M. Georges Bank/Gulf of Maine Pollock by R.K. Mayo, L. Col and M. Traver

1.0 Background

Pollock, *Pollachius virens* (L.) have traditionally been assessed as a unit stock from the Scotian Shelf (NAFO Divisions 4VWX) to Georges Bank, the Gulf of Maine and portions of the Mid-Atlantic region (Subareas 5 and 6). This stock was last assessed over its range *via* VPA at SAW 16 in 1993 (Mayo and Figuerido 1993, NEFSC 1993a, 1993b). At that time, spawning stock biomass had been declining since the mid-1980s, and was expected to reach its long-term average (144,000 mt). Fishing mortality was estimated to be 0.72 in 1992, above F20% (0.65) and well above Fmed (0.47). The stock was then considered to be fully exploited and at a medium biomass level.

The state of this stock was first evaluated *via* index assessment in 2000 (Mayo 2001). At that time, it was noted that biomass indices for the Gulf of Maine-Georges Bank portion of the stock, derived from NEFSC autumn bottom trawl surveys, had increased during the mid-1970s, declined sharply during the 1980s, but have been generally increasing since the mid-1990s. Indices derived from Canadian bottom trawl surveys, conducted on the Scotian Shelf, increased during the 1980s, but declined sharply during the early 1990s. The index assessment provided no basis with which to evaluate the state of the stock relative to the control rule as determined by the Overfishing Definition Review Panel (Anon. 1998).

An assessment of this stock over the major portion of its range (NAFO Divisions 4VWX and Subdivision 5Zc) has been conducted by Canada since 1989. The most recent full stock assessment was conducted in 1999 (Neilson et al. 1999) and the most recent update was performed in 2001. In 1999, it was noted that age 5+ population biomass reached a maximum in 1985 and then declined steadily to a minimum in 1995. Biomass had increased slightly after 1995 due to recruitment from the 1992 year class. Recent recruitment has been declining, and it was concluded that most indicators of stock status suggest that the resource remains depleted. The 2001 update indicated a further decline in the relative biomass indices and a reduction in the size structure of the population.

A Canadian Framework Assessment process was initiated in 2003 and continued through 2004 to develop a revised framework for assessing the state of the resource in Divs. 4VWX and Subdivision 5Zc. Based on these reviews it was concluded that pollock inhabiting the easternmost portions of the Scotian Shelf are sufficiently spatially isolated from those found in the most of Division 4X to warrant separate management units (Anon 2004, Neilson et al. 2004a). Given the low biomass currently found in the eastern management unit, the most recent evaluation of stock status (Neilson et al. 2004b) provides F and biomass estimates only for the western component inhabiting portions of Div. 4X and Subdivision 5Zc. This assessment indicated that fishing mortality (ages 4-9) declined to 0.28 in 2003, but remains high (1.0 or higher) on older fish (ages 6-9). Biomass (ages 2+) continues to rebuild, doubling since 1999, but remains low compared to the 1984 maximum.

In 2002, index-based biological reference points were developed for a portion of the pollock stock primarily under US management jurisdiction (Subareas 5 and 6), including a portion of

eastern Georges Bank (Subdivision 5Zc) that is under Canadian management jurisdiction (NEFSC 2002). The most recent assessment of the resource inhabiting the area comprising this management unit was conducted in October, 2002 at the first Groundfish Assessment Update Meeting (GARM I). At that time it was determined that the index of current biomass was greater than ½ of the Bmsy proxy reference point and that the index of current F was below the Fmsy proxy reference point (Mayo and Col 2002).

2.0 The Fishery

2.1 Divisions 4VWX and Subareas 5&6

Nominal commercial catches from the Scotian Shelf, Gulf of Maine, and Georges Bank region increased from an annual average of 38,200 mt during 1972-76 to 68,800 mt in 1986 (Table M1, Figure M1). Canadian landings increased steadily from 24,700 mt in 1977 to an annual average of 43,900 mt during 1985-87, while U.S. landings increased from an average of 9,700 mt during 1973-77 to more than 19,000 mt annually from 1985-1987, peaking at 24,500 mt in 1986. Landings by distant-water fleets declined from an annual average of 9,800 mt during 1970-73 to less than 1,100 mt per year during 1981-88. Distant-water fleet landings increased to 3,300 mt in 1991, but have since declined to negligible levels. Over time, most of the distant water fleet catch has been taken by the USSR/Russian fleet on the Scotian Shelf (Table M1).

By 1996, USA and Canadian landings had declined to 2,963 mt and 9,145 mt, respectively, the lowest landings by either country in over 3 decades. Landings by distant water fleets fishing on the Scotian Shelf remained almost negligible. Since 1996, USA and Canadian landings have increased slightly but remain low relative to past levels. From 1999 to 2004, USA landings fluctuated between 4,111 and 4,600 mt, and Canadian landings ranged from 5,700 to 7,700 mt (Table M1).

Since 1984, the USA fishery has been restricted to areas of the Gulf of Maine and Georges Bank west of the line delimiting the USA and Canadian fishery zones. The Canadian fishery occurs primarily on the Scotian Shelf and additional landings are obtained from Georges Bank east of the line delimiting the USA and Canadian fishery zones. This fishery on the Scotian Shelf has shifted westward over time, and the contribution to the total catch from larger, mobile gear vessels has steadily diminished since 1981.

2.2 Subareas 5&6

The commercial fishery in Subareas 5&6 is dominated by United States vessels; additional catches are taken by Canada and, for a period primarily during the 1970s, by some distant water fleets. The total landings increased steadily from less than 10,000 mt during the 1960s to a maximum of over 26,000 mt in 1986 (Figure M2). Landings declined sharply during the late 1980s and have remained below 10,000 mt throughout most of the 1990s. Landings since 1999 have fluctuated between 5,000 and 7,000 mt.

3.0 Research Survey Indices

Indices of relative biomass (In re-transformed), derived from NEFSC autumn research vessel

bottom trawl surveys covering Georges Bank and the Gulf of Maine have varied considerably since 1963 (Table M2, Figure M2). Indices generally fluctuated between 2 and 5 kg per tow throughout most of the 1960s and 1970s, peaking at over 8 kg per tow during the mid-to-late 1970s, reflecting recruitment of several moderate-to strong year classes from the early 1970s. Strong year classes were also produced in 1979 and 1980, after which recruitment began to diminish during the 1980s.

Biomass indices declined rapidly during the early 1980s, and continued to decline steadily through the early 1990s, remaining below 1 kg per tow and reaching a minimum during the mid-1990s. Since then, biomass indices from the Gulf of Maine-Georges Bank region have generally increased, reaching 1.5 kg per tow in 1999 and have recently been fluctuating between 2 and 2.5 kg/tow (Table M2, Figure M2). On the Scotian Shelf, Canadian biomass indices, derived from commercial fishery catch rates, declined rapidly after 1985, following the recruitment of the 1979 year class. Apart from a sharp spike in 1996, Canadian survey indices continued to decline through 2000 but have increased slightly thereafter (Neilson et al. 2004b).

4.0 Assessment Results

4.1 Subareas 5&6

As evident from recent trends in total landings from Subareas 5 and 6 and NEFSC autumn biomass indices calculated for the Gulf of Maine-Georges Bank region, exploitation ratios (Subarea 5&6 landings/NEFSC autumn biomass index) peaked in the mid-to-late 1980s after which they steadily declined (Table M3, Figure M3). Biomass indices from the Gulf of Maine-Georges Bank region have been increasing throughout the late 1990s and now indicate that biomass may have returned to levels evident during the early 1980s.

Relative Exploitation Rate and Replacement Ratio Analyses

An index of relative exploitation (catch/survey biomass index) corresponding to a replacement ratio of 1.0 was developed by the Working Group on Re-Evaluation of Biological Reference Points for New England Groundfish (NEFSC 2002) for the portion of the unit stock of pollock primarily within the USA EEZ (NAFO Subareas 5&6) including a portion of eastern Georges Bank (Subdivision 5Zc) that is under Canadian management jurisdiction. Autumn NEFSC survey biomass indices from the Gulf of Maine and Georges Bank region from 1963 through 2001 were used to calculate the replacement ratios, defined as the biomass index in the current year divided by the average biomass indices from the previous 5 years. The biomass indices and total landings from the same region were used to compute the relative exploitation rates, defined as the catch in the current year divided by the 3 year average survey biomass index for the current year and the previous 2 years. These relative exploitation rates (or relative F) may be considered a proxy for F on that portion of the pollock stock considered in this analysis. The relationship between replacement ratios and relative F was evaluated by a linear regression of the Loge replacement ratio on Loge relative F (NEFSC 2002) and the results were used to derive an estimate of relative F corresponding to a replacement ratio of 1.0. Results for pollock

were highly significant (NEFSC 2002), and the estimate of the relative replacement F (F rel rep) has a low standard error compared to the point estimate (5.88). The regression indicates that, on average, when the relative F is greater than 5.88, the stock is not likely to replace itself in the long-term.

Trends in 3 year average relative F (exploitation ratio) and replacement ratios are given in Figures M3 and M4, respectively and the values are listed in Table M3. Prior to the 1980s, a high proportion of the replacement ratios equaled or exceeded 1.0 (Figure M4). During the 1980s and early 1990s, most of the replacement ratios were less than 1.0, with ratios greater than 1.0 appearing again by the late 1990s as the biomass indices began to gradually increase from the very low levels of the mid-1990s.

The information displayed in Figure M5 also provide a means to derive a biomass index which relates to the replacement ratios. In this case, it is evident that most of the replacement ratios below 1.0 occurred during the 1980s when the biomass index was less than about 3.0 (Figure M5). During this period the relative F was also well above relative replacement F (Figure M6). This biomass index may be considered as the biomass proxy for Bmsy that corresponds to the relative F proxy for Fmsy.

5.0 Biological Reference Points

Since the relative F relates the catch directly to survey biomass, the catch corresponding to the Bmsy proxy can be estimated from the relative F and the biomass index of Bmsy. For pollock, this computes to 3.0 * 5.88 = 17.64, or 17,640 mt as a proxy for MSY. The following biological reference point proxies were obtained from an index-based model of replacement ratios (NEFSC 2002) derived from indices of relative exploitation (Table M3):

MSY 17,640 mt B_{MSY} 3.00 kg/tow F_{MSY} 5.88 (Relative F)

Since the mid-1990s, the NEFSC autumn survey biomass has been increasing towards the 3.0 kg/tow Bmsy proxy and and the replacement ratio has remained at or above 1.0. More recently, since 1999, the relative F has remained below the 5.88 Fmsy proxy.

6.0 Summary

In 2004, the 3-year average biomass index for pollock was 1.99, approximately 66% of the 3.00 Bmsy proxy an increase from the 2001 value of 1.601. Thus, current biomass is estimated to be between ½ Bmsy and Bmsy. In 2004, the 3-year average relative F was 3.51, approximately 60% of the 5.88 Fmsy proxy, a slight decrease from the 2001 value of 3.55. Thus, current F is estimated to be below Fmsy. Accordingly, in 2004 the stock was not overfished and overfishing was not occurring. Total landings in 2004 were 7,000 mt, a 23% increase from the 2001 value of 5,680 mt.

7.0 GARM Panel Comments

The Panel sought clarification on the use of the multi-year averages applied to the survey biomass indices in both replacement ratios and relative exploitation rates. It was explained that the 5 and 3-year average survey biomass index used for the replacement ratios and relative exploitation rates respectively were applied to smooth annual noise in the autumn survey biomass indices.

8.0 Sources of Uncertainty

- Survey indices for pollock exhibit considerable inter-annual variability
- Movement of pollock among the NAFO Divisions comprising the stock unit is likely to vary over time, contributing to the year effects noted in the surveys

9.0 References

- Anon. 1998. Evaluation of existing overfishing definitions and recommendations for new overfishing definitions to comply with the Sustainable Fisheries Act. Final Report. Overfishing Definition Review Panel. June 17, 1998.
- Anon. 2004. Proceedings of the Pollock Framework Assessment. Canadian Science Advisory Secretariat. Proceedings Series 2004/030, 44p.
- Mayo, R.K. 2001. Scotian Shelf/Georges Bank/Gulf of Maine Pollock. In: Assessment of 19 Northeast Groundfish Stocks through 2000. Northern and Southern Demersal Working Groups, Northeast Regional Stock Assessment Workshop. NMFS, Northeast Fisheries Science Center Reference Document 01-20, 217p.
- Mayo, R.K. and B.F. Figuerido. 1993. Assessment of Pollock, *Pollachius virens* (L.), in Divisions 4VWX and Subareas 5 and 6, 1993. NMFS, Northeast Fisheries Science Center Reference Document 93-13, 108 p.
- Mayo, R.K and L. Col 2002. Scotian Shelf-Georges Bank-Gulf of Maine Pollock. In: Assessment of 20 Groundfish Stocks through 2001. A Report of the Groundfish Assessment Review Meeting (GARM), Northeast Fisheries Science Center Reference Document 02-16.
- NEFSC 1993a. Report of the 16th Northeast Regional Stock Assessment Workshop (16th SAW). Stock Assessment Review Committee (SARC) Consensus Summary of Assessments. NMFS, Northeast Fisheries Science Center Reference Document 93-18, 118 p.
- NEFSC 1993b. Report of the 16th Northeast Regional Stock Assessment Workshop (16th SAW). The Plenary. NMFS, Northeast Fisheries Science Center Reference Document 93-19, 57p.

- NEFSC 2002. Working Group on Re-Evaluation of Biological Reference Points for New England Groundfish,
 NMFS, Northeast Fisheries Science Center Reference Document 02-04, 254 p.
- Neilson, J., P. Perley and C. Nelson. 1999. The 1999 Assessment of Pollock (*Pollachius virens*) in NAFO Divisions 4VWX and Subdivision 5Zc. DFO Can. Stock Assess. Sec. Res. Doc. 99/160.
- Neilson, J.D, P. Perley and S. Gavaris. 2004a. Pollock Stock Status in the Canadian Maritimes: A Framework Assessment. Canadian Science Advisory Secretariat Research Document 2004/40, 52 p.
- Neilson, J.D, P. Perley and S. Gavaris. 2004b. Assessment of pollock in 4VWX5Zc using a Framework Approach. Canadian Science Advisory Secretariat Research Document 2004/99, 53 p.

3	Canada	USA	FRG	GDR	Japan	Spain	USSR	Cuba	Others	Total DWF	Total
1960	29470	10132	0	0	0	783	0	0	~	784	4038
1961	26323	10265	0	0	0	982	0	0	τ-	983	37571
1962	31721	7391	0	0	0	0	0	0	0	0	39112
1963	28999	6650	126	0	0	0	793	0	28	947	3659
1964	30007	9009	208	0 (0 (0	4603	0 (429	5240	4125
1965	2/316	5303	۲,	0	0 (1361	7997	0 (- 1	4110	3672
1966	18271	3791	0	0	0	2384	9865	0	12	12261	3432
1967	17567	3312	0	0	0	1779	644	0	15	2438	2331
1968	18062	3276	0	0	0	1128	372	0	7	1507	2284
1969	15968	3943	1188	2195	0	1515	227	0	7	5132	2504
1970	10753	3976	3233	4710	40	532	527	0	0	9042	2377
1971	11757	4890	633	6849	15	912	2216	0	က	10628	2727
1972	18022	5729	475	4816	∞	616	3495	0	28	9468	3321
1973	26990	6303	1124	948	1570	3113	3092	0	36	9883	4317
1974	24975	8726	149	2	40	1500	2301	0	62	4024	3775
1975	26548	9318	236	92	0	708	2004	0	124	3167	3903
1976	23568	10863	984	24	0	303	1466	0	390	3177	3760
1977	24654	13056	368	0	-	2	182	0	53	909	3831
1978	26801	17714	0	0	110	0	502	141	36	792	4530
1979	29967	15541	7	0	19	0	1025	20	23	1124	4663
1980	35986	18280	0	0	8	0	950	32	66	1162	5547
1981	40270	18171	0	0	15	0	358	0	06	463	5890
1982	38029	14357	0	0	<u>ښ</u>	0	297	84	44	428	52814
1983	32749	13967	0	0	9	0	226	261	22	515	4723
1984	33465	17903	0	_	_	0	26	123	46	268	5163
1985	43300	19457	0	0	17	0	336	99	77	496	6325
1986	42845	24542	0	0	51	0	564	387	81	1083	6847
1987	45407	20353	0	0	82	0	314	343	28	191	6652
1988	41690	14960	0	0	_	0	1054	225	0	1280	5233
1989	41093	10553	0	0	_	0	1782	66	478	2360	5400
1990	36178	9645	0	0	0	0	1040	261	က	1304	471
1991	37931	7950	0	0	38	0	1117	459	167	1781	476
1992	32002	7183	0	0	72	0	1006	1015	6	2102	4128
1993	20253	5629	0	0	0	0	176	644	0	820	2670
1994	15240	3768	0	0	0	0	0	10	0	10	190.
1995	9781	3358	0	0	0	0	0	28	0	28	1318
1996	9145	2963	0	0	0	0	9	129	0	135	122,
1997	11927	4267	0	0	0	0	0	64	0	64	162
1998	14371	5583	0	0	0	0	_	6	0	10	19964
1999	77.37	4594	0	0	0	0	0	9	0	9	123
2000	9299	4043	0	0	0	0	0	0	0	0	. 26
2001	9089	4111	0	0	0	0	0	0	0	0	104
2002	2090	3580	0	0	0	0	0	9	0	9	10670
2003	8090	4794	0	0	0	0	0	0	0	0	12884
2004	2000	5061	c	_	c	c	c	c	c	•	1001

Table M2. Stratified mean catch per tow in weight (kg) and numbers for Scotian Shelf, Gulf of Maine, and Georges Bank pollock in NEFSC offshore spring and autumn bottom trawl surveys¹, 1963-2005³. Indices for the total stock and the mature component are listed

			Z	ш	ns j	urvey²		_				NEFSC AL	Autumn Survey				
	Linear	Be-trans	Linear	Re-trans	Linear	Re-trans	Linear	Re-trans	Linear	Re-trans	Linear	Re-trans	a P	Re-trans	Linear	Re-trans	
1963		1		1		1	1	1	5.502	4.939	5.164	4.636	1.401	1.289	1.113	1.024	
1964	ı	ı	I	ı	ı	ı	1	ı	7	.71	.09	.33	7	.13	0.	. 62	
1965	ı	ı	ı	ı	ı	ı	ı	ı	2.977	2.362	2.657	2.108	0.903	0.847	0.555	. 52	
96	ı	ı	ı	ı	ı	ı	1	ı	.5	.79	0.	7.	.06	.63	4.	. 29	
96	ı	ı	ı	ı	ı	ı	1	ı	o.	.31	.80	(1		.47	ς.	. 33	
96	4.537	.87	4.292	2.721	1.121		0.677	.56	3.494	. 65	.34	ц,	7.	.69	. 56		
1969	.72	. 58	4	2	1.157	.01	.5	4.	2	.42	. 99	.32	0	.88	.24	. 79	
97	\sim	. 92	. 92	9.	1.659	4.	0.994	.86	2	.69	.08	ц,	.60	.58	ω.	.36	
1971	.47	. 83	.26	. 66	0.973	.00	.5	.54	.36	.18	3.833	٠,	•	.77	0.612	.39	
1972	0.	.61	.05	•	3.871	.14	.86	.47	∞	.27	0.	01	4.	.17		. 59	
1973	.92	. 83	0	. 73	4.329	.71	0.	.40	4.683	.03	.38	1-	•	.10	φ.		
1974		.15	. 55	.73	1.344	.17	. 7	.66	.33	.54	2.912	•	o.	.57	0.654	.39	
97	°.	. 58	.40	0.	1.621	.29	.01	.81	.08	.49	°.	•	0.718	.49	ς.	.26	
1976	0	.49	. 79	.06	1.612	.48	•	.12	ς.	.56	.40	Π.	0.	.89	•	.72	
1977	. 59	.29	.20	.94	1.717	.31	φ.	.67	ω.	.62	۲.	.27	ς.	.30	•	ο.	
97	13	.10	.27	. 58	φ.	.83	.09	.48	6.275	.86	0.	.71	1.064	.72	0.790	.53	
97	.58	.75	.34	. 55	1.036	.93	•	.71	۲.	.07		.84	0.865	.71	0.718	•	
98	.19	.53	.71	.12	1.451	.06	.98	.72		.64	3.202	.57	0.580	.54	0.470	0.441	
1981	.74	.39	.41	.07		.22	°.	.86	. 68	.08	Η.	.87	1.033	.34	0.672	0.222	
1982	.37	.34	.83	.06	.75	.76	•	.97	2.118	ς.	∘	.26	٠.	.57	0.493	0.373	
1983	. 59	.01	.53	. 98		.66	.25	.18	∞	.27	.83	.20	0.976	.57	.47	. 28	
1984	.11	.29	.00	.21	0.	.91	0.688	.58	· 0	.56	٠.	.48	4.	.36	.18	.16	
1985	.13	.44	.40	. 65		.72	12.014	.24	2.114	.74	1.875	.54	1.080	۲.	0.454	. 29	
1986	.25	. 28	.12	.21	°.	.33	9.	.13	1.707	∞	.46	0.935	0.898	.57	.5	. 33	
1987	.77	.87	.51	. 69		.73	.5	.27	2.035	.22	1.924	.15	.5	.50	ς.	. 32	
1988	0.	.38	. 95	.33	.90	.75	0.339	0.283	13.021	.78	.08	1.659	S	.86	Η.	0.725	
1989	.21	.15	.04	.08	.99	.02		.80	.22	.61	.72	.36	.88	.77	4.	.18	
1990	.82	.16	.67	.07	.76	.56	.44	.32	.07	. 99	.88	ο.	.82	.5	.50	.35	
1991	.05	.79	. 73	. 62	ω.	.39	1.762	.07	0.	.64	. 85	. 52		.53	.40	.30	
1992	.34	.16	.13	.03	۲.	.24	. 75	. 52	. 69	. 91		.80	.05	.64	. 52	.31	
1993	1.602	1.248	1.358	1.058	64	1.163	0.534	0.377	.76	0.505	0.570	0.374	1.043	0.567	0.195	0.106	
1994	90.	.84	. 97	. 76	. 56	.50	38	.34	. 60	.32	. 50	.27	.42	.31	.27	19	
1995	.71	.30	. 65	. 93	m	. 82	1.984	.47	1.017	0	∞	0.390	84	0.465	\vdash	. 28	
1996	.08	. 75	.02	.71	. 65	.51	.34	.26	0.	0.65	.00	.53	00.	.00	4.	. 28	
1997	.2	.06	•	. 74	9	.80	. 69	ი.	.51	1.0	.09	.72		.92	.61	.31	
1998	.64	. 56	.13	. 26	. 60	.50	.90	. 52	0	.77	.86	.50	.10	.74	•	. 19	
1999	.06	. 86	.74	. 60	٦.	.02	\vdash	.19	.09	.53	. 59	. 28	.41	1.394	.16	. 67	
2000	.36	. 99	22	.89	0	.97	.43	. 28	4.	.84	. 52	.30	.77	3	. 58	.27	
2001	.02	.27	. 85	.16		.27	.72	.54	9	.44	90	.10	.38	.81	9	.03	
2002		. 24	_	.16	9	.63	.48	.40	ი.	. 85	.42	1.698	.13	.46	.30	.07	
2003		99.	.73	. 54		.73	0.242	.12	.95	2.197	ς.	Ŋ	ς.	2.043	4.790	1.329	
2004	0.744	∞	0.703	0.553	ω	0.380	⊢.	⊣.	4.206	.92	3.440	1.574	3.221	.39	2.122	.91	
2005 NEESCS	.700	2.42	.5	.35	2.046	.25	1.612	0.991									
INEFOCO	Š	01500, 0	-01540, 0150	0-01400.													

¹ NEFSC Strata 01130-01300, 0133-0-01340, 01360-01400.

² The "36 Yankee" trawl was used from 1970-1972, and 1982-2002; the "41 Yankee" trawl was used from 1973-1981.

No gear conversion factors are available to adjust for differences in fishing power.

³ BMV oval doors were used from 1970-1984; since 1985 Portuguese polyvalent doors have been used. No door conversion factors were applied. Surveys performed using *RV Albatross IV* and *RVV Delaware II*; No vessel conversion factors were applied.

Table M3. Total commercial landings (mt), NEFSC autumn survey biomass index (kg/tow, LN retransformed), exploitation ratio (relative F) and replacement ratio For pollock in NAFO Subareas 5&6, 1963-2004.

Replacement Ratio 5-yr Avg						1.011	1.580	0.736	1.006	1.454	1.524	0.527	0.586	3.416	1.487	0.908	0.966	0.560	0.219	0.394	0.489	0.270	1.256	0.903	1.014	1.516	0.483	0.769	0.568	0.863	0.509	0.446	0.744	1.129	1.729	1.289	2.349	0.945	2.547	1.406	1.474	1.084
tio (Rel. F) 3-yr Avg		1 (2.695	4.298	4.683	2.720	3.988	4.620	6.238	5.447	4.127	4.197	5.883	3.460	3.112	3.706	4.081	6.673	8.483	11.464	14.364	19.331	17.656	23.423	16.537	12.665	9.840	9.883	12.732	12.015	14.350	12.219	9.788	8.406	7.612	9.190	5.072	4.994	3.532	3.013	2.868	3 513
Exploitation Ratio (Rel. F) Annual 3-y	1.264	3.31/	3.810	5.486	6.515	1.968	2.869	7.049	6.945	3.969	3.239	8.037	9.284	1.562	2.891	5.776	4.529	8.893	20.377	14.271	13.984	36.583	12.095	24.341	18.272	9.683	19.229	11.269	14.792	11.236	19.550	21.643	8.655	6.367	5.467	9.639	3.649	6.209	2.320	2.787	2.829	3 636
r Tow 3-yr Avg			3.339	2.291	1.822	1.920	2.463	2.592	2.437	2.389	3.168	2.953	2.358	3.868	5.230	6.019	4.521	3.528	2.601	1.698	1.240	1.067	1.193	1.132	1.351	1.366	1.210	1.133	0.754	0.851	0.688	0.581	0.446	0.495	0.720	0.810	1.102	1.049	1.608	1.716	2.167	1 992
Mean Weight (kg) per Tow Annual	4.939	2.716	2.362	1.795	1.31	2.654	3.424	1.699	2.189	3.279	4.037	1.542	1.494	8.567	5.628	3.862	4.074	2.647	1.083	1.364	1.274	0.564	1.742	1.089	1.223	1.787	0.619	0.994	0.649	0.91	0.505	0.328	0.504	0.654	1.003	0.772	1.532	0.844	2.448	1.855	2.197	1 925
Landings SA5&6	6241	8008	0006	9847	8534	5222	9822	11976	15203	13013	13076	12393	13871	13382	16273	22305	18452	23539	22068	19466	17816	20633	21069	26507	22347	17304	11903	11201	0096	10225	9873	4002	4362	4164	5483	7441	5591	5240	2680	5170	6215	2000
	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004

Figure M1

Divs. 4VWX+SA 5 Pollock Trends in Landings and Biomass

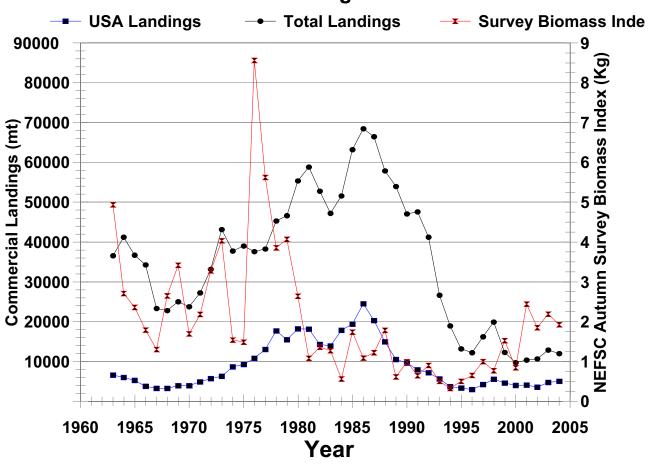


Figure M2

Pollock in SA 5&6

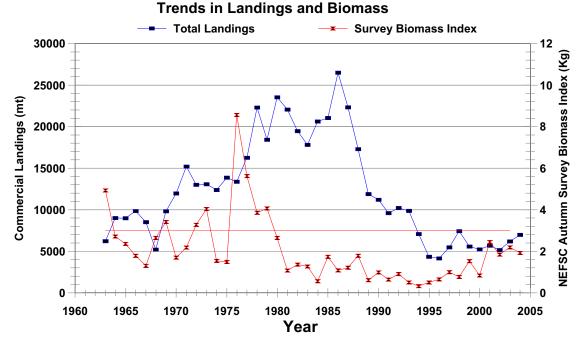


Figure M3

Pollock in SA 5&6

Landings and Exploitation Ratio

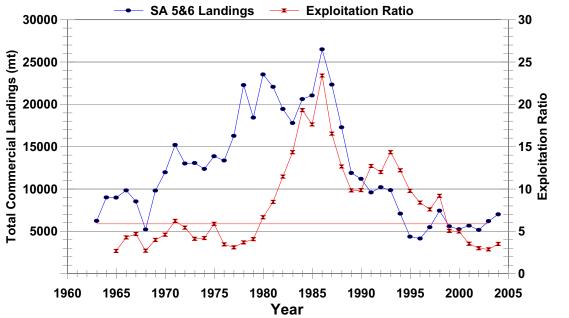


Figure M4

Pollock in SA 5&6 5 Year Average Replacement Ratios

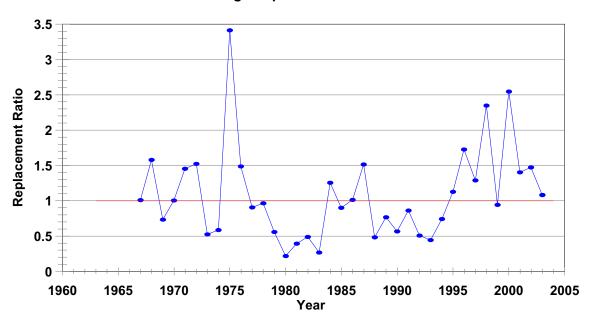


Figure M5

Pollock in SA 5&6 Replacement Ratio and Survey Biomass

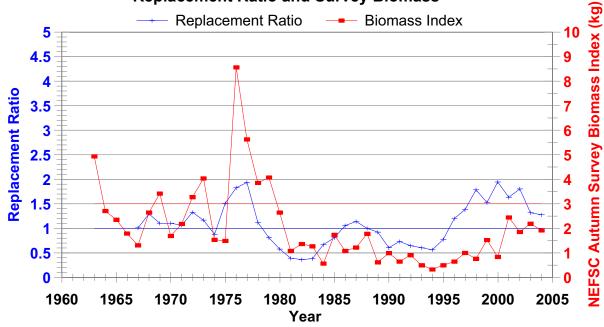
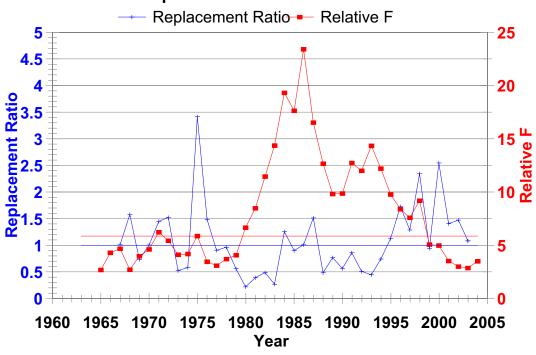



Figure M6

Pollock in SA 5&6 Replacement Ratio and Relative F

