MATRIX REPLACE ROW

PURPOSE

Copy a variable into a row of a matrix.

DESCRIPTION

This command is useful when operating on rows (rather than columns) of a matrix. You can loop over the rows, extract a row, operate on the row, and then replace the row. An example might be to subtract the row means from a matrix. An alternative is to take the transpose of the matrix and loop over the columns of the transposed matrix. Although this is simpler, it does not work when there are too many rows. The default limits for matrices are 750 rows by 100 columns.

SYNTAX

LET <mat2> = MATRIX REPLACE ROW <mat1> <var> <rowid>
where <mat1> is a matrix for which the row is to be replaced;
<var> is a variable;
<rowid> is the row number to be replaced;
and <mat2> is a matrix where the replaced row is saved (it typically has the same name as <mat1>).

EXAMPLES

LET C = MATRIX REPLACE ROW C A 3

DEFAULT

None

SYNONYMS

None

RELATED COMMANDS

MATRIX ROW $=\quad$ Extract a row of a matrix.

MATRIX REPLACE ELEMENT $=\quad$ Replace an element of the matrix.
MATRIX DEFINITION $=\quad$ Set a matrix definition.
MATRIX ELEMENT $=\quad$ Extract an element of the matrix.
MATRIX SUBMATRIX $=$ Define a matrix submatrix.

APPLICATIONS

Linear Algebra

IMPLEMENTATION DATE 93/10

PROGRAM
. MULTIPLYING A MATRIX BY A DIAGONAL MATRIX IS EQUIVALENT TO
. MULTIPLYING EACH ROW BY THE CORRESPONDING DIAGONAL ELEMENT.
READ MATRIX M
143732
194217
121710
END OF DATA
LET DIAG = DATA -6 84
LET NROW = MATRIX NUMBER OF COLUMNS M
LOOP FOR K = 11 NROW
LET TEMP = MATRIX ROW M K
LET A = DIAG(K)
LET TEMP = A*TEMP
LET M = MATRIX REPLACE ROW M TEMP K
END OF LOOP
PRINT M
The following output is generated.
MATRIX M -- 3 ROWS
-- 3 COLUMNS
VARIABLES--M1 M2 M3
$\begin{array}{rrr}-0.8400000 \mathrm{E}+02 & -0.2220000 \mathrm{E}+03 & -0.1920000 \mathrm{E}+03 \\ 0.1520000 \mathrm{E}+03 & 0.3360000 \mathrm{E}+03 & 0.1360000 \mathrm{E}+03 \\ 0.4800000 \mathrm{E}+02 & 0.6800000 \mathrm{E}+02 & 0.4000000 \mathrm{E}+02\end{array}$
$0.4800000 \mathrm{E}+02 \quad 0.6800000 \mathrm{E}+02 \quad 0.4000000 \mathrm{E}+02$

