# Coherent X-ray Diffraction Imaging of Phase Defects in Magnetically and Electronically Ordered Materials



Oleg Shpyrko University of California San Diego

# X-ray Contrast mechanisms:

- Electron density (atomic density)
  - Elemental sensitivity (John Miao)
- Electron density variations
  - Charge ordering, Charge Density Waves (CDW)
  - Strain fields (Ian Robinson)
- Spin ordering (e.g. Antiferromagnets)
  - Resonant (need convenient adsorption edges)
  - Non-resonant (weak scattering)
- Orbital ordering

## Stripes, checkerboards and zig-zags

High-Tc cuprates



E. Dagotto, T. M. Rice, *Science* **271**, 618 (1996). T. Hanaguri et al., *Nature* **430**, 1001 (2004).

AFM chromium

CMR manganites



S. Mori et al., *Nature* **392**, 473 (1998) M. Uehara et al., *Nature* **399**, 560 (1999)



P. G. Evans et al., Science (2002)



## Spin Density Wave (SDW) in Chromium:

Commensurate Antiferromagnetic SDW (C-SDW) Wave follows periodicity of underlying atomic lattice



**Incommensurate SDW** (IC-SDW) Modulation period incommensurate with lattice periodicity



For chromium incommensurability parameter is  $\delta$ =0.038 at room T (period is  $\delta^{-1}$ ~26 times the lattice constant)

Scattering experiments typically measure Q=1- $\delta$ 

#### SDW: nesting of Fermi Surface



E. Rottenberg et al., New Journal of Physics 7, 114 (2005)



#### Microscopic SDW/CDW Domains in Chromium:



Scanning X-ray Microscopy:

 bulk probe (micron-sized penetration depth)

 spin, charge, lattice and chemical sensitivity  $[0, 0, 2-2\delta]$  Charge-density wave satellite



## Domain Wall Fluctuations in Antiferromagnets



# Magnetic domain wall fluctuations in real and reciprocal space:

Н



Real Space: elemental switching block, w/ volume  $(\lambda/2)^3$ ,  $\lambda=3-4$  nm

Momentum Space: transfer of intensity from satellites 1 to 2 due to switch



O. G. Shpyrko et al., Nature 447, 68 (2007)

#### Autocorrelation function g<sub>2</sub>(t): Multiple relaxation timescales



#### Random Telegraph Noise measurements: Focus on the Domain Wall



## Why is the CDW speckle so "speckly"?



Number of speckles ≈ Number of coherent volumes





### Speckle with microfocused (0.5x2) $\mu$ m beam





cdw\_55K\_1\_Batch\_001\_Frames\_00001-01000 - collected Sun Jul 30 02:13:34 2006



## Domain Wall Fluctuations in Antiferromagnets



Flip all spins by 180 deg

**Domain Wall** 

## Phase vs. Polarization domain walls:



Domain Wall

"Polarization" Domain Wall

## Antiphase domains in binary alloys:



CU<sub>3</sub>AU Sutton et al., Nature 1991, PRL 2005

Fe<sub>3</sub>Al Brauer et al., PRL 1995 Mocuta et al., Science 2002

CoGa, AlLi, AlZn, AlAg Stadler et al. 2004-2007



P. Fenter et al., Nature Phys. 2, 700 (2006)

In-situ growth, surface defects, reactions at buried interfaces

Phase defects in nematic-like order parameter:



## Phase defects of SDW/CDW





Nucleation and growth of edge dislocations:





dislocation climb

#### X-ray Speckle Imaging of dislocations in electronic (CDW) crystals





D. LeBolloc'h et al., PRL 95, 116401 (2005)

## Interactions of SDW/CDW with defects



V - pinning potential, c - concentration of defects, K - phase elasticity of SDW/CDW



Strong Pinning

#### Metastability and glassiness of pinned SDW in Cr



PHYSICAL REVIEW LETTERS

4 JANUARY 1982

#### P. B. Littlewood and T. M. Rice<sup>(a)</sup> Bell Laboratories, Murray Hill, New Jersey 07974 (Received 1 September 1981) Computer simulations for Chromium (weak pinning)

- Average phase gradient lags significantly behind wavevector change
- System "stuck" in metastable state relaxation of phase gradient happens through nucleation of solitons
- Hysteretic behavior and slow "glassy" relaxation towards equilibrium

P. Littlewood and T. M. Rice, Phys. Rev. Lett. 48, 44 (1982)

# Q-value relaxation, measured by X-ray microdiffraction:



## Avalanches in Q-relaxation





Correlation lengths (shear, compression-dilatation of Q) during pinning-depinning







## mini-Summary:

Currently can measure change in correlation length of CDW order parameter (ensemble average over ~1 micron sized beam spot)

NEXT:

We want to "see" CDW defects, their (collective?) dynamics, relationship to crystalline defects

Resolution ~ 10 nm may be sufficient!

## Equilibrium Q(T=4K) Value map: after 6 hr of "aging" at 4K



#### "Old" Q (T=150K) map at 4K isolated pinned domains – "memory" of 150K persists



#### Collective dynamics of elastic media in presence of quenched disorder:

Charge-, Spindensity waves (10<sup>-10</sup>-10<sup>-7</sup> m)



1 nm

1 Å

Magnetic domains (10<sup>-8</sup>-10<sup>-4</sup> m)

Sandpiles (10<sup>-3</sup>-10 m) tectonic plates (10²-10<sup>6</sup> m)





Abrikosov vortex lattice (10<sup>-7</sup> m) 12:22

Jamming, shear flow in granular materials, colloids (10<sup>-6</sup>–10<sup>-2</sup> m)

Liquid droplets pinned on rough substrates (10<sup>-4</sup> - 10<sup>-2</sup> m)



What/where are the pinning centers? (CXD provides phase information!)

- Need to image defects in order parameter (charge, spin, orbital ordering)
- Classify domain walls/defects
  (polarization vs. phase defects: dislocations, shear, etc.)
- Is there correlation to atomic lattice defects (strain, lattice dislocations, etc.)
- Surface vs. Bulk pinning?
- Can we engineer pinning?

## Surface vs. Bulk phase diagram for Cr



Hänke, T. et al., Phys. Rev. B 71, 184407 (2005)

Coherent X-ray Diffraction (Lens-less imaging):

Reciprocal (momentum) space 3D "speckle" Real space object (phases and densities):



M. A. Pfeifer et al., Nature 442, 63-66 (2006).

## Lens-less imaging of defects





Scanning energy instead of rocking the sample theta



# Ptychographical Iterative Engine (PIE) (talk by Oliver Bunk earlier in the workshop)



J. M. Rodenburg et al., PRL 98, 034801 (2007)

# Ptychographical Iterative Engine

- Complications arising from Bragg Diffraction (high-angle) geometry
- Precision of scanning
- Wavefront characterization
- Curved beam (?)
- Scanning Diffraction X-ray Microscopy
  + PIE





Instead of  $\pi/10^{-2}$ Å<sup>-1</sup> ~30 nm, resolution becomes ~6 nm

# People

#### San Diego:



Oleg Shpyrko UC San Diego

#### APS:

Ross Harder (33-ID)

Alec Sandy Mike Sprung Suresh Narayanan (8-ID)

Zhonghou Cai (2-ID)

#### Chicago:



Eric Isaacs Univ. of Chicago and CNM, Argonne



**Jyoti Mohanty** Postdoctoral fellow UCSD



Ash Tripathi <sup>3rd</sup> year Grad Student UCSD



**Yeling Dai** <sup>2nd</sup> year Grad Student UCSD



Jonathan Logan 4th year Grad student Univ. of Chicago



Clarisse Kim 4<sup>th</sup> year Grad student Univ. of Chicago

## Anti-phase architecture at UCSD



Mayer Hall (Physics Dept., UCSD)

