SET UNION

PURPOSE

Carry out the union of 2 sets with numeric elements.

DESCRIPTION

The union of two sets is the set containing elements that are in either of the 2 original sets (but not neccessarily both sets). Repeats are only counted once. For example, the union of the 5-element set 13579 and the 4 -element set 14916 is the 7 -element set 135794 16.

SYNTAX

LET <v3> = SET UNION <v1> <v2> <SUBSET/EXCEPT/FOR qualification>
where $\langle\mathrm{v} 1\rangle$ is the variable containing the elements of the first set;
$<\mathrm{v} 2>$ is the variable containing the elements of the second set;
$<\mathrm{v} 3>$ is the variable containing the elements of the resultant set;
and where the <SUBSET/EXCEPT/FOR qualification> is optional and rarely used in this context.

EXAMPLES

LET Y3 = SET UNION Y1 Y2

NOTE

If the elements of a mathematical "set" are numbers (or can be translated into numbers-- always possible), then a DATAPLOT variable can be used to store the items of the mathematical set. To store the set with the 12 elements 1357111491618 27, form the variable Y with the following command:

$$
\text { LET Y = DATA } 135711149161827
$$

Larger sets can be created with the READ or SERIAL READ commands.

DEFAULT

None

SYNONYMS

None
RELATED COMMANDS
SET CARDINALITY $=$ Computes the number of elements in a set.
SET INTERSECTION $=\quad$ Carries out a set intersection.
SET COMPLEMENT $=$ Carries out a set complement.
SET CARTESIAN PRODUCT
$=\quad$ Carries out a set Cartesian product.
SET DISTINCT $=\quad$ Extracts the distinct elements of set.

APPLICATIONS

Mathematics
IMPLEMENTATION DATE 87/10

```
PROGRAM
    LET Y1 = DATA 1 3579
    LET Y2 = DATA 14916
    LET Y3 = SET UNION Y1 Y2
    SET WRITE DECIMALS 0
    WRITE Y1 Y2 Y3
```

