

Scanning Transmission X-Ray Microscopy meets Coherent X-Ray Diffraction: SXDM at the cSAXS beamline

Oliver Bunk

Coherent X-Ray Scattering Group, Research Department Synchrotron Radiation and Nanotechnology, Paul Scherrer Institut, Switzerland

C. David, Micro- and Nanotechnology, PSI

K. Ballmer, Molecular Cell Biology, PSI

J. Raabe, POLLUX, PSI

O. Marti, University Ulm

J. Rodenburg, A. Hurst, Univ. Sheffield

L. Sperling, S. Kynde Niels Bohr Institute

The coherent Small Angle X-Ray Scattering beamline at the Swiss Light Source

- U19 in-vacuum undulator, K_{max} =2.46
 - source size approx. 200 µm x 20 µm (FWHM), divergence approx. 135 µrad x 25 µrad (FWHM)
- IN₂ cooled Si(111) fixed exit monochromator at 28.6 m
 - approx. 4.5 20 keV
 - horizontal focusing
- quartz glass mirror at 29.4 m with no, Rh and Pt coating
 - vertical focusing
- sample position at about 31m
 - focus from about 5 μm x 20 μm to 1 mm x 2mm

U19 undulator x-ray source

calculated coherent flux:

~ 5×10⁹ photons/sec

U19 undulator x-ray source

cSAXS beamline layout: optics

IN₂ cooled Si(111) fixed exit DCM

IN₂ cooled Si(111) fixed exit DCM

Dynamically bendable mirror

cSAXS end station

Pilatus 2M detector

- size: 1475 x 1679 pixels
- pixel size: 172×172 μm²
- total active area: 254 x 289 mm²
- quantum efficiency: 100% at 8 keV, 80% at 12 keV, 50% at 16 keV
- readout time: < 3ms
- no readout noise
- countrate up to ~1 MHz/pixel
- 20 bit dynamic range
- point spread function limited to one pixel

Pilatus 2M detector

Pilatus 2M detector

Oliver Bunk

GAPD array for XPCS measurements

 SiO_2 Colloids (r = 112 nm) in an ethanol and benzyl alcohol solution.

GAPD array for XPCS measurements

Infrastructure:

- Chemistry lab.
- Data storage
- Computing

•

High resolution imaging: 1) Full field

High resolution imaging: 2) Scanning microscopy

High resolution imaging: 3) Diffraction microscopy

Combination 1: STXM with a 2D detector for phase contrast

Combination 2: Scanning X-Ray Diffraction Microscopy (SXDM)

Combination 2: Scanning X-Ray Diffraction Microscopy (SXDM)

1148

R. Hegerl und W. Hoppe: Dynamische Theorie der Kristallstrukturanalyse usw.

Berichte der Bunsen-Gesellschaft

Dynamische Theorie der Kristallstrukturanalyse durch Elektronenbeugung im inhomogenen Primärstrahlwellenfeld

Von R. Hegerl und W. Hoppe

Some time ago a new principle was proposed for the registration of the complete information (amplitudes and phases) in a diffraction diagram, which does not – as does Holography – require the interference of the scattered waves with a single reference wave. The basis of the principle lies in the interference of neighbouring scattered waves which result when the object function q(x, y) is multiplied by a generalized primary wave function p(x, y) in Fourier space (diffraction diagram) this is a convolution of the Fourier transforms of these functions. The above mentioned interferences necessary for the phase determination can be obtained by suitable choice of the shape of p(x, y). To distinguish it from holography this procedure is designated "ptychography" ($\pi \tau v \ddot{\zeta} = \text{fold}$). The procedure is applicable to periodic and aperiodic structures. The relationships are simplest for plane lattices. In this paper the theory is extended to space lattices both with and without consideration of the dynamic theory. The resulting effects are demonstrated using a practical example.

Scanning Diffraction Microscopy with visible laser light

cooled CCD, 16 bit

object on xy translation stage

HeNe laser, 15 mW, continuous

SXDM with a test sample

First STXM data analysis (online)

Reconstruction of a selected region

Simultaneous reconstruction of the probe

Summary

- STXM with 2D detector:
 - fast online feedback
 - absorption, phase contrast and dark field information
 - initial guess for the high resolution reconstruction

• SXDM:

- overlapping illuminations lead to overdetermination
- curved wave front helps additionally (+ no beam stop)
- the not precisely known illumination is reconstructed with the object

 \rightarrow Combine the best of both worlds (STXM and CXD/CDI) to SXDM