MATRIX ADJOINT

PURPOSE

Compute the classical adjoint of a matrix.

DESCRIPTION

The classical adjoint of a matrix is the matrix of cofactors. That is, if B_{ij} is the determinant of matrix A with row i and column j omitted, then the cofactor of row i and column j is $(-1)^{(i+j)*}B_{ij}$. Matrices for which the adjoint is computed must have the same number of rows and columns. An error message is printed if they do not.

SYNTAX

LET <mat2> = MATRIX ADJOINT <mat1>

<SUBSET/EXCEPT/FOR qualification>

where <mat1> is a matrix;

<mat2> is a matrix where the resulting matrix adjoint is saved;

and where the <SUBSET/EXCEPT/FOR qualification> is optional and rarely used in this context.

EXAMPLES

LET C = MATRIX ADJOINT A

DEFAULT

None

SYNONYMS

None

RELATED COMMANDS

MATRIX COFACTOR	=	Compute a matrix cofactor.
MATRIX DETERMINANT	=	Compute a matrix determinant.
MATRIX MINOR	=	Compute a matrix minor.

REFERENCE

Any standard text on linear algebra.

APPLICATIONS

Linear Algebra

IMPLEMENTATION DATE

93/8

PROGRAM

READ MATRIX X 19 21 20 15 22 18 21 24 20 END OF DATA LET A = MATRIX ADJOINT X PRINT A

The following adjoint matrix is generated:

MATRIX	A	3 ROWS
		3 COLUMNS
VARIABLESA1	A2	A3
0.8000015E+01	0.7799998E+02	-0.1020000E+03
0.600000E+02	-0.400000E+02	-0.1500002E+02
-0.6199997E+02	-0.4199998E+02	0.1030000E+03