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INTRODUCTION

The USDA-DOI Abandoned Mine Lands (AML) Initiative (USGS, 1999) is focused on the evaluation of
the effect of past mining practices on the water quality and the riparian and aquatic habitats of impacted
stream reaches downstream from historical mining districts located primarily on federal lands. This problem
is manifest in the eleven western states (i.e., west of 1020) where the majority of hardrock mines having past
production are located on federal lands (Ferderer, 1996). In areas of temperate climate and moderate to
heavy precipitation, the effect of rapid chemical and physical weathering of sulfides exposed on mine waste
dumps and the acidic drainage from mines has resulted in elevated metal concentrations in the stream waters
and streambed sediment. The result of these processes is an unquantified impact on the quality of the water
and the aquatic and riparian habitats, which may limit their recreational resource value. One of the
confounding factors in these studies is the determination of the component of metals derived from
hydrothermally altered but unmined portions of these drainage basins (Runnells and others, 1992). Several
watersheds have been or are being actively studied to evaluate the effects of acid mine drainage (AMD) and
acid rock drainage (ARD) on the near-surface environment (USGS, 1997) (http://amli.usgs.gov/amli/5year/).
 The Animas River watershed in southwestern Colorado contains a large number of past-producing metal
mines that have affected the watershed. Beginning in October 1996, the USGS began a collaborative study
of these impacts under the USGS-AML Initiative (Buxton and others, 1997).

In this report, we present the geochemical and lead isotopic results of sediment coring work done between
1995 and 1999 in the Animas River watershed. The goals of this overall effort are: 1) to sample pre-mining
streambed sediment to define the pre-mining geochemical baseline, 2) to examine existing iron bogs and
beaver ponds as possible traps for metals, and 3) to document the geochemical and lead isotopic character
of fluvial mill tailings deposits. Many of the samples we collected fall into one of the three categories above,
whereas others capture the transition between streambed sedimentary deposits containing fluvial tailings and
those unimpacted by historical mining activity. This transition zone usually is not sharp, so making calculations
of the mean and median values for pre-mining streambed sediment requires some interpretation of the data
(Church and others, 2000a). This work was greatly enhanced by consultations with our colleagues on the
project and individual members of the Animas River Stakeholders Group ARSG (1997)
.(http://www.waterinfo.org/arsg/).

All the data tables in this report are presented as Excel (v. 7) spreadsheet files to facilitate digital transfer
and analysis of the data.

THE ANIMAS RIVER WATERSHED

The Animas River watershed (fig. 1) has its headwaters in the mountainous terrain above Silverton,
Colorado and drains south into the San Juan River in northern New Mexico. Elevations range from more than
13,000 ft. at the headwaters to less than 6,000 ft. at the confluence with the San Juan River near Aztec, New
Mexico. The major population center in the basin is the city of Durango, Colo. The geology exposed at the
surface and underlying the basin is varied. Precambrian rocks are exposed in the eastern part of the drainage
basin south of Silverton (fig. 2), forming the high rugged mountainous area of the Animas Canyon. Paleozoic,
Mesozoic, and Cenozoic sedimentary rocks are exposed in the southern part of the drainage basin. The
headwaters of the Animas River watershed are underlain by the Tertiary igneous intrusive and volcanic rocks

Figure 1. (page 2) Map of the Animas River watershed (from Church and others, 1997) showing elevation
 and mine localities from the USGS MRDS, RASS, and PLUTO databases (Ryder, 1994) and the USGS
 MAS database (Babitzke and others, 1982; McFaul and others, 2000).  The digital elevation model data
 are from USGS (1990), towns, railroads, and roads are from ESRI (1992), and the hydrology data are
 from USGS (1989).

Figure 2. (page 3) Geologic map (from Church and others, 1997) of the Animas River watershed area (after
 Tweto, 1979).  The digital geology is from Green (1992); hydrology data are from USGS (1989); the 
 towns, railroads, and roads are from ESRI (1992).

http://amli.usgs.gov/amli/5year/
http://www.waterinfo.org/arsg/
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that formed as a result of a late Tertiary age episode of andesitic to dacitic volcanism followed by a later
episode of ash-flows, lava flows and intrusions of dacitic to rhyolitic composition (Lipman and others, 1976).
During this later episode of volcanism, the Silverton caldera was formed. Pervasive and intense hydrothermal
alteration and mineralization events postdate the formation of the Silverton caldera by several million years
(Casadevall and Ohmoto, 1977). This area of the Animas River watershed above Silverton has been
extensively fractured, hydrothermally altered, and mineralized by Miocene hydrothermal activity.

Gold deposits were discovered in 1871 on Arrastra Creek above Silverton by prospectors who followed
the occurrence of placer gold upstream. Following the signing of a treaty with the Ute Indians in 1873, between
1,000 and 1,500 mining claims were staked in the Animas River watershed upstream from Silverton. Mining
activity then spread rapidly throughout the area. Chimney deposits (mineralized breccia pipes) in the
headwaters of Mineral Creek (fig. 3) were discovered in 1881(see fig 4, Church and others, 1997). A railroad
was completed from Durango to Silverton in 1882, providing cheap transportation to the smelters in Durango
(Sloan and Skowronski, 1975). Mining continued in the Animas River watershed at various levels of activity
until 1991 when the Sunnyside Mine was closed. The extent of mining activity within various portions of the
Animas River watershed can be estimated from the distribution of mining claims and from Minerals Availability
System (MAS) records (Babitzke and others, 1982; McFaul and others, 2000) within the basin (fig. 1). Mineral
deposits in several major mining districts have recorded production. Deposits in the Red Mountain district in
the northwestern part of the Silverton caldera, the Eureka district in the Eureka graben within the Silverton
caldera, and the South Silverton district along the southern margin of the Silverton caldera east of the town
of Silverton (Burbank and Luedke, 1968; Leedy, 1971; Casadevall and Ohmoto, 1977) comprised the majority
of the mineral production. There are also several porphyry molybdenum deposits that were discovered by
drilling in the Mineral Creek area (oral commun., Tom Casadevall, 1996). Some of the porphyry molybdenum
deposits are surrounded by large iron bogs at the surface. Iron bogs are found elsewhere within the basin,
associated with springs flowing from mineralized and altered areas within the basin (Mast and others, 2000).

Figure 3. Generalized geologic map of the upper Animas River watershed. The Animas River and Mineral
Creek follow the structural margin of the Silverton caldera. In addition to the ring-fractures that were
created when the Silverton and the earlier San Juan calderas formed, radial and graben faults, which host
much of the subsequent vein mineralization, are shown schematically (modified from Casadevall and
Ohmoto, 1977).
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METHODS OF STUDY

Sample Collection
Numerous samples were collected to address the three goals outlined above. The sample sites are

indicated in figures 4 and 5, and individual sample localities and sample types are listed in table 1. Whereas
we have referred to the above samples as cores, some are actually samples of streambed gravels that were
dry-sieved to minus-2 mm in the field, and the fine-grained fraction retained, providing a sample directly
analogous to the streambed-sediment samples in Church and others (2000b). Dendrochronology (tree ring)
samples were taken at several sites to provide minimum ages of the terraces from which pre-mining
streambed samples were obtained.  Sample descriptions are in tables 2-5.  Table 2 contains descriptions for
samples from the Mineral Creek drainage, table 3 contains descriptions for samples from Cement Creek, table
4 contains descriptions for samples taken from the Animas River above Silverton, and table 5 contains
descriptions for samples taken from the Animas River below Silverton.  The geochemical data for the samples
are in tables 6-9, in an analogous sequence.  Note that the description tables (2-5) contain more subsamples
than the analytical data tables (6-9).  This is because we provide the descriptions and depths for all
subsamples from all core (or lift) samples, while only a percentage of subsamples was actually analyzed and
reported.

Stream Terraces
Samples of stream terraces were collected and given letter designations, with “a” being the highest

sample stratigraphically (tables 2-9). In general, stratigraphy could not be discerned in these gravel deposits,
so each sample is really a vertical subsample of the gravel deposit. Each subsample was dry-sieved through
a 2-mm (10 mesh) stainless-steel screen in the field. The minus-2-mm fraction for each subsample was
retained separately; the larger size fractions were discarded. Samples collected by this method are designated
as “lifts” in the data tables. Each subsample was processed separately and the resulting geochemical data
evaluated for homogeneous distributions (with depth) of ore-related trace elements (As, Ag, Cd, Cu, Pb, Zn)
throughout the terrace gravel deposit. Samples from terrace sediment intervals having a uniform trace
elemental distribution were used to calculate the pre-mining geochemical baseline concentrations reported
in Church and others (2000a). Selected samples were also used to determine the lead isotopic composition
of the pre-mining bed sediments.

Sediment Cores
Sediment cores were collected by driving and subsequently extracting acid-cleaned sections of 2-inch (5-

cm) or 4-inch (10-cm) diameter PVC pipe into suitable terrace sites.  These cores’ material was then divided
into subsamples based on stratigraphic (where applicable), color, or grain size differences; the subsamples
were analyzed for metal content and lead isotopic signatures.  All of the cores through iron bogs and modern
beaver ponds were 2-inch cores. Some of the cores through fluvial tailings deposits in the upper Animas River
basin below the townsite of Eureka were 4-inch diameter cores (sites B-18, B-19 and B-23).  Most of the cores
through pre-mining sediment terraces were 2-inch cores, with core 98ABB235 at site B-15 on Cement Creek
being the exception. 

Recognizing pre-mining streambed sediment in the field based on physical characteristics was not easy;
determination of pre-mining sediment was based largely on the geomorphological position of terrace deposits
(Church and others, 2000a; K. Vincent, unpublished data, 2000) and then confirmed by subsequent
geochemical analysis (based on low, consistent values of ore-related elements).  Elevated and variable
concentrations of zinc in the core sequence at a particular site in the absence of variation in the concentrations
of the other ore-related trace elements listed above were interpreted to be possible groundwater
contamination, particularly if associated with elevated manganese. The objective of our sampling strategy was
to sample sediments deposited throughout the time period that includes the onset of historical mining activity.
Thus, concentrations of ore-related trace elements in the cores or lift samples should decrease with depth
or reach a consistent concentration, providing a clear indication of the pre-mining geochemical baseline in the
streambed sediment.
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Fluvial Mill-Tailings Deposits
Mill tailings deposits were sampled along the upper Animas River reach below Eureka.  Deposits resulting

from jig tailings (prior to 1915) and from flotation tailings (after 1915) occur downstream from the Eureka mill
site.  Tailings were also deposited on an island downstream from the Mayflower mill at site B-26 during the
Gladstone flood of 1911 (Pruess, 1996).  Tailings deposits also occur in fluvial deposits downstream from
Silverton at site B29 (Elk Park) and at site B36 in an oxbow lake that was an active meander as shown on the
1898 topographic map of the Durango quadrangle (USGS, 1898).

Sample Preparation

Streambed-terrace gravel samples were dried at ambient room temperature (25oC) and sieved to minus-
100-mesh (<0.18mm) prior to laboratory analyses.

Core samples were subdivided in the laboratory on the basis of mineralogy, organic content, and apparent
oxidation zones. The depth assigned to each subsample is defined as the mid point for that subsample after
taking core compaction into account (tables 2-5). Core compaction was determined by measuring in the field
the depth of penetration of the core casing, and then measuring the length of the core itself.  Individual cores
were generally divided into two to ten subsamples, air dried, sieved if the grain size exceeded that of fine sand
(0.125-0.25 mm) and the fines retained, and then ground in random order to minus 100 mesh in a vertical
pulverizer.

ANALYTICAL METHODS AND RESULTS

Geochemical Analyses

Total Digestion
The samples were digested with a mixed-acid procedure consisting of hydrochloric, nitric, perchloric, and

hydrofluoric acids (HCl, HNO3, HClO4, and HF) (Crock and others, 1983; Briggs, 1996). This procedure is
effective in dissolving most minerals, including silicates, oxides and sulfides; resistant or refractory minerals
such as zircon, chromite, and some tin oxides are only partially dissolved. Previous investigations using a
variety of materials support the completeness of the digestion (Church, 1981, Church and others, 1987;
Wilson and others, 1994).
Results are reported for 34 elements determined by ICP-AES (inductively coupled plasma-atomic emission
spectroscopy; (Briggs, 1996) in tables 6-9. The percent ash contents of samples containing organic matter
are also provided for samples that were ashed prior to analysis. For those samples, the reported elemental
values have been recalculated to the original sample weight. Limits of determination for the ICP-AES total
digestion method as well as a statistical summary of mean values, standard deviations, and median values
for four National Institute of Standards and Technology (NIST) standard reference materials (SRM-2704,
SRM-2709, SRM-2710, and SRM-2711) are given by Fey and others (1999). Limits of determination for the
ICP-AES determination are also given below in table 10.  Comparisons with certified values for these
standards (NIST, 1993a; 1993b; 1993c; and 1993d) are also given by Fey and others (1999).  Both analytical
precision and accuracy are well within acceptable ranges.  Analytical results for the samples reported here
are directly comparable with results from the modern streambed-sediment samples reported in Church and
others (2000b).

Warm 2M HCl-1 Percent H2O2 Partial Digestion
        The use of a partial-digestion extraction enables one to determine concentrations of trace elements
bound within different mineral phases, whereas a total digestion releases all trace elements in a sample
(Chao, 1984). The leaching solution used in this study, a daily-prepared mixture of 2M HCL and 1 percent
hydrogen peroxide (H2O2), dissolves known elemental sinks such as hydrous amorphous iron-, manganese-,
and aluminum oxide minerals, as well as some crystalline iron- and manganese-oxides. (Church and others,
1993).  This leach also dissolves water-soluble, ion-exchangeable, and carbonate species. We used a 2.0-g
sample in 15 mL of reagent on selected samples to provide solutions for the lead isotopic determinations.
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Table 10.  Elements determined by ICP-AES (inductively coupled plasma-atomic emission spectroscopy)
and their lower limits of determination. These limits apply to a standard sample weight of 0.2 g; when
smaller weights are used, the determination limits are correspondingly higher. Analyses performed at the
USGS laboratories in Denver, Colo.

Lower limit Lower limit
 Element Symbol of determination  Element Symbol of determination

 Aluminum Al 0.01%  Chromium Cr 1  ppm

 Calcium Ca 0.01%  Copper Cu 1  ppm
 Iron Fe 0.01%  Gallium Ga 4  ppm
 Potassium K 0.01%  Lanthanum La 2  ppm
 Magnesium Mg 0.01%  Lithium Li 2  ppm
 Sodium Na 0.01%  Molybdenum Mo 2  ppm
 Phosphorous P 0.01%  Niobium Nb 4  ppm
 Titanium Ti 0.01%  Neodymium Nd 4  ppm
 Manganese Mn 4  ppm  Nickel Ni 2  ppm
 Silver Ag 2  ppm  Lead Pb 4  ppm
 Arsenic As 10 ppm  Scandium Sc 2  ppm

 Barium Ba 1  ppm  Strontium Sr 2  ppm
 Beryllium Be 1  ppm  Thorium Th 4  ppm
 Bismuth Bi 10 ppm  Vanadium V 2  ppm
 Cadmium Cd 2  ppm  Yttrium Y 2  ppm
 Cerium Ce 4  ppm  Ytterbium Yb 1  ppm
 Cobalt Co 1  ppm  Zinc Zn 2  ppm

The samples were placed in 90 mL Teflon FEP jars, sealed, and placed in an agitating waterbath at 50o C for
three hours to ensure complete removal of the iron- and manganese-oxide coatings from the sediment grains.
The leachates were subsequently analyzed by ICP-AES (Appendix III in Church and others, 1993). This partial
extraction releases trace elements associated with hydrous amorphous iron- and manganese-oxide mineral
coatings and colloidal particles. Mineral coatings such as those observed in the study area contain a
significant percentage of the trace elements in a sample (Church and others, 1993, 1997).  The lead
concentration and isotopic data are reported in table 11.

Lead Isotopic Analyses

The vast majority of the contaminant lead exists within the amorphous iron- and manganese-oxide mineral
coatings and colloidal particles (Church and others, 1993, 1994, 1995, 1997); only the leachates from selected
samples of the pre-mining streambed sediment were analyzed for lead isotopic compositions. These data are
comparable to the lead isotopic data in tables 7 and 8 in Church and others (2000b), and provide a measure
of the effect of exposed and near-surface mineralization on the pre-mining streambed sediment geochemical
baseline within the Animas River watershed. Lead-isotopic analysis of the leachate solutions greatly reduces
dilution effects from lead bound within major mineral phases such as potassium-feldspar and volcanic glassy
rock matrix that would be encountered if we had used the total digestion solution from the samples. 

The lead-isotopic work was carried out using a VG Sector-54 multi-collector mass spectrometer. Lead
was separated using the procedure described below with minor variations (see appendix IV of Church and
others, 1993; Tatsumoto and Unruh, 1976; and Unruh and others, 1979). The ICP-AES concentration value
for lead (table 11) was used to calculate the volume of leachate needed to contain approximately 0.5 µg of
lead; this aliquot was then evaporated to dryness in a teflon beaker. Then 0.5 to 1.0 mL of 1.0 N hydrobromic
acid (HBr) was added to the sample and warmed gently for 5 to 10 minutes. The sample was allowed to cool,
was centrifuged, and the supernatant loaded onto an anion-exchange column (0.8-1.0 mL resin volume) using
Dowex AG1-x8 anion-exchange resin. The column was washed with 1.2 N HBr and water, and then the lead
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was eluted with either 8N HCl or 0.5-1.0 N HNO3. The eluted lead sample was again evaporated to dryness
and then loaded onto a second anion-exchange column with a resin volume of 0.1-0.2 mL. The column was
washed with 1.2 N HBr and water, and the lead was eluted with 0.5 N HNO3. Two or three drops of dilute
(0.25-0.5 percent) phosphoric acid (H3PO4) were added to the eluted lead sample, and then it was evaporated
again to dryness.

Approximately one-half of the sample was taken up in approximately 10 µL of dilute colloidal silica gel,
loaded onto a rhenium-ribbon filament, and evaporated to dryness. The filament was then loaded into a solid-
source, thermal-ionization mass spectrometer and heated to 1150-1350oC for data acquisition. Most analyses
were made using a VG Sector 54, 7-collector mass spectrometer run in “static” mode. A few samples were
run on a VG Isomass 54R, single-collector mass spectrometer. No systematic biases have been observed
between the two mass spectrometers (Taylor and others, 1999). Analyses of NIST SRM-981 were used to
monitor mass fractionation during mass spectrometry (Cantanzaro and others, 1968; Todt and others, 1993).
Methods of calculation of the analytical uncertainty and replicate analyses of the SRM-981 lead isotopic
standard are presented in Unruh and others (2000). Analytical results are in Table 11.

As demonstrated by Fey and others (1999), data from analyses of the leachates are inherently less
reproducible than those from total digestion analyses. As a test of the leaching procedure for lead isotopic
analyses, leachates of four NIST standards SRM-2704, SRM-2709, SRM-2710, and SRM-2711 were analyzed
for lead isotopic ratios. The lead isotopic analyses of replicate solutions of the four NIST standards are in good
agreement with previous work (Church and others, 1993).

Dendrochronology

Cores of live trees were sampled using a standard tree corer.  The core was extracted and placed in a
plastic sleeve, and sent to the Laboratory for Tree Ring Research at the University of Arizona for
dendrochronological analysis. Slabs of dead trees were also sent for analysis in hopes that the year of death
could be determined to date the tree stump. The age of the trees provides an estimate of the minimum age
of the stream terrace (table 12). Cores or slabs from sample sites B-4, B-6, B-15, B-17, and B-24 were from
Engelmann spruce; the slab from site B-30 was from a Mountain cottonwood.

Table 12.  Dendrochronology dates from pre-mining background sites, Animas River watershed, Colo.
[Dendrochronology done at the Laboratory for Tree Ring Research, University of Arizona, Tucson, Ariz.]

Site Sample Year  (minimum age
of terrace)

B-4 Live tree 1915  (85 years)
B-6 Dead tree stump; tree rings complacent, no chronological data available. 1876  (124 years)
B-15 Live tree. 1858  (142 years)
B-17 Dead tree stump; tree rings complacent, no chronological data available. 1922  (78 years)
B-24 Live tree. 1936  (64 years)
B-30 Dead tree stump; tree rings complacent, no chronological data available. 1957  )43 years)
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