MATRIX ADJOINT

PURPOSE
Compute the classical adjoint of a matrix.

DESCRIPTION

The classical adjoint of a matrix is the matrix of cofactors. That is, if B_{ij} is the determinant of matrix A with row i and column j omitted, then the cofactor of row i and column j is $(-1)^{(\mathrm{i}+\mathrm{j})}$) B_{ij}. Matrices for which the adjoint is computed must have the same number of rows and columns. An error message is printed if they do not.

SYNTAX

LET <mat2> = MATRIX ADJOINT <mat1> <SUBSET/EXCEPT/FOR qualification> where <matl> is a matrix;
<mat2> is a matrix where the resulting matrix adjoint is saved; and where the <SUBSET/EXCEPT/FOR qualification> is optional and rarely used in this context.

EXAMPLES
 LET C = MATRIX ADJOINT A

DEFAULT
None

SYNONYMS

None

RELATED COMMANDS

MATRIX COFACTOR $=\quad$ Compute a matrix cofactor.
MATRIX DETERMINANT $=\quad$ Compute a matrix determinant.
MATRIX MINOR $=$ Compute a matrix minor.

REFERENCE

Any standard text on linear algebra.

APPLICATIONS

Linear Algebra

IMPLEMENTATION DATE

93/8

PROGRAM

READ MATRIX X
192120
152218
212420
END OF DATA
LET A = MATRIX ADJOINT X
PRINT A
The following adjoint matrix is generated:

MATRIX A -- 3 ROWS
-- 3 COLUMNS
VARIABLES--A1
A2
A3

$$
\begin{array}{rrr}
0.8000015 \mathrm{E}+01 & 0.7799998 \mathrm{E}+02 & -0.1020000 \mathrm{E}+03 \\
0.6000000 \mathrm{E}+02 & -0.4000000 \mathrm{E}+02 & -0.1500002 \mathrm{E}+02 \\
-0.6199997 \mathrm{E}+02 & -0.4199998 \mathrm{E}+02 & 0.1030000 \mathrm{E}+03
\end{array}
$$

