MATRIX ADDITION

PURPOSE

Add 2 matrices, a matrix and a vector, or a matrix and a parameter.

DESCRIPTION

Matrix addition is carried out by adding the corresponding elements of the two matrices. If a parameter is added to a matrix, the parameter is added to each element of the matrix. If a vector is added to a matrix, the vector is added to each column of the matrix (i.e., the corresponding rows are added).

SYNTAX 1

LET <mat3> = MATRIX ADDITION <mat1> <mat2> <SUBSET/EXCEPT/FOR qualification> where <matl> is a matrix;
<mat2> is a matrix;
<mat3> is a matrix where the resulting matrix addition is saved; and where the <SUBSET/EXCEPT/FOR qualification> is optional and rarely used in this context.
This syntax is used to add 2 matrices.

SYNTAX 2

LET <mat3> = MATRIX ADDITION <mat1> <par> <SUBSET/EXCEPT/FOR qualification>
where <mat1> is a matrix;
<par> is a number or a parameter;
<mat3> is a matrix where the resulting matrix addition is saved; and where the <SUBSET/EXCEPT/FOR qualification> is optional and rarely used in this context.
This syntax is used to add a matrix and a parameter.

SYNTAX 3

LET <mat3> = MATRIX ADDITION <mat1> <var> <SUBSET/EXCEPT/FOR qualification>
where <matl> is a matrix;
<var> is a variable;
<mat3> is a matrix where the resulting matrix addition is saved; and where the <SUBSET/EXCEPT/FOR qualification> is optional and rarely used in this context.

This syntax is used to add a matrix and a vector.

EXAMPLES

LET C $=$ MATRIX ADDITION A B
LET C $=$ MATRIX ADDITION A 2
LET C = MATRIX ADDITION A V
NOTE
Matrices to be added must have the same number of rows and columns. A matrix and a vector to be added must have the same number of rows. An error message is printed if they do not.

DEFAULT

None

SYNONYMS

None
RELATED COMMANDS
MATRIX SUBTRACTION $=\quad$ Perform a matrix subtraction. MATRIX MULTIPLICATION
$=\quad$ Perform a matrix multiplication.
MATRIX DETERMINANT
$=\quad$ Compute a matrix determinant.
MATRIX EUCLIDIAN NORM MATRIX INVERSE MATRIX SOLUTION
$=\quad$ Compute the matrix Euclidean norm.
$=\quad$ Compute a matrix inverse.
$=\quad$ Solve a system of linear equations.

REFERENCE

Any standard text on linear algebra.

APPLICATIONS

Linear Algebra
IMPLEMENTATION DATE
87/10

PROGRAM

READ MATRIX A
123
456
789
END OF DATA
READ MATRIX B
111
222
333
END OF DATA
LET C = MATRIX ADDITION A B
PRINT C
The resulting matrix C contains:

$$
\begin{gathered}
234 \\
678 \\
101112
\end{gathered}
$$

