METHYL BROMIDE CRITICAL USE RENOMINATION FOR PREPLANT SOIL USE (OPEN FIELD OR PROTECTED ENVIRONMENT)

NOMINATING PARTY:

The United States of America

NAME

USA01 CUN09 SOIL <u>CUCURBITS</u> Open Field

BRIEF DESCRIPTIVE TITLE OF NOMINATION:

Methyl Bromide Critical Use Nomination for Preplant Soil Use for CUCURBITS Grown in Open Fields (Submitted in 2007 for 2009 Use Season)

CROP NAME (OPEN FIELD OR PROTECTED):

CUCURBITS Open Field

QUANTITY OF METHYL BROMIDE REQUESTED IN EACH YEAR OF NOMINATION:

TABLE COVER SHEET: QUANTITY OF METHYL BROMIDE REQUESTED IN EACH YEAR OF NOMINATION

YEAR	NOMINATION AMOUNT (METRIC TONNES)*
2009	411.765

*This amount includes methyl bromide needed for research.

SUMMARY OF ANY SIGNIFICANT CHANGES SINCE SUBMISSION OF PREVIOUS NOMINATIONS:

A transition rate was applied based on the best estimate of yield losses and feasibility associated with likely methyl bromide alternatives that could be made by USG biologists and economists. In addition, a dosage rate of 150 kg/ha (for areas where disease pathogens were considered to be key pests) and 175 kg/ha (for areas where weeds were considered to be key pests) was used in calculating the amount of methyl bromide requested. Maryland and Delaware growers have also been added to this nomination based on yield loss and pest incidence information they have submitted.

REASON OR REASONS WHY ALTERNATIVES TO METHYL BROMIDE ARE NOT TECHNICALLY AND ECONOMICALLY FEASIBLE:

The U.S. nomination is only for those areas where the alternatives are not suitable. In U.S. cucurbit production there are several factors that make the potential alternatives to methyl bromide unsuitable. These include:

- The efficacy of alternatives may be significantly less effective than methyl bromide in some areas, making these alternatives technically and/or economically infeasible for use in cucurbit production.
- Some alternatives may be comparable to methyl bromide as long as key pests occur at low pressure, and in such cases the U.S. is only nominating a critical use exemption

(CUE) for cucurbits where the key pest pressure is moderate to high such as nutsedge in the Southeastern U.S.

- Regulatory constraints prevent use of some chemicals, e.g., 1,3-dichloropropene (1,3-D) use is limited in Georgia due to the presence of karst topographic features.
- Delays in planting and harvesting result in users missing key market windows, and adversely affect revenues through lower prices. Delays in planting and harvesting: e.g., the plant-back interval for 1, 3-dichloropropene +chloropicrin is two weeks longer than methyl bromide +chloropicrin, and in Michigan an additional delay would occur because soil temperature must be higher to fumigate with alternatives.

In Michigan cucurbits, metam sodium/potassium + chloropicrin are the best registered alternative for the control of the key target pests. These pests are the soil borne fungi *Phytophthora capsici* and *Fusarium oxysporum*, both of which can easily destroy the entire harvest from affected areas if left uncontrolled. At least one of these pests, *P. capsici*, has recently been shown to occur in irrigation water in Michigan (Gevens and Hausbeck, 2003) and has probably contributed to the spread of this pathogen. Due to widespread pest distribution, virtually all of the cucurbit hectares in Michigan currently use methyl bromide(plus chloropicrin) as a prophylactic control. While metam sodium/potassium + chloropicrin provided some control of fungi in recent smallplot trials with cucurbits in Michigan (Hausbeck and Cortrright, 2004), there were yield losses (approximately 6%) relative to the methyl bromide + chloropicrin standard.

It is also not yet clear whether these small-scale results accurately reflect efficacy of methyl bromide alternatives in commercial cucurbit production. Furthermore, regulatory restrictions due to concerns over human exposure and ground water contamination, along with the lower yields, result in potential economic infeasibility of this formulation as a practical methyl bromide alternative. Key among these factors are a delay in planting up to 14 days relative to methyl bromide , due to a combination label restrictions and the low soil temperatures typical of Michigan, as well as a mandatory 30 m buffer for treated fields with 1, 3-dichloropropene + chloropicrin near inhabited structures. Delays in planting may result in growers missing key market windows and premium harvest prices, and buffer zones will result in some areas remaining vulnerable to pests in the absence of methyl bromide.

In Maryland and Delaware cucurbits, *Fusarium oxypsorum niveum* exists in 5 separate races, and no one crop cultivar has resistance to all races. All acreage requesting methyl bromide is this region has these pathogens present. In particular, the existence of the highly aggressive race 2 of *Fusarium oxysporum niveum*, along with a high concentration of inoculum give a much higher level of performance required of methyl bromide alternatives (Zhou and Everts, 2003). Crop experts in Maryland report that methyl bromide alternatives provided lower protection against the pathogen while also creating obstacles to meeting premium market windows. USG believes that the situation here is similar to Michigan, in that the best alternatives (1,3 D + chloropicrin) may offer some defense against the pathogen (with a yield loss similar to that likely in Michigan). However, since the crop acreage involved is in low-lying coastal plain, water-logged soils frequently occur in rainy periods and this could delay fumigation with this and other alternatives (such as metam-sodium) and cause additional losses by forcing growers to miss key mid-July market windows. In addition, yellow nutsedge is a critical pest in Maryland that may occur in high enough populations that it is not adequately controlled without methyl bromide.

In the Southeastern U.S., nutsedges are the primary target pest of concern. Some growers in this region also face root-knot nematodes and the soil-borne fungal pathogens (described above) as key pests. Left uncontrolled, any of these pests could completely destroy the harvests from affected areas. Metam-sodium offers some control of nutsedges and nematodes, while 1, 3-dichloropropene + chloropicrin provides good control of nematodes (e.g., Eger, 2000; Noling et al., 2000). However, in areas where nutsedge infestations are moderate to severe and fungal pathogens are present, metam-sodium results in an estimated 44 % yield loss relative to methyl bromide (Locascio, et al., 1997). In such areas, use of 1, 3-D + chloropicrin is likely to lead to an estimated 29 % yield loss relative to methyl bromide (Locascio, et al., 1997). In such areas, use of 1, 3-D + chloropicrin cannot be used in large portions of the southeastern U.S. (primarily Kentucky and Georgia as regards this nomination) due to the presence of karst topographic features. 1, 3-dichloropropene cannot be used on such soil due to label restrictions created in response to concerns over groundwater contamination. Together, these yield losses and regulatory restrictions render these promising methyl bromide alternatives technologically and economically infeasible.

It should be noted also that all studies of yield losses for metam-sodium and 1, 3dichloropropene + chloropicrin relative to methyl bromide are based on small plot research trials done on non-cucurbit crops. Large-scale on-farm trials will need to be conducted in cucurbits with high fungal and nutsedge pest pressure to determine the long term potential for these alternatives.

Some researchers have also reported that these methyl bromide alternatives are degraded more rapidly in areas where they are applied repeatedly, due to enhanced metabolism by soil microbes. This phenomenon may compromise long-term efficacy of these compounds and appears to need further scientific scrutiny. Neither of these promising methyl bromide alternatives is presently adequate for control of key pests, and methyl bromide remains a critical use for cucurbits in Michigan and in the southern states.

(Details on this page are requested under Decision Ex. I/4(7), for posting on the Ozone Secretariat website under Decision Ex. I/4(8).)

This form is to be used by holders of single-year exemptions to reapply for a subsequent year's exemption (for example, a Party holding a single-year exemption for 2005 and/or 2006 seeking further exemptions for 2007). It does not replace the format for requesting a critical-use exemption for the first time.

In assessing nominations submitted in this format, TEAP and MBTOC will also refer to the original nomination on which the Party's first-year exemption was approved, as well as any supplementary information provided by the Party in relation to that original nomination. As this earlier information is retained by MBTOC, a Party need not re-submit that earlier information.

NOMINATING PARTY CONTACT DETAILS:

Contact Person:	Hodayah Finman.
Title:	Foreign Affairs Officer
Address:	Office of Environmental Policy
	U.S. Department of State
	2201 C Street, N.W. Room 2658
	Washington, D.C. 20520
	U.S.A.
Telephone:	(202) 647-1123
Fax:	(202) 647-5947
E-mail:	Finmanhh@state.gov

Following the requirements of Decision IX/6 paragraph (a)(1) The United States of America has determined that the specific use detailed in this Critical Use Nomination is critical because the lack of availability of methyl bromide for this use would result in a significant market disruption. \Box Yes \Box No

Signature	Name	Date
Title:		_

CONTACT OR EXPERT(S) FOR FURTHER TECHNICAL DETAILS:

Contact/Expert Person:	Richard Keigwin
Title:	Division Director
Address:	Biological and Economic Analysis Division
	Office of Pesticide Programs
	U.S. Environmental Protection Agency
	1200 Pennsylvania Avenue, N.W. Mailcode 7503P
	Washington, D.C. 20460
	U.S.A.
Telephone:	(703) 308-8200
Fax:	(703) 308-7042
E-mail:	Keigwin.Richard@epa.gov

LIST OF DOCUMENTS SENT TO THE OZONE SECRETARIAT IN OFFICIAL NOMINATION PACKAGE:

1. PAPER DOCUMENTS:	No. of pages	Date sent to Ozone
Title of paper documents and appendices		Secretariat
USA CUN09 SOIL <u>CUCURBITS</u> Open Field		
2. ELECTRONIC COPIES OF ALL PAPER DOCUMENTS:	No. of	Date sent to Ozone
*Title of each electronic file (for naming convention see notes above)	kilobytes	Secretariat
USA CUN09 SOIL <u>CUCURBITS</u> Open Field		

* Identical to paper documents

TABLE OF CONTENTS

Part A: INTRODUCTION	6
Renomination Form Part G: CHANGES TO QUANTITY OF METHYL BROMIDE REQUESTED	11
Part B: CROP CHARACTERISTICS AND METHYL BROMIDE USE	12
Part C: TECHNICAL VALIDATION	20
Part D: EMISSION CONTROL	29
Part E: ECONOMIC ASSESSMENT	32
Part F: NATIONAL MANAGEMENT STRATEGY	44
Renomination Form Part C: TRANSITION ACTIONS	45
Part G: CITATIONS	49
APPENDIX A. 2009 METHYL BROMIDE USAGE NEWER NUMERICAL INDEX (BUNNI)	53

TABLE OF TABLES

TABLE A.1: METHYL BROMIDE NOMINATED	
TABLE A 3. PROPORTION OF CROP GROWN USING METHYL BROMIDE	8
TABLE A 4. AMOUNT OF METHYL BROMIDE REQUESTED FOR CRITICAL USE	. 10
TABLE B 1. KEY DISEASES AND WEEDS	
TABLE B 2 A. MICHIGAN : CHARACTERISTICS OF CROPPING SYSTEM	. 13
TABLE B 3 A MICHIGAN CHARACTERISTICS OF CLIMATE AND CROP SCHEDULE	. 13
TABLE B 2 B SOUTHEASTERN U.S. (EXCEPT GEORGIA): CHARACTERISTICS OF CROPPING SYSTEM	. 14
TABLE B 3B SOUTHEASTERN U.S. (EXCEPT GEORGIA) CHARACTERISTICS OF CLIMATE AND CROP SCHEDULE	
TABLE B 2 C GEORGIA: CHARACTERISTICS OF CROPPING SYSTEM	. 14
TABLE B 3 C GEORGIA: CHARACTERISTICS OF CLIMATE AND CROP SCHEDULE	. 15
TABLE B 2 D MARYLAND AND DELAWARE: CHARACTERISTICS OF CROPPING SYSTEM	. 15
TABLE B 3 D MARYLAND: CHARACTERISTICS OF CLIMATE AND CROP SCHEDULE	. 16
TABLE B 4 A MICHIGAN HISTORIC PATTERN OF USE OF METHYL BROMIDE	
TABLE 4 B SOUTHEASTERN U.S. (EXCEPT GEORGIA) HISTORIC PATTERN OF USE OF METHYL BROMIDE	. 18
TABLE B C GEORGIA – SQUASH HISTORIC PATTERN OF USE OF METHYL BROMIDE	
TABLE B 4 D MARYLAND – MELONS - HISTORIC PATTERN OF USE OF METHYL BROMIDE	. 19
TABLE C 1. REASON FOR ALTERNATIVES NOT BEING FEASIBLE.	. 20
TABLE C 2. ALTERNATIVES DISCUSSION	
TABLE C 3. DATA ON WEED CONTROL	
TABLE D 1. TECHNIQUES TO MINIMIZE USE AND EMISSIONS.	
TABLE E 1. MICHIGAN CUCUMBER: ECONOMIC IMPACTS OF METHYL BROMIDE ALTERNATIVES	
TABLE E 2. MICHIGAN MELON -: ECONOMIC IMPACTS OF METHYL BROMIDE ALTERNATIVES	. 33
TABLE E 3. MICHIGAN HARD SQUASH-: ECONOMIC IMPACTS OF METHYL BROMIDE ALTERNATIVES	
TABLE E 4. MICHIGAN ZUCCHINI -: ECONOMIC IMPACTS OF METHYL BROMIDE ALTERNATIVES	
TABLE E 5. ALL MICHIGAN CUCURBITS -: ECONOMIC IMPACTS OF METHYL BROMIDE ALTERNATIVES	. 35
TABLE E 6. SOUTHEASTERN USA (EXCEPT GEORGIA) CUCUMBER -: ECONOMIC IMPACTS OF METHYL	
BROMIDE ALTERNATIVES	. 35
TABLE E 7. SOUTHEASTERN USA (EXCEPT GEORGIA) MELONS - ECONOMIC IMPACTS OF METHYL BROMIDE	
ALTERNATIVES	
TABLE E 8. SOUTHEASTERN USA (EXCEPT GEORGIA) SQUASH -: ECONOMIC IMPACTS OF METHYL BROMIDE	
ALTERNATIVES	. 36
TABLE E 9. ALL SOUTHEASTERN USA (EXCEPT GEORGIA) CUCURBITS -: ECONOMIC IMPACTS OF METHYL	
BROMIDE ALTERNATIVES	
TABLE E 10. GEORGIA CUCUMBER - ECONOMIC IMPACTS OF METHYL BROMIDE ALTERNATIVES	
TABLE E 11. GEORGIA MELON ECONOMIC IMPACTS OF METHYL BROMIDE ALTERNATIVES	
TABLE E 12. GEORGIA SQUASH - ECONOMIC IMPACTS OF METHYL BROMIDE ALTERNATIVES	
TABLE E 13. ALL GEORGIA CUCURBITS - ECONOMIC IMPACTS OF METHYL BROMIDE ALTERNATIVES	. 39
TABLE E 14. MARYLAND AND DELAWARE MELON - ECONOMIC IMPACTS OF METHYL BROMIDE ALTERNATI	
	. 39

Part A: INTRODUCTION Renomination Part A: SUMMARY INFORMATION

1. (Renomination Form 1.) NOMINATING PARTY AND NAME:

The United States of America USA01 CUN09 SOIL <u>CUCURBITS</u> Open Field

2. (Renomination Form 2.) DESCRIPTIVE TITLE OF NOMINATION:

Methyl Bromide Critical Use Nomination for Preplant Soil Use for <u>Cucurbits</u> Grown in Open Fields (Submitted in 2007 for 2009 Use Season)

3. CROP AND SUMMARY OF CROP SYSTEM (e.g. open field (including tunnels added after treatment), permanent glasshouses (enclosed), open ended polyhouses, others (describe)):

Cucurbits (squash, melons, and/or cucumber) grown in Alabama, Arkansas, Delaware, Georgia, Kentucky, Louisiana, Maryland, Michigan, North Carolina, South Carolina, Tennessee, and Virginia. These crops generally are grown in open fields on plastic tarps, often followed by various other crops. Harvest is destined for the fresh market.

4. AMOUNT OF METHYL BROMIDE NOMINATED (give quantity requested (metric tonnes) and years of nomination):

(Renomination Form 3.) YEAR FOR WHICH EXEMPTION SOUGHT:

TABLE A 1: QUANTITY OF METHYL BROMIDE REQUESTED IN EACH YEAR OF NOMINATION

YEAR	NOMINATION AMOUNT (METRIC TONNES)*
2009	411.765

*This amount includes methyl bromide needed for research.

(Renomination Form 4.) SUMMARY OF ANY SIGNIFICANT CHANGES SINCE SUBMISSION OF PREVIOUS NOMINATIONS (e.g. changes to requested exemption quantities, successful trialling or commercialisation of alternatives, etc.)

Major points include: (1) use of metallised films to reduce rates of methyl bromide used is now underway in some regions of the US, but this use is experimental and concentrated in south-eastern US; (2) re-registration of alternative fumigants is underway and label changes may occur that will affect methyl bromide usage in as yet unknown ways, and (3) the addition of Maryland and Delaware to the states requesting methyl bromide.

5. (i) BRIEF SUMMARY OF THE NEED FOR METHYL BROMIDE AS A CRITICAL

USE (e.g. no registered pesticides or alternative processes for the particular circumstance, plantback period too long, lack of accessibility to glasshouse, unusual pests):

The U.S. nomination is only for those areas where the alternatives are not suitable. In U.S. cucurbit production there are several factors that make the potential alternatives to methyl bromide unsuitable. These include:

- The efficacy of alternatives may be significantly less effective than methyl bromide in some areas, making these alternatives technically and/or economically infeasible for use in cucurbit production.
- Some alternatives may be comparable to methyl bromide as long as key pests occur at low pressure, and in such cases the U.S. is only nominating a critical use exemption (CUE) for cucurbits where the key pest pressure is moderate to high such as nutsedge in the Southeastern U.S.
- Regulatory constraints prevent use of some chemicals, e.g., 1,3-dichloropropene (1, 3-dichloropropene) use is limited in Georgia due to the presence of karst topographical features.
- Delays in planting and harvesting result in users missing key market windows, and adversely affect revenues through lower prices. Delays in planting and harvesting: e.g., the plant-back interval for 1, 3-dichloropropene +chloropicrin is two weeks longer than methyl bromide +chloropicrin, and in Michigan an additional delay would occur because soil temperature must be higher to fumigate with alternatives. In Maryland and Delaware, fumigation delays that occur due to water-logged soils or high water tables (which prevent effective use of 1, 3 D + chloropicrin and metam) could cause growers to miss key market windows, similar to Michigan.

Region		Michigan Cucurbit	Mardel Cucurbit	Southeast Cucurbit	Georgia - Squash	Georgia - Cucumber	Georgia - Melon	Sector Total
EPA Preliminary Value	kgs	26,592	9,117	753,688	92,874	67,224	245,739	1,195,235
EPA Amount of All Adjustments	kgs	(4,099)	(6)	(513,887)	(64,220)	(45,277)	(156,921)	(784,411)
Most Likely Impact Value	kgs	22,493	9,111	239,801	28,654	21,947	88,817	410,824
for Treated Area	ha	129	61	1,370	164	125	508	2,356
for freated Area	Rate	175	150	175	175	175	175	174
Sector Research Amount (kgs)			941		Total US S Iominatior		41	1,765 ·

 TABLE A 2: EXECUTIVE SUMMARY*

* See Appendix A for a complete description of how the nominated amount was calculated.

(ii) STATE WHETHER THE USE IS COVERED BY A CERTIFICATION

STANDARD. (*Please provide a copy of the certification standard and give basis of standard* (e.g. industry standard, federal legislation etc.). Is methyl bromide-based treatment required exclusively to meet the standard or are alternative treatments permitted? Is there a minimum use rate for methyl bromide? Provide data which shows that alternatives can or cannot achieve disease tolerances or other measures that form the basis of the certification standard).

Not used to meet a certification standard.

6. SUMMARISE WHY KEY ALTERNATIVES ARE NOT FEASIBLE (Summary should address why the two to three best identified alternatives are not suitable, < 200 words):

Our review of available research on all other methyl bromide alternatives discussed by MBTOC for cucurbits suggests that, of registered (i.e., legally available) chemistries only metam sodium and 1,3 D + chloropicrin have shown potential as commercially viable replacement to MB. Non-chemical alternatives are either unviable for US cucurbits or require more research and commercial development before they can be technically and economically feasible.

For Michigan pests, metam sodium/potassium + chloropicrin is the only key alternative with efficacy comparable to methyl bromide. However, it has regulatory restrictions due to human exposure concerns, along with technical limitations, that result in economic infeasibility of this formulation as a practical methyl bromide alternative. Key among these factors are a delay in planting as long as 30 days, due both to label restrictions and low soil temperatures, and a mandatory 30 m buffer for treated fields near inhabited structures.

For Southeastern U.S. and Georgia, metam-sodium and 1, 3 D + chloropicrin are the most promising alternatives for nutsedges and nematodes, respectively, which are the key target pests in these regions. However, where nutsedges are severe, metam-sodium is technically and economically infeasible due to planting delays, yield losses and inconsistent efficacy, while 1,3 D + chloropicrin is infeasible due to (1) its use being prohibited on Karst topographic features, which are widespread in these regions, (2) a 21 day planting delay, and (3) yield losses.

There is also evidence that the pesticidal efficacy of both 1,3 D and metam-sodium declines in areas where it is repeatedly applied, due to enhanced degradation of methyl isothiocyanate by soil microbes (Ou et al., 1995; Verhagen et al., 1996; Dungan and Yates, 2003; Gamliel et al., 2003).

All other potential or available methyl bromide alternatives are also technically infeasible for U.S. cucurbits.

7. (i) PROPORTION OF CROP GROWN USING METHYL BROMIDE (provide local data as well as national figures. Crop should be defined carefully so that it refers specifically to that which uses or used methyl bromide. For instance processing tomato crops should be distinguished from round tomatoes destined for the fresh market):

REGION WHERE METHYL	TOTAL CROP AREA IN PROPORTION OF TOTAL CROP AREA	
BROMIDE USE IS REQUESTED	2003 (НА)	WITH METHYL BROMIDE IN 2003 (%)
Michigan	8,620	3%
Southeastern U.S (except Georgia)	18,858	36%
Georgia	25,204	11%
Maryland and Delaware	Unknown	Unknown
NATIONAL TOTAL:	52,682	19%

TABLE A 3. PROPORTION OF CROP GROWN USING METHYL BROMIDE

.* Includes: Alabama, Arkansas, Georgia, Kentucky, Louisiana, Michigan, North Carolina, South Carolina, Tennessee, and Virginia

(ii) IF PART OF THE CROP AREA IS TREATED WITH METHYL BROMIDE, INDICATE THE REASON WHY METHYL BROMIDE IS NOT USED IN THE OTHER AREA, AND IDENTIFY WHAT ALTERNATIVE STRATEGIES ARE USED TO CONTROL THE TARGET PATHOGENS AND WEEDS WITHOUT METHYL BROMIDE THERE.

- In Southeastern U.S. Georgia, and Maryland, areas not treated do not have nutsedges or pathogens naturally present in cucurbit fields. Simple absence of all pests is the only reason these areas are not presently treated with methyl bromide.
- In Virginia and much of the mid-Atlantic, areas without high water tables and the close proximity of production to environmentally sensitive estuaries can use 1,3-D.
- In Delaware and Maryland areas without the existence of highly aggressive race 2 of *Fusarium oxysporum niveum* or high concentration of the inoculum could use some alternatives; providing they meet the criteria of acceptable water table levels and environmentally sensitive areas.
- In Michigan, all acreage is treated with methyl bromide due to cool weather conditions and high pest pressure from diseases and weeds.

(iii) WOULD IT BE FEASIBLE TO EXPAND THE USE OF THESE METHODS TO COVER AT LEAST PART OF THE CROP THAT HAS REQUESTED USE OF METHYL BROMIDE? WHAT CHANGES WOULD BE NECESSARY TO ENABLE THIS?

The primary reason that some cucurbits may be grown without methyl bromide in all three regions is the absence of key target pests and constraints to use of alternatives (i.e., absence of nutsedge in the Southeast, and Georgia, several races of *Fusarium* and nutsedges in Delaware and Maryland, soil pathogens and cold soil temperatures in Michigan, and karst topographic features in Georgia).

8. AMOUNT OF METHYL BROMIDE REQUESTED FOR CRITICAL USE (*Duplicate table if a number of different methyl bromide formulations are being requested and/or the request is for more than one specified region*):

REGION	Michigan SOUTHEASTERN Georgia			Maryland &
	US **		0	Delaware
YEAR	2009			
QUANTITY OF METHYL BROMIDE	See Appendix	See Appendix A	See Appendix	See Appendix
NOMINATED	А		А	А
TOTAL CROP AREA TO BE TREATED WITH	See Appendix	See Appendix A	See Appendix	See Appendix
THE METHYL BROMIDE OR METHYL	А		А	А
BROMIDE/CHLOROPICRIN FORMULATION				
(M ² OR HA) (NOTE: IGNORE REDUCTIONS				
FOR STRIP TREATMENT)				
METHYL BROMIDE USE: BROADACRE OR	Strip	Strip	Strip	Strip
STRIP/BED TREATMENT?				
PROPORTION OF BROADACRE AREA	0.58	0.58	0.58	0.58
WHICH IS TREATED IN STRIPS; E.G. 0.54,				
0.67				
FORMULATION (RATIO OF METHYL	67:33	67:33	67:33	67:33
BROMIDE/CHLOROPICRIN MIXTURE) TO BE				
USED FOR CALCULATION OF THE CUE				
E.G. 98:2, 50:50				
APPLICATION RATE* (KG/HA) FOR THE	See Appendix	See Appendix A	See Appendix	See Appendix
FORMULATION	Α		А	А
DOSAGE RATE* (G/M²) (I.E. ACTUAL	See Appendix	See Appendix A	See Appendix	See Appendix
RATE OF FORMULATION APPLIED TO THE	А		А	А
AREA TREATED WITH METHYL				
BROMIDE/CHLOROPICRIN ONLY)				

TABLE A 4. AMOUNT OF METHYL BROMIDE NOMINATED FOR CRITICAL USE

*Give here actual rate per treated area (e.g. the area directly treated under film) not rate per total area of field. **Includes: Alabama, Arkansas, Georgia, Kentucky, Louisiana, Michigan, North Carolina, South Carolina, Tennessee, and Virginia

9. SUMMARISE ASSUMPTIONS USED TO CALCULATE METHYL BROMIDE QUANTITY NOMINATED FOR EACH REGION (include any available data on historical levels of use):

The amount of methyl bromide nominated by the U.S. was calculated as follows:

- The percent of regional hectares in the applicant's request was divided by the total area planted in that crop in the region covered by the request. Values greater than 100 percent are due to the inclusion of additional varieties in the applicant's request that were not included in the USDA National Agricultural Statistics Service surveys of the crop.
- Hectares counted in more than one application or rotated within one year of an application to a crop that also uses methyl bromide were subtracted. There was no double counting in this sector.
- Growth or increasing production (the amount of area requested by the applicant that is greater than that historically treated) was subtracted. The applicant that included growth in their request had the growth amount removed.
- Quarantine and pre-shipment (QPS) hectares is the area in the applicant's request subject to QPS treatments. Not applicable in this sector.
- Only the acreage experiencing one or more of the following impacts were included in the nominated amount: moderate to heavy key pest pressure, regulatory impacts, karst topographic features, buffer zones, unsuitable terrain, and cold soil temperatures.

<u>Renomination Form Part G:</u> CHANGES TO QUANTITY OF METHYL BROMIDE REQUESTED

This section seeks information on any changes to the Party's requested exemption quantity.

(Renomination Form 16.) CHANGES IN USAGE REQUIREMENTS

Provide information on the nature of changes in usage requirements, including whether it is a change in dosage rates, the number of hectares or cubic metres to which the methyl bromide is to be applied, and/or any other relevant factors causing the changes.

A transition rate was applied based on the best estimate of yield losses and feasibility associated with likely methyl bromide alternatives that could be made by USG biologists and economists. In addition, a dosage rate of 150 kg/ha (for areas where disease pathogens were considered to be key pests) and 175 kg/ha (for areas where weeds were considered to be key pests) was used in calculating the amount of methyl bromide requested. For details on these changes in usage requirements, please see Appendix B.

(Renomination Form 17.) RESULTANT CHANGES TO REQUESTED EXEMPTION QUANTITIES

QUANTITY (KG) REQUESTED FOR PREVIOUS NOMINATION YEAR:	528,454
QUANTITY (KG) APPROVED BY PARTIES FOR PREVIOUS NOMINATION YEAR:	486,757
QUANTITY (KG) REQUIRED FOR YEAR TO WHICH THIS REAPPLICATION REFERS:	411,765
TREATED AREA (HA) REQUIRED FOR YEAR TO WHICH THIS REAPPLICATION REFERS	See Appendix A

Part B: CROP CHARACTERISTICS AND METHYL BROMIDE USE

10. KEY DISEASES AND WEEDS FOR WHICH METHYL BROMIDE IS REQUESTED AND SPECIFIC REASON FOR THIS REQUEST IN EACH REGION (*List only those*

target weeds and pests for which methyl bromide is the only feasible alternative and for which CUE is being requested):

REGION WHERE METHYL BROMIDE USE IS REQUESTED	KEY DISEASE(S) AND WEED(S) TO SPECIES AND, IF KNOWN, TO LEVEL OF RACE	SPECIFIC REASONS WHY METHYL BROMIDE NEEDED				
Michigan	Soilborne fungal diseases: Phytophthora capsici and Fusarium oxysporum	No effective post-emergence control available; 1,3- D + chloropicrin is not feasible as a methyl bromide alternative due to regulatory and technical restrictions on use. Low soil temperatures and regulatory restriction also means that use of 1,3 D or metam sodium cannot be used with low soil temperatures. While a recent trial in Michigan indicated good yields when alternatives were used at higher soil temperatures, data were highly variable and the study needs to be repeated in larger plots before technical feasibility can be confirmed.				
SOUTHEASTERN US (Alabama, Arkansas, Georgia, Kentucky, Louisiana, Michigan, North Carolina, South Carolina, Tennessee, and Virginia)	Nutsedges: yellow (<i>Cyperus</i> esculentus), and purple (<i>Cyperus</i> rotundus); to a lesser extent: fungal diseases (<i>Phytophthora</i> , <i>Fusarium</i> spp.) and root knot nematodes (<i>Meloidogyne incognita</i>)	No effective alternatives exist for control of the nutsedge, due to either lack of registration, planting delays (due to regulatory restriction or phytotoxicity) or low efficacy, or lack of registration of potentially effective herbicides, all of which result in significant economic loss. In part of this region, fungal diseases may also have no effective control in the absence of MB, due to regulatory restrictions and planting delays associated with 1,3 D + chloropicrin use.				
Georgia	Nutsedges: yellow (<i>Cyperus</i> esculentus), and purple (<i>Cyperus</i> rotundus); fungal diseases (mainly <i>Pythium</i> spp.); to a lesser extent: root knot nematodes (<i>Meloidogyne</i> incognita)	No effective alternatives exist for control of the nutsedge, due to either lack of registration, planting delays (due to regulatory restriction or phytotoxicity) or low efficacy, both of result in significant economic loss, or lack of registration of potentially effective herbicides. In part of this region, fungal diseases may also have no effective control in the absence of MB, due to regulatory restrictions on the only effective alternative (1,3 D + chloropicrin). Georgia may have a higher level of nematode pressure than the other southeastern states.				
Maryland and Delaware	<i>Fusarium oxysporum niveum</i> (5 races), yellow nutsedge, to a lesser extent: root knot nematodes (<i>Meloidogyne incognita</i>)	No effective alternatives exist for control of the nutsedge, due to either lack of registration, planting delays (due to regulatory restriction or phytotoxicity) or low efficacy, both of result in significant economic loss, or lack of registration of potentially effective herbicides. Also, five races of <i>Fusarium</i> pathogen exist in this region and also have significantly less control in the absence of MB				

TABLE B 1. KEY DISEASES AND WEEDS

11. (i) CHARACTERISTICS OF CROPPING SYSTEM AND CLIMATE (Place major attention on the key characteristics that affect the uptake of alternatives):

CHARACTERISTICS	Michigan
CROP TYPE:	Transplants grown for cucurbit fruit production.
ANNUAL OR PERENNIAL CROP:	Annual
TYPICAL CROP ROTATION AND USE OF METHYL BROMIDE FOR OTHER CROPS IN THE ROTATION:	Corn, soybeans, tomatoes, strawberries, other cucurbit crops. methyl bromide is not used for the other crops if applied once already in a given year.
SOIL TYPES:	Light to medium loam
FREQUENCY OF METHYL BROMIDE FUMIGATION:	Once every year for a given field
OTHER RELEVANT FACTORS:	Soil temperatures are low relative to the rest of the US cucurbit growing regions (see below)

TABLE B 2A. MICHIGAN: CHARACTERISTICS OF CROPPING SYSTEM

TABLE B 3 A MICHIGAN - CHARACTERISTICS OF CLIMATE AND CROP SCHEDULE

	Mar	Apr	Мау	Jun	Jul	Aug	Sept	Ост	Nov	DEC	JAN	Feb
Climatic Zone		Temperate USDA Plant Hardiness Zone 5b										
Soil Temp. (℃)	<10	10 - 15	15-20	20-25	20-25	20-25	20	10-15	<10	<10	<10	<10
RAINFALL (mm)	40	72	101	48	47	32	17	31	36	20	6	8
OUTSIDE TEMP. (°C)	0.2	7.4	12.1	17.5	20.6	20.9	18.1	8	2.4	-2.9	-8	-7
FUMIGATION SCHEDULE		Х										
PLANTING SCHEDULE		Х	Х	Х	Х							
KEY MARKET Window						Х						

TABLE B 2 B SOUTHEASTERN U.S.	(EXCEPT GEORGIA): C	HARACTERISTICS OF CROPPING SYSTEM

CHARACTERISTICS	SOUTHEASTERN U.S. (EXCEPT GEORGIA)
CROP TYPE:	Transplants grown for cucurbit fruit production.
ANNUAL OR PERENNIAL CROP:	Annual
TYPICAL CROP ROTATION AND USE OF METHYL BROMIDE FOR OTHER CROPS IN THE ROTATION:	Other cucurbits, tobacco, grains, cotton
SOIL TYPES:	Low organic content, light to medium loam
FREQUENCY OF METHYL BROMIDE FUMIGATION:	Once every year
OTHER RELEVANT FACTORS:	

TABLE B 3 B SOUTHEASTERN U.S. (EXCEPT GEORGIA) - CHARACTERISTICS OF CLIMATE AND CROP SCHEDULE

	MAR	APR	MAY	JUN	JUL	AUG	Sept	Ост	Nov	DEC	JAN	FEB
Climatic Zone		Temperate USDA Plant Hardiness Zones 6b – 8b										
SOIL TEMP. $(^{\mathcal{C}})$		Not available.										
RAINFALL (mm)	163	124	109	87	78	146	113	202	109	116	54	76
OUTSIDE TEMP. (°C)	9.4	14.5	17.7	23.4	26	25.9	22.6	14.9	7.7	3.4	2.9	4.2
FUMIGATION SCHEDULE	X	X										X
Planting Schedule	Х	Х	Х		Х	Х						
KEY MARKET Window							Х					

TABLE B 2 C GEORGIA : CHARACTERISTICS OF CROPPING SYSTEM

CHARACTERISTICS	GEORGIA
CROP TYPE:	Transplants grown for cucurbit fruit production.
ANNUAL OR PERENNIAL CROP:	Annual (one)
TYPICAL CROP ROTATION AND USE OF METHYL BROMIDE FOR OTHER CROPS IN THE ROTATION:	Other cucurbits, bell pepper, squash, eggplant
SOIL TYPES:	Light to medium loam, low organic matter
FREQUENCY OF METHYL BROMIDE FUMIGATION:	Once every year
OTHER RELEVANT FACTORS:	Karst topographic features are widespread in Georgia.

	Mar	Apr	Мау	JUN	Jul	AUG	Sept	Ост	Nov	DEC	JAN	Feb
CLIMATIC ZONE				USDA P		nperate diness 2	Zones 7a	a – 8b				
Soil Temp. (°C)					Not a	vailable	е.					
RAINFALL (mm)	206	108	148	248	0	158	84	122	109	137	37	131
Outside Temp. $(^{\circ}C)$	15	17.7	22.9	25.6	27.2	27.5	25.1	20	11.4	7.5	6.2	9.7
FUMIGATION SCHEDULE					X							X*
PLANTING SCHEDULE	Х				Х	Х						
KEY MARKET Window						X**				X**		

TABLE B 3 C GEORGIA : CHARACTERISTICS OF CLIMATE AND CROP SCHEDULE

Notes:

(1) * = This fumigation period is for a cantaloupe typically double cropped with squash, which is typically a spring application cycle; the other fumigation period shown is for cucumber usually double cropped with bell peer and squash usually double cropped with cabbage, both typically a fall cycle.

(2) ** = US-EPA assumes these are the key market windows based on harvest schedule supplied by the applicant. According to the applicant, harvests for fall cycle crops occur in October & November, those for spring cycle crops occur in May through July.

(3) Planting schedule is July and August for crops with a fall application cycle; March for those with a spring cycle.

TABLE B 2 D MARYLAND AND DELAWARE: CHARACTERISTICS OF CROPPING SYSTEM

CHARACTERISTICS	GEORGIA
CROP TYPE:	Transplants grown for cucurbit fruit production.
ANNUAL OR PERENNIAL CROP:	Annual (one)
TYPICAL CROP ROTATION AND USE OF METHYL BROMIDE FOR OTHER CROPS IN THE ROTATION:	Other cucurbits, bell pepper, squash, eggplant
SOIL TYPES:	Light to medium loam, low organic matter
FREQUENCY OF METHYL BROMIDE FUMIGATION:	Once every year
OTHER RELEVANT FACTORS:	Proximity of surface water (lagoons, streams, etc.) prevents 1, 3 D application on all acreage.

	MAR	Apr	Мау	Jun	Jul	AUG	Sept	Ост	Nov	DEC	JAN	Feb
CLIMATIC ZONE				USI	T DA Plant	empera Hardir		nes 7a				
SOIL TEMP. (\mathcal{C})		10-21 during fumigation										
RAINFALL, TOTAL (mm)*	102.9	64	148.3	166.9	179.6	44.7	9.1	215.4	91.4	90.4	102.6	77.2
OUTSIDE TEMP., MEANS $(\mathcal{C})^*$	4.1	11.4	13.6	21.6	24.9	24.4	20.7	14.4	9.3	1.7	1.7	2.6
FUMIGATION SCHEDULE		Х										
Planting Schedule		Х	Х	Х								
KEY MARKET Window					Х							

TABLE B 3 D MARYLAND: CHARACTERISTICS OF CLIMATE AND CROP SCHEDULE

* Data shown are for 2005 and from a single station in the growing region (Wicomico Regional Airport)

(ii) INDICATE IF ANY OF THE ABOVE CHARACTERISTICS IN 11.(i) PREVENT THE UPTAKE OF ANY RELEVANT ALTERNATIVES?

In Michigan, low soil temperatures (often below 10° C) prior to the typical planting window inhibit dissipation of 1, 3-dichloropropene + chloropicrin (Martin, 2003), which can delay planting due to phytotoxicity to crop plants. There is also a 21-day planting delay as per registration label language. Combined, this results in a delay as long as 30 days in planting crops, which may negatively affect the economics of cucurbit production in this region. Metam sodium transformation into the active ingredient, methyl isothiocyanate, is also slowed by low soil temperatures (Ashley et al. 1963). Thus, optimal use of metam-sodium/potassium (even if effective against target pests) is likely to result in significant planting delays.

In the southeastern US, alternatives have not been effective against some of the key pests in this sector in certain areas of the southeastern U.S. In Georgia, karst topographic features prevent widespread application of 1,3 D + chloropicrin as an alternative for disease and nematode control, because regulatory restrictions prohibit use of this chemical on the overlying soils.

In Maryland and Delaware, the situation here is similar to Michigan, in that 1,3 D + chloropicrin and metam-sodium/potassium use is hindered by environmental conditions. Since the crop acreage involved is in low-lying coastal plain, water-logged soils frequently occur in rain events near the fumigation period; in addition water tables may be too close to the surface to allow timely fumigation with these materials. This could delay fumigation with these alternatives and cause additional losses by forcing growers to miss key mid-July market windows.

12. HISTORIC PATTERN OF USE OF METHYL BROMIDE, AND/OR MIXTURES CONTAINING METHYL BROMIDE, FOR WHICH AN EXEMPTION IS REQUESTED (*Add separate table for each major region specified in Question 8*):

DLE D 4 A MICHIGAN ; III				DI DI DI DI DI		
FOR AS MANY YEARS AS POSSIBLE AS SHOWN SPECIFY:	1999	2000	2001	2002	2003	2004
AREA TREATED (hectares)	427	508	567	589	224	239
RATIO OF FLAT FUMIGATION METHYL BROMIDE USE TO STRIP/BED USE	100% strip	100% strip	100% strip	100% strip	100% strip	100% strip
AMOUNT OF METHYL BROMIDE ACTIVE INGREDIENT USED (total kilograms)	20,556	24,502	27,331	28,403	26,934	28,719
FORMULATIONS OF METHYL BROMIDE	67:33	67:33	67:33	67:33	67:33	67:33
METHOD BY WHICH METHYL BROMIDE APPLIED	Shank injected	Shank injected				
ACTUAL DOSAGE RATE OF ACTIVE INGREDIENT $(g/m^2)^*$	12.0	12.0	12.0	12.0	12.0	12.0

 TABLE B 4 A MICHIGAN . HISTORIC PATTERN OF USE OF METHYL BROMIDE

*For broadacre treatment application rate and dosage rate may be the same

FOR AS MANY YEARS AS POSSIBLE AS SHOWN SPECIFY:	1999	2000	2001	2002	2003	2004
AREA TREATED (hectares)	3,976	4,532	5,034	5,253	5,658	5,941
RATIO OF FLAT Fumigation methyl bromide use to strip/bed use	Strip beds					
AMOUNT OF METHYL BROMIDE ACTIVE INGREDIENT USED (total kilograms)	597,177	680,751	756,120	788,942	849,723	892,270
FORMULATIONS OF METHYL BROMIDE	67:33	67:33	67:33	67:33	67:33	67:33
METHOD BY WHICH METHYL BROMIDE APPLIED	Shank injected	Shank injected	Shank injected	Shank injected	Shank injected	Shank injected
ACTUAL DOSAGE RATE OF ACTIVE INGREDIENT $(g/m^2)*$	15.0	15.5	15.0	15.0	15.0	15.0

 TABLE B 4 B SOUTHEASTERN U.S. (EXCEPT GEORGIA) . HISTORIC PATTERN OF USE OF METHYL

 BROMIDE

* Applications are made as strip treatments.

FOR AS MANY YEARS AS POSSIBLE AS SHOWN SPECIFY:	1999	2000	2001	2002	2003	2004
AREA TREATED (hectares)	824	662	618	578	572	550
RATIO OF FLAT FUMIGATION METHYL BROMIDE USE TO STRIP/BED USE	100% Strip					
AMOUNT OF METHYL BROMIDE ACTIVE INGREDIENT USED (total kilograms)	157,271	101,863	92,874	86,857	85,945	82,602
FORMULATIONS OF METHYL BROMIDE	67:33	67:33	67:33	67:33	67:33	67:33
METHOD BY WHICH METHYL BROMIDE APPLIED	Shank injected	Shank injected	Shank injected	Shank injected	Shank injected	Shank injected
ACTUAL DOSAGE RATE OF ACTIVE INGREDIENT $(g/m^2)^*$	19.1	15.4	15.0	15.0	15.0	15.0

 TABLE B 4 C GEORGIA – SQUASH. HISTORIC PATTERN OF USE OF METHYL BROMIDE

* Applications are made as strip treatments.

TABLE B 4 D MARYLAND – MELONS - HISTORIC PATTERN OF USE OF METHYL BROMIDE

FOR AS MANY YEARS AS POSSIBLE AS SHOWN SPECIFY:	1997	1998	1999	2000	2001	2002	2003	2004
AREA TREATED (hectares)	N/A	N/A	N/A	1344	1344	1344	1344	1008
RATIO OF FLAT FUMIGATION METHYL BROMIDE USE TO STRIP/BED USE	N/A	N/A	N/A	30 % Strip	30 % Strip	30 % Strip	30 % Strip	30 % Strip
AMOUNT OF METHYL BROMIDE ACTIVE INGREDIENT USED (total kilograms)	N/A	N/A	N/A	39514	39514	39514	39514	20261
FORMULATIONS OF METHYL BROMIDE	N/A	N/A	N/A	98:2	98:2	98:2	98:2	67:33
METHOD BY WHICH METHYL BROMIDE APPLIED	N/A	N/A	N/A	Shank injected	Shank injected	Shank injected	Shank injected	Shank injected
ACTUAL DOSAGE RATE OF ACTIVE INGREDIENT $(g/m^2)^*$	N/A	N/A	N/A					
AREA TREATED (hectares)	N/A	N/A	N/A					

<u>Part C:</u> TECHNICAL VALIDATION <u>Renomination Form Part D:</u> REGISTRATION OF ALTERNATIVES

13. REASON FOR ALTERNATIVES NOT BEING FEASIBLE (Provide detailed

information on a minimum of the best two or three alternatives as identified and evaluated by the Party, and summary response data where available for other alternatives (for assistance on potential alternatives refer to MBTOC Assessment reports, available at <u>http://www.unep.org/ozone/teap/MBTOC</u>, other published literature on methyl bromide alternatives and Ozone Secretariat alternatives when available):

NAME OF	TECHNICAL AND REGULATORY* REASONS FOR THE ALTERNATIVE NOT BEING
ALTERNATIVE	FEASIBLE OR AVAILABLE
	CHEMICAL ALTERNATIVES
1,3 D + chloropicrin	In small plot trials conducted in Michigan, this formulation showed some efficacy against the key pests (Hausbeck and Cortright, 2004). Plant loss was about 6 % as compared to 0 % with MB. Perhaps more significantly, the average yield loss for the four cucurbit crops evaluated (zucchini, acorn squash, melons, and watermelons) was 44%, as compared to the methyl bromide standard. Furthermore, regulatory restrictions and Michigan's cool and wet soils result in a delay of up to 30 days in planting after treatment with this formulation. This results in growers missing key harvest windows, with consequent negative economic impacts In the southeastern US Effective (in small plot studies) in controlling disease and nematode pests, but not nutsedges (Locascio et al., 1997; Csinos et al., 1999; Noling et al., 2000). Subject to regulatory restrictions in some areas (where Karst topographic features exist).
Metam-sodium	Provides control of nutsedges only close to application site (Dowler, 1999; Locascio and Dickson, 1998). Surviving nutsedge tubers can potentially recolonize the crop field (Webster, 2002). Not effective against the disease or nematode pests in this region. Approximate yield losses due to nutsedge are $3 - 25$ %; losses would be higher in areas facing the other key pests along with nutsedges. Technically and economically infeasible due to these yield losses (see economic analyses in Part E). In the cool conditions of Michigan, metam-sodium is likely to be slow to transform into the active ingredient (methyl isothiocyanate), which suggests that pest control will not be as effective as in the more favorable Florida conditions. However, given the high variability of data in those trials, and the inconsistent results cited for tomato, it is not clear that this combination of alternatives will provide reliable pest management in the absence of MB.
	NON CHEMICAL ALTERNATIVES
Soil solarization	Michigan's climate is typically cool (less than 11°C frequently through May) and cloudy, particularly early in the growing season when control of the key pests is particularly important. In Michigan, the growing season is particularly short (May to September), so the time needed to utilize solarization is likely to render the subsequent growing of crops impossible, even if it did somehow eliminate all fungal pathogens.
Steam	While steam has been used effectively against fungal pests in protected production systems, such as greenhouses, there is no evidence that it would be effective in the open cucurbit crops in Michigan. Any such system would also require large amounts of energy and water to provide sufficient steam necessary to sterilize soil down to the rooting depth of field crops (at least 20-50 cm).

TABLE C 1. REASON FOR ALTERNATIVES NOT BEING FEASIBLE.

Cover crops and mulching There is no evidence these practices effectively substitute for the control methyl bromide provides against <i>P. capsici</i> . Control of <i>P. capsici</i> is imperative for cucurbit vegetables, and regional crop experts state that it is not an adequate protectant when used without methyl bromide. The longevity and resistance of <i>P. capsici</i> osspores render cover crops ineffective as a stand-alone management alternative to methyl bromide. Crop rotation and fallow land The crop rotations available to growers in Michigan region are also susceptible to these fungi, particularly to <i>P. capsici</i> . Fallow land can still harbor <i>P. capsici</i> osopores rotation/fallow land was the main management regime. Endophytes Though these organisms (bacteria and fungi that grow symbiotically or as parasites within plants) apparently suppress some plant pathogens in cucumber (MBTOC, 1994), there is no such information for the other cucurbit crops grown in Michigan. Furthermore, the target pathogens of the study did not include <i>P. capsici</i> , probably the greatest threat to Michigan cucurbits. Flooding/Water management Flooding is not technically feasible as an alternative because it does not have any suppressive effect on <i>P. capsici</i> (Allen et al., 1999), and is likely to be impractical for Michigan cucurbit growers. It is unclear whether irrigation methods in this region could be adapted to incorporate flooding or alter water management for cucrbit fields. In any case, there appears to be no supporting evidence for its use against the hardy osopores of <i>P. capsici</i> . Grafting/resistant rootstock/plant breeding/soilles culture/organic production/substr ates/plug plants. Due to the paucity of scientific information on the utility of these alternatives as methyl toromide rep	Biological Control	Biological control agents are not technically feasible alternatives to methyl bromide because they alone cannot control the soil pathogens that afflict cucurbits in Michigan. The bacterium <i>Burkholderia cepacia</i> and the fungus <i>Gliocladium virens</i> have shown some potential in controlling some fungal plant pathogens (Larkin and Fravel, 1998). However, in a test conducted by the Michigan applicants (included in the 2002 application from this region), <i>P. capsici</i> was not controlled adequately in summer squash, a cucurbit crop, by either of these beneficial microorganisms.
Crop rotation and fallow landfungi, particularly to <i>P. capsici</i> . Fallow land can still harbor <i>P. capsici</i> oospores (Lamour and Hausbeck, 2003). Thus fungi would persist and attack cucurbits if crop rotation/fallow land was the main management regime.EndophytesThough these organisms (bacteria and fungi that grow symbiotically or as parasites within plants) apparently suppress some plant pathogens in cucumber (MBTOC, 1994), there is no such information for the other cucurbit crops grown in Michigan. Furthermore, the target pathogens of the study did not include <i>P. capsici</i> , probably the greatest threat to Michigan cucurbits.Flooding/Water managementFlooding is not technically feasible as an alternative because it does not have any suppressive effect on <i>P. capsici</i> (Allen et al., 1999), and is likely to be impractical for Michigan cucurbit growers. It is unclear whether irrigation methods in this region could be adapted to incorporate flooding or alter water management for cucurbit fields. In any case, there appears to be no supporting evidence for its use against the hardy oospores of <i>P. capsici</i> .Grafting/resistant rootstock/plant breeding/soilless culture/organic production/substr ates/plug plants.Due to the paucity of scientific information on the utility of these alternatives as methyl bromide alternatives for control of <i>Phytophthora</i> and <i>Fusarium</i> fungi. Soilless culture, organic production, and substrates/plug plants are also not technically infeasible as methyl bromide alternatives for control of <i>Phytophthora</i> and Husbeck, 2003), making it difficult to keep any sort of area (with or without soil) disease free. Various aspects of organic production – e.g., cover crops, fallow land, and steam sterilization – have already been addressed in this document and assessed to be technically infeasible methy		There is no evidence these practices effectively substitute for the control methyl bromide provides against <i>P. capsici</i> . Control of <i>P.capsici</i> is imperative for cucurbit production in Michigan. Plastic mulch is already in widespread use in Michigan vegetables, and regional crop experts state that it is not an adequate protectant when used without methyl bromide. The longevity and resistance of <i>P. capsici</i> oospores render cover crops ineffective as a stand-alone management alternative to methyl bromide.
Endophyteswithin plants) apparently suppress some plant pathogens in cucumber (MBTOC, 1994), there is no such information for the other cucurbit crops grown in Michigan. Furthermore, the target pathogens of the study did not include <i>P. capsici</i> , probably the greatest threat to Michigan cucurbits.Flooding/Water managementFlooding is not technically feasible as an alternative because it does not have any suppressive effect on <i>P. capsici</i> (Allen et al., 1999), and is likely to be impractical for Michigan cucurbit growers. It is unclear whether irrigation methods in this region could be adapted to incorporate flooding or alter water management for cucurbit fields. In any case, there appears to be no supporting evidence for its use against the hardy oospores of <i>P. capsici</i> .Grafting/resistant rootstock/plant breeding/soilless culture/organic production/substr ates/plug plants.Due to the paucity of scientific information on the utility of these alternatives as methyl bromide alternatives for control of <i>Phytophthora</i> and <i>Fusarium</i> fungi. Soilless culture/organic production/substr ates/plug plants.Grafting/resistant rootstock/plant breeding/soilless culture/organic 		fungi, particularly to <i>P. capsici</i> . Fallow land can still harbor <i>P. capsici</i> oospores (Lamour and Hausbeck, 2003). Thus fungi would persist and attack cucurbits if crop
Flooding/Water managementsuppressive effect on <i>P. capsici</i> (Allen et al., 1999), and is likely to be impractical for Michigan cucurbit growers. It is unclear whether irrigation methods in this region could be adapted to incorporate flooding or alter water management for cucurbit fields. In any case, there appears to be no supporting evidence for its use against the hardy oospores of <i>P. capsici</i> .Grafting/resistant rootstock/plant breeding/soilless culture/organic production/substr ates/plug plants.Due to the paucity of scientific information on the utility of these alternatives as methyl bromide replacements in cucurbits, they have been grouped together for discussion in this document. There are no studies documenting the commercial feasibility of resistant rootstock/plant breeding/soilless culture/organic production/substr ates/plug plants.Due to the paucity of scientific information on the utility of these alternatives as methyl bromide alternatives for control of <i>Phytophthora</i> and <i>Fusarium</i> fungi. Soilless culture, organic production, and substrates/plug plants are also not technically viable alternatives to methyl bromide for fungi in open field cucurbit production. One of the fungal pests listed by Michigan can spread through water (Gevens and Hausbeck, 2003), making it difficult to keep any sort of area (with or without soil) disease free. Various aspects of organic production – e.g., cover crops, fallow land, and steam sterilization – have already been addressed in this document and assessed to be technically infeasible methyl bromide alternatives.	Endophytes	within plants) apparently suppress some plant pathogens in cucumber (MBTOC, 1994), there is no such information for the other cucurbit crops grown in Michigan. Furthermore, the target pathogens of the study did not include <i>P. capsici</i> , probably the greatest threat to Michigan cucurbits.
Grafting/resistant rootstock/plant breeding/soilless culture/organic production/substr ates/plug plants. bromide replacements in cucurbits, they have been grouped together for discussion in this document. There are no studies documenting the commercial feasibility of resistant rootstock immune to the species and races of fungal pathogens listed as major US cucurbit pests. Grafting and plant breeding are thus also rendered technically infeasible as methyl bromide alternatives for control of <i>Phytophthora</i> and <i>Fusarium</i> fungi. Soilless culture, organic production, and substrates/plug plants are also not technically viable alternatives to methyl bromide for fungi in open field cucurbit production. One of the fungal pests listed by Michigan can spread through water (Gevens and Hausbeck, 2003), making it difficult to keep any sort of area (with or without soil) disease free. Various aspects of organic production – e.g., cover crops, fallow land, and steam sterilization - have already been addressed in this document and assessed to be technically infeasible methyl bromide alternatives.	-	suppressive effect on <i>P. capsici</i> (Allen et al., 1999), and is likely to be impractical for Michigan cucurbit growers. It is unclear whether irrigation methods in this region could be adapted to incorporate flooding or alter water management for cucurbit fields. In any case, there appears to be no supporting evidence for its use against the hardy oospores of
COMBINATION OF ALTERNATIVES	rootstock/plant breeding/soilless culture/organic production/substr	Due to the paucity of scientific information on the utility of these alternatives as methyl bromide replacements in cucurbits, they have been grouped together for discussion in this document. There are no studies documenting the commercial feasibility of resistant rootstock immune to the species and races of fungal pathogens listed as major US cucurbit pests. Grafting and plant breeding are thus also rendered technically infeasible as methyl bromide alternatives for control of <i>Phytophthora</i> and <i>Fusarium</i> fungi. Soilless culture, organic production, and substrates/plug plants are also not technically viable alternatives to methyl bromide for fungi in open field cucurbit production. One of the fungal pests listed by Michigan can spread through water (Gevens and Hausbeck, 2003), making it difficult to keep any sort of area (with or without soil) disease free. Various aspects of organic production – e.g., cover crops, fallow land, and steam sterilization – have already been addressed in this document and assessed to be technically infeasible
		COMBINATION OF ALTERNATIVES

ItemTrials in tomato have shown inconsistent efficacy of this formulation against fungal pests, though it is generally better than metam-sodium alone (Locascio and Dickson, 1998; Csinos et al., 1999). Low efficacy in even small-plot trials indicates that this is not a technically feasible alternative for commercially produced cucurbits at this time. These studies apparently did not measure yield impacts, and did not involve cucurbits. Trials with metam-potassium + chloropicrin on small plots in Michigan showed yields of 4 cucurbit crops to be statistically similar to those obtained with methyl bromide (Hausbeck and Cortright, 2003). However, given the high variability of data in those trials, and the inconsistent results cited for tomato, it is not clear that this combination of alternatives will provide reliable pest management in the absence of MB. Gilreath et al (2005) also reported control of nutsedge with metam + pic, but it was not as consistent as control with methyl bromide.1,3 D + Metam- sodiumTrials in tomato have shown inconsistent efficacy of this formulation against fungal pests, though it is generally better than metam-sodium alone (Csinos et al., 1999). Low efficacy in even small-plot trials indicates that this is not a technically feasible alternative for commercially produced cucurbits in Michigan at this time. These studies apparently did not measure yield impacts, and did not involve cucurbits. The study in Michigan mentioned for other alternatives (Hausbeck and Cortright, 2003) did not address this combination.		
1,3 D + Metam- sodiumpests, though it is generally better than metam-sodium alone (Csinos et al., 1999). Low efficacy in even small-plot trials indicates that this is not a technically feasible alternative for commercially produced cucurbits in Michigan at this time. These studies apparently did not measure yield impacts, and did not involve cucurbits. The study in Michigan mentioned for other alternatives (Hausbeck and Cortright, 2003) did not address this combination.	Metam sodium + Chloropicrin (H tria alt (20	ests, though it is generally better than metam-sodium alone (Locascio and Dickson, 1998; Csinos et al., 1999). Low efficacy in even small-plot trials indicates that this is not technically feasible alternative for commercially produced cucurbits at this time. These addes apparently did not measure yield impacts, and did not involve cucurbits. Trials ith metam-potassium + chloropicrin on small plots in Michigan showed yields of 4 curbit crops to be statistically similar to those obtained with methyl bromide lausbeck and Cortright, 2003). However, given the high variability of data in those als, and the inconsistent results cited for tomato, it is not clear that this combination of ternatives will provide reliable pest management in the absence of MB. Gilreath et al 005) also reported control of nutsedge with metam + pic, but it was not as consistent
Regulatory reasons include local restrictions (e.g. occupational health and safety local environmental regulation	1,3 D + Metam- sodium pe eff alt ap Mi ad	ests, though it is generally better than metam-sodium alone (Csinos et al., 1999). Low ficacy in even small-plot trials indicates that this is not a technically feasible ternative for commercially produced cucurbits in Michigan at this time. These studies parently did not measure yield impacts, and did not involve cucurbits. The study in ichigan mentioned for other alternatives (Hausbeck and Cortright, 2003) did not dress this combination.

* Regulatory reasons include local restrictions (e.g. occupational health and safety, local environmental regulations) and lack of registration.

** Citations should be recorded by a number only, to indicate citations listed in Question 22.

14. LIST AND DISCUSS WHY REGISTERED PESTICIDES AND HERBICIDES ARE CONSIDERED NOT EFFECTIVE AS TECHNICAL ALTERNATIVES TO METHYL

BROMIDE (*Provide information on a minimum of two best alternatives and summary response data where available for other alternatives*):

Halosulfuron-methyl	Herbicide: causes potential crop injury; has plant back restrictions. Efficacy is lowered in rainy conditions (common during the period of initial planting of these crops). Also, a 24-month plant back restriction may cause significant economic disruption if growers must rely on this control option. Halosulfuron is only allowed for the row middles for cucurbits, due to its phytotoxicity. This would result in nutsedges surviving close to crop plants. Thus this herbicide is not technically feasible as a stand-alone replacement for MB, and its use in conjunction with other pest management methods has not yet been investigated.
Glyphosate	Herbicide: Is non-selective; like halosulfuron, it will not control nutsedge within the plant rows; does not provide residual control. Thus this herbicide is not technically feasible as a stand-alone replacement for MB, and its use in conjunction with other pest management methods has not yet been investigated.
Paraquat	Herbicide: Is non-selective; will not control nutsedge in the plant rows; does not provide residual control. Thus this herbicide is not technically feasible as a stand-alone replacement for MB, and its use in conjunction with other pest management methods has not yet been investigated.

 TABLE C 2.
 ALTERNATIVES DISCUSSION

15. STATE RELATIVE EFFECTIVENESS OF RELEVANT ALTERNATIVES COMPARED TO METHYL BROMIDE FOR THE SPECIFIC KEY TARGET PESTS AND WEEDS FOR WHICH IT IS BEING REQUESTED (Use the same regions as in

Section 10 and provide a separate table for each target pest or disease for which methyl bromide is considered critical. Provide information in relation to a minimum of the best two or three alternatives.):

Narrative description of studies relevant to key pathogens

A field trial was conducted in small plots in 2004 in Michigan by Hausbeck and Cortright (2004) of Michigan State University. This study examined a number of vegetable crops including the cucurbits zucchini, acorn squash, and melons. Results, submitted with their 2004 CUE request, indicated that 1,3 D + 35 % chloropicrin treatments (shank-injected at 56.7 liters/ha) showed an average of 44% yield loss compared to methyl bromide (due to both *Phytophthora* and *Fusarium* combined). Chloropicrin alone (shank-injected at 233.6 l/ha) showed an average 15.5% loss compared to methyl bromide. Metam-potassium showed yields similar to those seen with methyl bromide.

Metam-sodium was not tested, but can reasonably be assumed to be equivalent to metampotassium (since the active ingredient is identical). Methyl iodide (currently unregistered for cucurbits) with 33% chloropicrin (shank-injected, at 36.8 kg/ha, respectively), also showed yields similar to that of methyl bromide. It should be noted that even large differences in average yields across various treatments were often not statistically significant, suggesting that there was high variability in the data. Thus far, no new data have been generated to complement this work, though further research is planned (see Section 17 below).

In studies with other vegetable crops, 1, 3 D + chloropicrin has generally shown better control of fungi than metam-sodium formulations (though still not as good as control with methyl bromide). For example, in a study using a bell pepper/squash rotation in small plots, Webster et al. (2001) found significantly lower fungal populations with 1,3 D + 35 % chloropicrin (drip applied, 146 kg/ha of 1,3 D), as compared to the untreated control. However, methyl bromide (440 kg/ha, shank-injected) reduced fungal populations even more. It should be noted that *P. capsici* was not present in test plots, though *Fusarium* spp. were. Methyl iodide had no significant suppressive effect, as compared to the untreated control. However, neither of these methyl bromide alternatives increased squash fruit weight significantly over the untreated control. Indeed, as compared to the methyl bromide standard treatment plots, squash fruit weight was 63 % lower in the 1,3 D plots, and 41 % lower in the methyl iodide plots. The proportion of unmarketable squash fruit (defined only as those fruit so bad as to have to be discarded) in the 1,3 D plots was 30 % worse than that in the methyl bromide plots, though in the methyl iodide plots it was equivalent to methyl bromide .

In another study conducted on tomatoes, Gilreath et al. (1994) found that metam-sodium treatments did not match methyl bromide in terms of plant vigor at the end of the season; again, *Fusarium* (but not *P. capsici*) was one of several pests present.

Taken together, these studies indicate that, while the recent trials in Michigan are promising for the use of metam-sodium/potassium + chloropicrin, there is still great inconsistency in efficacy and protection from yield losses. Further, no large scale field trials have yet been performed to demonstrate reliable, consistent pest control similar to that of methyl bromide in the cucurbit growing regions of Michigan. Given the highly variable results with this methyl bromide alternative, EPA decided that the best case yield loss scenario would be a level similar to what was assessed in the 2005 CUN.

B: KEY WEEDS

Chemicals	Rate (kg/ha)	Average Nutsedge Density (#/m ²)	Average Marketable Yield (ton/ha)	% Yield Loss (compared to MB)
Untreated (control)	-	300 ^{ab}	20.1 ^a	59.1
methyl bromide + Pic (67-33), chisel-injected	390 kg	90 °	49.1 ^b	
1,3 D + Pic (83-17), chisel-injected	327 1	340 ^a	34.6 °	29.5
Metam Na, Flat Fumigation	300 1	320 ^a	22.6 ^a	54.0
Metam Na, drip irrigated	300 1	220 ^b	32.3 ^c	34.2

TABLE C 3. DATA ON WEED CONTROL

Locascio et al 1997.

Narrative description of studies relevant to key weeds

For nutsedge pests, which are widespread in all requesting regions except Michigan, cucurbit growers do not currently have technically feasible alternatives to methyl bromide use at planting. Metam-sodium and 1,3 D + chloropicrin have shown some efficacy in small-plot trials in other vegetable crops (e.g, tomato). However, at best, metam sodium may allow at least 44 % yield loss, while 1,3 D may allow at least 29 % loss. Both often show less control than methyl bromide (in terms of population suppression) of nutsedges. These factors suggest that even this alternative will not be economically feasible even in the best-case technical scenario. It should be noted that there is evidence that both 1,3 D and methyl isothiocyanate levels decline more rapidly, thus further compromising efficacy, in areas where these are repeatedly applied (Smelt et al., 1989; Ou et al., 1995; Gamliel et al., 2003). This is due to enhanced degradation of these chemicals by soil microbes (Dungan and Yates, 2003).

Other chemical alternatives to methyl bromide that have shown promise against nutsedges (e.g., pebulate) are currently unregistered for cucurbits, and are often not being developed for registration by any commercial entity.

In one recent study, Culpepper and Langston (2004) conducted studies at 2 sites in spring 2003 and one site in Fall, 2004. Plot sizes were 20 feet X 32 inches (4.94 m^2). Treatments were: Methyl bromide standard (67:33 formulation), untreated control, 2 formulations of Telone (1,3 D + chloropicrin) at various doses, followed by an additional application of either chloropicrin or metam-sodium, a third formulation of 1,3 D + chloropicrin ("Inline"), and methyl iodide. An

additional set of plots received the same fumigant treatments but also received an herbicide treatment (clomazone + halosulfuron) later in the season.

Watermelon – the only cucurbit crop addressed in these experiments – showed no significant (final) yield differences across any fumigant treatment. The same lack of difference was observed when herbicides were added. In fact, there was no difference in yield even when pesticide treatments were compared to the untreated control. However, nutsedge populations in the study appeared to be relatively low (e.g., 667 plants per plot or $135/m^2$, in the untreated control, at the end of the study).

Furthermore, a number of important caveats must be mentioned when considering these results:

- (1) Plots used were quite small, and it is not at all clear if the promising results will hold reliably in larger commercial fields. This is particularly worrisome given the highly variable results reported by other researchers for the same methyl bromide alternatives.
- (2) The nutsedge populations in this study were dominated by yellow nutsedge (90 % of the total number). It is not clear if populations where purple nutsedge is dominant will be controlled as effectively. A number of other studies have indicated that purple nutsedge is a hardier species, and even in Culpepper and Langston's study, it appeared more resistant to the methyl bromide alternatives. For example, methyl iodide gave "77 % control" of yellow nutsedge, but only "37 % control" of purple nutsedge. Control in this case was apparently defined as the reduction in nutsedge populations as compared to populations in the untreated control.
- (3) This study was done only with watermelons, and it is not clear if other cucurbits will respond so favorably in terms of yield, or lack of phytotoxic response. Also, a custombuilt applicator had to be used for the metam-sodium applications to eliminate worker exposure risks, according to the authors. It is not yet clear if such an applicator can be mass-produced and/or used reliably in a commercial setting.

Another recent study of methyl bromide alternatives involving key weed pests was done by Gilreath et al. 2005 also (Crop Prot (24): 903-908. One of 3 trials in that study showed an average of 30 % lower bell pepper yields with nutsedge and nematodes as the key pests present. In the other 2 trials yields were not significantly different across different fumigant treatments, but nutsedge pressure was lower in those trials as compared to the third. Important caveats to these results are - this was a small-plot study and was done in Florida. Thus it is not clear how applicable the results are to the more northern regions requesting methyl bromide for vegetable crops (e.g., Delaware, Maryland, and Virginia).

16. ARE THERE ANY OTHER POTENTIAL ALTERNATIVES UNDER DEVELOPMENT THAT THE PARTY IS AWARE OF WHICH ARE BEING CONSIDERED TO REPLACE METHYL BROMIDE? (*If so, please specify*):

There are a number of possibilities, including both chemical and non-chemical alternatives, which are being investigated for use as possible methyl bromide replacements. These range from iodomethane, which has some potential to become a drop-in replacement for methyl bromide in pre-plant uses, to radio waves which may one day be used to sterilize the soil.

Until a chemical is registered, and only after efficacy against key pests is demonstrated in repeated trials at commercial scales, does the USG consider that a chemical or technology is a bona fide replacement for methyl bromide.

Methyl iodide: Only has an 'experimental use permit' that allows field trials on about 2,000 acres (combined) of several crops (none of which are cucurbits). Under development for future registration submission

Propargyl bromide: Under proprietary development for future registration submission.

Sodium azide: Under proprietary development for future registration submission.

Furfural: registered for greenhouse ornamentals only. Under proprietary development for other registration submission.

DMDS (dimethyl disulfide): Under proprietary development for future registration submission.

Muscador albus Strain QST 20779. Registered but no commercially available formulation.

17. (i) ARE THERE TECHNOLOGIES BEING USED TO PRODUCE THE CROP

WITHOUT METHYL BROMIDE? (e.g. soilless systems, plug plants, containerised plants. State proportion of crop already grown in such systems nationally and if any constraints exist to adoption of these systems to replace methyl bromide use. State whether such technologies could replace a proportion of proposed methyl bromide use):

No. Areas where methyl bromide is not used in this region do not face moderate to severe populations of the key pests. Areas that do not have moderate to severe pest pressure and do not face regulatory constraints can use other fumigants (e.g. 1,3-dichloropropene, chloropicrin, metam sodium or combinations of the three).

(ii) IF SOILLESS SYSTEMS ARE CONSIDERED FEASIBLE, STATE PROPORTION OF CROP BEING PRODUCED IN SOILLESS SYSTEMS WITHIN REGION APPLYING FOR THE NOMINATION AND NATIONALLY:

Soilless systems are not currently technically or economically feasible for open field US cucurbit production.

(iii) WHY ARE SOILESS SYSTEMS NOT A SUITABLE ALTERNATIVE TO PRODUCE THE CROP IN THE NOMINATION?

No studies have been done to demonstrate technical and economic feasibility of such systems in open field cucurbit crops in the US. None appear to be planned by US researchers for the near future.

Progress in registration of a product will often be beyond the control of an individual exemption holder as the registration process may be undertaken by the manufacturer or supplier of the product. The speed with which registration applications are processed also can falls outside the

exemption holder's control, resting with the nominating Party. Consequently, this section requests the nominating Party to report on any efforts it has taken to assist the registration process, but noting that the scope for expediting registration will vary from Party to Party.

(Renomination Form 11.) PROGRESS IN REGISTRATION

Where the original nomination identified that an alternative's registration was pending, but it was anticipated that one would be subsequently registered, provide information on progress with its registration. Where applicable, include any efforts by the Party to "fast track" or otherwise assist the registration of the alternative.

USG endeavors to identify methyl bromide alternatives in order to move them forward in the registration queue. However USG has no legal authority to compel registrations; it can only act on registrations requested by private entities. The timely submission of data to support a registration decision is at the sole discretion of the registrant.

(Renomination Form 12.) DELAYS IN REGISTRATION

Where significant delays or obstacles have been encountered to the anticipated registration of an alternative, the exemption holder should identify the scope for any new/alternative efforts that could be undertaken to maintain the momentum of transition efforts, and identify a time frame for undertaking such efforts.

USG has no legal authority to compel registrations; it can only act on registrations requested by private entities. The timely submission of data to support a registration decision is at the sole discretion of the registrant. Please see table above for additional detail.

(Renomination Form 13.) DEREGISTRATION OF ALTERNATIVES

Describe new regulatory constraints that limit the availability of alternatives. For example, changes in buffer zones, new township caps, new safety requirements (affecting costs and feasibility), and new environmental restrictions such as to protect ground water or other natural resources. Where a potential alternative identified in the original nomination's transition plan has subsequently been deregistered, the nominating Party would report the deregistration, including reasons for it. The nominating Party would also report on the deregistration's impact (if any) on the exemption holder's transition plan and on the proposed new or alternative efforts that will be undertaken by the exemption holder to maintain the momentum of transition efforts.

Six fumigants are undergoing a review of risks and benefits at present. A likely outcome of this review will be the imposition of additional restriction on the use of some or all of these chemicals. This process will not lead to proposed restrictions until 2008, at which point the process to modify labels will start. This process can take several years to complete. It is not possible to forecast the outcome of the soil fumigant analysis at this time.

An additional complication in forecasting changes in the registration of alternatives is that under the US federal system individual states may impose restrictions above those imposed at the Federal level. Examples of these additional restrictions include the township caps on Telone® in California and the "SLN" (Special Local Needs) restrictions on the same chemical in 31 Florida counties. In addition, the California Department of Pesticide Regulation (DPR) may impose use restrictions and water seal requirements on all soil fumigants to reduce their contributions to volatile organic compounds as part of the efforts to meet the Federal Clean Air Standards for ground level ozone. DPR plans to finalize regulations in the next 2-3 months to meet a deadline imposed by a lawsuit concerning compliance with the 1994 pesticide component of the State Implementation Plan (SIP) on ozone. They are also in the process of devising what measures will be included in the next SIP (for June, 2007) to meet the new lower ozone standards.

Part D: EMISSION CONTROL Renomination Form Part E: IMPLEMENTATION OF MBTOC/TEAP RECOMMENDATIONS

18. TECHNIQUES THAT HAVE AND WILL BE USED TO MINIMISE METHYL BROMIDE USE AND EMISSIONS IN THE PARTICULAR USE (*State % adoption or describe change*):

TECHNIQUE OR STEP TAKEN	LOW PERMEABILITY BARRIER FILMS	METHYL BROMIDE DOSAGE REDUCTION	INCREASED % CHLOROPICRIN IN METHYL BROMIDE FORMULATION	DEEP INJECTION	LESS FREQUENT APPLICATION
WHAT USE/EMISSION REDUCTION METHODS ARE PRESENTLY ADOPTED?	Currently some growers use HDPE tarps.	Growers have switched from a 98% methyl bromide formulation to a 67 % formulation. Between 1997 and 2001, the U.S. has achieved a 36 % reduction in use rates.	From 2 % to 33 %	Not feasible because fumigant would not be located in the area of heavy pest pressure.	No
WHAT FURTHER USE/EMISSION REDUCTION STEPS WILL BE TAKEN FOR THE METHYL BROMIDE USED FOR CRITICAL USES?	Research is underway to develop use in commercial production systems	Research is underway to develop use of a 50 % methyl bromide formulation in Michigan commercial production systems. Not known if other regions are planning similar work.	Research is underway to develop use of a 50 % methyl bromide formulation in Michigan commercial production systems. Not known if other regions are planning similar work.	See above.	The U.S. anticipates that the decreasing supply of methyl bromide will motivate growers to try less frequent applications.
OTHER MEASURES (PLEASE DESCRIBE)	Examination of promising but presently unregistered alternative fumigants and herbicides, alone or in combination with non-chemical methods, is planned in all regions. Measures adopted in Michigan will likely be used in the other regions when fungi are the only key pests involved				

TABLE D 1. TECHNIQUES TO MINIMIZE USE AND EMISSIONS.

19. IF METHYL BROMIDE EMISSION REDUCTION TECHNIQUES ARE NOT BEING USED, OR ARE NOT PLANNED FOR THE CIRCUMSTANCES OF THE NOMINATION, STATE REASONS:

Techniques to minimize emission include the use of low-permeability films, the application of water seals, and the "top dressing" application of fertilizer.

The application of water seals is dependent on the availability of adequate supplies of water and a lack of restrictions on water use as well as irrigation systems that will allow the application of sufficient quantities of water to effect the seal. **Therefore, these methods have been deemed currently infeasible for use in the acreage requesting methyl bromide in this nomination.**

The Methyl Bromide Technical Options Committee and the Technology and Economic Assessment Panel may recommend that a Party explore and, where appropriate, implement alternative systems for deployment of alternatives or reduction of methyl bromide emissions.

Where the exemptions granted by a previous Meeting of the Parties included conditions (for example, where the Parties approved a reduced quantity for a nomination), the exemption holder should report on progress in exploring or implementing recommendations.

Information on any trialling or other exploration of particular alternatives identified in TEAP recommendations should be addressed in Part C.

(Renomination Form 14.) USE/EMISSION MINIMISATION MEASURES

Where a condition requested the testing of an alternative or adoption of an emission or use minimisation measure, information is needed on the status of efforts to implement the recommendation. Information should also be provided on any resultant decrease in the exemption quantity arising if the recommendations have been successfully implemented. Information is required on what actions are being, or will be, undertaken to address any delays or obstacles that have prevented implementation.

In accordance with the criteria of the critical use exemption, each party is required to describe ways in which it strives to minimize use and emissions of methyl bromide. The use of methyl bromide in the United States is minimized in several ways. First, because of its toxicity, methyl bromide has, for the last 40 years, been regulated as a restricted use pesticide in the United States. As a consequence, methyl bromide can only be used by certified applicators who are trained at handling these hazardous pesticides. In practice, this means that methyl bromide is applied by a limited number of very experienced applicators with the knowledge and expertise to minimize dosage to the lowest level possible to achieve the needed results. In keeping with both local requirements to avoid "drift" of methyl bromide into inhabited areas, as well as to preserve methyl bromide and keep related emissions to the lowest level possible, methyl bromide application for cucurbits is most often machine injected into soil to specific depths.

As methyl bromide has become more scarce, users in the United States have, where possible, experimented with different mixes of methyl bromide and chloropicrin. Specifically, in the early 1990s, methyl bromide was typically sold and used in methyl bromide mixtures made up of 98% methyl bromide and 2% chloropicrin, with the chloropicrin being included solely to give the chemical a smell enabling those in the area to be alerted if there was a risk. However, with the outset of very significant controls on methyl bromide, users have been experimenting with significant increases in the level of chloropicrin and reductions in the level of methyl bromide.

While these new mixtures have generally been effective at controlling target pests, at low to moderate levels of infestation, it must be stressed that the long term efficacy of these mixtures is unknown.

Tarpaulin (high density polyethylene) is also used to minimize use and emissions of methyl bromide. In addition, cultural practices are utilized by cucurbit growers.

Reduced methyl bromide concentrations in mixtures, cultural practices, and the extensive use of tarpaulins to cover land treated with methyl bromide has resulted in reduced emissions and an application rate that we believe is among the lowest in the world for the uses described in this nomination.

USDA has several grant programs that support research into overcoming obstacles that have prevented the implementation of methyl bromide alternatives. In addition, USEPA and USDA jointly fund an annual meeting on methyl bromide alternatives. At this year's meeting (held in November in Orlando, Florida) sessions were to assess and prioritize research needs and to develop a use/emission minimization agenda for methyl bromide alternatives research.

Additional specific measures are provided above in Item 18.

20. (Renomination Form 15.) ECONOMIC INFEASIBILITY OF ALTERNATIVES –

METHODOLOGY (*MBTOC* will assess economic infeasibility based on the methodology submitted by the nominating Party. Partial budget analysis showing per hectare gross and net returns for methyl bromide and the next best alternatives is a widely accepted approach. Analysis should be supported by discussions identifying what costs and revenues change and why. The following measures may be useful descriptors of the economic outcome using methyl bromide or alternatives. Parties may identify additional measures. Regardless of the measures used by the methodology, it is important to state why the Party has concluded that a particular level of the measure demonstrates a lack of economic feasibility):

The following measures or indicators may be used as a guide for providing such a description:

- (a) The purchase cost per kilogram of methyl bromide and of the alternative;
- (b) Gross and net revenue with and without methyl bromide, and with the next best alternative;
- (c) Percentage change in gross revenues if alternatives are used;
- (d) Absolute losses per hectare relative to methyl bromide if alternatives are used;
- (e) Losses per kilogram of methyl bromide requested if alternatives are used;
- (f) Losses as a percentage of net cash revenue if alternatives are used;
- (g) Percentage change in profit margin if alternatives are used.

Economic data for the 2006 methyl bromide critical use renomination were taken from applications for methyl bromide critical use and were updated from previous nominations when newer information was available in the 2006 application. The following economic assessment is organized by methyl bromide critical use application. Expected impacts when using methyl bromide alternatives are given in tables E1 through E16 by geographic location.

Readers please note: In this assessment net revenue is calculated as gross revenue minus operating costs. This is a good measure as to the direct losses of income that may be suffered by the users. It should be noted that net revenue does not represent net income to the users. Net income, which indicates profitability of an operation of an enterprise, is gross revenue minus the sum of operating and fixed costs. Net income should be smaller than the net revenue measured in this study. We did not include fixed costs because it is often difficult to measure and verify.

MICHIGAN CUCUMBER	METHYL BROMIDE	1,3-D + CHLOROPICRIN
YIELD LOSS (%)	0%	6%
YIELD PER HECTARE	1,960	1,842
* PRICE PER UNIT (US\$)	\$12	\$11
= GROSS REVENUE PER HECTARE (US\$)	\$23,358	\$20,858
- OPERATING COSTS PER HECTARE (US\$)	\$20,171	\$19,505
= NET REVENUE PER HECTARE (US\$)	\$3,187	\$1,354
FIVE	LOSS MEASURES *	
1. LOSS PER HECTARE (US\$)	\$0	\$1,833
2. LOSS PER KILOGRAM OF METHYL BROMIDE (US\$)	\$0	\$15
3. LOSS AS A PERCENTAGE OF GROSS REVENUE (%)	0%	8%
4. LOSS AS A PERCENTAGE OF NET REVENUE (%)	0%	58%
5. OPERATING PROFIT MARGIN (%)	14%	6%

TABLE E 1. MICHIGAN CUCUMBER: ECONOMIC IMPACTS OF METHYL BROMIDE ALTERNATIVES

TABLE E 2. MICHIGAN MELON -: ECONOMIC IMPACTS OF METHYL BROMIDE ALTERNATIVES

MICHIGAN MELON	METHYL BROMIDE	1,3-D + CHLOROPICRIN
YIELD LOSS (%)	0%	6%
YIELD PER HECTARE	1,236	1,161
* PRICE PER UNIT (US\$)	\$12	\$11
= GROSS REVENUE PER HECTARE (US\$)	\$14,209	\$12,688
- OPERATING COSTS PER HECTARE (US\$)	\$11,797	\$11,885
= NET REVENUE PER HECTARE (US\$)	\$2,412	\$803
FIVE L	OSS MEASURES *	
1. Loss per Hectare (us\$)	\$0	\$1,609
2. LOSS PER KILOGRAM OF METHYL BROMIDE (US\$)	\$0	\$13
3. LOSS AS A PERCENTAGE OF GROSS REVENUE (%)	0%	11%
4. LOSS AS A PERCENTAGE OF NET REVENUE (%)	0%	67%
5. OPERATING PROFIT MARGIN (%)	17%	6%

MICHIGAN HARD SQUASH	METHYL BROMIDE	1,3-D + CHLOROPICRIN
YIELD LOSS (%)	0%	6%
YIELD PER HECTARE	1,174	1,103
* PRICE PER UNIT (US\$)	\$12	\$11
= GROSS REVENUE PER HECTARE (US\$)	\$13,909	\$12,421
- OPERATING COSTS PER HECTARE (US\$)	\$14,697	\$14,478
= NET REVENUE PER HECTARE (US\$)	\$(788)	\$(2,057)
Five Lo	SS MEASURES *	<u> </u>
1. Loss per Hectare (us\$)	\$0	\$1,270
2. LOSS PER KILOGRAM OF METHYL BROMIDE (US\$)	\$0	\$11
3. LOSS AS A PERCENTAGE OF GROSS REVENUE (%)	0%	9%
4. LOSS AS A PERCENTAGE OF NET REVENUE (%)	0%	-161%
5. OPERATING PROFIT MARGIN (%)	-6%	-17%

 E 3. Michigan Hard Squash-: Economic Impacts of Methyl Bromide Alternatives

 TABLE E 4. MICHIGAN ZUCCHINI -: ECONOMIC IMPACTS OF METHYL BROMIDE ALTERNATIVES

MICHIGAN ZUCCHINI	METHYL BROMIDE	1,3-D + CHLOROPICRIN
YIELD LOSS (%)	0%	6%
YIELD PER HECTARE	2,718	2,555
* PRICE PER UNIT (US\$)	\$6	\$5
= GROSS REVENUE PER HECTARE (US\$)	\$14,950	\$13,350
- OPERATING COSTS PER HECTARE (US\$)	\$22,146	\$21,352
= NET REVENUE PER HECTARE (US\$)	\$(7,196)	\$(8,002)
FIVE LOS	S MEASURES *	<u> </u>
1. Loss per Hectare (us\$)	\$0	\$806
2. LOSS PER KILOGRAM OF METHYL BROMIDE (US\$)	\$0	\$7
3. LOSS AS A PERCENTAGE OF GROSS REVENUE (%)	0%	5%
4. LOSS AS A PERCENTAGE OF NET REVENUE (%)	0%	-11%
5. OPERATING PROFIT MARGIN (%)	-48%	-60%

 TABLE E 5. ALL MICHIGAN CUCURBITS -: ECONOMIC IMPACTS OF METHYL BROMIDE

 ALTERNATIVES

ALL MICHIGAN CUCURBITS	METHYL BROMIDE	1,3-D + CHLOROPICRIN			
YIELD LOSS (%)	0%	6%			
YIELD PER HECTARE	1,772	1,665			
* PRICE PER UNIT (US\$)	\$10	\$10			
= GROSS REVENUE PER HECTARE (US\$)	\$18,059	\$16,126			
- OPERATING COSTS PER HECTARE (US\$)	\$17,205	\$16,654			
= NET REVENUE PER HECTARE (US\$)	\$854	\$(528)			
FIVE LOSS MEASURES *					
1. Loss per Hectare (us\$)	\$0	\$1,382			
2. LOSS PER KILOGRAM OF METHYL BROMIDE (US\$)	\$0	\$12			
3. LOSS AS A PERCENTAGE OF GROSS REVENUE (%)	0%	8%			
4. LOSS AS A PERCENTAGE OF NET REVENUE (%)	0%	162%			
5. OPERATING PROFIT MARGIN (%)	5%	-3%			

 TABLE E 6.
 SOUTHEASTERN USA (EXCEPT GEORGIA) CUCUMBER -: ECONOMIC IMPACTS OF

 METHYL BROMIDE ALTERNATIVES

SOUTHEAST USA (EXCEPT GEORGIA) CUCUMBER	METHYL Bromide	1,3-D + Chloropicrin	Metam- sodium	
YIELD LOSS (%)	0%	29%	44%	
YIELD PER HECTARE	828	588	464	
* PRICE PER UNIT (US\$)	\$15	\$15	\$15	
= GROSS REVENUE PER HECTARE (US\$)	\$12,417	\$8,816	\$6,954	
- OPERATING COSTS PER HECTARE (US\$)	\$10,193	\$9,876	\$9,404	
= NET REVENUE PER HECTARE (US\$)	\$2,224	\$(1,060)	\$(2,451)	
FIVE LOSS MEASURES *				
1. Loss per Hectare (us\$)	\$0	\$3,284	\$4,675	
2. LOSS PER KILOGRAM OF METHYL BROMIDE (US\$)	\$0	\$22	\$31	
3. Loss as a Percentage of Gross Revenue (%)	0%	26%	38%	
4. LOSS AS A PERCENTAGE OF NET REVENUE (%)	0%	148%	210%	
5. OPERATING PROFIT MARGIN (%)	18%	-12%	-35%	

 TABLE E 7. SOUTHEASTERN USA (EXCEPT GEORGIA) MELONS - ECONOMIC IMPACTS OF METHYL

 BROMIDE ALTERNATIVES

SOUTHEAST USA (EXCEPT GEORGIA) MELON	METHYL Bromide	1,3-D + Chloropicrin	METAM- SODIUM	
YIELD LOSS (%)	0%	29%	44%	
YIELD PER HECTARE	815	579	457	
* PRICE PER UNIT (US\$)	\$14	\$14	\$14	
= GROSS REVENUE PER HECTARE (US\$)	\$11,416	\$8,106	\$6,393	
- OPERATING COSTS PER HECTARE (US\$)	\$9,316	\$9,199	\$8,918	
= NET REVENUE PER HECTARE (US\$)	\$2,100	\$(1,094)	\$(2,525)	
FIVE LOSS MEASURES *				
1. Loss per Hectare (us\$)	\$0	\$3,194	\$4,625	
2. LOSS PER KILOGRAM OF METHYL BROMIDE (US\$)	\$0	\$21	\$31	
3. LOSS AS A PERCENTAGE OF GROSS REVENUE (%)	0%	28%	41%	
4. LOSS AS A PERCENTAGE OF NET REVENUE (%)	0%	152%	220%	
5. OPERATING PROFIT MARGIN (%)	18%	-13%	-39%	

 TABLE E 8.
 SOUTHEASTERN USA (EXCEPT GEORGIA) SQUASH -: ECONOMIC IMPACTS OF METHYL

 BROMIDE ALTERNATIVES

SOUTHEAST USA (EXCEPT GEORGIA) SQUASH	METHYL Bromide	1,3-D + Chloropicrin	METAM- SODIUM	
YIELD LOSS (%)	0%	29%	44%	
YIELD PER HECTARE	311	221	174	
* PRICE PER UNIT (US\$)	\$26	\$26	\$26	
= GROSS REVENUE PER HECTARE (US\$)	\$8,095	\$5,748	\$4,533	
- OPERATING COSTS PER HECTARE (US\$)	\$5,923	\$6,240	\$6,094	
= NET REVENUE PER HECTARE (US\$)	\$2,173	\$(492)	\$(1,561)	
FIVE LOSS MEASURES *				
1. Loss per Hectare (us\$)	\$0	\$2,665	\$3,734	
2. LOSS PER KILOGRAM OF METHYL BROMIDE (US\$)	\$0	\$18	\$25	
3. LOSS AS A PERCENTAGE OF GROSS REVENUE (%)	0%	33%	46%	
4. LOSS AS A PERCENTAGE OF NET REVENUE (%)	0%	123%	172%	
5. OPERATING PROFIT MARGIN (%)	27%	-9%	-34%	

 TABLE E 9. ALL SOUTHEASTERN US (EXCEPT GEORGIA) CUCURBITS - ECONOMIC IMPACTS OF

 METHYL BROMIDE ALTERNATIVES

ALL SOUTHEAST US (EXCEPT GEORGIA) CUCURBITS	Methyl Bromide	1,3-D + Chloropicrin	Metam- sodium				
YIELD LOSS (%)	0%	29%	44%				
YIELD PER HECTARE	749	532	420				
* PRICE PER UNIT (US\$)	\$15	\$15	\$15				
= GROSS REVENUE PER HECTARE (US\$)	\$11,229	\$7,972	\$6,288				
- OPERATING COSTS PER HECTARE (US\$)	\$9,085	\$8,052	\$7,313				
= NET REVENUE PER HECTARE (US\$)	\$2,144	\$(79)	\$(1,025)				
FIVE LOSS MEASURES *							
1. Loss per Hectare (us\$)	\$0	\$2,223	\$3,168				
2. LOSS PER KILOGRAM OF METHYL BROMIDE (US\$)	\$0	\$15	\$21				
3. LOSS AS A PERCENTAGE OF GROSS REVENUE (%)	0%	20%	28%				
4. LOSS AS A PERCENTAGE OF NET REVENUE (%)	0%	104%	148%				
5. OPERATING PROFIT MARGIN (%)	19%	-1%	-16%				

TABLE E 10. GEORGIA CUCUMBER - ECONOMIC IMPACTS OF METHYL BROMIDE ALTERNATIVES

GEORGIA CUCUMBER	Methyl Bromide	1,3-D + Chloropicrin	Metam- sodium	
YIELD LOSS (%)	0%	29%	44%	
YIELD PER HECTARE	5,889	4,181	3,298	
* PRICE PER UNIT (US\$)	\$9	\$9	\$9	
= GROSS REVENUE PER HECTARE (US\$)	\$52,084	\$36,980	\$29,167	
- OPERATING COSTS PER HECTARE (US\$)	\$46,200	\$38,463	\$34,403	
= NET REVENUE PER HECTARE (US\$)	\$5,884	\$(1,483)	\$(5,236)	
Five I	Loss Measures *	a k		
1. Loss per Hectare (us\$)	\$0	\$7,367	\$11,120	
2. LOSS PER KILOGRAM OF METHYL BROMIDE (US\$)	\$0	\$49	\$74	
3. LOSS AS A PERCENTAGE OF GROSS REVENUE (%)	0%	14%	21%	
4. LOSS AS A PERCENTAGE OF NET REVENUE (%)	0%	125%	189%	
5. OPERATING PROFIT MARGIN (%)	11%	-4%	-18%	

GEORGIA MELON	METHYL Bromide	1,3-D + Chloropicrin	METAM- SODIUM 44%	
YIELD LOSS (%)	0%	29%		
YIELD PER HECTARE	3,576	2,539	2,002	
* PRICE PER UNIT (US\$)	\$11	\$11	\$11	
= GROSS REVENUE PER HECTARE (US\$)	\$38,386	\$27,254	\$21,496	
- OPERATING COSTS PER HECTARE (US\$)	\$34,256	\$29,788	\$27,163	
= NET REVENUE PER HECTARE (US\$)	\$4,130	\$(2,534)	\$(5,667)	
Five Lo	SS MEASURES *	k		
1. LOSS PER HECTARE (US\$)	\$0	\$6,664	\$9,797	
2. LOSS PER KILOGRAM OF METHYL BROMIDE (US\$)	\$0	\$44	\$65	
3. LOSS AS A PERCENTAGE OF GROSS REVENUE (%)	0%	17%	26%	
4. LOSS AS A PERCENTAGE OF NET REVENUE (%)	0%	161%	237%	
5. OPERATING PROFIT MARGIN (%)	11%	-9%	-26%	

 TABLE E 11. GEORGIA MELON
 ECONOMIC IMPACTS OF METHYL BROMIDE ALTERNATIVES

TABLE E 12. GEORGIA SQUASH - ECONOMIC IMPACTS OF METHYL BROMIDE ALTERNATIVES

GEORGIA SQUASH	METHYL Bromide	1,3-D + Chloropicrin	Metam- sodium		
YIELD LOSS (%)	0%	29%	44%		
YIELD PER HECTARE	5,189	3,684	2,906		
* PRICE PER UNIT (US\$)	\$7	\$7	\$7		
= GROSS REVENUE PER HECTARE (US\$)	\$36,695	\$26,054	\$20,549		
- OPERATING COSTS PER HECTARE (US\$)	\$32,167	\$27,688	\$25,262		
= NET REVENUE PER HECTARE (US\$)	\$4,528	\$(1,634)	\$(4,713)		
Five Lo	SS MEASURES *				
1. Loss per Hectare (us\$)	\$0	\$6,162	\$9,241		
2. LOSS PER KILOGRAM OF METHYL BROMIDE (US\$)	\$0	\$41	\$62		
3. LOSS AS A PERCENTAGE OF GROSS REVENUE (%)	0%	17%	25%		
4. LOSS AS A PERCENTAGE OF NET REVENUE (%)	0%	136%	204%		
5. OPERATING PROFIT MARGIN (%)	12%	-6%	-23%		

 TABLE E 13. ALL GEORGIA CUCURBITS - ECONOMIC IMPACTS OF METHYL BROMIDE

 ALTERNATIVES

ALL GEORGIA CUCURBITS	METHYL Bromide	1,3-D + Chloropicrin	Metam- sodium	
YIELD LOSS (%)	0%	29%	44%	
YIELD PER HECTARE	4,328	3,073	2,424	
* PRICE PER UNIT (US\$)	\$9	\$9	\$9	
= GROSS REVENUE PER HECTARE (US\$)	\$40,268	\$28,590	\$22,550	
- OPERATING COSTS PER HECTARE (US\$)	\$35,756	\$30,744	\$27,927	
= NET REVENUE PER HECTARE (US\$)	\$4,511	\$(2,154)	\$(5,377)	
Five Lo	SS MEASURES *	:		
1. LOSS PER HECTARE (US\$)	\$0	\$6,666	\$9,889	
2. LOSS PER KILOGRAM OF METHYL BROMIDE (US\$)	\$0	\$44	\$66	
3. LOSS AS A PERCENTAGE OF GROSS REVENUE (%)	0%	17%	25%	
4. LOSS AS A PERCENTAGE OF NET REVENUE (%)	0%	148%	219%	
5. OPERATING PROFIT MARGIN (%)	11%	-8%	-24%	

 TABLE E 14. MARYLAND AND DELAWARE MELON - ECONOMIC IMPACTS OF METHYL BROMIDE

 ALTERNATIVES

MARYLAND AND DELAWARE MELON	METHYL BROMIDE	1,3-D + CHLOROPICRIN					
YIELD LOSS (%)	6%	6%					
YIELD PER HECTARE	865	813					
* PRICE PER UNIT (US\$)	\$9	\$8					
= GROSS REVENUE PER HECTARE (US\$)	\$7,351	\$6,565					
- OPERATING COSTS PER HECTARE (US\$)	\$6,981	\$6,981					
= NET REVENUE PER HECTARE (US\$)	\$371	\$(416)					
Five Loss Measures *							
1. Loss per Hectare (us\$)	\$0	\$787					
2. LOSS PER KILOGRAM OF METHYL BROMIDE (US\$)	\$0	\$10					
3. LOSS AS A PERCENTAGE OF GROSS REVENUE (%)	0%	11%					
4. LOSS AS A PERCENTAGE OF NET REVENUE (%)	0%	212%					
5. OPERATING PROFIT MARGIN (%)	5%	-6%					

SUMMARY OF ECONOMIC FEASIBILITY

There are currently few alternatives to methyl bromide for use in cucurbits. Furthermore, there are several factors that limit possible alternatives' usability and efficacy. These include pest complex, climate, and regulatory restrictions. The two most promising alternatives to methyl bromide in Georgia and the Southeastern USA for control of nut-sedge in cucurbits (1,3-D + chloropicrin and metam-sodium) are considered not technically feasible. This derives from regulatory restrictions and the magnitude of resulting expected yield losses. Economic data representing Georgia and Southeastern USA cucurbit growing conditions are thus included in the economic assessment as a supplement to the biological review to illustrate the impacts of using methyl bromide alternatives, not to gauge them with respect to economic feasibility. In Michigan, Maryland, and Delaware 1,3-D + chloropicrin is considered feasible from a technical perspective. Data describing economic growing conditions is presented below and describes the economic feasibility of using1,3-D + chloropicrin in the place of methyl bromide.

Michigan

The US concludes that, at present, no economically feasible alternatives to methyl bromide exist for use in Michigan cucurbit production. The US has arrived at this conclusion by examining the individual crops within the Michigan cucurbit sector and then examining the sector as a whole. Yield loss and missed market windows, which are discussed individually below, have proven most important in reaching this conclusion.

1. Yield Loss

Expected yield losses of 6% are anticipated throughout Michigan cucurbit production.

2. Missed Market Windows

USG agrees with Michigan's assertion that growers will likely receive significantly lower prices for their produce if they switch to 1,3-D + chloropicrin. This is due to changes in the harvest schedule caused by the above described soil temperature complications and extended plant back intervals when using 1,3-D + chloropicrin.

The analysis of this effect is based on the fact that prices farmers receive for their cucurbits vary widely over the course of the growing season. Driving these fluctuations are the forces of supply and demand. Early in the growing season, when relatively few cucurbits are harvested, the supply is at its lowest and the market price is at its highest. As harvested quantities increase, the price declines. In order to maximize their revenues, cucurbit growers manage their production systems with the goal of harvesting the largest possible quantity of cucurbits when the prices are at their highs. The ability to sell produce at these higher prices makes a significant contribution toward the profitability of cucurbit operations.

To describe economic conditions in Michigan, EPA used weekly and monthly cucurbit sales and production data from the U.S. Department of Agriculture for the previous three years to gauge the impact of early season price fluctuations on gross revenues. Though data availability was limiting, analysts assumed that if cucurbit growers adjust the timing of their production system, as required when using 1,3-D + Chloropicrin, gross revenues will decline by approximately 5%

over the course of the growing season, due solely to price effects. The season average price was reduced by 5% in the analysis of the alternatives to reflect this effect. Based on currently available information, the US believes this reduction in price serves as a reasonable indicator of the typical effect of planting delays resulting when methyl bromide alternatives are used in Michigan.

Maryland and Delaware

The US concludes that, at present, no economically feasible alternatives to methyl bromide exist for use in Maryland and Delaware melon production. As with Michigan, yield loss and missed market windows, which are discussed individually below, have proven most important in reaching this conclusion.

1. Yield Loss

Expected yield losses of 6% are anticipated throughout Maryland and Delaware melon production.

2. Missed Market Windows

USG agrees with Maryland and Delaware's assertion that growers will likely receive significantly lower prices for their produce if they switch to 1,3-D + chloropicrin. This is due to changes in the harvest schedule caused by the above described soil temperature complications and extended plant back intervals when using 1,3-D + chloropicrin.

The analysis of this effect is based on the fact that prices farmers receive for their cucurbits vary widely over the course of the growing season. Driving these fluctuations are the forces of supply and demand. Early in the growing season, when relatively few cucurbits are harvested, the supply is at its lowest and the market price is at its highest. As harvested quantities increase, the price declines. In order to maximize their revenues, cucurbit growers manage their production systems with the goal of harvesting the largest possible quantity of cucurbits when the prices are at their highs. The ability to sell produce at these higher prices makes a significant contribution toward the profitability of cucurbit operations.

To describe economic conditions in Maryland and Delaware melon production, EPA used weekly and monthly cucurbit sales and production data from the U.S. Department of Agriculture for the previous three years to gauge the impact of early season price fluctuations on gross revenues. Though data availability was limiting, analysts assumed that if cucurbit growers adjust the timing of their production system, as required when using 1,3-D + Chloropicrin, gross revenues will decline by approximately 5% over the course of the growing season, due solely to price effects. The season average price was reduced by 5% in the analysis of the alternatives to reflect this effect. Based on currently available information, the US believes this reduction in price serves as a reasonable indicator of the typical effect of planting delays resulting when methyl bromide alternatives are used in Maryland and Delaware melon production.

Southeastern USA Except Georgia

No technically (and thus economically) feasible alternatives to methyl bromide are presently available to the effected cucurbit growers. As such, the US concludes that use of methyl bromide is critical in Southeastern USA cucurbit production.

Analytical Notes

The applicant provided no data on the operating costs of alternatives. Analysts assumed, however, that these costs were similar to those of methyl bromide with slight upward adjustments for the costs of applying the alternatives and a slight downward adjustment for the cost of the alternative product. In addition, the applicant did not provide data for second crops (including revenues and operating costs). Analysts assumed that Southeastern cucurbits are grown in a single crop production system. However, if double cropping is practiced in the actual production system, this assumption could make the critical need for methyl bromide appear smaller than it actually is, because the value the second crop derives from methyl bromide is not included in the analysis

Other potentially significant economic factors, such as price reductions due to missed market windows, were not analyzed for this region, as the case for critical use of methyl bromide is sufficiently strong based solely on yield loss.

Georgia

No technically (and thus economically) feasible alternatives to methyl bromide are presently available to the effected cucurbit growers. As such, the US concludes that use of methyl bromide is critical in Georgia cucurbit production. Note that data describing Georgia cucurbit production is based on double cropping production practices.

Analytical Notes

Other potentially significant economic factors, such as price reductions due to missed market windows, were not analyzed for this region, as the case for critical use of methyl bromide is sufficiently strong based solely on yield loss.

Economic analysis of Georgia growing conditions included cost and production data representing a second cucurbits or peppers crop.

Maryland and Delaware

In Maryland and Delaware cucurbits, *Fusarium oxypsorum niveum* exists in 5 separate races, and no one crop cultivar has resistance to all races. Crop experts in Maryland report that methyl bromide alternatives provided lower protection against the pathogen while also creating obstacles to meeting premium market windows. USG believes that the situation here is similar to Michigan, in that the best alternatives (1,3 D + chloropicrin) may offer some defense against the pathogen (with a yield loss similar to that likely in Michigan). However, since the crop acreage involved is in low-lying coastal plain, water-logged soils frequently occur in rainy periods and this could delay fumigation with this and other alternatives (such as metam-sodium) and cause additional losses by forcing growers to miss key mid-July market windows.

A determination of the feasibility of methyl bromide alternatives in Maryland and Delaware melon production has not yet been made.

<u>Part F:</u> NATIONAL MANAGEMENT STRATEGY FOR PHASE-OUT OF THIS NOMINATED CRITICAL USE **<u>Renomination Form Part B:</u>** TRANSITION PLANS

Provision of a National Management Strategy for Phase-out of Methyl Bromide is a requirement under Decision Ex. I/4(3) for nominations after 2005. The time schedule for this Plan is different than for CUNs. Parties may wish to submit Section 21 separately to the nomination.

21. DESCRIBE MANAGEMENT STRATEGIES THAT ARE IN PLACE OR PROPOSED TO PHASE OUT THE USE OF METHYL BROMIDE FOR THE NOMINATED CRITICAL USE, INCLUDING:

- 1. Measures to avoid any increase in methyl bromide consumption except for unforeseen circumstances;
- 2. Measures to encourage the use of alternatives through the use of expedited procedures, where possible, to develop, register and deploy technically and economically feasible alternatives;
- 3. Provision of information on the potential market penetration of newly deployed alternatives and alternatives which may be used in the near future, to bring forward the time when it is estimated that methyl bromide consumption for the nominated use can be reduced and/or ultimately eliminated;
- 4. Promotion of the implementation of measures which ensure that any emissions of methyl bromide are minimized;
- 5. Actions to show how the management strategy will be implemented to promote the phase-out of uses of methyl bromide as soon as technically and economically feasible alternatives are available, in particular describing the steps which the Party is taking in regard to subparagraph (b) (iii) of paragraph 1 of Decision IX/6 in respect of research programmes in non-Article 5 Parties and the adoption of alternatives by Article 5 Parties.

These issues are discussed in the US Management Plan for Methyl Bromide, submitted previously.

Renomination Form Part C: TRANSITION ACTIONS

Responses should be consistent with information set out in the applicant's previously-approved nominations regarding their transition plans, and provide an update of progress in the implementation of those plans.

In developing recommendations on exemption nominations submitted in 2003 and 2004, the Technology and Economic Assessment Panel in some cases recommended that a Party should explore the use of particular alternatives not identified in a nomination' transition plans. Where the Party has subsequently taken steps to explore use of those alternatives, information should also be provided in this section on those steps taken.

Questions 5 - 9 should be completed where applicable to the nomination. Where a question is not applicable to the nomination, write "N/A".

(Renomination Form 6.) TRIALS OF ALTERNATIVES

Where available, attach copies of trial reports. Where possible, trials should be comparative, showing performance of alternative(s) against a methyl bromide-based standard

(i) DESCRIPTION AND IMPLEMENTATION STATUS:

See question 15 above. Many research projects are ongoing and considerable funding is being used in this effort.

(ii) OUTCOMES OF TRIALS: (Include any available data on outcomes from trials that are still underway. Where applicable, complete the table included at <u>Appendix I</u> identifying comparative disease ratings and yields with the use of methyl bromide formulations and alternatives.)

See question 15 above.

(iii) IMPACT ON CRITICAL USE NOMINATION/REQUIRED QUANTITIES: (For example, provide advice on any reductions to the required quantity resulting from successful results of trials.)

During the preparation of this nomination the USG has accounted for all identifiable means to reduce the request. Specifically, approximately 15 million kilograms of methyl bromide were requested by methyl bromide users across all sectors. USG carefully scrutinized requests and made subtractions to ensure that no growth, double counting, inappropriate use rates on a treated hectare basis were incorporated into the final request. Requests of methyl bromide when the requestor qualified under some other provision (QPS, for example) was also removed and appropriate transition strategies given yields obtained by alternatives and the associated cost differentials were factored in. As a result of all these changes, the USG is requesting roughly 1/3 of that amount.

The USG feels that no additional reduction in methyl bromide quantities is necessary, given the significant adjustments described above. See Appendix A.

(iv) ACTIONS TO ADDRESS ANY DELAYS/OBSTACLES IN CONDUCTING OR FINALISING TRIALS:

The USG has the ability to authorize Experimental Use Permits (EUPs) for large scale field trials for methyl bromide alternatives, as has been done for methyl iodide. A recent change has been to allow the EUP for methyl iodide without the previously required destruction of the crop, thus encouraging more growers to participate in field trials. As with other activities connected with registration of a pesticide, the USG has no legal authority either to compel a registrant to seek an EUP or to require growers to participate.

As noted in our previous nomination, the USG provides a great deal of funding and other support for agricultural research, and in particular, for research into alternatives for methyl bromide. This support takes the form of direct research conducted by the Agricultural Research Service (ARS) of USDA, through grants by ARS and CSREES, by IR-4, the national USDA-funded project that facilitates research needed to support registration of pesticides for specialty crop vegetables, fruits and ornamentals, through funding of conferences such as MBAO, and through the land grant university system

(Renomination Form 7.) TECHNOLOGY TRANSFER, SCALE-UP, REGULATORY APPROVAL FOR ALTERNATIVES

The USDA maintains an extensive technology transfer system, the Agricultural Extension Service. This Service is comprised of researchers at land grant universities and county extension agents in addition to private pest management consultants. In addition to these sources of assistance for technology transfer, there are trade organizations and grower groups, some of which are purely voluntary but most with some element of institutional compulsion, that exist to conduct research, provide marketing assistance, and to disseminate "best practices". The California Strawberry Commission is one example of such a grower group.

(i) DESCRIPTION AND IMPLEMENTATION STATUS:

See above.

(ii) OUTCOMES ACHIEVED TO DATE FROM TECHNOLOGY TRANSFER, SCALE-UP, REGULATORY APPROVAL:

See Section 21.

(iii) IMPACT ON CRITICAL USE NOMINATION/REQUIRED QUANTITIES: (For example, provide advice on any reductions to the required quantity resulting from successful progress in technology transfer, scale-up, and/or regulatory approval.)

The USG feels that no additional change in methyl bromide quantity requested is necessary. The U.S. nomination for this sector reflects the commitment by this sector and the U.S. to reduce methyl bromide use to only the most critical needs. See Appendix A.

(iv) ACTIONS TO ADDRESS ANY DELAYS/OBSTACLES:

See above.

Ongoing field trials require results to be validated for commercial application. Therefore, some period of time after publication of field trials is needed for commercial testing and implementation.

USG endeavors to identify methyl bromide alternatives to move them forward in the registration queue. However USG has no legal authority to compel registrations; it can only act on registrations requested by private entities. The timely submission of data to support a registration decision is at the sole discretion of the registrant.

(Renomination Form 8.) COMMERCIAL SCALE-UP/DEPLOYMENT, MARKET PENETRATION OF ALTERNATIVES

(i) DESCRIPTION AND IMPLEMENTATION STATUS:

These issues are discussed in the US Management Plan for Methyl Bromide, submitted previously.

(ii) IMPACT ON CRITICAL USE NOMINATION/REQUIRED QUANTITIES: (For example, provide advice on any reductions to the required quantity resulting from successful commercial scale-up/deployment and/or market penetration.)

The USG feels that no additional change in methyl bromide quantity requested is necessary. The U.S. nomination for this sector reflects the commitment by this sector and the U.S. to reduce methyl bromide use to only the most critical needs. See Appendix A.

(iii) ACTIONS TO ADDRESS ANY DELAYS/OBSTACLES:

USG endeavors to identify methyl bromide alternatives to move them forward in the registration queue. However USG has no legal authority to compel registrations; it can only act on registrations requested by private entities. The timely submission of data to support a registration decision is at the sole discretion of the registrant.

The USDA maintains an extensive technology transfer system, the Agricultural Extension Service. This Service is comprised of researchers at land grant universities and county extension agents in addition to private pest management consultants. In addition to these sources of assistance for technology transfer, there are trade organizations and grower groups, some of which are purely voluntary but most with some element of institutional compulsion, that exist to conduct research, provide marketing assistance, and to disseminate "best practices". The California Strawberry Commission is one example of such a grower group.

(Renomination Form 9.) CHANGES TO TRANSITION PROGRAM

If the transition program outlined in the Party's original nomination has been changed, provide information on the nature of those changes and the reasons for them. Where the changes are significant, attach a full description of the revised transition program.

See Appendix A.

(Renomination Form 10.) OTHER BROADER TRANSITION ACTIVITIES

Provide information in this section on any other transitional activities that are not addressed elsewhere. This section provides a nominating Party with the opportunity to report, where applicable, on any additional activities which it may have undertaken to encourage a transition, but need not be restricted to the circumstances and activities of the individual nomination. Without prescribing specific activities that a nominating Party should address, and noting that individual Parties are best placed to identify the most appropriate approach to achieve a swift transition in their own circumstances, such activities could include market incentives, financial support to exemption holders, labelling, product prohibitions, public awareness and information campaigns, etc.

These issues are discussed in the US Management Plan for Methyl Bromide, submitted previously.

Part G: CITATIONS

- Allen, L.H., S.J. Locascio, D.W. Dickson, D.J. Mitchell, and S.D. Nelson. 1999. Flooding (soil anoxia) for control of pests of vegetables. Research Summary, USDA Specific Cooperative Agreement 58-6617-6-013.
- Ashley, M.G., B.L. Leigh, and L.S. Lloyd. 1963. The action of metham-sodium in soil II. Factors affecting removal of methyl isothiocyanate residues. J. Sci. Food Agric. 14: 153-161.
- Burgos, N. R. and R. E. Talbert. 1996. Weed control and sweet corn (*Zea mays* var. *rugosa*) response in a no-till system with cover crops. Weed Sci. 44 (2): 355 361.
- Chase, C.A., T.R. Sinclair, D.G. Shilling, J.P. Gilreath, and S.J. Locascio. 1998. Light effects on rhizome morphogenesis in nutsedges (Cyperus spp): Implications for control by soil solarization. Weed Sci. 46:575-580.
- Culpepper, S. and D. Langston 2001. Fumigant/herbicide combinations in tomato. Unpublished study conducted by researchers at the University of Georgia, Athens, GA. Included in CUE package 03-0042.
- Culpepper, S. and D. Langston. 2004. Fumigant/herbicide combinations. Unpublished study conducted by researchers at the University of Georgia, Athens, GA. Included in CUE package 2004.
- Csinos, A.S., D.R. Sumner, R.M. McPherson, C. Dowler, C.W. Johnson, and A.W. Johnson. 1999. Alternatives for methyl bromide fumigation of tobacco seed beds, pepper, and tomato seedlings. Proc. Georgia Veg. Conf. Available on the Web at http://www.tifton.uga.edu/veg/Publications/Gfvga99.pdf.
- Dowler, C. C. 1999. Herbicide activity of metham, methyl iodide, and methyl bromide applied through irrigation systems. Proc. Southern Weed Sci. Soc. 52: 77 78.
- Dungan, R.S. and S.R. Yates. 2003. Degradation of fumigant Pesticides. 1,3-Dichloropropene, methyl isothiocyanate, and methyl bromide. Vodose Zone Jour. 2: 279-286.
- Eger, J. E. 2000. Efficacy of Telone products in Florida crops: a seven year summary. Proc. Annual Int. Res. Conf. on Methyl Bromide Alternatives and Emissions Reductions. Available on the web at <u>http://www.mbao.org/mbrpro00.html</u>.
- Galloway, B. A. and L. A. Weston. 1996. Influence of cover crop and herbicide treatment on weed control and yield in no-till sweet corn (*Zea mays* L.) and pumpkin (*Cucurbita maxima* Duch.). Weed Technol. 10 (2): 341 346.

Gamliel, A., S. Triki, M. Austerweil, P. DiPrimo, I. Peretz-Alon, O. Heiman, M. Beniches, B.

Steiner, and J. Katan. 2003. Aceelerated degradation of metam sodium in the field and its management. Proc. Annual Int. Res. Conf. on Methyl Bromide Alternatives and Emissions Reductions. Available on the web at http://www.mbao.org/mbrpro03.html.

- Gevens, A., and M. K. Hausbeck. 2003. Phytophthora capsici in irrigation water and isolation of *P. capsici* from snap beans in Michigan. Michigan State Univ. Vegetable Crop Advisory Team Alert Vol. 18 (19). Available on the Web at www.ipm.msu.edu/CAT03_veg/V09-24-03.htm.
- Gilreath, J., J. P. Jones, and A. J. Overman. 1994. Soil-borne pest control in mulched tomato with alternatives to methyl bromide. Proc. Annual Int. Res. Conf. on Methyl Bromide Alternatives and Emissions Reductions. Available on the web at http://www.mbao.org/mbrpro94.html.
- Gilreath, J.P. B.M. Santos, T.M. Motis, J.W. Noling, and J.M. Mirusso. (2005) Methyl bromide alternatives for nematode and *Cyperus* control in bell pepper (*Capsicum annuum*). Crop Prot. 24: 903-908.
- Hausbeck, M. K. and B. D. Cortwright. 2004. Evaluation of fumigants for managing *Phytophthora* crown and fruit rot of solanaceous and cucurbit crops, plot two, 2004. Unpublished study supplied with CUE package 04-0005.
- Horowitz, M. 1972. Effects of desiccation and submergence on the viability of rhizome fragments of bermudagrass, johnsongrass, and tubers of nutsedge. Israel J. Agric. Res. 22(4):215-220.
- Kadir, J. B., R. Charudattan, W. M. Stall, and B. J. Brecke. 2000. Field efficacy of *Dactylaria higginsii* as a bioherbicide for the control of purple nutsedge (*Cyperus rotundus*). Weed Technol. 14 (1): 1 6.
- Lamour, K.H., and M. K. Hausbeck. 2003. Effect of crop rotation on the survival of *Phytophthora capsici* in Michigan. Plant Disease 87: 841-845.
- Larkin, R. P., and Fravel, D. R. 1998. Efficacy of various fungal and bacterial biocontrol organisms for control of *Fusarium* wilt of tomato. Plant Dis. 82:1022 -1028.
- Locascio. S. J., and D. W. Dickson. 1998. Metam sodium combined with chloropicrin as an alternative to methyl bromide. Proc. Annual Int. Res. Conf. on Methyl Bromide Alternatives and Emissions Reductions. Available on the web at <u>http://www.mbao.org/mbrpro98.html</u>.
- Locascio, S.J., J.P. Gilreath, D.W. Dickson, T.A. Kucharek, J.P. Jones, and J.W. Noling. 1997. Fumigant alternatives to methyl bromide for polyethylene mulched tomato. HortSci. 32: 1208-1211.

Martin, F. N. 2003. Development of alternative strategies for management of soilborne

pathogens currently controlled with methyl bromide. Ann. Rev. Phytopathol. 41: 325 - 350.

- MBTOC (1994): 1994 Report of the Methyl Bromide Technical Options Committee for the 1995 Assessment of the UNEP Montreal Protocol on Substances that Deplete the Ozone Layer. Nairobi.
- Munn. D.A. 1992. "Comparison of shredded newspaper and wheat straw as crop mulches." Hort Technol. 2: 361 366.
- Noling, J.W., E. Rosskopf, and D.L. Chellemi. 2000. Impacts of alternative fumigants on soil pest control and tomato yield. Proc. Annual Int. Res. Conf. on Methyl Bromide Alternatives and Emissions Reductions. Available on the web at http://www.mbao.org/mbrpro00.html.
- Ou, L.-T., K.Y.Chung, J.E. Thomas, T.A. Obreza, and D.W. Dickson.1995. Degradation of 1,3dichloropropene (1,3-D) in soils with different histories of field applications of 1,3-D. J. Nematol. 25: 249–257.
- Phatak, S. C., D. R. Sumner, H. D. Wells, D. K. Bell, and N. C. Glaze. 1983. Biological control of yellow nutsedge, *Cyperus esculentus*, with the indigenous rust fungus *Puccinia canaliculata*. Science. 219: 1446 1448.
- Patterson, D.T. 1998. Suppression of purple nutsedge (*Cyperus rotundus*) with polyethylene film mulch. Weed Technology, 12:275-280.
- Schneider S. M., E.N. Rosskopf, J.G. Leesch, D.O. Chellemi, C. T. Bull, and M. Mazzola. 2003. United States Department of Agriculture – Agricultural Research Service research on alternatives to methyl bromide: pre-plant and post-harvest. Pest Manag Sci. 59: 814-826.
- Thullen, R.J. and P.E. Keeley. 1975. Yellow nutsedge sprouting and resprouting potential. Weed Sci. 23:333-337.
- Smelt, J.H., S.J.H. Crum, and W. Teinissen. 1989. Accelerated transformation of the fumigant methyl isocyanate in soil after repeated application of metam sodium. J. Environ. Sci. Health B24: 437-455.
- UNEP (United Nations Environment Programme). 1998. Methyl Bromide Technical Options Committee (MBTOC) 1998 assessment of alternatives to methyl bromide. p.49.
- Verhagen, C., G. Lebbink, and J. Bloem. 1996. Enhanced biodegradation of the nematicides 1,3-dichloropropene and methyl isothiocyanate in a variety of soils. Soil Biol. Biochem. 28:1753–1756.
- Webster, T.M. 2002. Nutsedge eradication: impossible dream? National Nursery Proc. RMRS-P-000. USDA Forest Service, Rocky Mtn Res. Station, Ogden, Utah.

- Webster, T. M., A. S. Csinos, A. W. Johnson, C. C. Dowler, D. R. Sumner, and R. L. Fery. 2001. Methyl bromide alternatives in a bell pepper – squash rotation. Crop Prot. 20 (7): 605 – 614.
- Wilen, C. A., M. E. McGiffen, and C. L. Elmore. 2003. Nutsedge: Integrated Pest Management for Home Gardeners and Landscape Professionals. University of California IPM Publication # 4732. Available on the Web at <u>www.ipm.ucdavis.edu</u>
- Zhou, X.G. & K.L. Everts. 2003. Races and Inoculum Density of *Fusarium oxysporum f. sp. niveum* in Commercial Watermelon Fields in Maryland and Delaware. Amer. Phytopath. Soc. V. 87 n. 6 692-698.

APPENDIX A. 2009 METHYL BROMIDE USAGE NEWER NUMERICAL INDEX EXTRACTED (BUNNIE)

2(009 Methyl	Bromide Usage New	er N	umerica	l Index -	BUNNIE				Cucurbits
December 18, 2006 Region			Michigan Cucurbit	Mardel Cucurbit	Southeast Cucurbit	Georgia - Squash	Georgia - Cucumber	Georgia - Melon	Sector Total	
		Possible Regime		Metam+Pic	Telone+Pic	Telone+Pic	Telone+Pic	Telone+Pic	Telone+Pic	
S	Marginal Strategy -	Loss Estimate (%) - Yield (Y), Quality (Q), Market Windov Time (T)	w (M),	47% Y + T	29% Y	29% Y	29% Y	29% Y	29% Y	
Ē		Loss per Hectare (US\$/ha)		\$ 2,232	\$ 2,883	\$ 2,883	\$ 3,510	\$ 4,561	\$ 3,233	
era		Loss per Kg of MeBr (US\$/kg)		\$ 46	\$ 19	\$ 19	\$ 23	\$ 30	\$ 22	
Isid	(,	Loss as a % of Gross Revenue		12%	23%	23%	11%	13%	12%	
õ		Loss as a % of Net Op Revenue		55%	70%	70%	30%	69%	35%	
Other Considerations	Distant	Strip or Bed Treatment?		Strip	Strip	Strip	Strip	Strip	Strip	
ŏ	Dichotomous Variables (Y/N)	Currently Use Alternatives?		Yes	Yes	Yes	Yes	Yes	Yes	
	vanabies (1/14)	Tarps / Deep Injection Used?		Tarp	Tarp	Tarp	Tarp	Tarp	Tarp	
	Other Issues	Frequency of Treatment (x/ yr)		1x per year	1x per year	1x per year	1x per year	1x per year	1x per year	
		Change in CUE Request		increase	new	increase	same	same	same	increase
		Florida Telone Restrictions	%	0%	0%	0%	8%	8%	8%	
		100 ft Buffer Zones	%	0%	0%	0%	0%	0%	0%	
	Most Likely	Key Pest Distribution	%	100%	100%	49%	49%	48%	51%	
Co	mbined Impacts	Regulatory Issues	%	0%	0%	0%	0%	0%	0%	
	(%)	Unsuitable Terrain	%	0%	0%	0%	0%	0%	0%	
		Cold Soil Temperature	%	100%	0%	0%	0%	0%	0%	
		Total Combined Impacts	%	100%	100%	49%	53%	52%	55%	
	Most Likely	(%) Able to Transition		0%	0%	42%	44%	49%	33%	
Ba	seline Transition	Minimum # of Years Required		0	0	7	7	7	7	
		(%) Able to Transition / Year		0%	0%	6%	6%	7%	5%	
		djusted Use Rate	kg/ha	175	150	188	187	187	187	
	Joint Adj	usted Dosage Rate	g/m2	17.5	15.0	18.8	18.7	18.7	18.7	
		Amount - Pounds	sp	72,800	20,100	2,300,780	204,752	148,204	541,896	3,288,532
	2009 US CUE	Area - Acres	Pounds	680	300	17,170	1,528	1,106	4,044	24,828
	Application	Rate (Ib/A)	μ.	107.06	67.00	134.00	134.00	134.00	134.00	132
	Information	Amount - Kilograms	ic	33,021	9,117	1,043,615	92,874	67,224	245,800	1,491,652
		Treated Area - Hectares	Metric	275	121	6,948	618	448	1,637	10,048
		Rate (kg/ha)		120	75	150	150	150	150	148
ΞP	A Preliminary V	alue	kgs	26,592	9,117	753,688	92,874	67,224	245,739	1,195,235
ΞP	A Baseline Adjus	sted Value has been adjusted	for:	Double C Combined		owth, EPA Use	e Rate Adjust	ment, Joint L	Jse Rate Adjus	stment, and
EP	A Baseline Adjus	sted Value	kgs	22,493	9,111	270,040	32,488	25,370	97,284	456,787
EP	EPA Transition Amount		kgs	-	-	(30,239)	(3,834)	(3,423)	(8,467)	(45,963)
Most Likely Impact Value for Treated Area		kgs	(4,099)	(6)	(513,887)	(64,220)	(45,277)	(156,921)	(784,411)	
		kgs	22,493	9,111	239,801	28,654	21,947	88,817	410,824	
		· ·	ha	129	61	1,370	164	125	508	2,356
		Rate	175	150	175	175	175	175	174	
Sector Research Amount (kgs)					941		Total US S Iomination		41	1,765