MATRIX COFACTOR

PURPOSE

Compute the matrix cofactors of a matrix.

DESCRIPTION

If B_{ij} is the determinant of matrix A with row i and column j omitted, then the cofactor of row i and column j is $(-1)^{(i+j)*}B_{ij}$ (the B_{ij} are called the minors). Matrices for which cofactors are computed must have the same number of rows and columns. An error message is printed if they do not.

SYNTAX

LET colid> = MATRIX COFACTOR <mat> <rowid> <colid> <SUBSET/EXCEPT/FOR qualification>

where <mat> is a matrix for which a cofactor is to be computed;

<rowid> is the row of <mat1> for which a cofactor is to be computed;

<colid> is the column of <mat1> for which a cofactor is to be computed;

<par> is a parameter where the computed cofactor is saved;

and where the <SUBSET/EXCEPT/FOR qualification> is optional and rarely used in this context.

EXAMPLES

LET C = MATRIX COFACTOR A 2 3

DEFAULT

None

SYNONYMS

None

RELATED COMMANDS

MATRIX ADJOINT	=	
MATRIX DEFINITION	=	
MATRIX DETERMINANT	=	
MATRIX MINOR	=	
MATRIX NUMBER OF COLUMNS	=	
MATRIX NUMBER OF ROWS	=	
MATRIX SUBMATRIX	=	

- Compute the adjoint matrix of a matrix.
- Set a matrix definition. Compute a matrix determinant.
- Compute a matrix determina Compute a matrix minor.
- Compute the number of columns in a matrix.
- Compute the number of rows in a matrix.
- Define a matrix submatrix.

REFERENCE

Any standard text on linear algebra.

APPLICATIONS

Linear Algebra

IMPLEMENTATION DATE

87/10

PROGRAM

DIMENSION 100 COLUMNS READ MATRIX X 16 16 19 21 20 14 17 15 22 18 24 23 21 24 20 18 17 16 15 20 18 11 9 18 7 END OF DATA LET NROW = SIZE X1 LET NCOL = MATRIX NUMBER OF COLUMNS X LOOP FOR J = 1.1 NCOL LOOP FOR I = 1.1 NROW LET B = MATRIX COFACTOR X I J LET TEMP(I) = BEND OF LOOP LET $A^J = TEMP$ END OF LOOP LET A = MATRIX DEFINITION A1 NROW NCOL PRINT A

The following cofactor matrix is generated:

MATRIX A	 	5 ROWS 5 COLUMNS	5	
VARIABLESA1	A2	А3	A4	A5
-0.3107999E+04 -0.2030000E+04 0.3542000E+04	0.6759999E+04 -0.1529998E+04	0.7170000E+04 -0.6606000E+04 0.5420000E+04 -0.5666000E+04 -0.2796000E+04	0.2962000E+04 -0.2260000E+04 -0.2098000E+04	-0.6560000E+04 0.5976000E+04