Scanning Transmission X-Ray Microscopy meets Coherent X-Ray Diffraction: SXDM at the cSAXS beamline

Oliver Bunk
Coherent X-Ray Scattering Group,
Research Department Synchrotron Radiation and Nanotechnology,
Paul Scherrer Institut, Switzerland

The coherent Small Angle X-Ray Scattering beamline at the

 Swiss Light Source- U19 in-vacuum undulator, $\mathrm{K}_{\max }=2.46$
- source size approx. $200 \mu \mathrm{~m} \times 20 \mu \mathrm{~m}$ (FWHM), divergence approx. $135 \mu \mathrm{rad} \times 25 \mu \mathrm{rad}$ (FWHM)
- N_{2} cooled $\mathrm{Si}(111)$ fixed exit monochromator at 28.6 m
- approx. $4.5-20 \mathrm{keV}$
- horizontal focusing
- quartz glass mirror at 29.4 m with no, Rh and Pt coating
- vertical focusing
- sample position at about 31 m
- focus from about $5 \mu \mathrm{~m} \times 20 \mu \mathrm{~m}$ to $1 \mathrm{~mm} \times 2 \mathrm{~mm}$

U19 undulator x-ray source

calculated total flux:
$\sim 10^{12}$ photons/sec (at $12.4 \mathrm{keV}, 400 \mathrm{~mA}, \ldots$)

calculated coherent flux:
$\sim 5 \times 10^{9}$ photons/sec

U19 undulator x-ray source

cSAXS beamline layout: optics

IN_{2} cooled $\mathrm{Si}(111)$ fixed exit DCM

IN_{2} cooled $\mathrm{Si}(111)$ fixed exit DCM

Dynamically bendable mirror

cSAXS end station

Pilatus 2M detector

- size:
- pixel size:
- total active area: $254 \times 289 \mathrm{~mm}^{2}$
- quantum efficiency: 100% at 8 keV , 80% at 12 keV , 50% at 16 keV
- readout time: <3ms
- no readout noise
- countrate up to $\sim 1 \mathrm{MHz} /$ pixel
- 20 bit dynamic range
- point spread function limited to one pixel

Pilatus 2M detector

Pilatus 2M detector

GAPD array for XPCS measurements

SiO_{2} Colloids ($\mathrm{r}=112 \mathrm{~nm}$) in an ethanol and benzyl alcohol solution.

GAPD array for XPCS measurements

Infrastructure:

- Chemistry lab.
- Data storage
- Computing
-...

High resolution imaging: 1) Full field

Traditional (x-ray, bright field) microscopy

High resolution imaging: 2) Scanning microscopy

High resolution imaging: 3) Diffraction microscopy

Combination 1: STXM with a 2 D detector for phase contrast

Combination 2:

Scanning X-Ray Diffraction Microscopy (SXDM)

Combination 2:

Scanning X-Ray Diffraction Microscopy (SXDM)

Ptychography \& Iterative Phase Retrieval

- W. Hoppe, Acta Cryst. A 25, 508 (1969).
- R. Hegerl, W. Hoppe, Ber. BunsenGes. Phys. Chemie 74, 1148 (1970).

Dynamische Theorie der Kristallstrukturanalyse durch Elektronenbeugung im inhomogenen Primärstrahlwellenfeld

Von R. Hegerl und W. Hoppe

Some time ago a new principle was proposed for the registration of the complete information (amplitudes and phases) in a diffraction diagram, which does not - as does Holography - require the interference of the scattered waves with a single reference wave. The basis of the principle lies in the interference of neighbouring scattered waves which result when the object function $\varrho(x, y)$ is multiplied by a generalized primary wave function $p(x, y)$ in Fourier space (diffraction diagram) this is a convolution of the Fourier transforms of these functions. The above mentioned interferences necessary for the phase determination cambenaned by suitable choice of the shape of $p(x, y)$. To distinguish it from holography this procedure is designate "ptychography" ($\pi \tau v \zeta=$ fold). Dhe procedure is applicable to periodic and aperiodic structures. The relationships are simplest for plane hatites. In-this papethe theory is extended to space lattices both with and without consideration of the dynamic theory. The resulting effects are demonstrated using a practical example,

Scanning Diffraction Microscopy with visible laser light

cooled CCD, 16 bit
object on xy translation stage

HeNe laser, 15 mW , continuous

SXDM with a test sample

First STXM data analysis (online)

Reconstruction of a selected region

Simultaneous reconstruction of the probe

Summary

- STXM with 2D detector:
- fast online feedback
- absorption, phase contrast and dark field information
- initial guess for the high resolution reconstruction
- SXDM:
- overlapping illuminations lead to overdetermination
- curved wave front helps additionally (+ no beam stop)
- the not precisely known illumination is reconstructed with the object
\rightarrow Combine the best of both worlds (STXM and CXD/CDI) to SXDM

