MATRIX COFACTOR

PURPOSE

Compute the matrix cofactors of a matrix.

DESCRIPTION

If $B_{i j}$ is the determinant of matrix A with row i and column j omitted, then the cofactor of row i and column j is $(-1){ }^{(i+j)} * B_{i j}\left(\right.$ the $B_{i j}$ are called the minors). Matrices for which cofactors are computed must have the same number of rows and columns. An error message is printed if they do not.

SYNTAX

LET <par> = MATRIX COFACTOR <mat> <rowid> <colid> <SUBSET/EXCEPT/FOR qualification> where <mat> is a matrix for which a cofactor is to be computed;
<rowid> is the row of <matl> for which a cofactor is to be computed;
<colid> is the column of <mat1> for which a cofactor is to be computed;
<par> is a parameter where the computed cofactor is saved;
and where the <SUBSET/EXCEPT/FOR qualification> is optional and rarely used in this context.

EXAMPLES

LET C = MATRIX COFACTOR A 23

DEFAULT

None

SYNONYMS

None

RELATED COMMANDS

MATRIX ADJOINT $=\quad$ Compute the adjoint matrix of a matrix.
MATRIX DEFINITION $=\quad$ Set a matrix definition.
MATRIX DETERMINANT $=\quad$ Compute a matrix determinant.
MATRIX MINOR $=$ Compute a matrix minor.
MATRIX NUMBER OF COLUMNS $=\quad$ Compute the number of columns in a matrix.
MATRIX NUMBER OF ROWS $=\quad$ Compute the number of rows in a matrix.
MATRIX SUBMATRIX $=$ Define a matrix submatrix.

REFERENCE

Any standard text on linear algebra.
APPLICATIONS
Linear Algebra
IMPLEMENTATION DATE
87/10

PROGRAM

DIMENSION 100 COLUMNS
READ MATRIX X
1616192120
1417152218
2423212420
1817161520
18119187
END OF DATA
LET NROW = SIZE X1
LET NCOL = MATRIX NUMBER OF COLUMNS X
LOOP FOR J = 11 NCOL
LOOP FOR I = 11 NROW
LET B = MATRIX COFACTOR X I J
LET TEMP $(\mathrm{I})=\mathrm{B}$
END OF LOOP
LET A^J = TEMP
END OF LOOP
LET A = MATRIX DEFINITION A1 NROW NCOL
PRINT A

The following cofactor matrix is generated:
MATRIX A -- 5 ROWS

$$
--\quad 5 \text { COLUMNS }
$$

VARIABLES--A1	A2	A3	A4	A5
$0.6999982 \mathrm{E}+02$	$-0.7590000 \mathrm{E}+04$	$0.7170000 \mathrm{E}+04$	$0.1030000 \mathrm{E}+04$	$-0.1199995 \mathrm{E}+03$
$-0.3107999 \mathrm{E}+04$	$0.4170002 \mathrm{E}+04$	$-0.6606000 \mathrm{E}+04$	$0.2962000 \mathrm{E}+04$	$0.2315999 \mathrm{E}+04$
$-0.2030000 \mathrm{E}+04$	$0.6759999 \mathrm{E}+04$	$0.5420000 \mathrm{E}+04$	$-0.2260000 \mathrm{E}+04$	$-0.6560000 \mathrm{E}+04$
$0.3542000 \mathrm{E}+04$	$-0.1529998 \mathrm{E}+04$	$-0.5666000 \mathrm{E}+04$	$-0.2098000 \mathrm{E}+04$	$0.5976000 \mathrm{E}+04$
$0.3472000 \mathrm{E}+04$	$-0.3980000 \mathrm{E}+04$	$-0.2796000 \mathrm{E}+04$	$0.1892000 \mathrm{E}+04$	$0.1076001 \mathrm{E}+04$

