Visit NASA's Home Page Jet Propulsion Laboratory California Institute of Technology View the NASA Portal Click to search JPL Visit JPL Home Page Proceed to JPL's Earth Page Proceed to JPL's Solar System Page Proceed to JPL's Stars & Galaxies Page Proceed to JPL's Technology Page Proceed to JPL's People and Facilities Photojournal Home Page View the Photojournal Image Gallery
Top navigation bar

PIA00727: Deployment of Galileo and the IUS
Target Name: Earth
Is a satellite of: Sol (our sun)
Mission: Galileo
Spacecraft: Galileo Orbiter
Space Shuttle
Product Size: 620 samples x 480 lines
Produced By: Kennedy Space Center
Producer ID: P35213
Addition Date: 1997-09-10
Primary Data Set: Galileo EDRs
Full-Res TIFF: PIA00727.tif (628.2 kB)
Full-Res JPEG: PIA00727.jpg (37.42 kB)

Click on the image to download a moderately sized image in JPEG format (possibly reduced in size from original).

Updated Caption: (View Original Caption)
Deployment

Deployment of Galileo and the IUS from the cargo bay of STS-34 Atlantis at 7:15 p.m. EDT on October 18, 1989. P-35213

Mission Specialist Shannon Lucid started Galileo's deployment by pushing a button; automatic systems then took over to separate Galileo from the shuttle. As deployment finished Commander Donald E. Williams declared "Galileo is on its way to another world. It's in the hands of the best flight controllers in this world-fly safely."

Beginning an hour after deployment, two rocket stages of Galileo's IUS booster fired one after the other. Galileo separated from the IUS's second stage at 9:05 p.m. and began its ballistic (or "freefall") flight to Venus for the first of three gravity assisted flybys, which would take Galileo to Jupiter.

Galileo was the second spacecraft to be launched using the IUS ( Magellan, the Venus radar mapping mission, was the first. Interestingly, even though Magellan was launched first (in April of 1989), Galileo reached Venus first.). Built by Boeing for the Air Force, the IUS, which uses solid (as opposed to liquid) fuel, gave Galileo an additional speed of 4.0 kilometers per second (8,640 miles per hour).

Gravity Assists

Why bother flying by Venus and Earth when the idea is to get to Jupiter? Because when Galileo flew by a planet, it was also picking up a "gravity assist."

"Gravity assist" is a technique in which a miniscule fraction of a planet's orbital energy is transferred to a spacecraft, bending its path around the planet and increasing its speed around the Sun, rather like a slingshot or a game of cosmic billiards. Several such maneuvers are necessary to enable Galileo to get to Jupiter. The first gravity assist occurred at Venus on February 10, 1990. Two additional gravity assists from flybys of Earth (on December 8, 1990 and December 8, 1992) also helped to send Galileo on its way. Without the boost provided by these flybys, Galileo would need an extra 10,900 kilograms (23,980 pounds) of propellant-about twelve times more than was on board at launch.

Close flybys and gravity assists utilizing Jupiter's moons will also be used to enable Galileo to make a complex tour of Jupiter's system. An additional 3,600 kilograms (7,920 pounds) of propellant (about four times the total amount of propellant on the spacecraft at launch) would be needed to fly the tour without the billiards-like gravity assist technique.

The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA'is Office of Space Science, Washington, DC.

This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://www.jpl.nasa.gov/galileo.

Image Credit:
NASA/JPL/KSC


Latest Images Search Methods Animations Spacecraft & Telescopes Related Links Privacy/Copyright Image Use Policy Feedback Frequently Asked Questions Photojournal Home Page First Gov Freedom of Information Act NASA Home Page Webmaster
Bottom navigation bar