Short-Run Motor Gasoline Demand Model

EIA Energy Outlook, Modeling and Data Conference March 28, 2007 Washington, DC

> Michael A. Morris Industry Economist

Price Elasticity

- Range of estimates
 - Most short-run estimates are between zero and -0.5
 - Most long-run estimates are between -0.5 and -1.5
- Decline in price responses
 - EIA short-run estimates:
 - 1977 to 1989: -0.05 to -0.08
 - 1994 to 2006: -0.02 to -0.04

Income Elasticity

- Most estimates are between 0.2 and 1.5
- Estimates have declined over time
 - EIA:
 - 1977 to 1989: .85
 - 1994 to 2006: .50

Possible Reasons for Elasticity Declines

- Motor vehicle travel is a mature product
- Fuel efficiencies have increased
- Real cost per mile is lower
- Gasoline's share of disposable income has declined

Growth in Vehicles per 1000 People Has Slowed Sharply

5

Ratio of Passenger VMT to Real Personal Disposable Income (1966=1)

Motor Gasoline Vehicle Fuel Efficiency

Miles Per Gallon

Inflation-Adjusted Motor Gasoline Cost per Mile (1982-84 \$)

Motor Gasoline Expenditures as a Share of Personal Disposable Income

Short-Term Energy Outlook Motor Gasoline Model

Total motor gasoline demand =

Highway demand + Non-highway demand

Highway demand accounts for 97 percent of total motor gasoline demand. It is derived from the following identity:

Highway Demand = <u>Highway Travel</u> Fuel Efficiency

Each component is estimated separately.

Highway Motor Gasoline Demand is Highly Seasonal

Million barrels per day

Highway Motor Gasoline Demand Is Becoming Less Seasonal

Seasonal Factor

Seasonally-Adjusted Per-Capita Motor Gasoline-Related Vehicle Miles Traveled Per Day

- Dependent Variable:
- Estimation Interval

LOG(MVMGPUS_SA/POP) 1994:01 to 2006:12

	<u>Variable</u>	<u>Coefficient</u>	Std. Error	<u>t-Statistic</u>	
•	С	1.594	0.035	45.164	
•	LOG(YD87OUS/POP)	0.500	0.012	40.440	(Per Capita RDI)
•	LOG(CPMMG_SA)	-0.018	0.006	-2.967	(Real Cost Per Mile)
•	DGT250	-0.013	0.005	-2.587	(= 1 if Reg. Gr. \$/gal > 2.50)
•	DGT275	-0.007	0.007	-1.052	(= 1 if Reg. Gr. \$/gal > 2.75)
•	LOG(ZWHDDUS1/ZSAJQUS)	-0.003	0.001	-3.835	(Asymmetric Weather Var.)
•	D9401	-0.035	0.010	-3.401	(Severe Weather)
•	D9602	-0.042	0.010	-4.332	(Severe Weather)
•	D9901	-0.033	0.010	-3.409	(Severe Weather)
•	D0109	-0.030	0.010	-3.096	(9/11 Impact)

- R-squared 0.948
- Durbin-Watson stat
 1.617

Seasonally-Adjusted Log Per-Capita Motor Gasoline-Related Vehicle Miles Traveled Per Day

14

Seasonally-Adjusted Per-Capita Motor Gasoline-Related Vehicle Miles Traveled Per Day

(Alternative estimation with lagged dependent variable)

Dependent Variable:

• Estimation Interval:

LOG(MVMGPUS_SA/POP) 1994:02 to 2006:12

	Variable Name	Coefficient	Std. Error	<u>t-Statisti</u>	<u>c</u>
•	С	1.229	0.107	11.516	
•	LOG(MVMGPUS_SA(-1)/POP(-1))	0.231	0.064	3.630	(Lagged Dep. Var.)
•	LOG(YD87OUS/POP)	0.386	0.034	11.243	(Per Capita RDI)
•	LOG(CPMMG_SA)	-0.021	0.005	-3.758	(Real Cost per Mile)
•	DGT275	-0.013	0.006	-2.199	(= 1 if Reg. Gr. \$/Gal >2.75)
•	LOG(ZWHDDUS1/ZSAJQUS)	-0.003	0.001	-3.480	(Asymmetrical HDD Variable)
•	D9602	-0.040	0.009	-4.190	HDD Variable
•	D9901	-0.036	0.010	-3.761	HDD Variable
•	D0109	-0.028	0.009	-2.950	(9/11 Effect)

•	R-squared	0.948
	Design of the Address	0 000

Durbin-Watson stat 2.089

Results Using a Lagged-Dependent Variable in the VMT Equation

Partial Adjustment Hypothesis

 $\log (VMT/POP)_{t} - \log (VMT/POP)_{t-1} = \lambda (\log (VMT^*/POP)_{t} - \log (VMT/POP))_{t-1}$

where $0 < \lambda < 1$ and VMT^{*} = desired (target) level of vehicle travel

 $\log (VMT/POP)_{t} = \lambda \dot{\alpha} + (1 - \lambda) \log (VMT/POP)_{t-1} + \lambda \beta \log (Y/POP)_{t} + \lambda \gamma \log CPM_{t}$

Adjustment Coefficient = λ = .769 Average lag = $\lambda / (1 - \lambda)$ = 3.32 months

Elasticity Estimates

IncomePriceShort Run $\lambda\beta$ (.386) $\lambda\gamma$ (-0.021)Long Run β (.502) γ (-0.027)

Seasonally-Adjusted Motor Gasoline-Related Fuel Efficiencies

- Dependent Variable:
- Estimation Interval

MPGMG_SA 1994:01 to 2006:12

•	Variable	<u>Coefficient</u>	Std. Error	<u>t-Statistic</u>	
•	С	16.231	0.221	73.428	
•	TIME	0.012	0.001	14.756	(Time Trend)
•	MGRARUS_SA/CICPIUS	0.005	0.002	2.338	(Real Reg Gr. \$/gal)
•	EOTCPUS_SA/MGTCPUS_SA	-34.264	6.000	-5.711	(Ethanol Share)
•	ZWHDDUS1/ZSAJQUS	-0.149	0.029	-5.232	(Asym. HDD Var.)
•	D9602	-0.961	0.234	-4.106	(Severe Weather)
•	D9901	-0.398	0.235	-1.693	(Severe Weather)
•	D9912	-0.940	0.234	-4.019	(Y2K Shift)
•	D0001	0.621	0.233	2.661	(Y2K Shift)
•	D0109	-0.388	0.234	-1.657	(9/11 Impact)

•	R-squared	0.769
•	Durbin-Watson stat	2 011

Seasonally-Adjusted Motor Gasoline-Related Fuel Efficiencies

Future Modeling Issues

- Asymmetrical Demand Reponses to Price Changes
- Price Shocks
- Seasonal Differences in Demand Behavior
- Co-integration Techniques

Thank You

Energy Information Administration www.eia.doe.gov

Michael Morris michael.morris@eia.doe.gov 202-586-1199

