MATRIX MINOR

PURPOSE

Compute the matrix minors of a matrix.

DESCRIPTION

The minor $B_{i j}$ is the determinant of matrix A with row i and column j omitted. The corresponding cofactor is $\left.(-1)^{(i+j}\right)_{*} B_{i j}$. The determinant of the reduced matrix is calculated with an LU decomposition. Matrices for which a minor is computed must have the same number of rows and columns. An error message is printed if they do not.

SYNTAX

LET <par> = MATRIX MINOR <mat> <rowid> <colid> <SUBSET/EXCEPT/FOR qualification> where <mat> is a matrix for which the minor is to be computed;
<rowid> is the row of <mat $1>$ for which a minor is to be computed; <colid> is the column of <matl> for which a minor is to be computed; <par> is a parameter where the resulting minor is saved;
and where the <SUBSET/EXCEPT/FOR qualification> is optional and rarely used in this context.

EXAMPLES

LET C = MATRIX MINOR A 43
LET C = MATRIX MINOR A K J
DEFAULT
None

SYNONYMS

None
RELATED COMMANDS
MATRIX ADJOINT $=\quad$ Compute the adjoint matrix of a matrix.
MATRIX COFACTOR $=\quad$ Compute a matrix cofactor.
MATRIX DEFINITION $=$ Set a matrix definition.
MATRIX DETERMINANT $=$ Compute a matrix determinant.
MATRIX SUBMATRIX $=\quad$ Define a matrix submatrix.

REFERENCE

Any standard text on linear algebra.

APPLICATIONS

Linear Algebra

IMPLEMENTATION DATE

 87/10
PROGRAM

DIMENSION 100 COLUMNS
SKIP 25
COLUMN LIMITS 115
READ MATRIX AUTO83.DAT X
LET C $=$ VARIANCE-COVARIANCE MATRIX X
LET NC = MATRIX NUMBER OF COLUMNS C
LET NR = NC
LOOP FOR J = 11 NC
LOOP FOR I = 11 NR
LET TEMP = MATRIX MINOR C I J
LET B(I) = TEMP
END OF LOOP
LET A^J = B
END OF LOOP
LET A = MATRIX DEFINITION A1 NR NC PRINT A

The following matrix is printed.
VARIABLES--A1 A2 A3 A4

$0.8735344 \mathrm{E}+06$	$-0.6206164 \mathrm{E}+06$	$0.2569923 \mathrm{E}+05$	$-0.5241652 \mathrm{E}+05$
$-0.6206158 \mathrm{E}+06$	$0.6479352 \mathrm{E}+08$	$0.1027997 \mathrm{E}+07$	$0.1858257 \mathrm{E}+06$
$0.2569925 \mathrm{E}+05$	$0.1027997 \mathrm{E}+07$	$0.2613389 \mathrm{E}+05$	$0.2129365 \mathrm{E}+05$
$-0.5241648 \mathrm{E}+05$	$0.1858264 \mathrm{E}+06$	$0.2129366 \mathrm{E}+05$	$0.6535403 \mathrm{E}+05$

