сhapter 3 Mathematics LET Subcommands

The execution of a variety of mathematical operations is done via subcommands under the LET command, as in

$$
\begin{aligned}
& \text { LET } A=\text { SUM } X \\
& \text { LET B }=\text { INTEGRAL F WRT X FOR X }=0 \text { TO } 10 \\
& \text { LET } C=\text { SORT X }
\end{aligned}
$$

The math operations are of 5 types:

1. the operation is applied to a variable and the result is a parameter.
2. the operation is applied to a variable and the result is a variable.
3. the operation is applied to a function.
4. the operation generates sequences or patterns.
5. the operation is applied to a matrix.

A parameter is a single scalar value while a variable is a list of one or more data values. This chapter documents the first four types of operations while chapter 4 documents the matrix subcommands.

Basic operations and data transformations:	
CODE	Code the elements in a variable.
CODE2	Binary code the elements in a variable.
CODE4	Quartile code the elements in a variable.
CODE8	Octal code the elements in a variable.
COCODE	Code one variable by another variable.
COCOPY	Code one variable by another variable.
CUMULATIVE SUM	Compute the partial sums of the elements in a variable.
CUMULATIVE PRODUCT	Compute the partial products of the elements in a variable.
DISTINCT (or SET DISTINCT)	Extract the distinct elements from a variable.
FREQUENCY	Compute the frequency of elements in a variable.
PRODUCT	Compute the product of elements in a variable.
RANK	Rank the elements in a variable.
SEQUENTIAL DIFFERENCE	Compute the sequential differences of elements in a
SORT	variable.
SORTC	Sort the elements in a variable in increasing order.
SUM	Sort one variable and carry one or more other variables.
WEIBULL ADJUSTED RANKS	Compute the sum of elements in a variable.
Generate sequences and patterns	Compute the Weibull adjusted ranks.
CANTOR NUMBERS	Generate Cantor numbers.
DATA	Place numbers in a variable.
FIBONNACCI NUMBERS	Generate Fibonnacci numbers.

FRACTAL
LOGISTIC NUMBERS
PATTERN
PRIME NUMBERS
SEQUENCE

Generate a fractal sequence.
Generate numbers from a logistic sequence.
Generate a patterned sequence within a variable.
Generate prime numbers.
Generate a sequence within a variable.

Derivatives, integrals, convolution, differential equations, and roots

CONVOLUTION

CUMULATIVE INTEGRAL
DECONVOLUTION
DERIVATIVE
INTEGRAL

ROOTS
RUNGE KUTTA

Interpolation

BILINEAR INTERPOLATION

BIVARIATE INTERPOLATION
INTERPOLATION
LINEAR INTERPOLATION
2D INTERPOLATION

Fourier and related transforms:
COSINE TRANSFORM

```
FFT
```

FOURIER TRANSFORM
INVERSE FFT
INVERSE FOURIER TRANSFORM
SINE TRANSFORM
Complex arithmetic
COMPLEX ADDITION
COMPLEX CONJUGATES
COMPLEX DIVISION
COMPLEX EXPONENTIATION
COMPLEX MULTIPLICATION
COMPLEX ROOTS
COMPLEX SQUARE ROOTS
COMPLEX SUBTRACTION
Polynomial arithmetic
POLYNOMIAL ADDITION
POLYNOMIAL DIVISION
POLYNOMIAL EVALUATION
POLYNOMIAL MULTIPLICATION

Compute the convolution of the elements in 2 variables.
Compute the partial integrals of elements in a variable.
Compute the deconvolution of the elements in a variable.
Compute the analytic derivative of a function.
Compute the definite integral of a function or the integral of the elements in a variable.
Compute the roots of a function.
Solve a first or second order ordinary differential equation using the Runge-Kutta method.

Compute a bilinear interpolation from a grid to random points of a 2D series of points.
Compute a bivariate interpolation from a grid to random points of a 2D series of points.
Carry out a cubic spline interpolation.
Compute a linear interpolation of a series of points.
Compute a bivariate interpolation from a 2D series of points to a rectangular grid.

Compute the cosine transform.
Compute the fast Fourier transform.
Compute the Fourier transform.
Compute the inverse fast Fourier transform.
Compute the inverse Fourier transform.
Compute the sine transform.

Compute a complex addition.
Compute a complex conjugate.
Compute a complex division.
Compute a complex exponentiation.
Compute a complex multiplication.
Compute complex roots.
Compute a complex square roots.
Compute a complex subtraction.

Compute a polynomial addition.
Compute a polynomial division.
Compute a polynomial evaluation.
Compute a polynomial multiplication.

POLYNOMIAL SQUARE
POLYNOMIAL SUBTRACTION
Vector operations:
VECTOR ADDITION
VECTOR ANGLE
VECTOR CROSS PRODUCT
VECTOR DISTANCE
VECTOR DOT PRODUCT
VECTOR LENGTH
VECTOR SUBTRACTION

Set operations:

SET CARDINALITY
SET CARTESIAN PRODUCT
SET COMPLEMENT
SET INTERSECTION
SET UNION

Logical operations:

LOGICAL AND
LOGICAL IFF
LOGICAL IFTHEN
LOGICAL NAND
LOGICAL NOR
LOGICAL NOT
LOGICAL OR
LOGICAL XOR

Compute a polynomial squaring.
Compute a polynomial subtraction.

Compute a vector addition.
Compute a vector angle.
Compute a vector cross product.
Compute a vector distance.
Compute a vector dot product.
Compute a vector length.
Compute a vector subtraction.

Compute the set cardinality.
Carry out set cartesian product.
Carry out set complement.
Carry out set intersection.
Carry out set union.

Carry out logical and.
Carry out logical iff.
Carry out logical ifthen.
Carry out logical nand.
Carry out logical nor.
Carry out logical not.
Carry out logical or.
Carry out logical xor.

