

Coal Conversion – Pathway to Alternate Fuels

C. Lowell Miller

Director, Office of Sequestration, Hydrogen, and Clean Coal Fuels

> Office of Fossil Energy U.S. Department of Energy

2007 EIA Energy Outlook Modeling and Data Conference Washington, DC March 28, 2007

Overview

- DOE and Coal Liquefaction RD&D
- Coal A Significant Source of Energy
- Coal Liquefaction Technology and Status
- Current and Growing Interest in Liquefaction

Components of Earlier DOE RD&D Coal Liquefaction Program

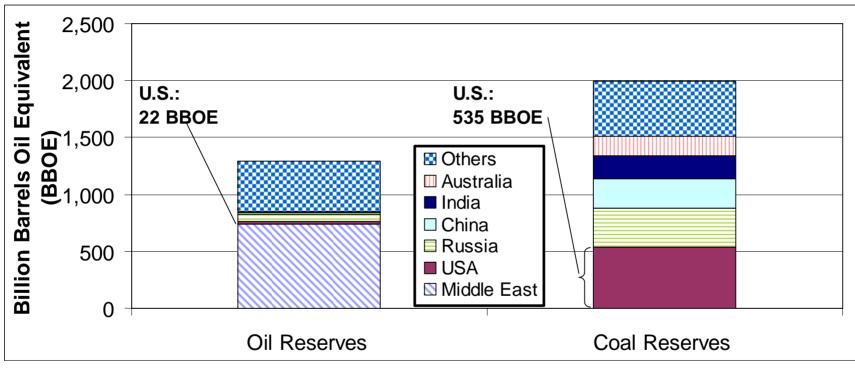
- Technology Screening Bench and pilot plant projects (1964–1976)
- Component I (1976–1982)
 - Large-scale demos of Phase I processes
 - Thermal and catalytic hydrogenation processes
- Component II (1976–1999)
 - Research program
 - Pursue improvements and alternatives based on better scientific understanding
- Component III (1980–1998)
 - Bench-scale development of Phase II processes
 - Overcome techno-economic limitations of Phase I processes
 - Catalytic hydrogenation processes

Coal Conversion Processes

- Carbonization and Pyrolysis
 - Low severity (mild gasification)
 - High temperature
- Direct Liquefaction
 - One-stage reactor technology
 - Two-stage reactor technology
 - Co-processing
 - Hybrid
- Indirect Liquefaction
 - Gas reactors
 - Slurry reactors

Coal Liquefaction Technologies

Mild Pyrolysis	Single-Stage Direct Liquefaction	Two-Stage Direct Liquefaction	Co-Processing and Dry Hydrogenation	Indirect Liquefaction
 Liquids from Coal (LFC) Process – Encoal Coal Technology Corporation Univ. of North Dakota Energy and Environmental Center (EERC)/AMAX R&D Process Institute of Gas Technology Char, Oil Energy Development (COED) 	 Solvent Refined Coal Processes (SRC-I and SRC-II) – Gulf Oil Exxon Donor Solvent (EDS) Process H-Coal Process – HRI Imhausen High-Pressure Process Conoco Zinc Chloride Process Kohleoel Process – Ruhrkohle NEDO Process 	 Consol Synthetic Fuel (CSF) Process Lummus ITSL Process Chevron Coal Liquefaction Process (CCLP) Kerr-McGee ITSL Work Mitsubishi Solvolysis Process Pyrosol Process – Saarbergwerke Catalytic Two-Stage Liquefaction Process – DOE and HRI Liquid Solvent Extraction (LSE) Process – British Coal Brown Coal Liquefaction (BCL) Process – NEDO Amoco CC-TSL Process Supercritical Gas Extraction (SGE) Process – British Coal 	 MITI Mark I and Mark II Co- Processing Cherry P Process – Osaka Gas Co. Solvolysis Co-Processing – Mitsubishi Mobil Co-Processing Pyrosol Co-Processing – Saabergwerke Chevron Co-Processing Lummus Crest Co- Processing Alberta Research Council Co-Processing CANMET Co-Processing Rheinbraun Co-Processing TUC Co-Processing UOP Slurry-Catalysed Co- Processing HTI Co-Processing 	 Sasol Rentech Syntroleum Mobil Methanol-to-Gasoline (MTG) Process Mobil Methanol-to-Olefins (MTO) Process Shell Middle Distillate Synthesis (SMOS)


Source: "Coal Conversion – A Rising Star," 23rd Int'l Pittsburgh Coal Conference, September 25-28, 2006.

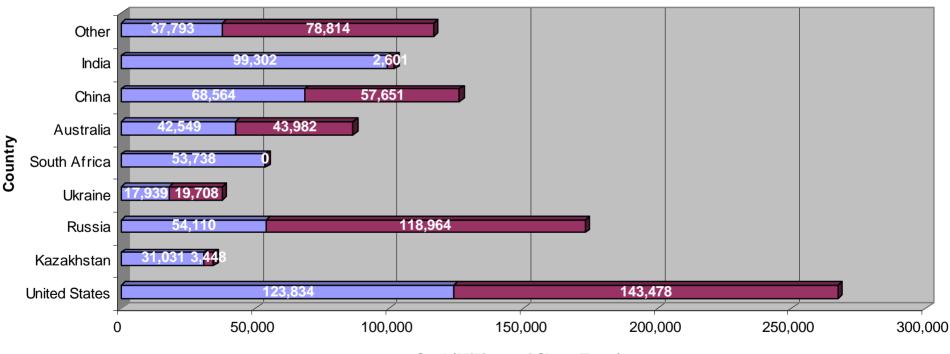
Why Coal-To-Liquids (CTL)?

- Energy Security
 - Size of coal resources
 - Distribution of resources
- Environment
 - Utilization of clean coal technology
 - Sequestration technology expected
- Flexibility
 - Advanced technology
 - Co-production capability
- Economics
 - Competitive with alternatives
 - World oil price volatility

Global Supplies

Comparison of World Oil and Coal Reserves

- World oil demand will grow by 40% to 50% by 2030
- Coincidentally, crude supplies increasingly concentrated in OPEC/ politically unstable geographies
- Coal offers opportunity to diversify worldwide liquid fuel supplies

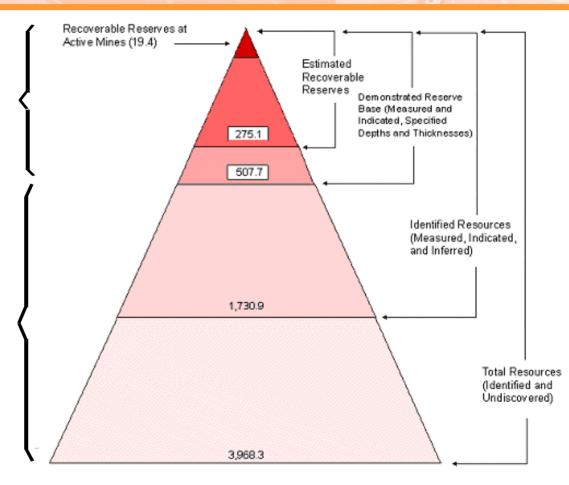

Coal-to-Liquids – Part of an Unconventional Fuels Portfolio

- Growing consensus on need to diversify transportation fuel sector
 - Long term: hydrogen
 - Intermediate term: liquids from coal, oil shale, liquids from biomass, increased domestic petroleum production, efficiency
- Advantages of Coal and CTL Technology
 - U.S. coal reserves amount to 250-year supply at current rates of consumption
 - Coal resources are dispersed (proven reserves in 26 states)
 - 1 ton of coal can be processed into 2 barrels of high-quality liquid fuels
 - Offers opportunity to pre-invest in eventual hydrogen-from-coal production facility

The U.S. Leads in Coal Reserves

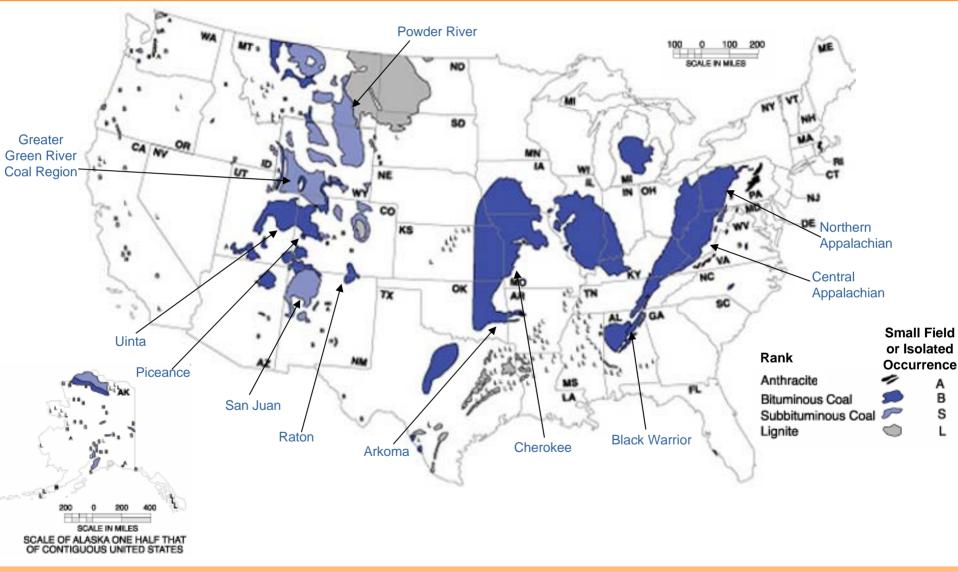
Estimated Recoverable Coal World Total - 997,506 Million Short Tons

■ Anthracite and Bituminous ■ Lignite and Subbituminous

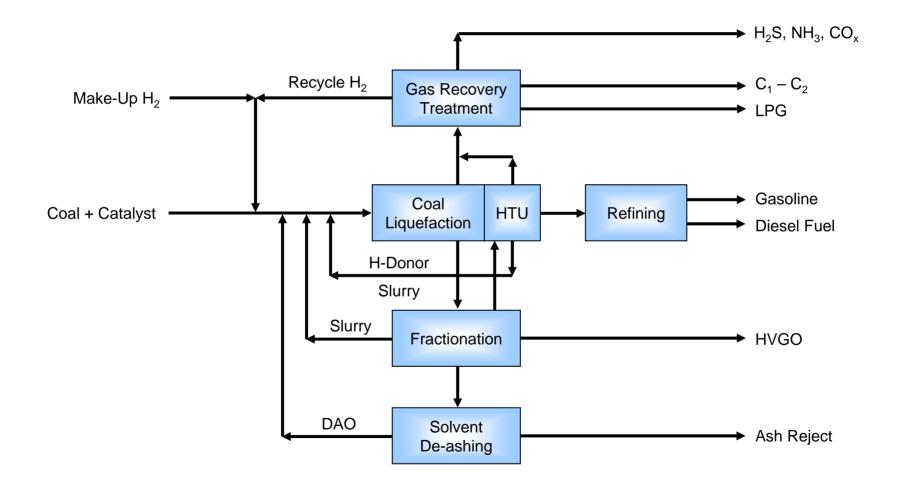


Coal (Millions of Short Tons)

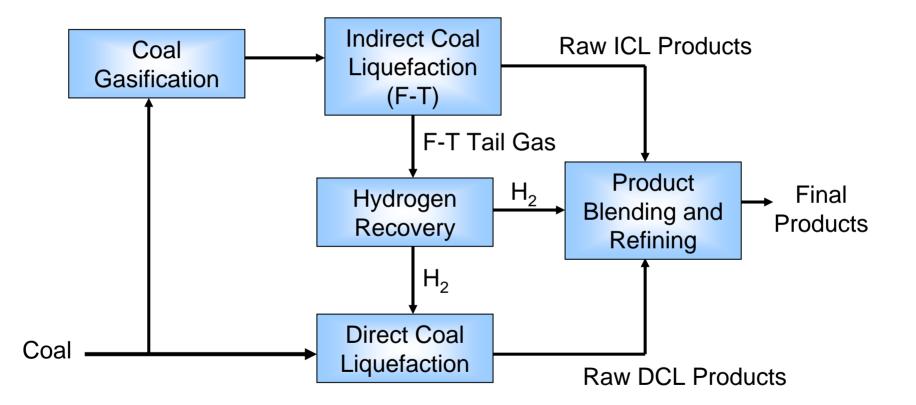
Source: Energy Information Administration, World Recoverable Coal Reserves

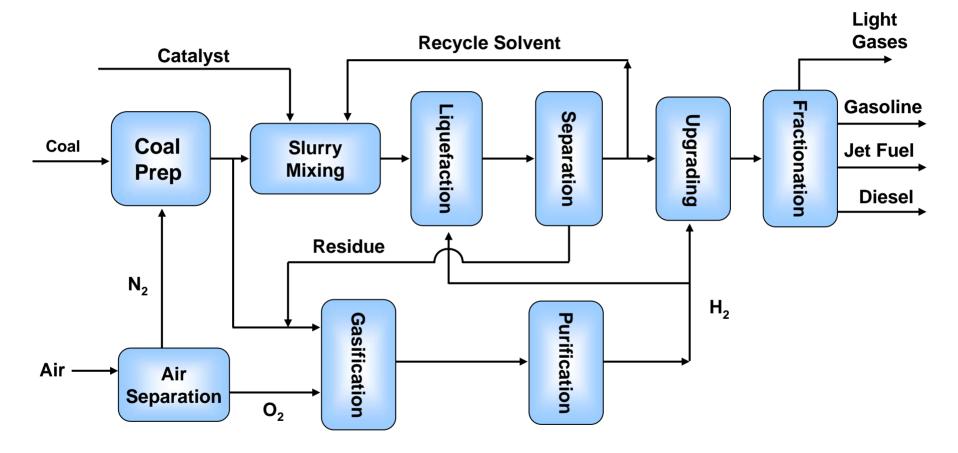

Delineation of U.S. Coal Reserves and Resources

- RESERVES quantities of coal anticipated to be commercially recoverable from known accumulations from a given date forward under defined conditions.
- RESOURCES quantities of coal estimated, as of a given date, to be potentially recoverable from known accumulations, but which are not currently considered commercially recoverable.
- There is sufficient reserve to meet projected demand for electricity and up to 4MM bpd CTL industry for over 100 years

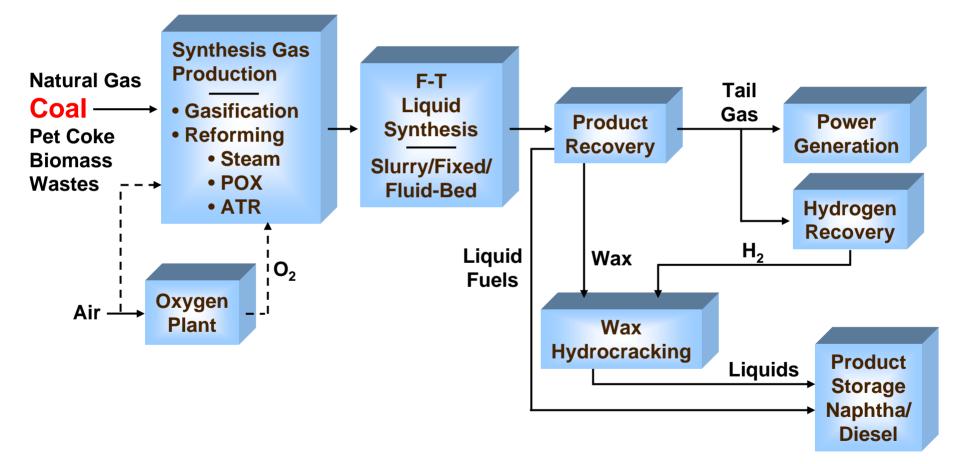


Source: EIA Coal Reserves Data 1997


U.S. Coal Reserves Distribution

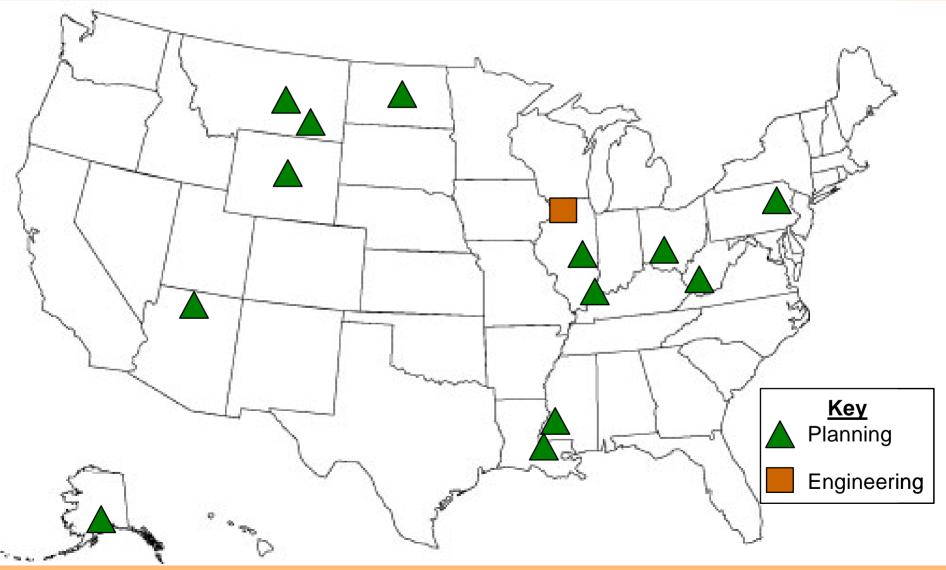

Direct Coal Liquefaction Process

Hybrid DCL/ICL Plant Concept



Shenhua DCL Process

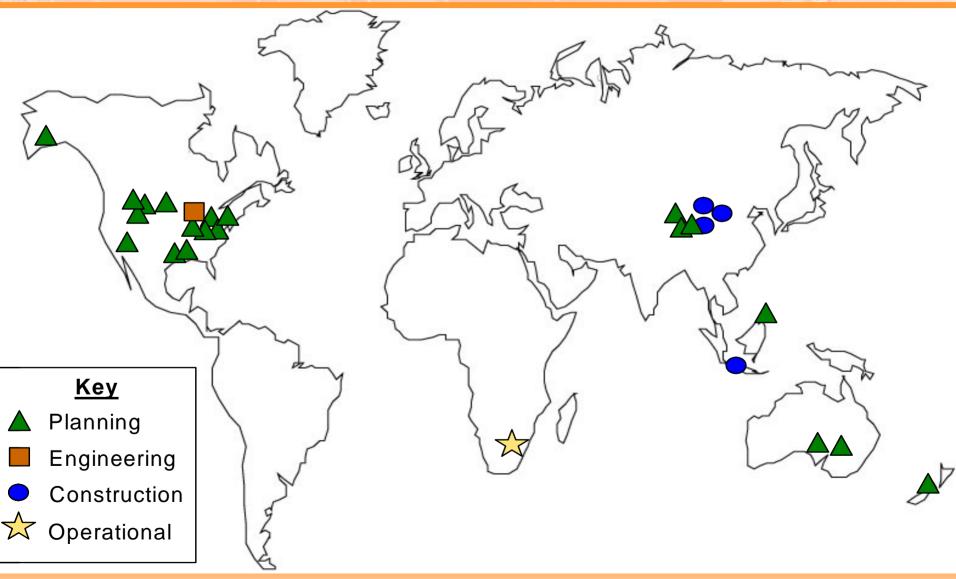
First Train: 1 MT/a Liquefaction Oil


Indirect Coal Liquefaction Overview

Coal-To-Liquids: Current Status

- Costs many systems analyses ongoing; for 50,000 bpd plant:
 - Capital costs estimated at \$3.5-4.5 billion
 - Product cost at \$40/bbl
- Technology considered commercial
 - DOE/industry completed program for development of direct liquefaction technology
 - Sasol producing 150,000 bpd of F-T products
 - Shenhua China Coal Liquefaction Corp. constructing 20,000 bpd plant; additional 180,000 bpd planned
 - Shenhua supports feasibility studies for two 80,000 bpd coal-to-liquid plants
 - Improved processes, catalysts, and slurry reactors available
 - Bench and pilot facilities at Rentech, Headwaters, Syntroleum, and ConocoPhillips

Location of Proposed CTL Projects in the United States



Coal-to-Liquids Plants Under Consideration in the United States

Project Lead	Project Partners	Location	Feedstock	Status	Capacity	Cost
American Clean Coal Fuels	None cited	Oakland, IL	Bituminous	Feasibility	25,000	N/A
Synfuels Inc.	GE, Haldor-Topsoe, NACC, ExxonMobil	Ascension Parish, LA	Lignite	Feasibility	N/A	\$5 billion
DKRW Advanced Fuels	Rentech, GE	Medicine Bow, WY	Bituminous	Design (2011)	13,000 bpd	\$1.4 billion
DKRW Advanced Fuels	Rentech, GE, Bull Mountain Land Company	Roundup, MT	Sub-bituminous/ Lignite	Feasibility	22,000 bpd	\$1–1.5 billion
AIDEA	ANRTL, CPC	Cook Inlet, AK	Sub-bituminous	Feasibility	80,000 bpd	\$5–8 billion
Mingo County	Rentech	WV	Bituminous	Feasibility	20,000 bpd	\$2 billion
WMPI	Sasol, Shell, DOE	Gilberton, PA	Anthracite	Design	5,000 bpd	\$612 million
Rentech/Peabody	N/A	МТ	Sub-bituminous/ lignite	Feasibility	10,000–30,000 bpd	N/A
Rentech/Peabody	N/A	Southern IL, Southwest IN, Western KY	Bituminous	Feasibility	10,000–30,000 bpd	N/A
Rentech*	Kiewit Energy Company, WorleyParsons	East Dubuque, IL	Bituminous	Construction (2010)	1,800 bpd*	\$800 million
Rentech	Adams County	Natchez, MS	Coal/Petcoke	Feasibility	10,000 bpd	\$650–750 million
Rentech	Baard Energy	Wellsville, OH	Sub-bituminous	Feasibility	35,000 bpd	\$4 billion
Headwaters	Hopi Tribe	AZ	Bituminous	Feasibility	10,000–50,000 bpd	N/A
Headwaters	NACC, GRE, Falkirk	ND	Lignite	Feasibility	40,000 bpd	\$3.6 billion

*Co-producing fertilizer

CTL Projects Worldwide

International CTL Plants and Projects

Country	Owner/Developer	Capacity (bpd)	Status	
South Africa	Sasol	150,000	Operational	
China	Shenhua	20,000 (initially)	Construction Operational in 2007–2008	
China	Lu'an Group	~3,000–4,000	Construction	
China	Yankuang	40,000 (initially) 180,000 planned	Construction	
China	Sasol JV (2 studies)	80,000 (each plant)	Planning	
China	Shell/Shenhua	70,000–80,000	Planning	
China	Headwaters/UK Race Investment	Two 700-bpd demo plants	Planning	
Indonesia	Pertamina/Accelon	~76,000	Construction	
Australia	Anglo American/Shell	60,000	Planning	
Australia	Altona Resources plc, Jacobs Consultancy, MineConsult	45,000	Planning	
Philippines	Headwaters	50,000	Planning	
New Zealand	L&M Group	50,000	Planning	

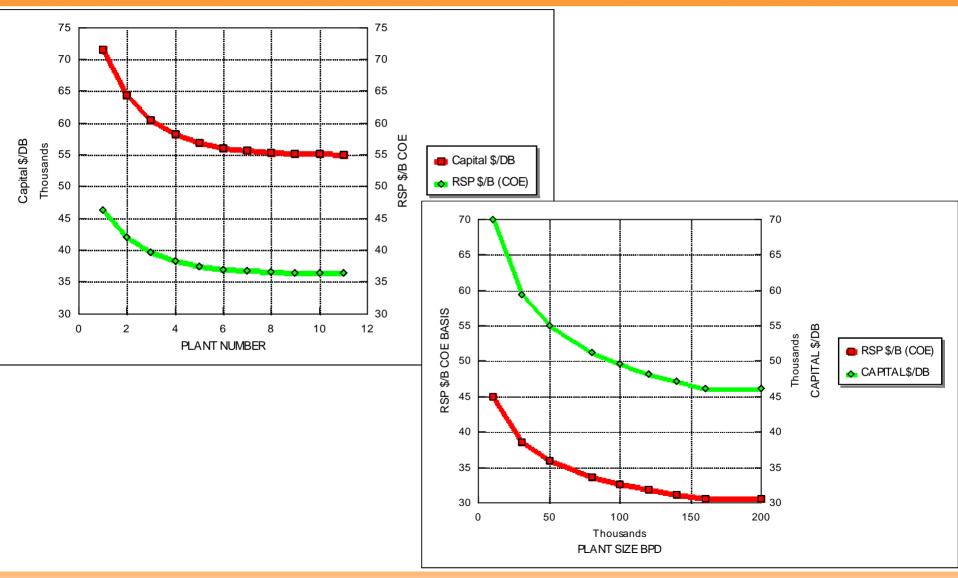
Congressional Interest in CTL

- Previous Congress (109th)
 - H.R. 4761 Deep Ocean Energy Resources Act of 2006
 - H.R. 5965 Progress Act
 - H.R. 5653 Investment in American Energy Independence Act of 2006
 - H.R. 5890 American-Made Energy Trust Fund Bill
 - S. 1920 Renewable Diesel Standard Act of 2005
 - S. 2446 American Fuels Act of 2006
 - S. 3325 Coal-to-Liquid Fuel Promotion Act of 2006
- Current Congress (110th)
 - S. 154

 - H.R. 370

Reports and Studies – CTL Processes

- Department of Defense
 - OSD Assured Fuels Initiative
 - Flight Test of F-T Jet Fuel Blend
 - Air Force Energy Industry Forum
- Mitretek
 - Techno-Economic Analysis of Wyoming Located CTL Plant
 - Gasification of Kemmerer Coal at the Mine Mouth in Wyoming for Production of Zero Sulfur Liquid Transportation Fuels and Electric Power: A Feasibility Study
 - Clean Transportation Fuels from Domestic Coal
- National Coal Council
 - America's Energy Future
- Southern States Energy Board
 - American Energy Security Study
- Scully Capital Services, Inc.
 - The Business Case for Coal Gasification with Co-Production


Reports and Studies – CTL Processes (continued)

- Conference Report 109-360 National Defense Authorization Act for Fiscal Year 2006
 - A Development Plan for a Coal-to-Liquid Fuel Program
- Energy Policy Act 2005, Section 369
 - Commercialization of America's Strategic Unconventional Fuels:
 Oil Shale Tar Sands Coal Derived Liquids Heavy Oil CO₂
 Enhanced Recovery and Storage
- Rand Corporation
 - Unconventional Fuels: Strategic and Program Options
- World Coal Institute
 - Coal: Liquid Fuels

CTL Technology – Economics Remain Key Issue

- Conceptual plant designs estimate \$3.5–4.5 billion required for initial 50,000-bpd plants (Capital cost = \$70–90K/daily barrel)
- Plants may be profitable with crude oil price between \$45–60/bbl with carbon storage (carbon storage estimated to account for \$4/barrel of the required selling price)
- Higher unit investment costs for pioneer demonstration plants (10,000- to 20,000-bpd plants)
- Difficult to accurately estimate costs since no plants have been built worldwide since the 1980s

Potential Impacts on Cost

U.S. Department of Energy

Barriers to Coal-To-Liquids

- Technical
 - Integrated operations of advanced CTL technologies have never been demonstrated
- Economic
 - Uncertainties about future world oil production
 - High capital and operations costs
 - Investment risks
 - Energy price volatility
- Environmental
 - CO₂ and criteria pollutant emissions
 - Expansion of coal production and requisite infrastructure (railroads, railcars, etc.)
 - Water use
- Commercial Deployment
 - Competition for critical process equipment, engineering, and skilled labor
 - Who would take the lead in commercial deployment? Part power part liquid fuels
- Social
 - NIMBY and public resistance to coal use