Picosecond Terawatt CO₂ Laser

1 atm CO2 oscillator

MW

ockels cell

100 ns

10 µm

Optical Scheme ³ atm preamplifier ⁹ Pockels cell ¹⁰ ns ¹⁰ ps ¹⁰ ps YAG ¹⁰ tm regenerative amplifier

3 GW

Pockels cell

9 atm amplifier

Present Parameters: 10J, 15ps, ~0.5TW, 0.05Hz *Future Upgrade:* 10 - 15J, 3ps, 3TW Higher repetition rate is possible with a stronger power supply and faster vacuum pumping of the amplifier x-ray preionizer.

Bandwidth Limited Amplification of ps CO₂ Laser Pulses

Strongly modulated rotational line structure of the CO_2 gain spectrum modifies the frequency content of picosecond pulses, changing their temporal structure. At 10 atmospheres, collisional broadening produces overlap of the rotational lines into the 1 THz wide quasi-continuous gain spectrum, and pulses as short as 1 ps can be amplified without distortion.

Brookhaven National Laboratory 🖉 🦵

П

Accelerator Test Facility

High-pressure (10 atm) amplifiers are key components of the ATF picosecond CO₂ laser system.

View on high pressure CO₂ amplifiers.

Fundamental benefits from using long-wavelength (λ =10µm) CO₂ laser:

- Combines advantages of conventional high-finesse RF accelerators and prospective high-gradient optical ($\lambda \approx 1 \ \mu m$) accelerators providing favorable phasing and structure scaling.

- Ponderomotive potential that controls plasma wake generation, production of x-rays, gamma-rays and particle beams (ions, protons, neutrons, electrons), and other strong-field phenomena is proportional to λ^2 .

This makes effects from 3 TW, 10 J CO_2 laser equivalent to 300 TW, 1 kJ solid state laser. Then, technical considerations including robustness and high repetition rate of gas lasers come to play.

10-atm CO, laser operating at 5 Hz, 1 J/pulse.

CO2 Laser Website: http://www.bnl.gov/atf/systems/lasers/co2/co2sys.html