SINGULAR VALUE DECOMPOSITION

PURPOSE

Compute the singular value decomposition of a matrix.

DESCRIPTION

If X is a matrix with row and column dimensions n and p respectively, then an n by n orthogonal matrix U and ap by p orthogonal matrix V can be found such that:

$$
\mathrm{U}^{\mathrm{T}} \mathrm{XV}=\left[\begin{array}{c}
\Sigma \tag{EQ4-74}\\
0
\end{array}\right]
$$

where Σ is a m by m diagonal matrix (m is the minimum of n and p). The diagonal elements of Σ are the singular values of X and they are stored from largest to smallest. The above assumes that $\mathrm{n}>=\mathrm{p}$. A right hand side becomes [$\Sigma 0$] if $\mathrm{N}<\mathrm{p}$. Singular values of zero (or near zero) indicate that the matrix is singular (i.e., not of full rank) or ill-conditioned. Chapters 2 and 14 of the Numerical Recipes book describe some applications of the SVD.

Since U and V are orthogonal (and so their inverses are equal to their transpose), the above equation can also be written as:

$$
\mathrm{X}=\mathrm{U}\left[\begin{array}{l}
\Sigma \tag{EQ4-75}\\
0
\end{array}\right] \mathrm{V}^{\mathrm{T}}
$$

For large matrices, it can be impractical to compute U (which is n by n). However, U can be partitioned into

$$
\mathrm{U}=(\mathrm{U} 1, \mathrm{U} 2)
$$

where U1 is n by p. Then

$$
\mathrm{X}=\mathrm{U} 1 \Sigma \mathrm{~V}^{\prime}
$$

is called the singular value factorization of X . Several multivariate statistical techniques are based on this factorization.

SYNTAX

LET <u> <s> <v> = SINGULAR VALUE DECOMPOSITION <mat> <SUBSET/EXCEPT/FOR qualification>
where <mat> is a matrix for which the singular values are to be computed;
< u > is an n by n matrix where U is saved;
$\langle s\rangle$ is a variable where the singular values are saved (length is minimum of n and p);
$\langle v\rangle$ is an p by p matrix where V is saved.
and where the <SUBSET/EXCEPT/FOR qualification> is optional and rarely used in this context.

EXAMPLES

LET U S V = SINGULAR VALUE DECOMPOSITION A

NOTE 1

DATAPLOT uses the LINPACK routine SSVDC to calculate the singular value decomposition.

NOTE 2

DATAPLOT will calculate the singular value decomposition even if $\mathrm{N}<=\mathrm{p}$. However, in practice this is almost never done.

DEFAULT

None
SYNONYMS
None
RELATED COMMANDS
MATRIX EIGENVALUES $=$ Compute the matrix eigenvalues.
MATRIX EIGENVECTORS $=$ Compute the matrix eigenvectors.
MATRIX MULTIPLICATION $\quad=\quad$ Perform a matrix multiplication.

MATRIX SOLUTION	$=$	Solve a system of linear equations.
CORRELATION MATRIX	$=$	Compute the correlation matrix of a matrix.
VARIANCE-COVA MATRIX	$=$	Compute the variance-covariance matrix of a matrix.
SINGULAR VALUES	$=$	Compute the singular values of a matrix.
SINGULAR VALUE FACT	$=$	Compute the singular value factorization of a matrix.

REFERENCE

"LINPACK User's Guide," Dongarra, Bunch, Moler, Stewart. Siam, 1979.
"Numerical Recipes: The Art of Scientific Programming (FORTRAN Version)," Press, Flannery, Teukolsky, and Vetterling, Cambridge University Press, 1989 (chapter 2).

APPLICATIONS

Linear Algebra, Multivariate Analysis

IMPLEMENTATION DATE

93/8

PROGRAM

DIMENSION 100 COLUMNS
SKIP 25
COLUMN LIMITS 20132
READ MATRIX AUTO79.DAT X
LET U S V = SINGULAR VALUE DECOMPOSITION X

