.1	2,197	0.980	0.969
Angels	1.329	1.302	.264	.122	.774	.026	.186	50.2	2,557	1.730	1.451
BD	.826	.176	.123	.109	.513	.650	.115	11.9	1,945	.010	2.612
BICYA8	.215	.805	.328	.294	.873	590	.160	76.1	1,959	-1.000	
BICYA9	1.726	1.803	.211	.215	.813	077	.130	61.8	1,869	2.060	
BICYA10	.718	.721	.303	.286	.837	004	.169	68.8	1,854	.890	
BICYA11	.920	.893	.380	.236	.801	.028	.237	61.0	1,883	.880	
BR	1.074	.097	.131	.117	.744	.977	.090	53.0	2,331	150	1.838
CN	.713	.066	.123	.096	.810	.648	.072	65.6	2,447	080	1.323
СР	056	060	.169	.181	.816	.004	.107	60.0	2,479	440	503
CR2	1.121	1.055	.307	.256	.925	.066	.120	84.7	2,161	1.330	1.231
CR3	1.119	1.099	.298	.258	.901	.020	.129	81.1	2,212	1.310	1.234
CT27R	.143	.063	.148	.138	.885	.080	.069	78.1	1,903	060	085
CT50R	.106	.120	.140	.142	.889	014	.067	77.5	1,896	.010	.088
CW	048	.041	.103	.099	.640	089	.086	30.7	2,261	-1.830	
CYP2	.235	.206	.206	.222	.855	.029	.116	68.1	2,157	.480	1.643
CY3	.202	.150	.214	.226	.810	.053	.136	59.7	2,206	.280	1.518
DK	207	149	.118	.159	.456	058	.148	-58.8	1,317	-1.860	
DO1	.349	.395	.267	.230	.858	047	.137	73.6	2,451	.560	.567
DO2	.432	.361	.278	.221	.853	.071	.146	72.5	2,237	.700	.570
E112	.846	.542	.301	.208	.842	.304	.169	68.6	2,320	1.050	.527
E146	096	035	.147	.172	.836	061	.095	58.7	2,435	210	369
EP1R	.044	.000	.132	.117	.911	.044	.054	83.0	2,406	060	262
EP9R	159	057	.087	.122	.818	102	.072	32.4	366	160	314
EPGW/ SW	015	006	.099	.136	.871	009	.069	51.1	2,387	110	158
EVER4	.170	.232	.145	.176	.894	062	.080	69.8	2,521	.240	.085
EVER5A	097	.050	.153	.166	.863	147	.084	69.4	1,945	080	174
EVER6	.141	.062	.126	.137	.914	.079	.056	80.5	2,294	.000	006
EVER7	.201	.106	.120	.154	.901	.095	.070	66.3	2,342	.040	.131
G1251	.185	.173	.168	.193	.884	.012	.090	71.1	2,026	.230	.390
G1502	1.485	1.461	.242	.145	.821	.024	.148	62.4	2,453	1.580	2.060
G3272	1.491	1.471	.247	.111	.766	.020	.177	48.6	2,528	1.570	1.612
G3273	1.476	1.509	.239	.131	.818	033	.152	59.6	2,557	1.600	1.667
G3353	058	.063	.137	.174	.867	122	.088	58.9	2,519	020	1.149
G3437	1.194	1.048	.259	.184	.855	.146	.139	71.1	2,510	1.850	1.615
G3576	1.562	1.601	0.207	0.143	0.916	-0.039	0.095	78.8	1,965	1.370	1.353

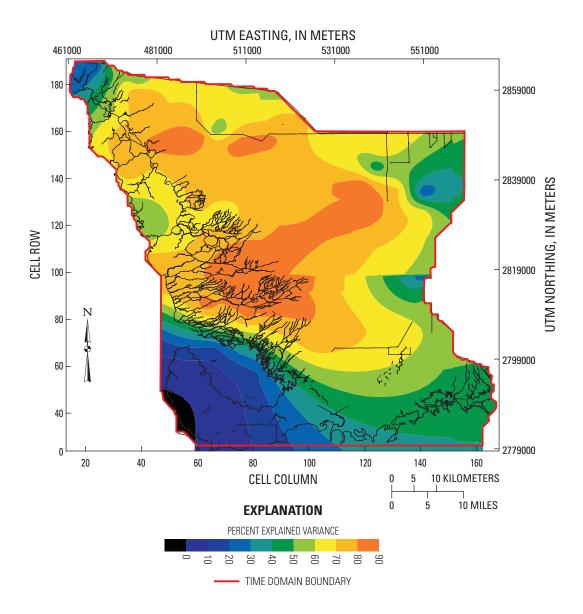
Table 15. Water-level comparison statistics for run 157GW, model ground water only.—Continued

(meters) (meters)	Stat:		Mean stage (NAVD 88)		deviation tage	Correlation	Mean differe measur compute	red and	Percentage of	_	alti	surface tude /D 88)
G3578 1.520 1.367 2.13 1.122 8.852 1.153 1.127 64.7 2.494 1.370 1.33 G3619 3.32 3.32 1.47 1.85 8.815 006 1.07 46.6 2.406 2.10 5.5 G3620 9.75 1.034 1.174 1.18 440 059 1.62 1.37 2.366 1.40 1.7 G3627 8.60 1.157 1.67 1.16 6.18 926 1.32 3.7.6 2.368 1.700 1.6 G3628 1.011 1.039 2.03 1.27 7.32 028 1.40 5.5 2.356 1.780 1.43 G461 1.46 1.141 1.97 1.09 5.62 0.05 1.63 3.1.8 2.451 1.880 1.43 G41 1.363 .088 .113 1.06 6.69 1.274 0.89 3.8.8 1.616 4.4 1.33 .50	Station		-			coefficient	-	deviation	-	n	input	Measured (meters)
G3619 .326 .332 .147 .185 .815 006 .107 46.6 2.446 .210 .5.5 G3622 .879 .735 .239 .205 .817 .144 .138 66.5 .2,306 1.300 1.3 G3626 .975 .1034 .117 .116 .618 .296 .132 .37.6 .2,357 .2,030 1.77 G3628 .1011 .1039 .203 .127 .732 .028 .143 .315 .2,546 .1810 1.7 G3628 .146 .141 .197 .109 .562 .005 .163 .31.5 .2,546 .1810 1.4 G618 1.696 2.122 .146 .176 .841 .426 .096 56.9 2.457 1.480 1.4 G1 1.363 .888 .113 .106 .692 .227 .067 63.6 1.441 .120 .446 .500	G3577	1.426	1.227	.272	.144	.804	.198	.178	57.1	2,014	1.360	1.356
G3622 .879 .735 .239 .205 .817 .1.44 .138 66.5 2.306 1.309 1.3 G3626 .975 1.034 .1.17 .1.16 .1.16 .6.16 209 .1.62 .3.7 2.357 2.030 1.77 G3627 .860 1.157 .1.67 .1.16 .6.16 202 .3.12 3.7.6 2.336 .1.730 1.6.0 G3628 1.144 1.97 .109 .562 .0.05 1.63 3.1.5 2.546 1.810 1.7 G618 1.696 2.122 .1.46 .1.76 .841 426 .096 5.6.9 2.457 1.480 1.43 G1 1.363 .0.84 .119 .158 .642 .887 .123 .05.3 1.461 .120 HR .931 .0.44 .119 .158 .642 .887 .123 .05.3 1.461 .120 <	G3578	1.520	1.367	.213	.122	.852	.153	.127	64.7	2,494	1.370	1.356
G3626 .975 1.034 .174 .118 .440 059 .162 13.7 2.337 2.030 1.7.7 G3627 .860 1.157 .167 .116 .618 296 .132 37.6 2.368 1.910 1.9 G3628 1.011 1.039 .203 .127 .732 028 .140 52.5 2.336 1.730 1.6 G596 1.146 1.141 .177 .028 .028 .163 3.52 2.546 1.840 1.43 G618 1.696 2.12 .111 .114 .823 .027 .067 6.56 1.434 .560 HC 186 212 .111 .114 .823 .027 .067 6.56 1.434 .560 HC .131 .046 .120 .121 .714 1.478 .091 4.25 1.430 .410 LO7 .151 .223<	G3619	.326	.332	.147	.185	.815	006	.107	46.6	2,446	.210	.579
G3627 .860 1.157 .167 .116 .618 296 .132 37.6 2.368 1.910 1.9 G3628 1.011 1.039 .203 .127 .732 028 .140 52.5 2.336 1.730 1.6 G596 1.146 1.141 .197 .109 .562 .005 .163 31.5 2.546 1.810 1.7 G618 1.696 2.122 .146 .176 .841 426 .096 53.6 1.434 .560 HC 186 212 .111 .114 .823 .027 .067 63.6 1.434 .560 HR .931 .044 .119 .158 .642 .887 .123 .0.53 1.461 .120 L67XW 1.761 1.721 .237 .133 .898 .040 .132 .69.3 1.883 1.350 L07XW 1.761 1.767 .158 .200 .767 .144 .129 34.0 .0.	G3622	.879	.735	.239	.205	.817	.144	.138	66.5	2,306	1.390	1.347
G3628 1.011 1.039 .203 .127 .732 028 .140 52.5 2.336 1.730 1.6 G596 1.146 1.141 .197 .109 .562 .005 .163 31.5 2.546 1.810 1.7 G618 1.696 2.122 .146 .176 .841 426 .096 5.59 2.457 1.480 1.43 G61 1.574 1.546 .212 .111 .114 .823 .027 .067 6.36 1.441 .120 L67 .186 .212 .111 .114 .823 .040 .132 .05.3 .1461 .120 L67XW 1.761 1.721 .237 .133 .898 .040 .132 .69.3 .1883 .1350 L0 .818 .223 .119 .153 .661 .595 .116 .44 .135 .2000 .777 .126 <th.< td=""><td>G3626</td><td>.975</td><td>1.034</td><td>.174</td><td>.118</td><td>.440</td><td>059</td><td>.162</td><td>13.7</td><td>2,357</td><td>2.030</td><td>1.743</td></th.<>	G3626	.975	1.034	.174	.118	.440	059	.162	13.7	2,357	2.030	1.743
G596 1.146 1.141 .197 .109 .562 .005 .163 31.5 2.546 1.810 1.7 G618 1.696 2.122 .146 .176 .841 426 .096 56.9 2.457 1.480 1.43 G620 1.574 1.546 .205 .182 .905 .028 .088 81.8 2.451 1.430 1.43 G1 .363 .088 .113 .106 .669 1.274 .089 38.0 1.616 -2.500 HR .931 .044 .119 .158 .622 .887 .123 .605 .143 .461 .120 L67XW 1.524 .046 .120 .121 .714 .1478 .091 .425 .1430 .410 .400 .410 .410 .410 .410 .410 .410 .410 .410 .410	G3627	.860	1.157	.167	.116	.618	296	.132	37.6	2,368	1.910	1.942
G618 1.696 2.122 .146 .176 .841 426 .096 56.9 2.457 1.480 1.4 G620 1.574 1.546 .205 .182 .905 .028 .088 81.8 2.451 1.380 1.3 G1 1.363 .088 .113 .106 .669 1.274 .089 38.0 1.616 -2.500 HC 186 212 .111 .114 .823 .027 .067 63.6 1.434 .560 L67XW 1.761 1.721 .237 .133 .898 .040 .132 .053 1.461 .120 L67XW 1.761 1.771 .237 .133 .898 .040 .132 .043 .433 .410 L00 .818 .223 .119 .153 .661 .595 .116 .44 .133 .200 .33 .261 .440 .440 <td>G3628</td> <td>1.011</td> <td>1.039</td> <td>.203</td> <td>.127</td> <td>.732</td> <td>028</td> <td>.140</td> <td>52.5</td> <td>2,336</td> <td>1.730</td> <td>1.667</td>	G3628	1.011	1.039	.203	.127	.732	028	.140	52.5	2,336	1.730	1.667
G620 1.574 1.546 .205 .182 .905 .028 .088 81.8 2.451 1.380 1.3 GI 1.363 .088 .113 .106 .669 1.274 .089 38.0 1.616 -2.500 HC 186 212 .111 .114 .823 .027 .067 63.6 1.434 .560 HR .931 .044 .119 .158 .642 .887 .123 .05.3 .1461 .120 L67XW 1.761 1.721 .237 .133 .898 .040 .132 .69.3 .188 .130 LO .818 .223 .119 .153 .661 .595 .116 4.4 .1335 .2000 LOOP1T 1.910 1.767 .158 .200 .774 .046 .130 .22.9 .2,03 .1.440 .2,050 .1.200	G596	1.146	1.141	.197	.109	.562	.005	.163	31.5	2,546	1.810	1.753
GI 1.363 0.88 1.13 .106 .669 1.274 0.89 38.0 1,616 -2.500 HC 186 212 .111 .114 .823 .027 .067 63.6 1,434 .560 HR .931 .044 .119 .158 .642 .887 .123 -05.3 1,461 .120 L67XW 1.761 1.721 .237 .133 .898 .040 .132 .69.3 1,883 1.350 L0 .818 .223 .119 .153 .661 .595 .116 4.4 1,335 -2.000 LOOP1T 1.910 1.767 .158 .200 .767 .144 .129 34.0 2.024 1.860 LOOP2T 1.540 1.414 .220 .248 .797 .126 .151 .209 1.240 NCL .515 .661 <td>G618</td> <td>1.696</td> <td>2.122</td> <td>.146</td> <td>.176</td> <td>.841</td> <td>426</td> <td>.096</td> <td>56.9</td> <td>2,457</td> <td>1.480</td> <td>1.466</td>	G618	1.696	2.122	.146	.176	.841	426	.096	56.9	2,457	1.480	1.466
HC 186 212 .111 .114 .823 .027 .067 63.6 1.434 .560 HR .931 .044 .119 .158 .642 .887 .123 .05.3 1.461 .120 L67XW 1.761 1.721 .237 .133 .898 .040 .132 69.3 1.883 1.350 L0 .818 .223 .119 .153 .661 .595 .116 4.4 1.335 -2.000 LOOP1T 1.910 1.767 .158 .200 .767 .144 .129 34.0 2.024 1.860 LOOP2T 1.540 1.414 .220 .248 .797 .126 .151 52.6 2.086 1.480 LS 190 252 .106 .125 .728 .063 .087 32.1 1.461 -1.50 NE1 1.664 1.743 .131 .105 .835 .079 .072 6.98 2.509	G620	1.574	1.546	.205	.182	.905	.028	.088	81.8	2,451	1.380	1.311
HR 931 .044 .119 .158 .642 .887 .123 .05.3 1.461 .120 L67XW 1.761 1.721 .237 .133 .898 .040 .132 69.3 1.883 1.350 LN 1.524 .046 .120 .121 .714 1.478 .091 42.5 1.430 410 LO .818 .223 .119 .153 .661 .595 .116 4.4 1,335 -2.000 LOOPIT 1.910 1.767 .158 .200 .767 .144 .129 34.0 2.024 1.860 LOOPIT 1.90 .177 .158 .200 .767 .144 .129 34.0 2.024 1.860 LS .190 .252 .106 .125 .728 .063 .087 32.1 1.461 .150 NEL .1664 1.743	GI	1.363	.088	.113	.106	.669	1.274	.089	38.0	1,616	-2.500	
L67XW 1.761 1.721 2.37 1.133 8.98 0.40 1.132 69.3 1.883 1.350 LN 1.524 0.046 1.120 1.21 .714 1.478 0.91 42.5 1.430 410 LO 818 .223 .119 1.53 .661 .595 .116 4.4 1.335 -2.000 LOOP1T 1.910 1.767 .158 .200 .767 .144 .129 34.0 2.024 1.860 LOOP2T 1.540 1.414 .220 .248 .797 .126 .151 52.6 2.086 1.480 LS 190 252 .106 .125 .728 .063 .087 32.1 1.461 -1520 NEL 1.664 1.743 .131 .105 .835 079 .072 69.8 2,509 1.290 1.33 NE2 1.627	HC	186	212	.111	.114	.823	.027	.067	63.6	1,434	.560	
LN 1.524 .046 .120 .121 .714 1.478 .091 42.5 1.430 410 410 LO .818 .223 .119 .153 .661 .595 .116 4.4 1,335 -2.000 LOOPIT 1.910 1.767 .158 .200 .767 .144 .129 34.0 2.024 1.860 LOOP2T 1.540 1.414 .220 .248 .797 .126 .151 52.6 2.086 1.480 LS .190 252 .106 .125 .728 .063 .087 32.1 1.461 -1.520 NCL -015 061 .190 .197 .774 .046 .130 52.9 2.390 .240 NE1 1.664 1.743 .131 .105 .835 079 .072 69.8 2.509 1.30 NE2 1.627 1.710 <td>HR</td> <td>.931</td> <td>.044</td> <td>.119</td> <td>.158</td> <td>.642</td> <td>.887</td> <td>.123</td> <td>-05.3</td> <td>1,461</td> <td>.120</td> <td></td>	HR	.931	.044	.119	.158	.642	.887	.123	-05.3	1,461	.120	
LO .818 .223 .119 .153 .661 .595 .116 4.4 1,335 -2.000 LOOP1T 1.910 1.767 .158 .200 .767 .144 .129 34.0 2.024 1.860 LOOP2T 1.540 1.414 .220 .248 .797 .126 .151 52.6 2.086 1.480 LS 190 252 .106 .125 .728 .063 .087 32.1 1.461 -1.520 NCL 015 061 .190 .197 .774 .046 .130 52.9 2.390 240 NE1 1.664 1.743 .131 .105 .835 079 .072 69.8 2.509 1.290 1.33 NE2 1.627 1.710 .156 .105 .868 021 .077 72.0 2.539 1.270 NE4 1.606 </td <td>L67XW</td> <td>1.761</td> <td>1.721</td> <td>.237</td> <td>.133</td> <td>.898</td> <td>.040</td> <td>.132</td> <td>69.3</td> <td>1,883</td> <td>1.350</td> <td></td>	L67XW	1.761	1.721	.237	.133	.898	.040	.132	69.3	1,883	1.350	
LOOP1T1.9101.767.158.200.767.144.12934.02,0241.860LOOP2T1.5401.414.220.248.797.126.15152.62,0861.480LS190252.106.125.728.063.08732.11,461-1.520NCL015061.190.197.774.046.13052.92,390240NE11.6641.743.131.105.835079.07269.82,5091.2901.3NE21.6271.710.156.105.868083.08371.72,5031.3401.2NE31.6951.410.115.122.733.285.08743.01.8381.340NE41.6061.659.158.109.834052.09067.42,4161.2601.2NE51.6011.622.146.110.854021.07772.02,5391.270NMP118087.151.190.781031.11838.42,113.010NP2011.8691.839.257.203.850.030.13672.02,4391.6501.4NP2021.6791.623.196.148.924.057.08282.62,3091.3501.1NP2031	LN	1.524	.046	.120	.121	.714	1.478	.091	42.5	1,430	410	
LOOP2T1.5401.414.220.248.797.126.15152.62,0861.480LS190252.106.125.728.063.08732.11,461-1.520NCL015061.190.197.774.046.13052.92,390240NE11.6641.743.131.105.835079.07269.82,5091.2901.3NE21.6271.710.156.105.868083.08371.72,5031.3401.2NE31.6951.410.115.122.733.285.08743.01,8381.340NE41.6061.659.158.109.834052.09067.42,4161.2601.2NE51.6011.622.146.110.854021.07772.02,5391.270NMP118087.151.190.781031.11838.42,113.010NP2011.8691.839.257.203.850.030.13672.02,4391.6501.4NP2021.6791.623.196.148.924.057.08282.62,3091.3501.1NP2031.4711.452.181.133.898.019.08577.82,4261.220.8NP2051.47	LO	.818	.223	.119	.153	.661	.595	.116	4.4	1,335	-2.000	
LS 190 252 .106 .125 .728 .063 .087 32.1 1,461 -1.520 NCL 015 061 .190 .197 .774 .046 .130 52.9 2,390 240 NE1 1.664 1.743 .131 .105 .835 079 .072 69.8 2,509 1.290 1.3 NE2 1.627 1.710 .156 .105 .868 083 .083 71.7 2,503 1.340 1.2 NE3 1.695 1.410 .115 .122 .733 .285 .087 43.0 1.838 1.340 NE4 1.606 1.659 .158 .109 .834 052 .090 67.4 2,416 1.260 1.2 NE5 1.601 1.622 .146 .110 .854 021 .077 72.0 2,539 1.270 NP201 1.869 1.839 .257 .203 .850 .030 .136 72.0 2,43	LOOP1T	1.910	1.767	.158	.200	.767	.144	.129	34.0	2,024	1.860	
NCL 015 061 .190 .197 .774 .046 .130 52.9 2,390 240 NE1 1.664 1.743 .131 .105 .835 079 .072 69.8 2,509 1.290 1.3 NE2 1.627 1.710 .156 .105 .868 083 .083 71.7 2,503 1.340 1.2 NE3 1.695 1.410 .115 .122 .733 .285 .087 43.0 1,838 1.340 NE4 1.606 1.659 .158 .109 .834 052 .090 67.4 2,416 1.260 1.2 NE5 1.601 1.622 .146 .110 .854 021 .077 72.0 2,539 1.270 NMP 118 087 .151 .190 .781 031 .118 38.4 2,113 .010 NP201 1.869 1.839 .257 .203 .850 .030 .136 72.0 2,43	LOOP2T	1.540	1.414	.220	.248	.797	.126	.151	52.6	2,086	1.480	
NCL .015 .061 .190 .197 .774 .046 .130 52.9 2,390 240 NE1 1.664 1.743 .131 .105 .835 079 .072 69.8 2,509 1.290 1.3 NE2 1.627 1.710 .156 .105 .868 083 .083 71.7 2,503 1.340 1.2 NE3 1.695 1.410 .115 .122 .733 .285 .087 43.0 1.838 1.340 NE4 1.606 1.659 .158 .109 .834 052 .090 67.4 2,416 1.20 1.2 NE5 1.601 1.622 .146 .110 .854 021 .077 72.0 2,539 1.270 NMP 118 087 .151 .190 .781 031 .118 38.4 2,113 .010 NP201 1.869 1.839 .257 .203 .850 .030 .136 72.0 2,439 </td <td>LS</td> <td>190</td> <td>252</td> <td>.106</td> <td>.125</td> <td>.728</td> <td>.063</td> <td>.087</td> <td>32.1</td> <td>1,461</td> <td>-1.520</td> <td></td>	LS	190	252	.106	.125	.728	.063	.087	32.1	1,461	-1.520	
NE2 1.627 1.710 .156 .105 .868 083 .083 71.7 2,503 1.340 1.2 NE3 1.695 1.410 .115 .122 .733 .285 .087 43.0 1,838 1.340 NE4 1.606 1.659 .158 .109 .834 052 .090 67.4 2,416 1.260 1.2 NE5 1.601 1.622 .146 .110 .854 021 .077 72.0 2,539 1.270 NMP 118 087 .151 .190 .781 031 .118 38.4 2,113 .010 NP201 1.869 1.839 .257 .203 .850 .030 .136 72.0 2,439 1.650 1.4 NP202 1.679 1.623 .196 .148 .924 .057 .082 82.6 2,309 1.350 1.1 NP203 1.471 1.452 .181 .133 .898 .019 .085 .77.8	NCL	015	061	.190	.197	.774	.046	.130	52.9		240	
NE3 1.695 1.410 .115 .122 .733 .285 .087 43.0 1.838 1.340 NE4 1.606 1.659 .158 .109 .834 052 .090 67.4 2,416 1.260 1.2 NE5 1.601 1.622 .146 .110 .854 021 .077 72.0 2,539 1.270 NMP 118 087 .151 .190 .781 031 .118 38.4 2,113 .010 NP201 1.869 1.839 .257 .203 .850 .030 .136 72.0 2,439 1.650 1.4 NP202 1.679 1.623 .196 .148 .924 .057 .082 82.6 2,309 1.350 1.1 NP202 1.679 1.623 .196 .148 .924 .057 .082 82.6 2,309 1.350 1.1 NP203 1.471 1.452 .181 .133 .898 .019 .085 77.8	NE1	1.664	1.743	.131	.105	.835	079	.072	69.8	2,509	1.290	1.314
NE4 1.606 1.659 .158 .109 .834 052 .090 67.4 2,416 1.260 1.2 NE5 1.601 1.622 .146 .110 .854 021 .077 72.0 2,539 1.270 NMP 118 087 .151 .190 .781 031 .118 38.4 2,113 .010 NP201 1.869 1.839 .257 .203 .850 .030 .136 72.0 2,439 1.650 1.4 NP202 1.679 1.623 .196 .148 .924 .057 .082 82.6 2,309 1.350 1.1 NP203 1.471 1.452 .181 .133 .898 .019 .085 77.8 2,426 1.220 .8 NP205 1.478 1.400 .264 .235 .852 .079 .138 72.4 2,447 1.440 1.3 NP206 1.282 1.280 .272 .186 .869 .002 .144 72.1 <t< td=""><td>NE2</td><td>1.627</td><td>1.710</td><td>.156</td><td>.105</td><td>.868</td><td>083</td><td>.083</td><td>71.7</td><td>2,503</td><td>1.340</td><td>1.241</td></t<>	NE2	1.627	1.710	.156	.105	.868	083	.083	71.7	2,503	1.340	1.241
NE4 1.606 1.659 .158 .109 .834 052 .090 67.4 2,416 1.260 1.2 NE5 1.601 1.622 .146 .110 .854 021 .077 72.0 2,539 1.270 NMP 118 087 .151 .190 .781 031 .118 38.4 2,113 .010 NP201 1.869 1.839 .257 .203 .850 .030 .136 72.0 2,439 1.650 1.4 NP202 1.679 1.623 .196 .148 .924 .057 .082 82.6 2,309 1.350 1.1 NP203 1.471 1.452 .181 .133 .898 .019 .085 77.8 2,426 1.220 .8 NP205 1.478 1.400 .264 .235 .852 .079 .138 72.4 2,447 1.440 1.3 NP206 1.282 1.280 .272 .186 .869 .002 .144 72.1 <t< td=""><td>NE3</td><td>1.695</td><td>1.410</td><td>.115</td><td>.122</td><td>.733</td><td>.285</td><td>.087</td><td>43.0</td><td>1,838</td><td>1.340</td><td></td></t<>	NE3	1.695	1.410	.115	.122	.733	.285	.087	43.0	1,838	1.340	
NE5 1.601 1.622 .146 .110 .854 021 .077 72.0 2,539 1.270 NMP 118 087 .151 .190 .781 031 .118 38.4 2,113 .010 NP201 1.869 1.839 .257 .203 .850 .030 .136 72.0 2,439 1.650 1.4 NP202 1.679 1.623 .196 .148 .924 .057 .082 82.6 2,309 1.350 1.1 NP203 1.471 1.452 .181 .133 .898 .019 .085 77.8 2,426 1.220 .8 NP205 1.478 1.400 .264 .235 .852 .079 .138 72.4 2,447 1.440 1.3 NP206 1.282 1.280 .272 .186 .869 .002 .144 72.1 2,453 1.380 1.3 NP44 .636 .677 .351 .241 .864 .047 .118 52.1				.158						2,416		1.213
NMP118087.151.190.781031.11838.42,113.010NP2011.8691.839.257.203.850.030.13672.02,4391.6501.4NP2021.6791.623.196.148.924.057.08282.62,3091.3501.1NP2031.4711.452.181.133.898.019.08577.82,4261.220.8NP2051.4781.400.264.235.852.079.13872.42,4471.4401.3NP2061.2821.280.272.186.869.002.14472.12,4531.3801.3NP44.636.677.351.241.864041.18771.62,3421.2701.0NP46.018029.171.188.786.047.11852.12,429.0500NP62.399.423.197.185.855024.10472.32,229.310.8NP67.215.236.179.206.909021.08676.82,406.240.5NP720.5030.5050.3160.2220.849-0.0020.17370.02,2220.9800.8	NE5	1.601	1.622		.110	.854		.077	72.0	2,539		
NP2011.8691.839.257.203.850.030.13672.02,4391.6501.4NP2021.6791.623.196.148.924.057.08282.62,3091.3501.1NP2031.4711.452.181.133.898.019.08577.82,4261.220.8NP2051.4781.400.264.235.852.079.13872.42,4471.4401.3NP2061.2821.280.272.186.869.002.14472.12,4531.3801.3NP44.636.677.351.241.864041.18771.62,3421.2701.0NP46.018029.171.188.786.047.11852.12,429.0500NP62.399.423.197.185.855024.10472.32,229.310.8NP67.215.236.179.206.909021.08676.82,406.240.5NP720.5030.5050.3160.2220.849-0.0020.17370.02,2220.9800.8	NMP	118	087	.151	.190	.781	031	.118	38.4		.010	
NP2021.6791.623.196.148.924.057.08282.62,3091.3501.1NP2031.4711.452.181.133.898.019.08577.82,4261.220.8NP2051.4781.400.264.235.852.079.13872.42,4471.4401.3NP2061.2821.280.272.186.869.002.14472.12,4531.3801.3NP44.636.677.351.241.864041.18771.62,3421.2701.0NP46.018029.171.188.786.047.11852.12,429.0500NP62.399.423.197.185.855024.10472.32,229.310.8NP67.215.236.179.206.909021.08676.82,406.240.5NP720.5030.5050.3160.2220.849-0.0020.17370.02,2220.9800.8												1.420
NP203 1.471 1.452 .181 .133 .898 .019 .085 77.8 2,426 1.220 .8 NP205 1.478 1.400 .264 .235 .852 .079 .138 72.4 2,447 1.440 1.3 NP206 1.282 1.280 .272 .186 .869 .002 .144 72.1 2,453 1.380 1.3 NP44 .636 .677 .351 .241 .864 041 .187 71.6 2,342 1.270 1.0 NP46 .018 029 .171 .188 .786 .047 .118 52.1 2,429 .050 0 NP62 .399 .423 .197 .185 .855 024 .104 72.3 2,229 .310 .8 NP67 .215 .236 .179 .206 .909 021 .086 76.8 2,406 .240 .5 NP72 0.503 0.505 0.316 0.222 0.849 -0.002 0.173 70.0												1.164
NP205 1.478 1.400 .264 .235 .852 .079 .138 72.4 2,447 1.440 1.3 NP206 1.282 1.280 .272 .186 .869 .002 .144 72.1 2,453 1.380 1.3 NP44 .636 .677 .351 .241 .864 041 .187 71.6 2,342 1.270 1.0 NP46 .018 029 .171 .188 .786 .047 .118 52.1 2,429 .050 0 NP62 .399 .423 .197 .185 .855 024 .104 72.3 2,229 .310 .8 NP67 .215 .236 .179 .206 .909 021 .086 76.8 2,406 .240 .5 NP72 0.503 0.505 0.316 0.222 0.849 -0.002 0.173 70.0 2,222 0.980 0.8												.890
NP206 1.282 1.280 .272 .186 .869 .002 .144 72.1 2,453 1.380 1.3 NP44 .636 .677 .351 .241 .864 041 .187 71.6 2,342 1.270 1.0 NP46 .018 029 .171 .188 .786 .047 .118 52.1 2,429 .050 0 NP62 .399 .423 .197 .185 .855 024 .104 72.3 2,229 .310 .8 NP67 .215 .236 .179 .206 .909 021 .086 76.8 2,406 .240 .5 NP72 0.503 0.505 0.316 0.222 0.849 -0.002 0.173 70.0 2,222 0.980 0.8												1.332
NP44 .636 .677 .351 .241 .864 041 .187 71.6 2,342 1.270 1.0 NP46 .018 029 .171 .188 .786 .047 .118 52.1 2,429 .050 0 NP62 .399 .423 .197 .185 .855 024 .104 72.3 2,229 .310 .8 NP67 .215 .236 .179 .206 .909 021 .086 76.8 2,406 .240 .5 NP72 0.503 0.505 0.316 0.222 0.849 -0.002 0.173 70.0 2,222 0.980 0.8												1.366
NP46 .018 029 .171 .188 .786 .047 .118 52.1 2,429 .050 0 NP62 .399 .423 .197 .185 .855 024 .104 72.3 2,229 .310 .8 NP67 .215 .236 .179 .206 .909 021 .086 76.8 2,406 .240 .5 NP72 0.503 0.505 0.316 0.222 0.849 -0.002 0.173 70.0 2,222 0.980 0.8												1.073
NP62 .399 .423 .197 .185 .855 024 .104 72.3 2,229 .310 .8 NP67 .215 .236 .179 .206 .909 021 .086 76.8 2,406 .240 .5 NP72 0.503 0.505 0.316 0.222 0.849 -0.002 0.173 70.0 2,222 0.980 0.8												052
NP67 .215 .236 .179 .206 .909 021 .086 76.8 2,406 .240 .5 NP72 0.503 0.505 0.316 0.222 0.849 -0.002 0.173 70.0 2,222 0.980 0.8												.835
NP72 0.503 0.505 0.316 0.222 0.849 -0.002 0.173 70.0 2,222 0.980 0.8												.582
												0.899
NR L181 048 117 113 674 1133 093 370 1380 -1200 16	NR	1.181	.048	.117	.113	.674	1.133	.093	37.0	1,380	-1.200	1.682

Table 15. Water-level comparison statistics for run 157GW, model ground water only.—Continued

Chatter		i stage /D 88)		deviation tage	Correlation	Mean differe measu compute	red and	Percentage of	_	alti	surface tude /D 88)
Station	Measured (meters)	Computed (meters)	Measured (meters)	Computed (meters)	coefficient	Stage (me- ters)	Standard deviation (meters)	explained variance	n	Model input (meters)	Measured (meters)
NTS1	.841	.517	.293	.213	.768	.323	.188	58.8	2,457	1.020	1.076
NTS10	.927	.792	.310	.236	.902	.135	.141	79.3	2,152	1.270	1.237
NTS14	.732	.704	.386	.254	.909	.028	.188	76.2	2,395	1.380	.756
OL1	059	021	.160	.172	.864	037	.087	70.2	2,447	220	
OT	.251	.201	.189	.168	.912	.050	.078	83.2	2,464	170	
P33	1.509	1.508	.148	.115	.877	.001	.073	75.8	2,406	1.230	1.024
P34	.419	.292	.213	.199	.890	.127	.097	79.1	2,428	.160	.119
P35	.118	.263	.171	.126	.905	145	.078	79.2	2,552	400	195
P36	.868	.867	.146	.120	.891	.001	.067	78.9	2,407	.630	.530
P37	.002	.048	.155	.193	.827	047	.109	50.8	2,465	140	183
P38	.069	.103	.148	.142	.861	034	.077	73.3	2,360	130	192
R127	.267	.315	.197	.198	.919	049	.080	83.7	2,384	.060	
R158	.416	.390	.239	.191	.867	.025	.120	74.7	2,445	.980	.927
R3110	.919	.826	.331	.261	.915	.093	.140	82.1	2,456	1.240	1.094
RG1	1.242	1.372	.284	.171	.855	130	.164	66.7	1,941	1.460	1.061
RG2	1.138	1.183	.286	.218	.894	045	.133	78.3	2,108	1.450	1.390
Rutzke	.940	.881	.260	.210	.866	.059	.131	74.6	2,432	1.510	1.103
S12AT	2.182	2.436	.288	.242	.689	254	.213	45.2	2,530	1.870	
S12BT	2.205	2.436	.317	.242	.760	232	.206	57.8	2,532	1.860	
S12CT	2.239	2.436	.323	.243	.795	197	.196	63.0	2,520	1.870	
S12DT	2.209	2.438	.419	.241	.811	229	.264	60.2	2,526	1.690	
SP	.211	.196	.217	.192	.831	.014	.121	68.8	2,188	.480	.280
SR	.886	.076	.109	.112	.637	.811	.094	24.9	1,354	-2.800	
TE	1.242	.080	.127	.106	.758	1.163	.083	56.9	1,438	190	
TMC	.902	.837	.239	.195	.909	.065	.102	81.8	2,232	.770	.732
TSB	.628	.538	.278	.207	.896	.090	.131	77.9	1,327	.490	.610
TSH	.156	.169	.163	.193	.896	013	.086	72.0	2,445	.000	021
WE	1.611	.071	.114	.201	.390	1.540	.188	-174.6	1,461	-1.610	
WP	1.365	.132	.128	.139	.639	1.233	.114	21.2	1,096	-1.870	
WW	1.435	.122	.151	.145	.801	1.314	.094	61.5	1,461	230	



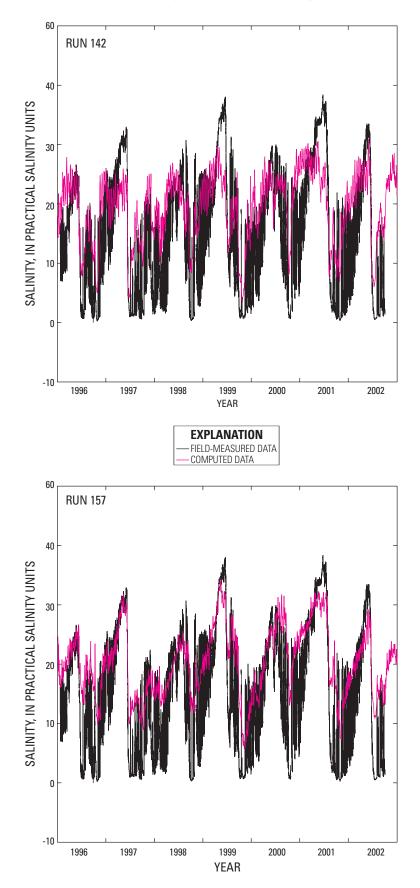

Figure 35. Spatial distribution of model mean stage bias in the TIME area for run 157.

summary statistics for 103 sites in table 5; run 157GW shows substantial improvement in each category. In figures showing the spatial distribution of statistical properties, the contour shapes are partly dependent upon the location and spacing of the field sites used for comparison. For example, an apparent horizontal offset of figure 36 contours can be explained by the interpolation between field sites and does not correspond to a distinct hydrologic feature.

The changes from run 142 to 157 decrease the total average flow to northeastern Florida Bay from 16.0 to 13.4 m³/s. This reduction in flow, partly caused by reduced boundary seepage and increased ET, improves the agreement

between model discharge to Florida Bay and measured flows of 10.2 m³/s. The redistribution of flows through rivers and creeks is shown in figure 25.

Improvements in water-level representation are evident at a number of sites, especially TSB, E112, EPGW/SW, EVER5A, and NTS14 (fig. 34); however, EVER4, EVER6, and EVER7 are nearly unchanged. The computed surfacewater values are actually a composite of model surface water (when present) and model ground water when land surface is dry. NTS14 is an example where model land-surface altitude is substantially (0.6 m) higher than the corresponding measured altitude. An altitude adjustment is probably necessary to obtain


Figure 36. Spatial distribution of percentage of explained variance in the TIME area for run 157.

further improvement at sites were substantial land-altitude discrepancies exist. The EPGW/SW station is noteworthy because the data are bracketed by model ground water and surface water and because ground-water head is above the surface-water stage, indicating upward leakage.

The predicted salinities at Trout Creek for runs 142 and 157 are shown in figure 37. The open-boundary prescribed salinity of 36 psu for incoming flow in run 142 caused substantial phase errors and a range compression compared to observations. Using the EFDC model salinity boundary conditions improves the phase and also expands the range to reproduce more closely the data. Hypersalinity (greater than 36 psu) extremes are still underpredicted, which is related directly to the Florida Bay model representation. In contrast, the overestimation of low salinities primarily is due to a lack of sufficient resolution in the TIME model directly adjacent to creeks where spatial gradients in salinity are large; however, this should have little effect on predicted freshwater outflows.

3.9 - Future Uses of TIME application

In order to use the TIME application to evaluate the effects of proposed restoration scenarios on the coastal Everglades, boundary conditions for TIME must be developed from a linkage to the South Florida Water Management

Figure 37. Comparison of salinities at Trout Creek for runs 142 and 157.

Model (SFWMM). This is implemented in a similar fashion to the SFWMM/SICS application link described in Wolfert and others (2004) and shown in appendix 1. The effects of restoration changes on stages, flows, and hydroperiods in the TIME domain can then be evaluated and ecologic implications determined. As shown in figure 2, the results of the TIME simulated scenarios can be used to supply coastal freshwater flow information for the Florida Bay Hydrodynamic model. The TIME application functions as an important representation of the interface between the inland region, represented by the SFWMM, and Florida Bay.

4 - Summary

The effort to develop numerical models to represent the inland and coastal areas of the Everglades has led to the development of the FTLOADDS model code, which couples the surface-water model SWIFT2D with the ground-water model SEAWAT. After a preliminary application to a small region of the coastal Everglades called SICS, the FTLOADDS code was applied, with further modifications, to the TIME domain—a larger region that includes practically all of Everglades National Park and the coastal waters. One purpose of developing TIME is to represent the complex coastal regime that lies between the South Florida Water Management Model (SFWMM), which represents restoration scenarios for the South Florida inland areas, and the Florida Bay hydrodynamic model.

A total of 157 seven-year TIME application runs were made for calibration and sensitivity analyses. Model output values used to evaluate calibration included: (1) wetlands water levels; (2) river stages and flows; (3) wetland surfacewater depths, flows, and salinities; and (4) ground-water heads and salinities. Evaluations were made using statistics (mean bias, correlation, and percentage of explained variance), which indicated that the calibration fit is within the allowable error. This finding supports the use of the TIME application as a suitable tool to utilize input of boundary conditions developed from the regional SFWMM ecosystem restoration scenarios to determine the effects of these proposed changes to the hydrologic system.

Sensitivity studies of the TIME application were conducted by comparing output statistics between the calibrated application and a simulation with: (1) the model-code version used for SICS, (2) local adjustment of frictional resistance, (3) no leakage, (4) a road barrier removed, and (5) lowered land surface. The following were observed:

- The TIME application has improved capabilities compared to SICS, particularly in the representation of coastal flows. This result probably is due to a more computationally stable representation of the coastal creek outlets.
- Empirically manipulating frictional resistance values in inland areas improved water-level representation locally, but had a negligible effect on area-wide values. Because these changes have only local effects and are not physically based, they are not considered a valid representation of frictional resistance in the model.
- Neglecting leakage caused ground-water heads to differ substantially from measured values and reduced the overall accuracy of the model simulations. Surfacewater stages changed slightly at most sites, indicating minimal ground-water influence, although substantial differences occurred occasionally.
- The incorporation of a major road as a complete barrier to flow influenced the local distribution and timing of flow; however, the differences in total flow and individual creekflows were negligible compared to simulations without the road barrier.
- Lowering the model land-surface altitude by 0.1 m produced mixed results; overall, the stage representation did not improve definitively.

These sensitivity tests led to a final calibration to improve the model fit at several locations. Incorporating the topography of Turner River and reporting computed stage in the river for comparison improved the fit in the northwestern corner of the TIME domain. An improved water-level fit was achieved by reducing the friction coefficient at the Taylor Slough Bridge boundary inflow point and increasing the coefficient just south of C-111 Canal. The ET extinction function was modified to improve the ground-water head response of the model during the dry season. Additional data were used for the ground-water head boundary along the southeastern part of C-111 Canal and the frictional resistance of Trout Creek outlet was increased; both steps improved the model fit to measured data for the total flow to Florida Bay and coastal salinities. Improved agreements also were obtained at the majority of water-level sites throughout the model domain. This final calibration also supports the use of the TIME application as a suitable tool for representing restoration scenarios.

5 - References Cited

Abtew, W., 1996, Evapotranspiration measurements and modeling for three wetland systems in South Florida: Water Resources Bulletin, v. 32, no. 3, p. 465-473.

Abtew, W., and Obeysekera, Jayantha, 1995, Lysimeter study of evapotranspiration of cattails and comparison of three estimation methods: Transactions of the American Society of Agricultural Engineers, v. 38, no. 1, p. 121-129.

Abtew, W., Obeysekera, Jayantha, Irizarry-Ortiz, M., Lyons, D., and Reardon, A., 2003, Evapotranspiration estimation for South Florida, *in* Bizier P., and DeBarry P.A., eds., World water environmental resources congress 2003: American Society of Civil Engineers and Environmental Water Resources Institute, Philadelphia, Pennsylvania, June 23-26, 2003.

Cohen, A.D., and Spackman, Jr., William, 1984, The petrology of peats from the Everglades and coastal swamps of southern Florida, *in* Gleason, P.J., ed., Environments of South Florida, present and past II: Miami Geological Society, p. 352-374.

Desmond, Greg, 2003, Measuring and mapping the topography of the Florida Everglades for ecosystem restoration: U.S. Geological Survey Greater Everglades science program: 2002 biennial report: U.S. Geological Survey Open-File Report 03-54, p. 31-32.

Eagleson, P.S., 1970, Dynamic Hydrology: New York, McGraw-Hill, 462 p.

Fish, J.E., and Stewart, M.T., 1991, Hydrogeology of the surficial aquifer system, Dade County, Florida: U.S. Geological Survey Water-Resources Investigations Report 90-4108, 53 p.

Fitterman, D.V., and Deszcz-Pan, M., 1998, Helicopter EM mapping of saltwater intrusion in Everglades National Park, Florida: Exploration Geophysics, v. 29, p. 240-243.

Fitterman, D.V., and Deszcz-Pan, M., 2002, Helicopter electromagnetic data from Everglades National Park and surrounding areas, Florida: Collected 9-14 December 1994: U.S. Geological Survey Open-File Report 02-101, 38 p.

Fitterman, D.V., Deszcz-Pan, Maria, and Stoddard, C.E., 1999, Results of time-domain electromagnetic soundings in Everglades National Park, Florida: U.S. Geological Survey Open-File Report 99-426.

German, E.R., 2000, Regional evaluation of evapotranspiration in the Everglades: U.S. Geological Survey Water-Resources Investigations Report 00-4217, 48 p. Guo, Weixing, and Langevin, C.D., 2002, User's guide to SEAWAT: A computer program for simulation of threedimensional variable-density ground-water flow: U.S.Geological Survey Techniques of Water-Resources Investigations, book 6, chap. A7, 77 p.

Hamrick, J.M., and Moustafa, M.Z., 2003, Florida Bay hydrodynamic and salinity model analysis: Joint Conference on the Science and Restoration of the Greater Everglades and Florida Bay Ecosystem "From Kissimmee to the Keys", April 13-18, 2003, Palm Harbor, Florida.

Hansen, M., and DeWitt, N.T., 1999, Modern and historical bathymetry of Florida Bay *in* Proceedings of the 1999 Florida Bay and Adjacent Marine Systems Science Conference, November 1-5 1999, Key Largo, Fla.

Harvey, J.W., Jackson, J.M., Mooney, R.H., and Choi, J., 2000, Interaction between ground water and surface water in Taylor Slough and vicinity, Everglades National Park, South Florida: Study methods and appendixes: U.S. Geological Survey Open-File Report 00-483, 67 p.

Holmes, C.W., Robbins, John, Halley, R.B., Bothner, Michael, Tenbrink, Marilyn, and Marot, M., 2000, Sediment dynamics of Florida Bay mud banks on a decadal time scale: U.S. Geological Survey Program on the South Florida Ecosystem: 2000 Proceedings of the Greater Everglades Ecosystem Restoration (GEER) Conference, December 11-15, 2000: U.S. Geological Survey Open-File Report 00-449.

Intergovernmental Panel on Climate Change, 2001, Climate change 2001: The scientific basis: United Kingdom and New York, Cambridge University Press, 881 p.

Jacobs, J.M., and Sudheer, R.S., 2001, Evaluation of reference evapotranspiration methodologies and AFSIRS crop water use simulation model. Final report John M. Fitzgerald, Water Use Data Manager Division of Water Supply Management St. Johns River Water Management District Palatka, Florida. Department of Civil and Coastal Engineering University of Florida Gainesville, Florida. SJRWMD Contract Number: SD325AA. UF Contract Number: 4504771, April 2001.

Langevin, C.D., Swain, E.D., and Wolfert, M.A., 2004, Simulation of integrated surface-water/ground-water flow and salinity for a coastal wetland and adjacent estuary: U.S. Geological Survey Open-File Report 2004-1097, 30 p.

Langevin, C.D., Swain, E.D., and Wolfert, M.A., 2005, Simulation of integrated surface-water/ground-water flow and salinity for a coastal wetland and adjacent estuary: Journal of Hydrology v. 314, p. 212-234.

Large, W.G., and Pond, S., 1981, Open ocean momentum flux measurements in moderate to strong winds: Journal of Physical Oceanography, v. 11, p. 324-336.

Lee, J.K., and Carter, Virginia, 1999, Field measurement of flow resistance in the Florida Everglades: Proceedings of the South Florida Restoration Science Forum: May 17-19, 1999, Boca Raton, Florida: U.S. Geological Survey Open File Report 99-181.

Linsley, R.K. Jr., Kohler, M.A., and Paulhus, J.L.H., 1982, Hydrology for Engineers: New York, McGraw-Hill, p. 162-163.

Nemeth, M.S., Wilcox, W.M., and Solo-Gabriele, H.M., 2000, Evaluation of the use of reach transmissivity to quantify leakage beneath Levee 31N, Miami-Dade County, Florida: U.S. Geological Survey Water-Resources Investigations Report 00-4066.

Oke, T.R., 1978, Boundary Layer Climates: London, Methuen, 350 p.

Perrier A., and Tuzet A., 1991, Land surface processes: description, theoretical approaches, and physical laws underlying their measurements, *in* Schmugge. J., and Andre, J-C., eds., Land surface evaporation: Measurement and parameterization: New York, Springer, p. 145-155.

Prager, E.J., and Halley, R.B., 1997, Florida Bay bottom types: U.S. Geological Survey Open-File Report 97-526, 1 sheet.

Reese, R.S., and Cunningham, K.J., 2000, Hydrogeology of the gray limestone aquifer in southern Florida: U.S. Geological Survey Water-Resources Investigations Report 99-4213, 244 p.

Schaffranek, R.W., 2004, Simulation of surface-water integrated flow and transport in two dimensions: SWIFT2D user's manual: U.S. Geological Survey Techniques and Methods, book 6, chap B-1, 115 p.

Scheidt, D., Stober, J., Jones, R., and Thorton, K., 2000, South Florida Ecosystem Assessment: Everglades Water Management, Soil Loss, Eutrophication, and Habitat: U.S. Environmental Protection Agency Report 904-R-00-003.

Shoemaker, W.B., Sumner, D.M., Castillo, A., 2005, Estimating changes in heat energy stored within a column of wetland surface water and factors controlling their importance in the surface energy budget: Water Resources Research, v. 41, W10411.

Stannard, D.I., 1993, Comparison of Penman-Monteith, Shuttleworth-Wallace, and modified Preistley-Taylor evapotranspiration models for wildland vegetation in semiarid rangeland: Water Resources Research, v. 29, no. 5, p. 1379-1392.

Stewart, M.A., Bhatt, T.N., Fennema, R.J., and Fitterman, D.V., 2002, The road to flamingo: An evaluation of flow pattern alterations and salinity intrusion in the lower glades, Everglades National Park: U.S. Geological Survey Open-File Report 02-0059, 36 p. Swain, E.D., 2005, A model for simulation of <u>Surface-Water</u> <u>Integrated Flow and Transport in Two Dimensions: User's</u> guide for application to coastal wetlands: U.S. Geological Survey Open-File Report 2005-1033, 88 p.

Swain, E.D., Wolfert, M.A., Bales, J.D., and Goodwin, C.R., 2004, Two-dimensional hydrodynamic simulation of surface-water flow and transport to Florida Bay through the Southern Inland and Coastal Systems (SICS): U.S. Geological Survey Water-Resources Investigations Report 03-4287, 56 p., 6 pls.

U.S. Army Corps of Engineers, 1999, CORPSCON v4.1 Technical documentation and operating instructions: Accessed on Nov. 2, 2006, at http://www.iep.ca.gov/pub/corpscon/corpscon.doc

U.S. Army Corps of Engineers and South Florida Water Management District, 2003, A Vision Statement for the Comprehensive Everglades Restoration Plan: accessed on Oct. 1, 2006, at http://www.evergladesplan.org/pm/program_docs/cerp_ vision_statement.cfm

Wolfert, M.A., Langevin, C.D., and Swain, E.D., 2004, Assigning boundary conditions to the Southern Inland and Coastal Systems (SICS) model using results from the South Florida Water Management Model (SFWMM): U.S. Geological Survey Open-File Report 2004-1195, 30 p.

Worth, Dewey, Weaver, Cecella, and Trulock, Shelly, 2002, Florida Bay and Florida Keys Feasibility Study Overview: Accessed on Oct. 1, 2006, at http://www.evergladesplan.org/docs/fs_fl_bay_feas_hires.pdf