NOAA Technical Memorandum NMFS-NE-201

U.S. Atlantic and Gulf of Mexico Marine Mammal Stock Assessments -- 2006

U. S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration
National Marine Fisheries Service
Northeast Fisheries Science Center Woods Hole, Massachusetts

Recent Issues in This Series:

183. NOAA Fisheries Service's Large Marine Ecosystems Program: Status Report. By Kenneth Sherman, Peter Celone, and Sally Adams. July 2004. iv + 21 p., 11 figs., 4 tables. NTIS Access. No. PB2006-102420.
184. A Large Marine Ecosystem Approach to Fisheries Management and Sustainability. By Frank J. Gable. August $2004 . \mathrm{v}+84$ p., 38 figs., 10 tables. NTIS Access. No. PB2005-101435. [Online publication only.]
185. Revised and Updated Edition of F. Bruce Sanford's 1957 "Planning Your Scientific Research Paper." By Jon A. Gibson. August 2004. x +36 p., 5 figs., 12 tables. NTIS Access. No. PB \qquad _.
186. Essential Fish Habitat Source Document: Silver Hake, Merluccius bilinearis, Life History and Habitat Characteristics. 2nd ed. By Meredith C. Lock and David B. Packer. August 2004. v + 68 p., 28 figs., 6 tables. NTIS Access. No. PB2005-101436. [Online publication only.]
187. Essential Fish Habitat Source Document: American Plaice, Hippoglossoides platessoides, Life History and Habitat Characteristics. 2nd ed. By Donna L. Johnson. August 2004. vi + 72 p., 23 figs., 6 tables. NTIS Access. No. PB2006-102421. [Online publication only.]
188. Northeast Regional Commercial Fishing Input-Output Model, by Scott R. Steinback and Eric M. Thunberg. NTIS Access. No. PB2007-104394. April 2006. v +54 p., 2 figs, 15 tables. [Online publication only.]
189. Essential Fish Habitat Source Document: Sea Scallop, Placopecten magellanicus, Life History and Habitat Characteristics. 2nd ed. By Deborah R. Hart and Antonie S. Chute. September 2004. v + 21 p., 6 figs., 2 tables. NTIS Access. No. PB2005-104079. [Online publication only.]
190. Essential Fish Habitat Source Document: Atlantic Cod, Gadus morhua, Life History and Habitat Characteristics. 2nd ed. By R. Gregory Lough. November 2004. vi +94 p., 27 figs., 5 tables, 1 app. NTIS Access. No. PB2006-101528. [Online publication only.]
191. Essential Fish Habitat Source Document: Northern Shortfin Squid, Illex illecebrosus, Life History and Habitat Characteristics. 2nd ed. By Lisa C. Hendrickson and Elizabeth M. Holmes. November 2004. v +36 p., 13 figs., 1 table. NTIS Access. No. PB2005101437. [Online publication only.]
192. Essential Fish Habitat Source Document: Atlantic Herring, Clupea harengus, Life History and Habitat Characteristics. 2nd ed. By David K. Stevenson and Marcy L. Scott. July 2005. vi +84 p., 40 figs., 7 tables. NTIS Access. No. PB2005-107567. [Online publication only.]
193. Essential Fish Habitat Source Document: Longfin Inshore Squid, Loligo pealeii, Life History and Habitat Characteristics. 2nd ed. By Larry D. Jacobson. August 2005. v +42 p., 20 figs., 1 table. NTIS Access. No. PB2005-110684. [Online publication only.]
194. U.S. Atlantic and Gulf of Mexico Marine Mammal Stock Assessments -- 2005. By Gordon T. Waring, Elizabeth Josephson, Carol P. Fairfield, and Katherine Maze-Foley, eds. Dana Belden, Timothy V.N. Cole, Lance P. Garrison, Keith D. Mullin, Christopher Orphanides, Richard M. Pace III, Debra L. Palka, Marjorie C. Rossman, and Fredrick W. Wenzel, contribs. March 2006. v + 392 p., 45 figs, 79 tables, 5 app., index. NTIS Access No. PB 2007-104395.
195. A Large Marine Ecosystem Voluntary Environmental Management System Approach to Fisheries Practices. By Frank J. Gable. December 2005. v +84 p., 38 figs., 10 tables. NTIS Access. No. PB \qquad - \qquad -.
196. Essential Fish Habitat Source Document: Haddock, Melanogrammus aeglefinus, Life History and Habitat Characteristics. 2nd ed. By Jon K.T. Brodziak. December 2005. vi +64 p., 27 figs., 2 tables. NTIS Access. No. PB2006-103439. [Online publication only.]
197. In preparation by author.
198. Essential Fish Habitat Source Document: Bluefish, Pomatomus saltatrix, Life History and Habitat Characteristics. 2nd ed. By Jon K.T. Brodziak. December 2005. vi +89 p., 48 figs., 5 tables, 1 app. NTIS Access. No. PB2006-103439. [Online publication only.]
199. Distribution and Abundance of Fish Eggs Collected during the GLOBEC Broad-Scale Georges Bank Surveys, 1995-1999. By John D. Sibunka, Donna L. Johnson, and Peter L. Berrien. August 2006. iv +72 p., 28 figs., 1 table. NTIS Access. No. PB \qquad - \qquad [Online publication only.]
200. Essential Fish Habitat Source Document: Black Sea Bass, Centropristis striata, Life History and Habitat Characteristics (2nd ed. By Amy F. Drohan, John P. Manderson, and David B. Packer. February 2007. vi +68 p., 33 figs., 2 tables. NTIS Access No. PB \qquad . [Online publication only.]

NOAA Technical Memorandum NMFS-NE-201
This series represents a secondary level of scientific publishing. All issues employ thorough internal scientific review; some issues employ external scientific review. Reviews are -- by design -- transparent collegial reviews, not anonymous peer reviews. All issues may be cited in formal scientific communications.

U.S. Atlantic and Gulf of Mexico Marine Mammal Stock Assessments -- 2006

Gordon T. Waring ${ }^{1}$, Elizabeth Josephson ${ }^{1}$, Carol P. Fairfield ${ }^{2}$, and Katherine Maze-Foley ${ }^{3}$, Editors
with contributions from (listed alphabetically)
Dana Belden ${ }^{1}$, Timothy V.N. Cole ${ }^{1}$, Lance P. Garrison ${ }^{2}$, Keith Mullin ${ }^{3}$, Christopher Orphanides ${ }^{1}$, Richard M. Pace III11, Debra L. Palka¹, Marjorie C. Rossman ${ }^{1}$, and Frederick W. Wenzel ${ }^{1}$

${ }^{1}$ National Marine Fisheries Service, 166 Water Street, Woods Hole, MA 02543
${ }^{2}$ National Marine Fisheries Service, 75 Virginia Beach Drive, Miami, FL 33149
${ }^{3}$ National Marine Fisheries Service, P.O. Drawer 1207, Pascagoula, MS 39568

U. S. DEPARTMENT OF COMMERCE
 Carlos M. Gutierrez, Secretary

National Oceanic and Atmospheric Administration
Vice Admiral Conrad C. Lautenbacher, Jr., USN (ret.), Administrator
National Marine Fisheries Service
William T. Hogarth, Assistant Administrator for Fisheries
Northeast Fisheries Science Center
Woods Hole, Massachusetts

About This Report:

Report History: This report is the tenth in a series - which began in 1995 - compiling marine mammal stock assessments for U.S. Atlantic and Gulf of Mexico waters. The first report was issued in the NOAA Technical Memorandum NMFS-SEFSC series. The nine subsequent reports have been issued in the NOAA Technical Memorandum NMFS-NE series.

Editorial Treatment: To distribute this report quickly, it has not undergone the normal technical and copy editing by the Northeast Fisheries Science Center's (NEFSC's) Editorial Office as have most other issues in the NOAA Technical Memorandum NMFS-NE series. Other than the four covers and first two preliminary pages, all writing and editing have been performed by - and all credit for such writing and editing rightfully belongs to - those so listed on the title page.

Species Names: The NMFS Northeast Region's policy on the use of species names in all technical communications is generally to follow the American Fisheries Society's lists of scientific and common names for fishes (i.e., Nelson et al. 2004a; Robins et al. 1991³), mollusks (i.e., Turgeon et al. $1998^{\text {c }}$), and decapod crustaceans (i.e., McLaughlin et al. 2005d), and to follow the Society for Marine Mammalogy's guidance on scientific and common names for marine mammals (i.e., Rice $1998^{\text {e }}$). Exceptions to this policy occur when there are subsequent compelling revisions in the classifications of species, resulting in changes in the names of species.

Obtaining/Viewing Copies: Paper copies of the first report can be obtained from the NMFS Southeast Fisheries Science Center's headquarters (75 Virginia Beach Dr., Miami, FL 33149; 305-361-4284). Paper copies of the second through ninth reports, as well as copies of this report, can be obtained from the NEFSC's headquarters (166 Water St., Woods Hole, MA 02543; 508-495-2311). Additionally, all ten reports are available (as of the publication date of this issue) online in PDF format at: http://www.nefsc.noaa.gov/psb/assesspdfs.htm.

[^0]
Table of Contents

EXECUTIVE SUMMARY V
Acknowledgments vi
Introduction 1
Table 1. A summary of Atlantic marine mammal stock assessment reports for stock of marine mammals under NMFS authority that occupy waters under USA jurisdiction. 2
Stock Assessments for 2006
Northern Right Whale (Eubalaena glacialis): Western Atlantic Stock 6
Humpback Whale (Megaptera novaeangliae): Gulf of Maine Stock 15
Fin Whale (Balaenoptera physalus): Western North Atlantic Stock 25
Minke Whale (Balaenoptera acutorostrata): Canadian East Coast Stock 29
Risso's Dolphin (Grampus griseus): Western North Atlantic Stock 38
Long-Finned Pilot Whale (Globicephala melas): Western North Atlantic Stock 45
Short-Finned Pilot Whale (Globicephala macrorhynchus): Western North Atlantic Stock 57
Atlantic White-Sided Dolphin (Lagenorhynchus acutus): Western North Atlantic Stock 69
White-Beaked Dolphin (Lagenorhynchus albirostris): Western North Atlantic Stock 78
Common Dolphin (Delphinus delphis): Western North Atlantic Stock 82
Bottlenose Dolphin (Tursiops truncatus): Western North Atlantic Coastal Morphotype Stocks 89
Harbor Porpoise (Phocoena phocoena): Gulf of Maine/Bay of Fundy Stock. 100
Harbor Seal (Phoca vitulina): Western North Atlantic Stock 114
Gray Seal (Halichoerus grypus): Western North Atlantic Stock 121
Harp Seal (Phagophilus groenlandica): Western North Atlantic Stock 126
Hooded Seal (Cystophora cristata): Western North Atlantic Stock 132
Appendix I. Estimated serious injury and mortality (SI\&M) of Western North Atlantic marine mammals listed by U.S. observed fisheries for 1999-2003 137
Appendix II. Summary of the confirmed human-caused mortality and serious injury ("SI") events involving baleen whales 140
Appendix III. Fishery Descriptions 141
Appendix IV. Marine Mammal stock assessment reports not updated in 2006 211
SEI WHALE (Balaenoptera borealis):Nova Scotia Stock 211
SPERM WHALE (Physeter macrocephalus): North Atlantic Stock. 214
DWARF SPERM WHALE (Kogia sima): Western North Atlantic Stock 221
PYGMY SPERM WHALE (Kogia breviceps): Western North Atlantic Stock 225
PYGMY KILLER WHALE (Feresa attenutta): Western North Atlantic Stock 230
CUVIER'S BEAKED WHALE (Ziphius cavirostris): Western North Atlantic Stock 232
MESOPLODON BEAKED WHALES (Mesoplodon spp.): Western North Atlantic Stock 238
MELON-HEADED WHALE (Peponocephala electra): Western North Atlantic Stock 244
ATLANTIC SPOTTED DOLPHIN (Stenella frontalis): Western North Atlantic Stock 246
PANTROPICAL SPOTTED DOLPHIN (Stenella attenuata): Western North Atlantic Stock 251
STRIPED DOLPHIN (Stenella coeruleoalba): Western North Atlantic Stock. 256
FRASER'S DOLPHIN (Lagenodelphis hosei): Western North Atlantic Stock 261
CLYMENE DOLPHIN (Stenella clymene): Western North Atlantic Stock 264
SPINNER DOLPHIN (Stenella longirostris): Western North Atlantic Stock 267
BOTTLENOSE DOLPHIN (Tursiops truncatus): Western North Atlantic Offshore Stock 270
BLUE WHALE (Balaenoptera musculus): Western North Atlantic Stock 275
KILLER WHALE (Orcinus orca): Western North Atlantic Stock 277
NORTHERN BOTTLENOSE WHALE (Hyperoodon ampullatus): Western North Atlantic Stock 279
SPERM WHALE (Physeter macrocephalus): Northern Gulf of Mexico Stock 281
BRYDE'S WHALE (Balaenoptera edeni): Northern Gulf of Mexico Stock 285
CUVIER'S BEAKED WHALE (Ziphius cavirostris): Northern Gulf of Mexico Stock 288
BLAINVILLE'S BEAKED WHALE (Mesoplodon densirostris): Northern Gulf of Mexico Stock 292
GERVAIS' BEAKED WHALE (Mesoplodon europaeus): Northern Gulf of Mexico Stock 296
BOTTLENOSE DOLPHIN (Tursiops truncatus): Northern Gulf of Mexico Continental Shelf Stock 300
BOTTLENOSE DOLPHIN (Tursiops truncatus): Northern Gulf of Mexico Coastal Stocks 303
BOTTLENOSE DOLPHIN (Tursiops truncatus): Northern Gulf of Mexico Oceanic Stock 309
BOTTLENOSE DOLPHIN (Tursiops truncatus): Gulf of Mexico Bay, Sound, and Estuarine Stocks 312
ATLANTIC SPOTTED DOLPHIN (Stenella frontalis): Northern Gulf of Mexico Stock 322
PANTROPICAL SPOTTED DOLPHIN (Stenella attenuata): Northern Gulf of Mexico Stock 326
STRIPED DOLPHIN (Stenella coeruleoalba): Northern Gulf of Mexico Stock 329
SPINNER DOLPHIN (Stenella longirostris): Northern Gulf of Mexico Stock 332
ROUGH-TOOTHED DOLPHIN (Steno bredanensis): Northern Gulf of Mexico Stock 335
CLYMENE DOLPHIN (Stenella clymene): Northern Gulf of Mexico Stock 339
FRASER'S DOLPHIN (Lagenodelphis hosei): Northern Gulf of Mexico Stock 342
KILLER WHALE (Orcinus orca): Northern Gulf of Mexico Stock 345
FALSE KILLER WHALE (Pseudorca crassidens): Northern Gulf of Mexico Stock 348
PYGMY KILLER WHALE (Feresa attenuata): Northern Gulf of Mexico Stock 351
DWARF SPERM WHALE (Kogia sima): Northern Gulf of Mexico Stock 354
PYGMY SPERM WHALE (Kogia breviceps): Northern Gulf of Mexico Stock 357
MELON-HEADED WHALE (Peponocephala electra): Northern Gulf of Mexico Stock 360
RISSO'S DOLPHIN (Grampus griseus): Northern Gulf of Mexico Stock 363
SHORT-FINNED PILOT WHALE (Globicephala macrorhynchus): Northern Gulf of Mexico Stock 366
Appendix V. West Indian manatees stock assessments - Florida and Antilles stocks 369

EXECUTIVE SUMMARY

Under the 1994 amendments of the Marine Mammal Protection Act (MMPA), the National Marine Fisheries Service (NMFS) and the United States Fish and Wildlife Service (USFWS) were required to generate stock assessment reports (SAR) for all marine mammal stocks in waters within the U.S. Exclusive Economic Zone (EEZ). The first reports for the Atlantic (includes the Gulf of Mexico) were published in July 1995 (Blaylock et al. 1995). The MMPA requires NMFS and USFWS to review these reports annually for strategic stocks of marine mammals and at least every 3 years for stocks determined to be non-strategic. The second edition of the SARs (1996 assessments) was published in October 1997 and contained all the previous reports, but major revisions and updating were only completed for strategic stocks (Waring et al. 1997). In subsequent annual reports, including this current 2006 edition, updated reports are indicated by the corresponding year date-stamp at the top right corner of the report and are included in the main body of the document. Stock assessments not updated in the current year are included, in full, in an appendix. Also included in this report as appendices are; 1) a summary of serious injury/mortality estimates of marine mammals in observed U.S. fisheries (Appendix I), 2) a summary of NMFS records of large whale/human interactions examined for this assessment (Appendix II), 3) detailed fisheries information (Appendix III), and 4) the 2000 USFWS West Indian manatee assessments (Appendix V).

Table 1 contains a summary, by species, of the information included in the stock assessments, and also indicates those that have been revised since the 2005 publication. A total of 16 of the 58 Atlantic and Gulf of Mexico stock assessment reports were revised for 2006. Most of the proposed changes incorporate new information into sections on population size and/or mortality estimates. The revised SARs include 4 strategic and 12 non-strategic stocks.

This report was prepared by staff of the Northeast Fisheries Science Center (NEFSC) and Southeast Fisheries Science Center (SEFSC). NMFS staff presented the reports at the November 2005 meeting of the Atlantic Scientific Review Group (ASRG), and subsequent revisions were based on their contributions and constructive criticism. This is a working document and individual stock assessment reports will be updated as new information becomes available and as changes to marine mammal stocks and fisheries occur. The authors solicit any new information or comments which would improve future stock assessment reports.

ACKNOWLEDGMENTS

The authors wish to acknowledge contributions by the Northeast Fisheries Science Center (NEFSC) Fisheries Sampling Branch, Mendy Garron, Northeast Regional Office (NERO), and Jenny Litz, Southeast Fisheries Science Center (SEFSC). We also acknowledge advice and comments provided by: Jon Gibson, Richard Merrick, and Fred Serchuk (NEFSC); Diane Borggaard (NERO); Aleta Hohn and Patricia Rosel (SEFSC); Vicki Cornish, Southeast Regional Office; Tom Eagle and Kristy Long of the NMFS Office of Protected Resources; Joseph DeAlteris, Don Baltz, James Gilbert, Robert Kenney, Bill Lang, Douglas Nowacek, Daniel Odell, Richard Seagraves, Randall Wells and Sharon Young of the Atlantic Scientific Review Group. We also thank the Marine Mammal Commission of the United States for their constructive comments and advice.

INTRODUCTION

Section 117 of the 1994 amendments to the Marine Mammal Protection Act (MMPA) requires that an annual stock assessment report (SAR) for each stock of marine mammals that occurs in waters under USA jurisdiction, be prepared by the National Marine Fisheries Service (NMFS) and the U.S. Fish and Wildlife Service (USFWS), in consultation with regional Scientific Review Groups (SRGs). The SRGs are a broad representation of marine mammal and fishery scientists and members of the commercial fishing industry mandated to review the marine mammal stock assessments and provide advice to the NOAA Assistant Administrator for Fisheries. The reports are then made available on the Federal Register for public review and comment before final publication.

The MMPA requires that each SAR contain several items, including: (1) a description of the stock, including its geographic range; (2) a minimum population estimate, a maximum net productivity rate, and a description of current population trend, including a description of the information upon which these are based; (3) an estimate of the annual human-caused mortality and serious injury of the stock, and, for a strategic stock, other factors that may be causing a decline or impeding recovery of the stock, including effects on marine mammal habitat and prey; (4) a description of the commercial fisheries that interact with the stock, including the estimated number of vessels actively participating in the fishery and the level of incidental mortality and serious injury of the stock by each fishery on an annual basis; (5) a statement categorizing the stock as strategic or not, and why; and (6) an estimate of the potential biological removal (PBR) level for the stock, describing the information used to calculate it. The MMPA also requires that SARs be updated annually for stocks which are specified as strategic stocks, or for which significant new information is available, and once every three years for non-strategic stocks.

Following enactment of the 1994 amendments, the NMFS and USFWS held a series of workshops to develop guidelines for preparing the SARs. The first set of stock assessments for the Atlantic Coast (including the Gulf of Mexico) were published in July 1995 in the NOAA Technical Memorandum series (Blaylock et al. 1995). In April 1996, the NMFS held a workshop to review proposed additions and revisions to the guidelines for preparing SARs (Wade and Angliss 1997). Guidelines developed at the workshop were followed in preparing the 1996 (Waring et al. 1997), 1998 (Waring et al. 1999), 1999 (Waring et al. 1999), 2000 (Waring et al. 2000), 2001 (Waring et al. 2001), 2002 (Waring et al. 2002), 2003 (Waring et al. 2004), and 2005 (Waring et al. 2006) SARs. In 1997 and 2004 SARs were not produced.

In this document, major revisions and updating of the SARs were completed for Atlantic strategic stocks and stocks for which significant new information were available. These are identified by the March date-stamp at the top right corner at the beginning of each report.

REFERENCES

Blaylock, R. A., J. W. Hain, L. J. Hansen, D. L. Palka and G. T. Waring. 1995. U.S. Atlantic and Gulf of Mexico marine mammal stock assessments. NOAA Tech. Memo. NMFS-SEFSC-363, 211 pp.
Wade, P. R. and R. P. Angliss. 1997. Guidelines for assessing marine mammal stocks: Report of the GAMMS workshop April 3-5, 1996, Seattle, Washington. NOAA Tech. Memo. NMFS-OPR-12, 93 pp.
Waring, G.T., D.L. Palka, K. D. Mullin, J. H. W. Hain, L. J. Hansen and K. D. Bisack. 1997. U.S. Atlantic and Gulf of Mexico marine mammal stock assessments. NOAA Tech. Memo. NMFS-NE-114, 250 pp.
Waring, G.T., D.L. Palka, P.J. Clapham, S. Swartz, M. Rossman, T.V.N. Cole, K.D. Bisack and L.J. Hansen. 1999a. U.S. Atlantic marine mammal stock assessments-1998. NOAA Tech. Memo. NMFS-NE-116, 182 pp.

Waring, G.T., D.L. Palka, P.J. Clapham, S. Swartz, M.C. Rossman, T.V.N. Cole, L.J. Hansen, K.D. Bisack, K.D. Mullin, R.S. Wells, D.K. Odell and N.B. Barros. 1999b. U. S. Atlantic and Gulf of Mexico marine mammal stock assessments - 1999. NOAA Tech. Memo. NMFS-NE-153, 196 pp.
Waring, G.T., J.M. Quintal and S. Swartz. 2000. U. S. Atlantic and Gulf of Mexico marine mammal stock assessments - 2000. NOAA Tech. Memo. NMFS-NE-162, 303 pp.
Waring, G.T., J.M. Quintal and S. Swartz. 2001. U. S. Atlantic and Gulf of Mexico marine mammal stock assessments - 2001. NOAA Tech. Memo. NMFS-NE-168, 310 pp.
Waring, G.T., J. M. Quintal and C. P. Fairfield. 2002. U. S. Atlantic and Gulf of Mexico marine mammal stock assessments - 2002. NOAA Tech. Memo. NMFS-NE-169, 318 pp.
Waring, G.T., R.M. Pace, J.M. Quintal, C.P. Fairfield, and K. Maze-Foley. 2004. U.S. Atlantic and Gulf of Mexico marine mammal stock assessments - 2003. NOAA Tech. Memo. NMFS-NE-182, 287 pp.
Waring, G.T., E. Josephson,. C.P. Fairfield, and K. Maze-Foley. 2006. U.S. Atlantic and Gulf of Mexico marine mammal stock assessments - 2005. NOAA Tech. Memo. NMFS-NE-194, 352 pp.

TABLE 1. A SUMMARY(including footnotes) OF ATLANTIC MARINE MAMMAL STOCK ASSESSMENT REPORTS FOR STOCKS OF MARINE MAMMALS UNDER NMFS AUTHORITY THAT OCCUPY WATERS UNDER USA JURISDICTION.
Total Annual S.I. (serious injury) and Mortality and Annual Fisheries S.I and Mortality are mean annual figures for the period 2000-2004. The "SAR revised" column indicates 2006 stock assessment reports that have been revised relative to the 2005 reports ($\mathrm{Y}=\mathrm{yes} \mathrm{N}=\mathrm{no}$). If abundance, mortality or PBR estimates have been revised, they are indicated with the letters " a ", " m " and " p " respectively. For those species not updated in this edition, the year of last revision is indicated.

Species	Stock Area	NMFS Ctr.	Nbest	Nbest CV	Nmin	Rmax	Fr	PBR	Total Annual S.I and Mort.	Annual Fish. S.I. and Mort. (cv)	Strategic Status	Revised
Northern right whale	Western North Atlantic	NEC	306	0	306	0	0.1	0	$2.8{ }^{\text {a }}$	$1.6{ }^{\text {a }}$	Y	$\begin{gathered} \mathrm{Y} \\ \mathrm{a}, \mathrm{~m} \end{gathered}$
Humpback whale	Gulf of Maine	NEC	902	. 41	647	0.04	0.1	1.3	$3.0{ }^{\text {b }}$	$2.4{ }^{\text {b }}$	Y	$\begin{gathered} \mathrm{Y} \\ \mathrm{~m} \end{gathered}$
Fin whale	Western North Atlantic	NEC	2,814	. 21	2,362	0.04	0.1	4.7	$1.8{ }^{\text {c }}$	$0.8{ }^{\text {c }}$	Y	$\begin{gathered} \mathrm{Y} \\ \mathrm{~m} \end{gathered}$
Sei whale	Nova Scotia	NEC	unk	unk	unk	0.04	0.1	undet	0.4	0	Y	$\begin{gathered} \mathrm{N} \\ (2005) \end{gathered}$
Minke whale	Canadian east coast	NEC	2,998	. 19	2,559	0.04	0.5	26	$2.8{ }^{\text {d }}$	$2.6{ }^{\text {d }}$	N^{t}	$\begin{gathered} \mathrm{Y} \\ \mathrm{a}, \mathrm{~m}, \mathrm{p} \end{gathered}$
Blue whale	Western North Atlantic	NEC	unk	unk	unk	0.04	0.1	unk	0.2	0	Y	$\begin{gathered} \mathrm{N} \\ (2002) \end{gathered}$
Sperm whale	North Atlantic	NEC	4,804	. 38	3,768	0.04	0.1	5.7	0.4	0.2	Y	$\begin{gathered} \mathrm{N} \\ (2005) \end{gathered}$
Dwarf sperm whale	Western North Atlantic	SEC	$395^{\text {e }}$. 40	$285{ }^{\text {e }}$	0.04	0.5	2.0	0	0	N	$\begin{gathered} \mathrm{N} \\ (2005) \end{gathered}$
Pygmy sperm whale	Western North Atlantic	SEC	$395^{\text {e }}$. 40	$285^{\text {e }}$	0.04	0.5	2.0	6	6	Y	$\begin{gathered} \mathrm{N} \\ (2005) \end{gathered}$
Killer whale	Western North Atlantic	NEC	unk	unk	unk	0.04	unk	unk	0	0	N	$\begin{gathered} \mathrm{N} \\ (1995) \end{gathered}$
Pygmy killer whale	Western North Atlantic	SEC	unk	unk	unk	0.04	0.5	unk	0	0	N	$\begin{gathered} \mathrm{N} \\ (2005) \end{gathered}$
Northern bottlenose whale	Western North Atlantic	NEC	unk	unk	unk	0.04	unk	unk	0	0	N	$\begin{gathered} \mathrm{N} \\ (1998) \end{gathered}$
Cuvier's beaked whale	Western North Atlantic	NEC	$3,513^{\text {f }}$. 63	$2,006^{\text {f }}$	0.04	0.5	22	0	$0^{\text {g }}$	Y	$\begin{gathered} \mathrm{N} \\ (2005) \end{gathered}$
Mesoplodon beaked whales	Western North Atlantic	NEC	$3,513^{\text {f }}$. 63	$2,006^{\text {f }}$	0.04	0.5	22	0	$0^{\text {g }}$	Y	$\begin{gathered} \mathrm{N} \\ (2005) \end{gathered}$
Mellonheaded whale	Western North Atlantic	SEC	unk	unk	unk	0.04	0.5	unk	0	0	N	$\begin{gathered} \mathrm{N} \\ (2005) \end{gathered}$
Risso's dolphin	Western North Atlantic	NEC	20,479	. 59	12,920	0.04	0.48	124	52	52	N	$\begin{gathered} \mathrm{Y} \\ \mathrm{~m} \end{gathered}$
Pilot whale, long-finned	Western North Atlantic	NEC	$31,139^{\text {h }}$. 27	24,866 ${ }^{\text {h }}$	0.04	0.5	249	unk ${ }^{\text {i }}$	unk ${ }^{\text {i }}$	N^{t}	$\begin{gathered} \mathrm{Y} \\ \mathrm{~m}, \mathrm{p} \end{gathered}$
Pilot whale, short-finned	Western North Atlantic	SEC	$31,139^{\text {h }}$. 27	$24,866^{8}$	0.04	0.5	249	unk ${ }^{\text {i }}$	unk ${ }^{\text {i }}$	N^{t}	$\begin{gathered} \mathrm{Y} \\ \mathrm{~m}, \mathrm{p} \end{gathered}$

Species	Stock Area	NMFS Ctr.	Nbest	Nbest CV	Nmin	Rmax	Fr	PBR	Total Annual S.I and Mort.	Annual Fish. S.I. and Mort. (cv)	Strategic Status	Revised
Atlantic white-sided dolphin	Western North Atlantic	NEC	51,640	. 38	37,904	0.04	0.5	379	unk ${ }^{\text {i }}$	unk ${ }^{\text {i }}$	N^{t}	$\begin{gathered} \mathrm{Y} \\ \mathrm{~m} . \mathrm{p} \end{gathered}$
Whitebeaked dolphin	Western North Atlantic	NEC	unk	unk	unk	0.04	0.5	unk	0	0	N	$\begin{gathered} \mathrm{Y} \\ \substack{\text { stranding } \\ \text { data }} \\ \hline \end{gathered}$
Common dolphin	Western North Atlantic	NEC	120,743	. 23	99,975	0.04	0.5	1,000	unk ${ }^{\text {i }}$	unk ${ }^{\text {i }}$	N^{t}	$\begin{gathered} \mathrm{Y} \\ \mathrm{~m} \end{gathered}$
Atlantic spotted dolphin	Western North Atlantic	SEC	50,978	. 42	$35,745^{\text {j }}$	0.04	0.5	357	0	0	N	$\begin{gathered} \mathrm{N} \\ (2005) \end{gathered}$
Pantropical spotted dolphin	Western North Atlantic	SEC	4,439	. 49	3,010	0.04	0.5	30	0	0	N	$\begin{gathered} \mathrm{N} \\ (2005) \end{gathered}$
Striped dolphin	Western North Atlantic	NEC	94,462	. 40	68,558	0.04	0.5	686	0	0	N	$\begin{gathered} \mathrm{N} \\ (2005) \end{gathered}$
Fraser's dolphin	Western North Atlantic	SEC	unk	unk	unk	0.04	0.5	unk	0	0	N	$\begin{gathered} \mathrm{N} \\ (2005) \end{gathered}$
Clymene dolphin	Western North Atlantic	SEC	6,086	. 93	3,132	0.04	0.5	31	0	0	N	$\begin{gathered} \mathrm{N} \\ (2005) \end{gathered}$
Spinner dolphin	Western North Atlantic	SEC	unk	unk	unk	0.04	0.5	unk	0	0	N	$\begin{gathered} \mathrm{N} \\ (2005) \end{gathered}$
Bottlenose dolphin	Western North Atlantic, offshore	SEC	54,739	. 24	71,382 ${ }^{\text {j }}$	0.04	0.5	714	27	27	N	$\begin{gathered} \mathrm{N} \\ (2005) \end{gathered}$
Bottlenose dolphin	Western North Atlantic, coastal	SEC	unk ${ }^{\text {k }}$	unk ${ }^{\text {k }}$	unk ${ }^{\text {k }}$	0.04	0.5	unk ${ }^{\text {k }}$	unk ${ }^{\text {k }}$	unk ${ }^{\text {k }}$	Y	$\begin{aligned} & \mathrm{Y} \\ & \mathrm{~m} \end{aligned}$
Harbor porpoise	Gulf of Maine/Bay of Fundy	NEC	89,700	. 22	74,695	0.04	0.5	747	$575{ }^{1}$	$574(.17)^{1}$	N	$\begin{aligned} & \mathrm{Y} \\ & \mathrm{~m} \end{aligned}$
Harbor seal	Western North Atlantic	NEC	99,340	. 097	91,546	0.12	1.0	5,493	925	906 (.18)	N	$\begin{gathered} \mathrm{Y} \\ \mathrm{a}, \mathrm{~m}, \mathrm{p} \end{gathered}$
Gray seal	Western North Atlantic	NEC	unk	unk	unk	0.12	1.0	unk	371	228(.22)	N	$\begin{aligned} & \mathrm{Y} \\ & \mathrm{~m} \end{aligned}$
Harp seal	Western North Atlantic	NEC	unk	unk	unk	0.12	0.5	unk	$406,686^{\text {m }}$	81(.29)	N	$\begin{aligned} & \mathrm{Y} \\ & \mathrm{~m} \end{aligned}$
Hooded seal	Western North Atlantic	NEC	unk	unk	unk	0.12	0.5	unk	$4,818^{\text {n }}$	25(.82)	N	$\begin{gathered} \mathrm{Y} \\ \mathrm{a}, \mathrm{~m} \end{gathered}$
Sperm whale	Northern Gulf of Mexico Oceanic	SEC	1,349	. 23	1,114	0.04	0.1	2.2	0	0	Y	$\begin{gathered} \mathrm{N} \\ (2005) \end{gathered}$
Bryde's whale	Northern Gulf of Mexico Oceanic	SEC	40	. 61	25	0.04	0.5	0.3	0	0	N	$\begin{gathered} \mathrm{N} \\ (2005) \end{gathered}$
Cuvier's beaked whale	Northern Gulf of Mexico Oceanic	SEC	95	. 47	65	0.04	0.5	0.7	0	0	Y	$\begin{gathered} \mathrm{N} \\ (2005) \end{gathered}$
Blainville's beaked whale	Northern Gulf of Mexico Oceanic	SEC	106^{15}	. 41	76	0.04	0.5	$0.8{ }^{\circ}$	0	0	Y	$\begin{gathered} \mathrm{N} \\ (2005) \end{gathered}$

Species	Stock Area	NMFS Ctr.	Nbest	Nbest CV	Nmin	Rmax	Fr	PBR	Total Annual S.I and Mort.	Annual Fish. S.I. and Mort. (cv)	Strategic Status	Revised
Gervais' beaked whale	Northern Gulf of Mexico Oceanic	SEC	106^{15}	. 41	76	0.04	0.5	0.8°	0	0	Y	$\begin{gathered} \mathrm{N} \\ (2005) \end{gathered}$
Bottlenose dolphin	Northern Gulf of Mexico Continental shelf	SEC	25,320	. 26	20,414	0.04	0.5	204	0	0	N	$\begin{gathered} \mathrm{N} \\ (2005) \end{gathered}$
Bottlenose dolphin	Northern Gulf of Mexico Coastal	SEC	unk	unk	unk	0.04	0.5	undet	0	0	Y	$\begin{gathered} \mathrm{N} \\ (2005) \end{gathered}$
Bottlenose dolphin	Northern Gulf of Mexico Oceanic	SEC	2,239	. 41	1,607	0.04	0.5	16	0	0	N	$\begin{gathered} \mathrm{N} \\ (2005) \end{gathered}$
Bottlenose dolphin	Gulf of Mexico bay, sound, and estuarine	SEC	unk	unk	unk	0.04	0.5	undet	unk	unk	Y	$\begin{gathered} \mathrm{N} \\ (2005) \end{gathered}$
Atlantic spotted dolphin	Northern Gulf of Mexico (Outer continental shelf and Oceanic)	SEC	30,947	. 27	24,752 ${ }^{\text {p }}$	0.04	0.5	$248^{\text {p }}$	0	0	N	$\begin{gathered} \mathrm{N} \\ (2005) \end{gathered}$
Pantropical spotted dolphin	Northern Gulf of Mexico Oceanic	SEC	91,321	. 16	79,879	0.04	0.5	799	0	0	N	$\begin{gathered} \mathrm{N} \\ (2005) \end{gathered}$
Striped dolphin	Northern Gulf of Mexico Oceanic	SEC	6,505	. 43	4,599	0.04	0.5	46	0	0	N	$\begin{gathered} \mathrm{N} \\ (2005) \end{gathered}$
Spinner dolphin	Northern Gulf of Mexico Oceanic	SEC	11,971	. 71	6,990	0.04	0.5	70	0	0	N	$\begin{gathered} \mathrm{N} \\ (2005) \end{gathered}$
Roughtoothed dolphin	Northern Gulf of Mexico (Outer continental shelf and Oceanic)	SEC	2,223	. 41	1,595 ${ }^{\text {q }}$	0.04	0.5	16^{9}	0	0	N	$\begin{gathered} \mathrm{N} \\ (2005) \end{gathered}$
Clymene dolphin	Northern Gulf of Mexico Oceanic	SEC	17,355	. 65	10,528	0.04	0.5	105	0	0	N	$\begin{gathered} \mathrm{N} \\ (2005) \end{gathered}$
Fraser's dolphin	Northern Gulf of Mexico Oceanic	SEC	726	. 70	427	0.04	0.5	4.3	0	0	N	$\begin{gathered} \mathrm{N} \\ (2005) \end{gathered}$
Killer whale	Northern Gulf of Mexico Oceanic	SEC	133	. 49	90	0.04	0.5	0.9	0	0	N	$\begin{gathered} \mathrm{N} \\ (2005) \end{gathered}$
False killer whale	Northern Gulf of Mexico Oceanic	SEC	1,038	. 71	606	0.04	0.5	6.1	1	1	N	$\begin{gathered} \mathrm{N} \\ (2005) \end{gathered}$
Pygmy killer whale	Northern Gulf of Mexico Oceanic	SEC	408	. 60	256	0.04	0.5	2.6	0	0	N	$\begin{gathered} \mathrm{N} \\ (2005) \end{gathered}$
Dwarf sperm whale	Northern Gulf of Mexico Oceanic	SEC	$742^{\text {r }}$. 29	$584{ }^{\text {r }}$	0.04	0.5	$5.8{ }^{\text {r }}$	0	0	N	$\begin{gathered} \mathrm{N} \\ (2005) \end{gathered}$
Pygmy sperm whale	Northern Gulf of Mexico Oceanic	SEC	$742^{\text {r }}$. 29	$584{ }^{\text {r }}$	0.04	0.5	$5.8{ }^{\text {r }}$	0	0	N	$\begin{gathered} \mathrm{N} \\ (2005) \end{gathered}$
Melonheaded whale	Northern Gulf of Mexico Oceanic	SEC	3,451	. 55	2,238	0.04	0.5	22	0	0	N	$\begin{gathered} \mathrm{N} \\ (2005) \end{gathered}$

Species	Stock Area	NMFS Ctr.	Nbest	Nbest CV	Nmin	Rmax	Fr	PBR	Total Annual S.I and Mort.	Annual Fish. S.I. and Mort. (cv)	Strategic Status	Revised
Risso's dolphin	Northern Gulf of Mexico Oceanic	SEC	2,169	. 32	1,668	0.04	0.5	17	0	0	N	$\begin{gathered} \mathrm{N} \\ (2005) \end{gathered}$
Pilot whale, short-finned ${ }^{\text {s }}$	Northern Gulf of Mexico Oceanic	SEC	2,388	. 48	1,628	0.04	0.5	16	0	0	N	$\begin{gathered} \mathrm{N} \\ (2005) \end{gathered}$

a. The total estimated human-caused mortality and serious injury to right whales is estimated at 2.8 per year (USA waters, 1.6; Canadian waters, 1.2). This is derived from two components: 1) non-observed fishery entanglement records at 1.6 per year (USA waters, 0.6 ; Canadian waters, 1.0), and 2) ship strike records at 1.2 per year (USA waters, 1.0 ; Canadian waters, 0.2).
b. The total estimated human-caused mortality and serious injury to the Gulf of Maine humpback whale stock is estimated as 3.0 per year (USA waters, 2.4; Canadian waters, 0.6). This average is derived from two components: 1) incidental fishery interaction records 2.4 (USA waters, 1.8; Canadian waters, 0.6); 2) records of vessel collisions, 0.6 (USA waters, 0.6 ; Canadian waters, 0).
c. This is based on a review of NMFS records from 2000-2004, that yielded an average of 1.8 human caused mortality; 1.0 ship strikes (0.8 in USA waters and 0.2 in Canadian waters) and 0.8 fishery interactions/entanglements (0.2 in Canadian waters, 0.4 in USA waters and 0.2 in Bermudian waters).
d. During 2000-2004, the USA total annual estimated average human-caused mortality is 2.8 minke whales per year, plus a pending number from the bycatch estimate. This is derived from three components: an unknown number of minke whales per year from USA fisheries using observer data (one minke whale bycatch was observed but this number has not been statistically extended), 2.6 minke whales per year from USA fisheries using strandings and entanglement data, and 0.2 minke whales per year from ship strikes.
e. This estimate may include both the dwarf and pygmy sperm whales.
f. This estimate includes Cuvier's beaked whales and undifferentiated Mesoplodon spp. beaked whales.
g. This is the average mortality of undifferentiated beaked whales (Mesoplodon spp.)
h. This estimate may include both long-finned and short-finned pilot whales.
i. Preliminary fishery mortality estimates have been generated for the years 2000-2004. The estimates will not be reported until scientific review is complete.
j. Estimates may include sightings of the coastal form.
k. Several seasonal management units have been defined for the coastal bottlenose dolphin. Each has a unique abundance estimate, PBR and mortality estimate provided in the Western North Atlantic coastal bottlenose dolphin species section of the text.

1. The total annual estimated average human-caused mortality is $575(\mathrm{CV}=.17)$ harbor porpoises per year. This is derived from four components: 515 harbor porpoise per year $(C V=0.17)$ from USA fisheries using observer and MMAP data, 55 per year (unknown CV) from Canadian fisheries using observer data, 4.2 per year from USA unknown fisheries using strandings data, and 1.2 per year from unknown human-caused mortality (a mutilated stranded harbor porpoise).
m . The total estimated human caused annual mortality and serious injury to harp seals was 406,686 . Estimated annual human caused mortality in US waters is 86 , derived from two components: 1) 81 harp seals (CV=0.29) from the observed US fisheries and 5 from average 2000-2004 strandings mortalities resulting from human interactions. The remaining mortality is derived from five components: 1) 2000-2004 average catches of Northwest Atlantic harp seals by Canada, 257,280; 2) 2000-2004 average Greenland Catch, 79,403 ; 3) 566 average catches in the Canadian Arctic ; 4) 11,542 average bycatches in the Newfoundland lumpfish fishery, ; and 5) 57,810 average struck and lost animals, .
n. This is derived from two components: 1) 4,793 from 2000-2004 ($2000=1,950 ; 2001=3,960 ; 2002=7,341 ; 2003=5,446$, and $2004=5,270$ average catches of Northwest Atlantic population of hooded seals by Canada and Greenland; and 2) 25 hooded seals ($\mathrm{CV}=0.82$) from the observed U.S. fisheries.
o. This estimate includes all Mesoplodon spp.
p. This is the sum $(24,707)$ of the minimum number of Atlantic spotted dolphins seen in the outer continental shelf $(24,612)$ and the oceanic (95) regions combined, and the summed PBR. NOTE: The estimate $(24,707)$ is slightly lower than the $(24,752)$ given in this table and in the SAR text. The $\mathrm{N}_{\text {best }}$ and the $\mathrm{N}_{\min }$ values in the SAR were calculated from the sum med estimates.
q. This is the sum $(1,442)$ of the minimum number of rough-toothed dolphins seen in the outer continental shelf (751) and the oceanic (691) regions combined, and the summed PBR NOTE: The estimate $(1,442)$ is slightly lower than the $(1,595)$ given in this table and in the SAR text. The $\mathrm{N}_{\text {best }}$ and the $\mathrm{N}_{\text {min }}$ values in the SAR were calculated from the sum med estimates.
r. This estimate includes dwarf sperm whales and pygmy sperm whales.
s. This estimate includes all Globicephala sp., though it is presumed that only short-finned pilot whales are present in the Gulf of Mexico.
t. Strategic status determination for the current year will be completed when trawl fishery bycatch estimates are finalized. Status reported is that of the most recently published stock assessment report.

NORTHERN RIGHT WHALE (Eubalaena glacialis):

Western Atlantic Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

Individuals of the western Atlantic northern right whale population range from wintering and calving grounds in coastal waters of the southeastern United States to summer feeding and nursery grounds in New England waters and northward to the Bay of Fundy and the Scotian Shelf. Knowlton et al. (1992) reported several long-distance movements as far north as Newfoundland, the Labrador Basin, and southeast of Greenland; in addition, recent resightings of photographically identified individuals have been made off Iceland, arctic Norway and in the old Cape Farewell whaling ground east of Greenland. The Norwegian sighting (in September 1999) represents one of only two published sightings this century of a right whale in Norwegian waters, and the first since 1926. Together, these long-range matches indicate an extended range for at least some individuals and perhaps the existence of important habitat areas not presently well described. Similarly, records from the Gulf of Mexico (Moore and Clark 1963, Schmidly et al. 1972) represent either geographic anomalies or a more extensive historic range beyond the sole known calving and wintering ground in the waters of the southeastern United States. Whatever the case, the location of most of the population is unknown during the winter. Offshore (greater than 30 miles) surveys flown off the coast of northeastern Florida and southeastern Georgia from 1996 to 2001 had 3 sightings in 1996, 1 in 1997, 13 in 1998, 6 in 1999, 11 in 2000 and 6 in 2001 (within each year, some were repeat sightings of previously recorded individuals). The frequency with which right whales occur in offshore waters in the southeastern U.S. remains unclear.

Research results suggest the existence of six major habitats or congregation areas for western Atlantic northern right whales: these are the coastal waters of the southeastern United States; the Great South Channel; Georges Bank/Gulf of Maine; Cape Cod and Massachusetts Bays; the Bay of Fundy; and the Scotian Shelf. However, movements within and between habitats may be more extensive than thought. Results from satellite tags clearly indicate that sightings separated by perhaps two weeks should not necessarily be assumed to indicate a stationary or resident animal. Instead, telemetry data have shown rather lengthy and somewhat distant excursions, including into deep water off the continental shelf (Mate et al. 1997). Systematic surveys conducted off the coast of North Carolina during the winters of 2001 and 2002 sighted 8 calves, suggesting the calving grounds may extend as far north as Cape Fear. Four of the calves were not sighted by surveys conducted further south. One of the cows photographed was new to researchers, having effectively eluded identification over the period of its maturation (McLellan et al. 2004). The Northeast Fisheries Science Center conducts an extensive multi-year aerial survey program throughout the Gulf of Maine region; this program is intended to better establish the distribution of right whales, including evaluating the inter-annual variability in right whale occurrence in previously poorly studied habitats.

New England waters are a primary feeding habitat for right whales, which feed primarily on copepods (largely of the genera Calanus and Pseudocalanus) in this area. Research suggests that right whales must locate and exploit extremely dense patches of zooplankton to feed efficiently (Mayo and Marx 1990). These dense zooplankton patches are likely a primary characteristic of the spring, summer, and fall right whale habitats (Kenney et al. 1986, 1995). Acceptable surface copepod resources are limited to perhaps 3% of the region during the peak feeding season in Cape Cod and Massachusetts Bays (C. Mayo pers. comm.). While feeding in the coastal waters off Massachusetts has been better studied than other areas, right whale feeding has also been observed on the margins of Georges Bank, in the Gulf of Maine, in the Bay of Fundy, and over the Scotian Shelf. The characteristics of acceptable prey distribution in these areas are not well known. In addition, New England waters serve as a nursery area for calves. NMFS (National Marine Fisheries Service) and Provincetown Center for Coastal Studies aerial surveys during springs of 1999-2002 found right whales along the Northern Edge of Georges Bank, in Georges Basin, and in various locations in the Gulf of Maine including Cashes Ledge, Platts Bank and Wilkinson Basin. The predictability with which right whales occur in such locations remains unclear, and these new data highlight the need for more extensive surveys of habitats that have previously received minimal coverage.

Genetic analyses based upon direct sequencing of mitochondrial DNA (mtDNA) have identified five mtDNA haplotypes in the western Atlantic northern right whale (Malik et al. 1999). Schaeff et al. (1997) compared the genetic variability of North Atlantic and southern right whales (E. australis), and found the former to be significantly less diverse, a finding broadly replicated from sequence data by Malik et al. (2000). These findings
might be indicative of inbreeding in the population, but no definitive conclusion can be reached using current data. Additional work comparing modern and historic genetic population structure in right whales, using DNA extracted from museum and archaeological specimens of baleen and bone, is also underway (Rosenbaum et al. 1997, 2000). Preliminary results suggest that the eastern and western North Atlantic populations were not genetically distinct (Rosenbaum et al. 2000). However, the virtual extirpation of the eastern stock and its lack of recovery in the last hundred years strongly suggests population subdivision over a protracted (but not evolutionary) timescale. Results also suggest that, as expected, the principal loss of genetic diversity occurred during major exploitation events prior to the $20^{\text {th }}$ century.

To date, skin biopsy sampling has resulted in the compilation of a DNA library of almost 300 North Atlantic right whales. When work is completed, a genetic profile will be established for each individual, and an assessment provided on the level of genetic variation in the population, the number of reproductively active individuals, reproductive fitness, the basis for associations and social units in each habitat area, and the mating system. Tissue analysis has also aided in sex identification: the sex ratio of the photo-identified and catalogued population does not differ significantly from parity. Analyses based on both genetics and sighting histories of photographically identified individuals also suggest that in this stock approximately one-third of the females with calves use summer feeding grounds other than the Bay of Fundy (New England Aquarium, unpublished data). As described above, a related question is where individuals other than calving females and a few juveniles overwinter. One or more additional wintering and summering grounds may exist in unsurveyed locations, although it is also possible that missing animals simply disperse over a wide area at these times. Identification of such areas, and the possible threats to right whales there, is recognized as a research priority.

POPULATION SIZE

Based on a census of individual whales identified using photo-identification techniques and an assumption of mortality of whales not seen in seven years, the western North Atlantic stock size was estimated to be 295 individuals in 1992 (Knowlton et al. 1994). An updated analysis using the same method gave an estimate of 299 animals in 1998 (Kraus et al. 2001). An IWC workshop on status and trends of western North Atlantic right whales gave a minimum direct-count estimate of 263 right whales alive in 1996 and noted that the true population was unlikely to be substantially greater than this (Best et al. 2001). A review of the photo-id recapture database in October 2005 indicated that 306 individually recognized whales were known to be alive during 2001. Because this was a nearly complete census, it is assumed that this estimate represents a minimum population size. However, no estimate of abundance with an associated coefficient of variation has been calculated for the population.

Historical Abundance

An estimate of pre-exploitation population size is not available. Basque whalers may have taken substantial numbers of right whales at times during the 1500s in the Strait of Belle Isle region (Aguilar 1986), and the stock of right whales may have already been substantially reduced by the time whaling was begun by colonists in the Plymouth area in the 1600s (Reeves and Mitchell 1987). A modest but persistent whaling effort along the coast of the eastern U.S. lasted three centuries, and the records include one report of 29 whales killed in Cape Cod Bay in a single day during January 1700. Based on incomplete historical whaling data, Reeves and Mitchell (1987) could conclude only that there were at least hundreds of right whales present in the western North Atlantic during the late 1600s. In a later study (Reeves et al. 1992), a series of population trajectories were plotted using historical data and assuming a present day population size of 350 . The results suggest that there may have been at least 1,000 right whales in the population during the early to mid-1600s, with the greatest population decline occurring in the early 1700 s . The authors cautioned, however, that the record of removals is incomplete, the results were preliminary, and refinements are required. Based on back calculations using the present population size and growth rate, the population may have numbered fewer than 100 individuals by 1935 when the time international protection for right whales came into effect (Hain 1975, Reeves et al. 1992, Kenney et al. 1995). However, little is known about the population dynamics of right whales in the intervening years.

Minimum Population Estimate

The western North Atlantic population size was estimated to be at least 306 individuals in 2001 based on a census of individual whales identified using photo-identification techniques. This value is a minimum and does not include animals that were alive prior to 2001, but not recorded in the catalogue as seen during 2001-2004. It also does not include any calves known to be born during 2001, but not entered as new animals in the catalog.

Current Population Trend

The population growth rate reported for the period 1986-1992 by Knowlton et al. (1994) was 2.5% (CV=0.12), suggesting that the stock was showing signs of slow recovery. However, work by Caswell et al. (1999) suggested that crude survival probability declined from about 0.99 in the early 1980s to about 0.94 in the late 1990s. The decline was statistically significant. Additional work conducted in 1999 was reviewed by the IWC workshop on status and trends in this population (Best et al. 2001); the workshop concluded based on several analytical approaches that survival had indeed declined in the 1990s. Although capture heterogeneity could negatively bias survival estimates, the workshop concluded that this factor could not account for the entire observed decline, which appeared to be particularly marked in adult females. Another workshop was convened by NMFS in September 2002 and reached similar conclusions regarding the decline in the population (Clapham 2002).

Recent mortalities, including those in the first half of 2005, suggest an increase in the annual mortality rate (Kraus et al. 2005), and calculations based on demographic data through 1999 (Fujiwara and Caswell 2001) indicate that this mortality rate increase would reduce population growth by approximately 10% per year (Kraus et al. 2005). Of these recent mortalities six were adult females, three of which were carrying near-term fetuses. Furthermore, four of these females were just starting to bear calves, and since the average lifetime calf production is 5.25 calves (Fujiwara and Caswell 2001), the deaths of these females represent a lost reproductive potential of as many as 21 animals.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

During 1980-1992, 145 calves were born to 65 identified cows. The number of calves born annually ranged from 5 to 17 , with a mean of $11.2(\mathrm{SE}=0.90)$. The reproductively active female pool was static at approximately 51 individuals during 1987-1992. Mean calving interval, based on 86 records, was 3.67 years. There was an indication that calving intervals may have been increasing over time, although the trend was not statistically significant ($\mathrm{P}=0.083$) (Knowlton et al. 1994).

Since that report, total reported calf production in $92 / 93$ was $8 ; 93 / 94,9 ; 94 / 95,7 ; 95 / 96,22 ; 96 / 97,20 ; 97 / 98$, $6 ; 98 / 99,4 ; 99 / 00,1 ; 00 / 01,31 ; 01 / 02,21 ; 02 / 03,19 ; 03 / 04,17$ and $04 / 05,28$ [mean $14.8 \mathrm{SE}=2.7$)]. However, this total calf production should be reduced by reported calf mortalities: 2 mortalities in 1993, 3 in 1996, 1 in 1997, 1 in 1998, 4 in 2001 and 2 in 2002. During 2002, 2 mortalities and 1 serious injury involved what were likely calves from $00 / 01$. Of the three calf mortalities in 1996, available data suggested one was not included in the reported 22 mother/calf pairs, resulting in a total of 23 calves born. Eleven of the 22 mothers in 1996 were observed with calves for the first time (i.e., were "new" mothers that year). Three of these were at least 10 years old, 2 were 9 years old, and 6 were of unknown age. An updated analysis of calving interval through the 1997/1998 season suggests that mean calving interval increased since 1992 from 3.67 years to more than 5 years, a significant trend (Kraus et al. 2001). This conclusion is supported by modeling work reviewed by the IWC workshop on status and trends in this population (Best et al. 2001); the workshop agreed that calving intervals had indeed increased and further that the reproductive rate was approximately half that reported from studied populations of E. australis. A workshop on possible causes of reproductive failure was held in April 2000 (Reeves et al. 2001). Factors considered included contaminants, biotoxins, nutrition/food limitation, disease and inbreeding problems. While no conclusions were reached, a research plan to further investigate this topic was developed.

The annual population growth rate during 1986-1992 was estimated to be 2.5% ($\mathrm{CV}=0.12$) using photoidentification techniques (Knowlton et al. 1994). A population increase rate of 3.8% was estimated from the annual increase in aerial sighting rates in the Great South Channel, 1979-1989 (Kenney et al. 1995). However, as noted above, more recent work indicated that the population was in decline in the 1990s (Caswell et al. 1999, Best et al. 2001).

An analysis of the age structure of this population suggests that it contains a smaller proportion of juvenile whales than expected (Hamilton et al. 1998, Best et al. 2001), which may reflect lowered recruitment and/or high
juvenile mortality. In addition, it is possible that the apparently low reproductive rate is due in part to an unstable age structure or to reproductive senescence on the part of some females. However, little data are available on either factor and senescence has not been documented for any baleen whale.

POTENTIAL BIOLOGICAL REMOVAL

Potential biological removal (PBR) is specified as the product of minimum population size, one-half the maximum net productivity rate and a "recovery" factor for endangered, depleted, threatened stocks, or stocks of unknown status relative to OSP (MMPA Sec. 3. 16 U.S.C. 1362, Wade and Angliss 1997). The recovery factor for right whales is 0.10 because this species is listed as endangered under the Endangered Species Act (ESA). However, in view of the population decline indicated by recent demographic analyses (Caswell et al. 1999, Best et al. 2001), the PBR for this population is set to zero.

ANNUAL HUMAN-CAUSED SERIOUS INJURY AND MORTALITY

For the period 2000 through 2004, the total estimated human-caused mortality and serious injury to right whales is estimated at 2.8 per year (U.S. waters, 1.6; Canadian waters, 1.2). This is derived from two components: 1) nonobserved fishery entanglement records at 1.6 per year (U.S. waters, 0.6 ; Canadian waters, 1.0), and 2) ship strike records at 1.2 per year (U.S. waters, 1.0; Canadian waters, 0.2). Beginning with the 2001 Stock Assessment Report, Canadian records were incorporated into the mortality and serious injury rates of this report to reflect the effective range of this stock. It is also important to stress that serious injury determinations are made based upon the best available information; these determinations may change with the availability of new information (Cole et al. 2005). For the purposes of this report, discussion is primarily limited to those records considered confirmed human-caused mortalities or serious injuries.

Background

The details of a particular mortality or serious injury record often require a degree of interpretation. The assigned cause is based on the best judgment of the available data; additional information may result in revisions. When reviewing Table 1 below, several factors should be considered: 1) a ship strike or entanglement may occur at some distance from the reported location; 2) the mortality or injury may involve multiple factors; for example, whales that have been both ship struck and entangled are not uncommon; 3) the actual vessel or gear type/source is often uncertain; and 4) in entanglements, several types of gear may be involved.

The serious injury determinations are most susceptible to revision. There are several records where a struck and injured whale was re-sighted later, apparently healthy, or where an entangled or partially disentangled whale was resighted later free of gear. The reverse may also be true: a whale initially appearing in good condition after being struck or entangled is later re-sighted and found to have been seriously injured by the event. Entanglements of juvenile whales are typically considered serious injuries because the constriction on the animal is likely to become increasingly harmful as the whale grows.

A serious injury was defined in 50 CFR part 229.2 as an injury that was likely to lead to mortality. We therefore limited the serious injury designation to only those reports that had substantiated evidence that the injury, whether from entanglement or vessel collision, was likely to lead to the whale's death. Determinations of serious injury were made on a case-by-case basis following recommendations from the workshop conducted in 1997 on differentiating serious and non-serious injuries (Angliss and DeMaster 1998). Injuries that impeded a whale's locomotion or feeding were not considered serious injuries unless they were likely to be fatal in the foreseeable future. There was no forecasting of how the entanglement or injury may increase the whale's susceptibility to further injury, namely from additional entanglements or vessel collisions. This conservative approach likely underestimates serious injury rates.

With these caveats, the total estimated annual average human-induced mortality and serious injury incurred by this stock (including fishery and non-fishery related causes) is 2.8 right whales per year (U.S. waters 1.6; Canadian waters, 1.2). As with entanglements, some injury or mortality due to ship strikes is almost certainly undetected, particularly in offshore waters. Decomposed and/or unexamined animals (e.g., carcasses reported but not retrieved or necropsied) represent lost data, some of which may relate to human impacts. For these reasons, the estimate of 2.8 right whales per year must be regarded as a minimum estimate.

Further, the small population size and low annual reproductive rate of right whales suggest that human sources of mortality may have a greater effect relative to population growth rates for other whales. The principal factors believed to be retarding growth and recovery of the population are ship strikes and entanglement with fishing gear. Between 1970 and 1999, a total of 45 right whale mortalities were recorded (IWC 1999, Knowlton and Kraus 2001). Of these, $13(28.9 \%)$ were neonates that are believed to have died from perinatal complications or other natural causes. Of the remainder, $16(35.6 \%)$ resulted from ship strikes, $3(6.7 \%)$ were related to entanglement in fishing gear (in two cases lobster gear, and one gillnet gear), and 13 (28.9\%) were of unknown cause. At a minimum, therefore, 42.2% of the observed total for the period and 50% of the 32 non-calf deaths were attributable to human impacts (calves accounted for three deaths from ship strikes).

Young animals, ages 0-4 years, are apparently the most impacted portion of the population (Kraus 1990). Finally, entanglement or minor vessel collisions may not kill an animal directly, but may weaken or otherwise affect it so that it is more likely to become vulnerable to further injury. Such was apparently the case with the two-yearold right whale killed by a ship off Amelia Island, Florida, in March 1991 after having carried gillnet gear wrapped around its tail region since the previous summer (Kenney and Kraus 1993). A similar fate befell right whale \#2220, found dead on Cape Cod in 1996.

Fishery-Related Serious Injury and Mortality

Reports of mortality and serious injury relative to PBR as well as total human impacts are contained in records maintained by the New England Aquarium and the NMFS Northeast and Southeast Regional Offices (Table 1). From 2000 through 2004, 8 of 14 records of mortality or serious injury (including records from both USA and Canadian waters) involved entanglement or fishery interactions. The reports often do not contain the detail necessary to assign the entanglements to a particular fishery or location.

Although disentanglement is either unsuccessful or not possible for the majority of cases, during the period 2000 through 2004, there were at least five documented cases of entanglements for which the intervention of disentanglement teams averted a likely serious injury determination. On 7/9/00, \#2746, a three-year-old of unknown gender, was seen with a line running through either side of the mouth and bridled behind the blowholes, while another portion of the line pinned the left flipper to the whale's flank. A nine-year-old female, \#2223, was sighted on $8 / 18 / 00$ with line tightly wrapped across her back, running through the mouth, and possibly wrapped on the left flipper. Subsequent sightings prior to the disentanglement revealed that the line across the back was beginning to tighten. On 7/20/01, \#2427, a seven-year-old male was sighted off Portsmouth, New Hampshire, with line wrapped tightly around the rostrum and through the mouth. The whale was disentangled later that day, and subsequent resightings indicated that the injuries were healing. However, observers also noted that the whale's baleen was damaged, and that the whale was holding its head high out of the water and not diving nearly as frequently as other whales in the area. An unidentified right whale was disentangled off Campobello Island, Canada on 7/09/03. The gear was tentatively identified as US lobster gear and other unknown gear. And lastly, on 12/6/04 a one-year-old of unknown gender, \#3314, was sighted with line wrapped on both its head and tail which would likely be fatal. Following more than three weeks of attempts, the constricting fishing gear was removed.

In January 1997, NMFS changed the classification of the Gulf of Maine and U.S. mid-Atlantic lobster pot fisheries from Category III to Category I based on examination of stranding and entanglement records of large whales from 1990 to 1994 (62 FR 33, Jan. 2, 1997).

Bycatch of a right whale has been observed by the Northeast Fisheries Observer Program in the pelagic drift gillnet fishery, but no mortalities or serious injuries have been documented in any of the other fisheries monitored by NMFS. The only bycatch of a right whale documented by the Northeast Fisheries Observer Program was a female released from a pelagic drift gillnet in 1993.

In a recent analysis of the scarification of right whales, a total of 75.6% of 447 whales examined during 19802002 were scarred at least once by fishing gear (Knowlton et al. 2005). Further research using the North Atlantic Right Whale Catalogue has indicated that, annually, between 14% and 51% of right whales are involved in entanglements (Knowlton et al. 2005). Entanglement records from 1970 through 2004 maintained by NMFS Northeast Regional Office (NOAA NMFS, unpublished data) included at least 92 right whale entanglements or possible entanglements, including right whales in weirs, in gillnets, and in trailing line and buoys. An additional record (M. J. Harris, pers. comm.) reported a 9.1-10.6m right whale entangled and released south of Ft. Pierce, Florida, in March 1982 (this event occurred during a sampling program and was not related to a commercial fishery). Incidents of entanglements in groundfish gillnet gear, cod traps, and herring weirs in waters of Atlantic Canada and the U.S. east coast were summarized by Read (1994). In six records of right whales becoming entangled in groundfish gillnet gear in the Bay of Fundy and Gulf of Maine between 1975 and 1990, the whales were either released or escaped on their own, although several whales were observed carrying net or line fragments.

A right whale mother and calf were released alive from a herring weir in the Bay of Fundy in 1976. For all areas, specific details of right whale entanglement in fishing gear are often lacking. When direct or indirect mortality occurs, some carcasses come ashore and are subsequently examined, or are reported as "floaters" at sea. The number of unreported and unexamined carcasses is unknown, but may be significant in the case of floaters. More information is needed about fisheries interactions and where they occur.

Other Mortality

Ship strikes are a major cause of mortality and injury to right whales (Kraus 1990, Knowlton and Kraus 2001). Records from 2000 through 2004 have been summarized in Table 1. For this time frame, the average reported mortality and serious injury to right whales due to ship strikes was 1.2 whales per year (U.S. waters, 1.0; Canadian waters, 0.2). In 2000, two right whales were sighted in the Bay of Fundy with large open wounds that were likely the result of collisions with vessels. Right whale \#2820, a male of unknown age, was first seen injured on 7/9/00. He was sighted intermittently throughout the remainder of that summer, and was seen again in the Bay of Fundy in 2001. The second whale, \#2660, was a five-year-old female who was sighted with a wound on the left side of her head, just forward of the blowholes. She has not been resighted since. Although both of these injuries were gruesome in appearance, in the absence of a chronic stressor (i.e., entangling fishing gear), they are likely not fatal.

Table 1. Confirmed human-caused mortality and serious injury records of North Atlantic right whales, January 2000 through December 2004.						
Date ${ }^{\text {a }}$	Report Type ${ }^{\text {b }}$	Sex, age, ID	Location ${ }^{\text {a }}$	$\begin{aligned} & \text { Assig } \\ & \mathrm{P}=\mathrm{F} \\ & \mathrm{~S}=\mathrm{s} \end{aligned}$	d Cause: mary, ondary	Notes
				Ship strike	Entang./ Fsh inter	
3/01/00	serious injury	Adult male \#1130	6mi east of Manomet, MA		P	Line apparently constricting left flipper; flipper discolored; abnormal cyamid distribution; bullet buoy trailing, line weighted down between whale and buoy; no gear recovered
3/17/01	mortality	Male calf	Assateague, VA	P		Large fresh propeller gashes on dorsal caudal and acute muscular hemorrhage
6/08/01	serious injury	Adult male \#1102	58 mi east of Cape Cod, MA		P	Entangling gear deeply embedded; numerous signs of poor health including emaciation, skin discoloration, and abnormal cyamid distribution
6/18/01	mortality	female calf	Long Island, NY	P		Dorsal propeller wounds, sub-dermal hemorrhage
11/03/01	mortality	$14 \mathrm{~m}$ Adult male \#1238	Magdellen Islands, Canada		P	Thoroughly wrapped up in Danish Seine gear, whale seen alive and well five months earlier
7/06/02	mortality	11 m female \#3107	Off Briar Island, NS Canada		P	Carcass ashore on Nantucket, MA; caudal peduncle severely lacerated where entangled; gear consistent with inshore lobster fishery
8/22/02	serious injury	Adult female \#1815	Scotian Shelf, Canada		P	Line tightly wrapped around head and tail stock; no gear recovered

$8 / 22 / 02$	mortality	12.6 m female 1y.o.	off Ocean City, MD	P		Large laceration on dorsal surface
$8 / 30 / 02$	serious injury	\#3210 age \& sex unknown	Bay of Fundy, NS		P	Line tightly wrapped around rostrum, resighted in 2004 in poor condition; no gear recovered
$1 / 14 / 03$	serious injury	Adult female $\# 2240$	Jacksonville, FL	P	Line in mouth no longer visible, oral seal compromised; body condition poor; no gear recovered	
$10 / 02 / 03$	mortality	Adult female $\# 2150$	Digby, NS	P		Large fracture in skull, sub-dermal hemorrhage
$2 / 07 / 04$	mortality	Adult female $\# 1004$	Virginia Beach, VA	P		Severe subdermal bruising, complete fracture of rostrum and laceration of oral rete.
$9 / 06 / 04$	mortality	Adult female $\# 2301$	Roseway Basin, NS	P	Extensive constricting line on head and left flipper. Found dead March 3, 2005 on Ship Shoal Island, VA.	
$11 / 24 / 04$	mortality	Adult female $\# 1909$	Ocean Sands, NC	P		Left fluke lobe severed and large bore blood vessels exposed.

a. The date sighted and location provided in the table are not necessarily when or where the serious injury or mortality occurred; rather, this information indicates when and where the whale was first reported beached, entangled, or injured. b. National guidelines for determining what constitutes a serious injury have not been finalized. Interim criteria as established by NERO/NMFS (Cole et al. 2005) have been used here. Some assignments may change as new information becomes available and/or when national standards are established.

STATUS OF STOCK

The size of this stock is considered to be extremely low relative to OSP in the U.S. Atlantic EEZ, and this species is listed as endangered under the ESA. The North Atlantic right whale is considered one of the most critically endangered populations of large whales in the world (Clapham et al. 1999). A Recovery Plan has been published for the North Atlantic right whale and is in effect (NMFS 2005). Three critical habitats, Cape Cod Bay/Massachusetts Bay, Great South Channel, and the Southeastern U.S. were designated by NMFS (59 FR 28793, June 3, 1994). A National Marine Fisheries Service ESA 1996 review of Northern Right Whale status concluded that the western North Atlantic population of the northern right whale remains endangered [Note that 'northern right whale' is nomenclature that is now outdated in the scientific literature but not yet modified in rule makings. Scientific literature recognizes north Atlantic and north Pacific right whales as two distinct species]; this conclusion was reinforced by the International Whaling Commission (Best et al. 2001), which expressed grave concern regarding the status of this stock. Relative to populations of southern right whales, there are also concerns about growth rate, percentage of reproductive females, and calving intervals in this population. The total level of humancaused mortality and serious injury is unknown, but reported human-caused mortality and serious injury has been a minimum of 2.8 right whales per year from 2000 through 2004. Given that PBR has been set to zero, no mortality or serious injury for this stock can be considered insignificant. This is a strategic stock because the average annual human-related mortality and serious injury exceeds PBR, and also because the Northern right whale is an endangered species.

REFERENCES CITED

Aguilar, A. 1986. A review of old Basque whaling and its effect on the right whales of the North Atlantic. Rep. int. Whal. Commn (Special Issue) 10:191-199.
Angliss, R.P., and D.P. DeMaster. 1998. Differentiating serious and non-serious injury of marine mammals taken incidental to commercial fishing operations: report of the serious injury workshop 1-2 April 1997, Silver Spring, Maryland. NOAA Technical Memorandum, National Marine Fisheries-OPR-13.
Best, P.B., J.L. Bannister, R.L. Brownell, Jr., and G.P. Donovan (eds.). 2001. Right whales: worldwide status. J. Cetacean Res. Manage. (Special Issue) 2:309 pp.

Caswell, H., S. Brault, and M. Fujiwara. 1999. Declining survival probability threatens the North Atlantic right whale. Proc. Natl. Acad. Science USA 96: 3308-3313.
Clapham, P.J. (ed.) 2002. Report of the working group on survival estimation for North Atlantic right whales. Available from the Northeast Fisheries Science Center, 166 Water Street, Woods Hole, MA 02543.
Clapham, P.J., S.B. Young, and R.L. Brownell, Jr. 1999. Baleen whales: conservation issues and the status of the most endangered populations. Mammal Review 29:35-60.
Cole, T.V.N., D.L. Hartley, and R.M. Merrick. 2005. Mortality and serious injury determinations for large whale stocks along the eastern seaboard of the United States, 1999-2003. U. S. Dep Commer., NOAA-National Marine Fisheries Service-NEFSC Ref. Doc. 05-08; 20 p. Available from National Marine Fisheries Service, 166 Water Street, Woods Hole, MA 02543-1026.
Fujiwara, M. and H. Caswell. 2001. Demography of the endangered North Atlantic right whale. Nature 414:537-41.
Hain, J.H.W. 1975. The international regulation of whaling. Marine Affairs J. 3:28-48.
Hamilton, P.K., A.R. Knowlton, M.K. Marx, and S.D. Kraus. 1998. Age structure and longevity in North Atlantic right whales Eubalaena glacialis and their relation to reproduction. Mar. Ecol. Prog. Series 171:285-292.
IWC. 1999. Report of the workshop on the comprehensive assessment of right whales worldwide. J. Cetacean Res. Manage. 1 (supplement):119-120.
Kenney, R.D., M.A.M. Hyman, R.E. Owen, G.P. Scott, and H.E. Winn. 1986. Estimation of prey densities required by western North Atlantic right whales. Mar. Mammal Sci. 2:1-13.
Kenney, R.D. and S.D. Kraus. 1993. Right whale mortality-- a correction and an update. Mar. Mammal Sci. 9:445446.

Kenney, R.D., H.E. Winn, and M. C. Macaulay. 1995. Cetaceans in the Great South Channel, 1979-1989: right whale (Eubalaena glacialis). Cont. Shelf Res. 15:385-414.
Knowlton, A.R., J. Sigurjonsson, J.N. Ciano, and S.D. Kraus. 1992. Long-distance movements of North Atlantic right whales (Eubalaena glacialis). Mar. Mammal Sci. 8:397-405.
Knowlton, A.R. and S.D. Kraus. 2001. Mortality and serious injury of North Atlantic right whales (Eubalaena glacialis) in the North Atlantic Ocean. J. Cetacean Res. Manage. (Special Issue) 2:193-208.
Knowlton, A.R., S.D. Kraus, and R.D. Kenney. 1994. Reproduction in North Atlantic right whales (Eubalaena glacialis). Can. J. Zool. 72:1297-1305.
Knowlton, A.R., M.K. Marx, H.M. Pettis, P.K. Hamilton, and S.D. Kraus. 2005. Analysis of scarring on North Atlantic right whales (Eubalaena glacialis): monitoring rates of entanglement interaction 1980-2002. Final Report to the National Marine Fisheries Service, Contract \#43EANF030107. Available from: New England Aquarium, Central Wharf, Boston, MA 02110.
Kraus, S.D. 1990. Rates and potential causes of mortality in North Atlantic right whales (Eubalaena glacialis). Mar. Mammal Sci. 6:278-291.
Kraus, S.D., P.K. Hamilton, R.D. Kenney, A. Knowlton, and C. K. Slay. 2001. Reproductive parameters of the North Atlantic right whale. J. Cetacean Res. Manage. (Special Issue) 2:231-236.
Kraus, S.D., M.W. Brown, H. Caswell, C.W. Clark, M. Fujiwara, P.K. Hamilton, R.D. Kenney, A.R. Knowlton, S. Landry, C.A. Mayo, W.A. McLellan, M.J. Moore, D.P. Nowacek, D.A.Pabst, A. J. Read, and R.M. Rolland. 2005. North Atlantic Right Whales in Crisis. Science 309(5734):561-562.
Malik, S., M.W. Brown, S.D. Kraus, A. Knowlton, P. Hamilton, and B.N. White. 1999. Assessment of genetic structuring and habitat philopatry in the North Atlantic right whale (Eubalaena glacialis). Can. J. Zool. 77: 1217-1222.
Malik, S., M.W. Brown, S.D. Kraus, and B.N. White. 2000. Analysis of mitochondrial DNA diversity within and between North and South Atlantic right whales. Mar. Mammal Sci. 16:545-558.
Mate, B.M., S.L. Nieukirk, and S.D. Kraus. 1997. Satellite-monitored movements of the northern right whale. J. Wildl. Manage. 61:1393-1405.
Mayo, C.A. and M.K. Marx. 1990. Surface foraging behaviour of the North Atlantic right whale, Eubalaena glacialis, and associated zooplankton characteristics. Can. J. Zool. 68:2214-2220.
McLellan, W.A., E. Meagher, L. Torres, G. Lovewell, C. Harper, K. Irish, B. Pike, and A.D. Pabst. 2004. Winter right whale sightings from aerial surveys of the coastal waters of the US Mid-Atlantic. Presented at the $15^{\text {th }}$ Biennial Conference on the Biology of Marine Mammals.
Moore, J.C. and E. Clark. 1963. Discovery of right whales in the Gulf of Mexico. Science 141(3577):269.
NMFS [National Marine Fisheries Service]. 2005. Recovery plan for the North Atlantic right whale (Eubalaena glacialis). National Marine Fisheries Service, Silver Spring, Maryland.
Read, A.J. 1994. Interactions between cetaceans and gillnet and trap fisheries in the northwest Atlantic. Rep. int.Whal. Commn (Special Issue) 15:133-147.

Reeves, R.R., R. Rolland, and P. Clapham (eds.). 2001. Report of the workshop on the causes of reproductive failure in North Atlantic right whales: new avenues of research. NOAA-National Marine Fisheries ServiceNEFSC Ref. Doc. 01-16. 46p. Available from: NMFS, Northeast Fisheries Science Center, 166 Water St., Woods Hole, MA 02543.
Reeves, R.R. and E. Mitchell. 1987. Shore whaling for right whales in the northeastern United States. Contract Report No. NA85-WCC-06194, Southeast Fisheries Science Center, Miami, FL, 108 pp. Available from: NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL, 33149.
Reeves, R.R., J.M. Breiwick, and E. Mitchell. 1992. Pre-exploitation abundance of right whales off the eastern United States. Pages 5-7. In: J. Hain (ed.). The right whale in the western North Atlantic: A science and management workshop, 14-15 April 1992, Silver Spring, Maryland. NOAA-National Marine Fisheries Service-NEFSC Ref. Doc. No. 92-05. 88 pp. Available from: NMFS, Northeast Fisheries Science Center, 166 Water St., Woods Hole, MA 02543.
Rosenbaum, H.C., M.S. Egan, P.J. Clapham, R.L. Brownell, Jr., and R. DeSalle. 1997. An effective method for isolating DNA from non-conventional museum specimens. Mol. Ecol. 6:677-681.
Rosenbaum, H.C., M.S. Egan, P.J. Clapham, R.L. Brownell, Jr., S. Malik, M.W. Brown, B.N. White, P. Walsh, and R. DeSalle. 2000. Utility of North Atlantic right whale museum specimens for assessing changes in genetic diversity. Conserv. Biol. 14:1837-1842.
Schaeff, C.M., S.D. Kraus, M.W. Brown, J. Perkins, R. Payne, and B.N. White. 1997. Comparison of genetic variability of North and South Atlantic right whales (Eubalaena) using DNA fingerprinting. Can. J. Zool. 75:1073-1080.
Schmidly, D.J., C.O. Martin, and G.F. Collins. 1972. First occurrence of a black right whale (Balaena glacialis) along the Texas coast. Southw. Nat. 17:214-215.
Wade, P.R., and R.P. Angliss. 1997. Guidelines for assessing marine mammal stocks: Report of the GAMMS Workshop, April 3-5, 1996, Seattle, Washington. NOAA Technical Memorandum, National Marine Fisheries Service-OPR-12. U.S. Dept. of Commerce, Washington, D.C. 93 pp.

HUMPBACK WHALE (Megaptera novaeangliae): Gulf of Maine Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

In the western North Atlantic, humpback whales feed during spring, summer and fall over a geographic range encompassing the eastern coast of the United States (including the Gulf of Maine), the Gulf of St. Lawrence, Newfoundland/Labrador, and western Greenland (Katona and Beard 1990). Other North Atlantic feeding grounds occur off Iceland and northern Norway, including off Bear Island and Jan Mayen (Christensen et al. 1992; Palsbøll et al. 1997). These six regions represent relatively discrete subpopulations, fidelity to which is determined matrilineally (Clapham and Mayo 1987). Genetic analysis of mitochondrial DNA (mtDNA) has indicated that this fidelity has persisted over an evolutionary timescale in at least the Icelandic and Norwegian feeding grounds (Palsbøll et al. 1995; Larsen et al. 1996). Previously, the North Atlantic humpback whale population was treated as a single stock for management purposes (Waring et al. 1999). Indeed, earlier genetic analyses (Palsbøll et al. 1995), based upon relatively small sample sizes, had failed to discriminate among the four western North Atlantic feeding areas. However, genetic analyses often reflect a timescale of thousands of years, well beyond those commonly used by managers. Accordingly, the decision was made to reclassify the Gulf of Maine as a separate feeding stock; this was based upon the strong fidelity by individual whales to this region, and the attendant assumption that, were this subpopulation wiped out, repopulation by immigration from adjacent areas would not occur on any reasonable management timescale. This reclassification has subsequently been supported by new genetic analyses based upon a much larger collection of samples than those utilized by Palsbøll et al. (1995). These analyses have detected significant differences in mtDNA haplotype frequencies among whales sampled in four western feeding areas, including the Gulf of Maine (Palsbøll et al. 2001). During the 2002 Comprehensive Assessment of North Atlantic humpback whales, the International Whaling Commission acknowledged the evidence for treating the Gulf of Maine as a separate management stock (IWC 2002).

During the summers of 1998 and 1999, the Northeast Fisheries Science Center conducted surveys for humpback whales on the Scotian Shelf to establish the occurrence and population identity of the animals found in this region, which lies between the well-studied populations of the Gulf of Maine and Newfoundland. Photographs from both surveys have now been compared to both the overall North Atlantic Humpback Whale Catalogue and a large regional catalogue from the Gulf of Maine (maintained by the College of the Atlantic and the Provincetown Center for Coastal Studies, respectively); this work is summarized in Clapham et al. (2003). The match rate between the Scotian Shelf and the Gulf of Maine was 27% (14 of 52 Scotian Shelf individuals from both years). Comparable rates of exchange were obtained from the southern ($28 \%, \mathrm{n}=10$ of 36 whales) and northern $(27 \%, n=4$ of 15 whales) ends of the Scotian Shelf, despite the additional distance of nearly 100 nautical miles (one whale was observed in both areas). In contrast, all (36 of 36) humpback whales identified by the same NMFS surveys elsewhere in the Gulf of Maine (including Georges Bank, southwestern Nova Scotia and the Bay of Fundy) had been previously observed in the Gulf of Maine region. The sighting histories of the 14 Scotian Shelf whales matched to the Gulf of Maine suggested that many of them were transient through the latter area. There were no matches between the Scotian Shelf and any North Atlantic feeding ground, except the Gulf of Maine; however, these comparisons are compromised by the often low sampling effort in other regions in recent years. Overall, it appears that the effective range of many members of the Gulf of Maine stock does not extend onto the Scotian Shelf.

During winter, whales from most identified Atlantic feeding areas (including the Gulf of Maine) mate and calve in the West Indies, where spatial and genetic mixing among subpopulations occurs (Clapham et al. 1993; Katona and Beard 1990; Palsbøll et al. 1997; Stevick et al. 1998). A few whales of unknown northern origin migrate to the Cape Verde Islands (Reiner et al. 1996). In the West Indies, the majority of whales are found in the waters of the Dominican Republic, notably on Silver Bank, Navidad Bank, and in Samana Bay (Balcomb and Nichols 1982; Whitehead and Moore 1982; Mattila et al. 1989, 1994). Humpback whales are also found at much lower densities throughout the remainder of the Antillean arc, from Puerto Rico to the coast of Venezuela (Winn et al. 1975; Levenson and Leapley 1978; Price 1985; Mattila and Clapham 1989).

Not all whales migrate to the West Indies every winter, and significant numbers of animals are found in midand high-latitude regions at this time (Clapham et al. 1993; Swingle et al. 1993). An increased number of sightings of humpback whales in the vicinity of the Chesapeake and Delaware Bays occurred in 1992 (Swingle et al. 1993). Wiley et al. (1995) reported 38 humpback whale strandings occurred during 1985-1992 in the U.S. mid-Atlantic and southeastern states. Humpback whale strandings increased, particularly along the Virginia and North Carolina
coasts, and most stranded animals were sexually immature; in addition, the small size of many of these whales strongly suggested that they had only recently separated from their mothers. Wiley et al. (1995) concluded that these areas were becoming an increasingly important habitat for juvenile humpback whales and that anthropogenic factors may negatively impact whales in this area. There have also been a number of wintertime humpback sightings in coastal waters of the southeastern U.S. (NMFS unpublished data; New England Aquarium unpublished data; Florida DEP unpublished data). Whether the increased sightings represent a distributional change, or are simply due to an increase in sighting effort and/or whale abundance, is unknown.

A key question with regard to humpback whales off the southeastern and mid-Atlantic states is their population identity. This topic was investigated using fluke photographs of living and dead whales observed in the region (Barco et al. 2002). In this study, photographs of 40 whales (live or dead) were of sufficient quality to be compared to catalogues from the Gulf of Maine (the closest feeding ground) and other areas in the North Atlantic. Of 21 live whales, $9(42.9 \%)$ matched to the Gulf of Maine, 4 (19.0\%) to Newfoundland and $1(4.8 \%)$ to the Gulf of St Lawrence. Of 19 dead humpbacks, $6(31.6 \%)$ were known Gulf of Maine whales. Although the population composition of the mid-Atlantic is apparently dominated by Gulf of Maine whales, lack of recent photographic effort in Newfoundland makes it likely that the observed match rates under-represent the true presence of Canadian whales in the region. Barco et al. (2002) suggested that the mid-Atlantic region primarily represents a supplemental winter feeding ground used by humpbacks for more than one purpose.

In New England waters, feeding is the principal activity of humpback whales, and their distribution in this region has been largely correlated to prey species and abundance, although behavior and bottom topography are factors in foraging strategy (Payne et al. 1986, 1990). Humpback whales are frequently piscivorus when in New England waters, feeding on herring (Clupea harengus), sand lance (Ammodytes spp.), and other small fishes. In the northern Gulf of Maine, euphausiids are also frequently taken (Paquet et al. 1997). Commercial depletion of herring and mackerel led to an increase in sand lance in the southwestern Gulf of Maine in the mid 1970s with a concurrent decrease in humpback whale abundance in the northern Gulf of Maine. Humpback whales were densest over the sandy shoals in the southwestern Gulf of Maine favored by the sand lance during much of the late 1970s and early 1980s, and humpback distribution appeared to have shifted to this area (Payne et al. 1986). An apparent reversal began in the mid 1980s, and herring and mackerel increased as sand lance again decreased (Fogarty et al. 1991). Humpback whale abundance in the northern Gulf of Maine increased markedly during 1992-1993, along with a major influx of herring (P. Stevick, pers. comm.). Humpback whales were few in nearshore Massachusetts waters in the 1992-1993 summer seasons. They were more abundant in the offshore waters of Cultivator Shoal and on the Northeast Peak on Georges Bank and on Jeffreys Ledge; these latter areas are traditional locations of herring occurrence. In 1996 and 1997, sand lance and therefore humpback whales were once again abundant in the Stellwagen Bank area. However, unlike previous cycles, when an increase in sand lance corresponded to a decrease in herring, herring remained relatively abundant in the northern Gulf of Maine, and humpbacks correspondingly continued to occupy this portion of the habitat, where they also fed on euphausiids (unpublished data, Center for Coastal Studies and College of the Atlantic).

In early 1992, a major research program known as the Years of the North Atlantic Humpback (YONAH) (Smith et al. 1999) was initiated. This was a large-scale, intensive study of humpback whales throughout almost their entire North Atlantic range, from the West Indies to the Arctic. During two primary years of field work, photographs for individual identification and biopsy samples for genetic analysis were collected from summer feeding areas and from the breeding grounds in the West Indies. Additional samples were collected from certain areas in other years. Results pertaining to the estimation of abundance and to genetic population structure are summarized below.

POPULATION SIZE

The overall North Atlantic population (including the Gulf of Maine) derived from genetic tagging data collected by the YONAH project on the breeding grounds, was estimated to be 4,894 males $(95 \% \mathrm{CI}=3,374-7,123)$ and 2,804 females ($95 \% \mathrm{CI}=1,776-4,463$) (Palsbøll et al. 1997). Since the sex ratio in this population is known to be even (Palsbøll et al. 1997), the excess of males is presumed a result of sampling bias, lower rates of migration among females or sex-specific habitat partitioning in the West Indies; whatever the reason, the combined total is an underestimate of overall population size. Photographic mark-recapture analyses from the YONAH project gave an ocean-basin-wide estimate of 11,570 animals during 1992/1993 ($\mathrm{CV}=0.068$, Stevick et al. 2003), and an additional genotype-based analysis yielded a similar but less precise estimate of 10,400 whales ($95 \% \mathrm{CI}=8,000$ to 13,600) (Smith et al. 1999). The estimate of 11,570 individuals ($\mathrm{CV}=0.068$) is regarded as the best available estimate for the North Atlantic, although because YONAH sampling was not spatially representative in the feeding grounds, this value is negatively biased. In the northeastern North Atlantic, Øien (2001) estimated from sighting survey data that there were $889(\mathrm{CV}=0.32)$ humpback whales in the Barents and Norwegian Seas region.

Estimating abundance for the Gulf of Maine stock has proved problematic. Three approaches have been investigated: mark-recapture estimates, minimum population size from photo ids, and line-transect survey estimates. Most of the mark-recapture estimates were affected by heterogeneity of sampling, which was heavily focused on the southwestern Gulf of Maine. However, an estimate of $652(\mathrm{CV}=0.29)$ derived from the more extensive and representative YONAH sampling in 1992 and 1993 is probably less subject to this bias.

The second approach used photo-identification data to estimate the minimum number of humpback whales alive in a particular year, 1997. By determining the number of identified individuals seen either in that year, or in both a previous and subsequent year, it is possible to determine that at least 497 humpbacks were alive in 1997. This figure is also likely to be negatively biased, again because of heterogeneity of sampling. A similar calculation for 1992 (which would correspond to the YONAH estimate for the Gulf of Maine) yields a figure of 501 whales.

In the third approach, data were obtained from a 28 July to 31 August 1999 line-transect sighting survey conducted by a ship and airplane covering waters from Georges Bank to the mouth of the Gulf of St. Lawrence. Total track line length was $8,212 \mathrm{~km}$. However, in light of the information on stock identity of Scotian Shelf humpback whales noted above, only the portions of the survey covering the Gulf of Maine were used; surveys blocks along the eastern coast of Nova Scotia were excluded. Shipboard data were analyzed using the modified direct duplicate method (Palka 1995) which accounts for school size bias and $g(0)$, the probability of detecting a group on the track line. Aerial data were not corrected for $g(0)$ (Palka 2000). These surveys yielded an estimate of 816 humpbacks $(\mathrm{CV}=0.45)$. However, given that the rate of exchange between the Gulf of Maine and both the Scotian Shelf and mid-Atlantic region is not zero, this estimate is likely to be conservative. Accordingly, inclusion of data from 25% of the Scotian Shelf survey area (to reflect the match rate of 25% between the Scotian Shelf and the Gulf of Maine) gives an estimate of 902 whales ($C V=0.41$). Since the mark-recapture and minimum population size estimates are above the lower bound of the CV of the line transect estimate, and given the known exchange between the Gulf of Maine and the Scotian Shelf, we have chosen to use the latter as the best estimate of abundance for Gulf of Maine humpback whales.

Minimum Population Estimate

The minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the lognormally distributed best abundance estimate. This is equivalent to the 20th percentile of the log-normal distribution as specified by Wade and Angliss (1997). The best estimate of abundance for Gulf of Maine humpback whales is $902(\mathrm{CV}=0.41)$. The minimum population estimate for this stock is 647 .

Table 1. Summary of abundance estimates for Gulf of Maine humpback whales.				
Month/Year	Type	\mathbf{N}	CV	Source
July/August 1999	Line transect, including a portion of the Scotian Shelf stratum	902	0.41	Palka 2000, Clapham et al. 2003

Current Population Trend

As detailed below, current data suggest that the Gulf of Maine humpback whale stock is steadily increasing in size. This is consistent with an estimated average trend of $3.1 \% ~(\mathrm{SE}=0.005)$ in the North Atlantic population overall for the period 1979-1993 (Stevick et al. 2003), although there are no feeding-area-specific estimates.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Barlow and Clapham (1997), applying an interbirth interval model to photographic mark-recapture data, estimated the population growth rate of the Gulf of Maine humpback whale stock at $6.5 \%(\mathrm{CV}=0.012)$. Maximum net productivity is unknown for this population, although a theoretical maximum for any humpback population can be calculated using known values for biological parameters (Brandão et al. 2000; Clapham et al. 2001). For the Gulf of Maine stock, data supplied by Barlow and Clapham (1997) and Clapham et al. (1995) give values of 0.96 for survival rate, 6 years as mean age at first parturition, 0.5 as the proportion of females, and 0.42 for annual pregnancy rate. From this, a maximum population growth rate of 0.072 is obtained according to the method described by Brandão et al. (2000). This suggests that the observed rate of 6.5% (Barlow and Clapham 1997) is close to the maximum for this stock.

Clapham et al. (2003) updated the Barlow and Clapham (1997) analysis using data from the period 1992 to 2000. The population growth estimate was either 0% (for a calf survival rate of 0.51) or 4.0% (for a calf survival rate of 0.875). Although confidence limits are not available (because maturation parameters could not be estimated),
both estimates of population growth rate are outside the 95% confidence intervals of the previous estimate of 6.5% for the period 1979 to 1991 (Barlow and Clapham 1997). It is unclear whether this apparent decline is an artifact resulting from a shift in distribution; indeed, such a shift occurred during exactly the period (1992-1995) in which survival rates declined. It is possible that this shift resulted in calves born in those years imprinting on (and thus subsequently returning to) areas other than those in which intensive sampling occured. If the decline is real, it may be related to known high mortality among young-of-the-year whales in the waters of the U.S. mid-Atlantic states. However, calf survival appears to have increased since 1996, presumably accompanied by an increase in population growth.

In light of the uncertainty accompanying the more recent estimates of population growth rate for the Gulf of Maine stock, for purposes of this assessment the maximum net productivity rate was assumed to be the default value of 0.04 for cetaceans (Barlow et al. 1995).

Current and maximum net productivity rates are unknown for the North Atlantic population overall. As noted above, Stevick et al. (2003) calculated an average population growth rate of $3.1 \% ~(\mathrm{SE}=0.005)$ for the period 19791993.

POTENTIAL BIOLOGICAL REMOVAL

Potential Biological Removal (PBR) is the product of minimum population size, one-half the maximum productivity rate, and a "recovery" factor (MMPA Sec. 3. 16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size is 647 . The maximum productivity rate is the default value of 0.04 . The "recovery" factor, which accounts for endangered, depleted, threatened stocks, or stocks of unknown status relative to optimum sustainable population (OSP) is assumed to be 0.10 because this stock is listed as an endangered species under the Endangered Species Act (ESA). PBR for the Gulf of Maine humpback whale stock is 1.3 whales.

ANNUAL HUMAN-CAUSED SERIOUS INJURY AND MORTALITY

For the period 2000 through 2004, the total estimated human-caused mortality and serious injury to the Gulf of Maine humpback whale stock is estimated as 3.0 animals per year (U.S. waters, 2.4; Canadian waters, 0.6). This average is derived from incidental fishery interaction records, 2.4 (U.S. waters, 1.8; Canadian waters, 0.6); and records of vessel collisions, 0.6 (U.S. waters, 0.6 ; Canadian waters, 0). Additional humpback mortalities and serious injuries occurred in the southeastern and mid-Atlantic states but could not be confirmed as involving members of the Gulf of Maine stock. These records represent an additional minimum annual average of 2.0 human-caused mortalities and serious injuries to humpbacks over the time period, of which 1.2 per year are attributable to incidental fishery interactions and 0.8 per year are attributable to vessel collisions.

Beginning with the 2001 Stock Assessment Report, Canadian records were incorporated into the mortality and serious injury rates, to reflect the effective range of this stock as described above. Records from the southeastern and mid-Atlantic states involving individuals that could not be identified as members of the Gulf of Maine stock were tallied separately. Conversely, records involving unidentified individuals reported between New York and the Bay of Fundy were assumed to be whales from the Gulf of Maine stock. It is also important to stress that serious injury determinations are made based upon the best available information at the time of writing; these determinations may change with the availability of new information. For the purposes of this report, discussion is primarily limited to those records considered confirmed human-caused mortalities or serious injuries.

To better assess human impacts (both vessel collision and gear entanglement), and considering the number of decomposed and incompletely or unexamined animals in the records, there needs to be greater emphasis on the timely recovery of carcasses and complete necropsies. The literature and review of records described here suggest that there are significant human impacts beyond those recorded in the fishery observer data. For example, a study of entanglement-related scarring on the caudal peduncle of 134 individual humpback whales in the Gulf of Maine suggested that between 48% and 65% had experienced entanglements (Robbins and Mattila 2001). Decomposed and/or unexamined animals (e.g., carcasses reported but not retrieved or no necropsy performed) represent 'lost data' some of which may relate to human impacts.

Serious injury was defined in 50 CFR part 229.2 as an injury that is likely to lead to mortality. We therefore limited serious injury designations to only those reports that had substantiated evidence that the injury, whether from entanglement or vessel collision, was likely to lead to the whale's death. Determinations of serious injury were made on a case-by-case basis following recommendations from the workshop conducted in 1997 on differentiating serious and non-serious injuries (Angliss and DeMaster 1998). Injuries that impeded a whale's locomotion or feeding were not considered serious injuries unless they were likely to be fatal in the foreseeable future. There was no forecasting of how the entanglement or injury might increase the whale's susceptibility to further injury, namely
from additional entanglements or vessel collisions. For these reasons, the human impacts listed in this report represent a minimum estimate.

Background

As with right whales, human impacts (vessel collisions and entanglements) are factors which may be slowing recovery of the humpback whale population. There is an average of 4 to 6 entanglements of humpback whales a year in waters of the southern Gulf of Maine, and additional reports of vessel-collision scars (unpublished data, Center for Coastal Studies). Of 20 dead humpback whales (principally in the mid-Atlantic, where decomposition did not preclude examination for human impacts), Wiley et al. (1995) reported that $6(30 \%)$ had major injuries possibly attributable to ship strikes, and $5(25 \%)$ had injuries consistent with possible entanglement in fishing gear. One whale displayed scars that may have been caused by both ship strike and entanglement. Thus, 60% of the whale carcasses suitable for examination showed signs that anthropogenic factors may have contributed to, or been responsible for, their death. Wiley et al. (1995) further reported that all stranded animals were sexually immature, suggesting a winter or migratory segregation and/or that juvenile animals are more susceptible to human impacts.

An updated analysis of humpback whale mortalities from the mid-Atlantic states region was produced by Barco et al. (2002). Between 1990 and 2000, there were 52 known humpback whale mortalities in the waters of the U.S. mid-Atlantic states. Inspection of length data from 48 of these whales (18 females, 22 males, and 8 of unknown sex) suggested that $39(81.2 \%)$ were first-year animals, $7(14.6 \%)$ were immature and $2(4.2 \%)$ were adults. However, sighting histories of 5 of the dead whales indicate that some were small for their age, and histories of live whales further indicate that the population contains a greater percentage of mature animals than was suggested by the stranded sample.

Robbins and Mattila (2001) reported that males were more likely to be entangled than females. Their scarring data suggested that yearlings were more likely than other age classes to be involved in entanglements. Finally, female humpbacks showing evidence of prior entanglements produced significantly fewer calves, suggesting that entanglement may significantly impact reproductive success.

Humpback whale entanglements also occur in relatively high numbers in Canadian waters. Reports of interactions with fixed fishing gear set for groundfish around Newfoundland averaged 365 annually from 1979 to 1987 (range 174-813). An average of 50 humpback whale entanglements (range 26-66) was reported annually between 1979 and 1988, and 12 of 66 humpback whales entangled in 1988 died (Lien et al. 1988). Volgenau et al. (1995) reported that in Newfoundland and Labrador, cod traps caused the most entanglements and entanglement mortalities (21%) of humpbacks between 1979 and 1992. They also reported that gillnets were the primary cause of entanglements and entanglement mortalities (20%) of humpbacks in the Gulf of Maine between 1975 and 1990.

Disturbance by whale watching may be an important issue in some areas of the population's range, notably the coastal waters of New England where the density of whale watching traffic is seasonally high. However, no studies have been conducted to address this question.

Fishery-Related Serious Injuries and Mortalities

A description of Fisheries is provided in Appendix III. Two mortalities were observed in the pelagic drift gillnet fishery, one in 1993 and the other in 1995. In winter 1993, a juvenile humpback was observed entangled and dead in a pelagic drift gillnet along the 200 m isobath northeast of Cape Hatteras. In early summer 1995, a humpback was entangled and dead in a pelagic drift gillnet on southwestern Georges Bank. Additional reports of mortality and serious injury relevant to comparison to PBR, as well as description of total human impacts, are contained in records maintained by NMFS. A number of these records (11 entanglements involving lobster pot/trap gear) from the 19901994 period were the basis to reclassify the lobster fishery (62 FR 33, Jan. 2, 1997).

For this report, the records of dead, injured, and/or entangled humpbacks (found either stranded or at sea) during the period 2000 through 2004 were reviewed. Out of 175 records, 159 were eliminated from further consideration due to an absence of any evidence of human impact or, in the case of an entangled whale, the animal had become disentangled (10 were disentangled in 2003 alone). Of the remaining records, the Gulf of Maine stock sustained 4 mortalities attributable to fishery interactions and 8 cases of serious injuries -12 records in the five-year period (Table 2). In addition, 3 mortalities and 3 serious injuries were documented in the southeastern and midAtlantic states that involved fisheries interactions. At the time of this writing, no genetic results are available to identify which of these cases may have involved whales from the Gulf of Maine stock. While these records are not statistically quantifiable in the same way as observer fishery records, they provide some indication of the frequency of entanglements.

Table 2. Confirmed human-caused mortality and serious injury records of North Atlantic humpback whales, January 2000 - December 2004. Records from the Gulf of Maine humpback whale stock are indicated by an asterisk (*) following the date. Stock identification of the remaining records awaits genetic analysis results. These may identify additional Gulf of Maine whales.						
Date ${ }^{\text {a }}$	Report Type ${ }^{\text {b }}$	Sex, age, ID length	Location ${ }^{\text {a }}$	Assigned Cause: $\mathrm{P}=$ primary, $\mathrm{S}=$ secondary		Notes/Observations
				Ship strike	Entang./ Fsh.inter	
1/08/00	serious injury	$\begin{aligned} & 9.9 \mathrm{~m} \\ & \text { estimated } \end{aligned}$	30 mi east Cape Lookout, NC		P	whale swam off with 600' of sea trout sink gillnet, a chain anchor and a high flyer in tow
8/04/00*	serious injury	$\begin{aligned} & 10.7 \mathrm{~m} \\ & \text { estimated } \end{aligned}$	Bay of Fundy, Canada		P	line wrapped on head with weighted trailing line giving tension, no gear recovered
9/06/00*	serious injury	<1 yr old, calf of "Giraffe"	8 nm north of Race Pt., Cape Cod, MA		P	single line wrapped across back; constriction will increase as whale grows, no gear recovered
10/14/00	serious injury	$\begin{aligned} & 9.9 \mathrm{~m} \\ & \text { estimated } \end{aligned}$	off Ocean City Inlet, MD		P	heavily entangled in line; constrictive--fresh wounds noted; no gear recovered
10/20/00*	serious injury	10 yr old male "Tribble"	Stellwagen Bank, MA		P	entangled in green poly line on multiple body parts; appears constrictive, no gear recovered
1/25/01	mortality	$6.9 \mathrm{~m}$ estimated	Avon, NC	P		extensive hemorrhaging along left thoracic, clean cut through center of vertebrae; ship strike
4/07/01	mortality	7.6m juvenile male	Emerald Isle, NC		P	entanglement around peduncle caused extensive edema, hemorrhaging, no gear recovered
4/08/01	mortality	7.9m juvenile male	Myrtle Beach, SC	S	P	pre-mortem evidence of chronic line entanglement; severe prop wounds, no gear recovered
4/09/01*	mortality	8.8m juvenile female "Inland"	offshore of Sandbridge, Virginia Beach		P	found anchored in sink gillnet croaker fishery gear; line wraps around rostrum had immobilized the whale
7/29/01*	mortality	8.5 m juvenile female	floating south of Verrazano Bridge, NY	P		large laceration on left side of head, extensive fracturing of skull
10/01/01*	mortality	11.4 m 3 yr old female "Pitfall"	Duxbury Beach, MA	P		massive fracturing to skull, focal bruising indicative of pre-mortem ship strike
2/08/02	mortality	8.4 m juvenile female	off Cape Henry, VA	P		three large lacerations, hemorrhaging, broken bones

$3 / 24 / 02$	mortality	8.0 m juvenile male	off Virginia Beach, VA		P	deep cuts on caudal peduncle and tail indicative of embedded line, no gear recovered
$6 / 03 / 02^{*}$	mortality	9.9 m	off Cape Elizabeth, ME		P	deep cuts on caudal peduncle indicative of embedded line, state water lobster fishery
$6 / 17 / 02^{*}$	serious injury	10.2 m estimated	Outside Sesuit Harbor, Dennis, Cape Cod, MA		P	fluke severely damaged by line, whale emaciated
8/01/02*	mortality	9.3 m male	Long Island, NY	P		P

a. The date sighted and location provided in the table are not necessarily when or where the serious injury or mortality occurred; rather, this information indicates when and where the whale was first reported beached, entangled, or injured.
b. National guidelines for determining what constitutes a serious injury have not been finalized. Interim criteria as established by NERO/NMFS (Cole et al. 2005) have been used here. Some assignments may change as new information becomes available and/or when national standards are established.

Other Mortality

Between November 1987 and January 1988, at least 14 humpback whales died after consuming Atlantic mackerel containing a dinoflagellate saxitoxin (Geraci et al. 1989). The whales subsequently stranded or were recovered in the vicinity of Cape Cod Bay and Nantucket Sound, and it is highly likely that other mortalities occurred during this event which went unrecorded. In July 2003, another Unusual Mortality Event was recorded in offshore waters when an estimated minimum of 12-15 humpback whales died in the vicinity of the Northeast Peak of Georges Bank. Preliminary tests of samples taken from some of these whales tested positive for domoic acid at low levels, but it is currently unknown what levels would affect the whales and therefore no definitive conclusions
can yet be drawn regarding the cause of this event or its effect on the status of the Gulf of Maine humpback whale population.

During the first six months of 1990, seven dead juvenile (7.6 to 9.1 m long) humpback whales population is currently unknown stranded between North Carolina and New Jersey. The significance of these strandings is unknown, but is a cause for concern.

As reported by Wiley et al. (1995), injuries possibly attributable to ship strikes are more common and probably more serious than those from entanglements. In the NMFS records for 2000 through 2004, 10 records had some evidence of a collision with a vessel. Of these, 7 were mortalities as a result of the collision, and 2 did not have sufficient information to confirm the collision as the cause of death. The remaining incident occurred on 10/4/01 and involved a whale-watch vessel. Photos taken at the time of the collision confirmed that the injury was minor and follow-up documentation provided evidence that the injury had healed. Three of 7 cases of mortality from a vessel collision involved whales identified as members of the Gulf of Maine stock (7/29/01, 10/1/01 and 8/1/02; see Table 2).

STATUS OF STOCK

The status of the North Atlantic humpback whale population was the topic of an International Whaling Commission Comprehensive Assessment in June 2001, and again in May 2002. These meetings conducted a detailed review of all aspects of the population (IWC 2002). Although recent estimates of abundance indicate continued population growth, the size of the humpback whale stock may be below OSP in the U.S. Atlantic EEZ. A Recovery Plan has been published and is in effect (NMFS 1991). There are insufficient data to reliably determine current population trends for humpback whales in the North Atlantic overall. The average annual rate of population increase was estimated at 3.1% ($\mathrm{SE}=0.005$, Stevick et al. 2003). As noted above, an analysis of demographic parameters for the Gulf of Maine (Clapham et al. 2003) suggested a lower rate of increase than the 6.5% reported by Barlow and Clapham (1997), but results may have been confounded by distribution shifts. The total level of U.S. fishery-caused mortality and serious injury is unknown, but reported levels are more than 10% of the calculated PBR and, therefore, cannot be considered to be insignificant and approaching zero mortality and serious injury rate. In particular, the continued high level of mortality among humpback whales off the U.S. mid-Atlantic states (Barco et al. 2002) is a concern given that at least some of these animals are known to be from the Gulf of Maine population. This is a strategic stock because the average annual human-related mortality and serious injury exceeds PBR, and because the North Atlantic humpback whale is an endangered species.

A new large-scale assessment called More of North Atlantic Humpbacks (MoNAH) project is currently underway. This two-year study will attempt to estimate abundance and refine knowledge of population structure with extensive sampling in the Gulf of Maine/Scotian Shelf region and on the primary wintering ground on Silver Bank; additional research will focus on the U.S. mid-Atlantic states. The work is intended to update the YONAH assessment of North Atlantic humpback whales in preparation for a possible status review under the Endangered Species Act.

REFERENCES CITED

Angliss, R.P., and D.P. DeMaster. 1998. Differentiating serious and non-serious injury of marine mammals taken incidental to commercial fishing operations: report of the serious injury workshop 1-2 April 1997, Silver Spring, Maryland. NOAA Technical Memorandum NMFS-OPR-13, January 1998.
Balcomb, K.C. and G. Nichols. 1982. Humpback whale censuses in the West Indies. Rep. int. Whal. Commn. 32:401-406.
Barco, S., W. A. McLellan, J. Allen, R. Asmutis, R. Mallon-Day, E. Meagher, D. A. Pabst, J. Robbins, R. Seton, R. M. Swingle, M. T. Weinrich, and P. J. Clapham. 2002. Population identity of humpback whales in the waters of the U.S. mid-Atlantic states. J. Cetacean Res. Manage. 4:135-141.
Barlow, J., and P.J. Clapham. 1997. A new birth-interval approach to estimating demographic parameters of humpback whales. Ecology 78:535-546.
Barlow, J., S.L. Swartz, T.C. Eagle, and P.R. Wade. 1995. U.S. Marine mammal stock assessments: Guidelines for preparation, background, and a summary of the 1995 assessments. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-6, 73 pp .
Brandão, A., D.S. Butterworth, and M.R. Brown. 2000. Maximum possible humpback whale increase rates as a function of biological parameter values. J. Cetacean Res. Manage. 2 (supplement):192-193.
Christensen, I., T. Haug, and N. Øien. 1992. Seasonal distribution, exploitation and present abundance of stocks of large baleen whales (Mysticeti) and sperm whales (Physeter macrocephalus) in Norwegian and adjacent waters. ICES J. Mar. Sci. 49:341-355.

Clapham, P.J. and C.A. Mayo. 1987. Reproduction and recruitment of individually identified humpback whales, Megaptera novaeangliae, observed in Massachusetts Bay, 1979-1985. Can. J. Zool. 65:2853-2863.
Clapham, P.J., L.S. Baraff, C.A. Carlson, M.A. Christian, D.K. Mattila, C.A. Mayo, M.A. Murphy, and S. Pittman. 1993. Seasonal occurrence and annual return of humpback whales, Megaptera novaeangliae, in the southern Gulf of Maine. Can. J. Zool. 71:440-443.
Clapham, P.J., M.C. Bérubé, and D.K. Mattila. 1995. Sex ratio of the Gulf of Maine humpback whale population. Mar. Mammal Sci. 11:227-231.
Clapham, P.J., J. Barlow, T. Cole, D. Mattila, R. Pace, D. Palka, J. Robbins, and R. Seton. 2003. Stock definition, abundance and demographic parameters of humpback whales from the Gulf of Maine. J. Cetacean Res. Manage. 5:13-22.
Clapham, P.J., J. Robbins, M. Brown, P. Wade, and K. Findlay. 2001. A note on plausible rates of population growth for humpback whales. J. Cetacean Res. Manage. 3 (suppl.):196-197.
Cole, T.V.N., D.L. Hartly, and R.L. Merrick. 2005. Mortality and serious injury determinations for large whale stocks along the eastern seaboard of the United States, 1999-2003. U. S. Dep. Commer., Northeast Fish. Sci. Cent. Ref. Doc. 05-08. 20 pp.
Fogarty, M.J., E.B. Cohen, W.L. Michaels, and W.W. Morse. 1991. Predation and the regulation of sand lance populations: An exploratory analysis. ICES Marine Science Symp. 193:120-124.
Geraci, J.R., D.M. Anderson., R.J. Timperi, D.J. St. Aubin., G.A. Early, J.H. Prescott, and C.A. Mayo. 1989 Humpback whales (Megaptera novaeangliae) fatally poisoned by dinoflagellate toxins. Can. J. Fish. Aquat. Science 46:1895-1898.
IWC. 2002. Report of the Scientific Committee. Annex H: Report of the Sub-committee on the Comprehensive Assessment of North Atlantic humpback whales. J. Cetacean Res. Manage. 4 (supplement):230-260 .
Katona, S.K., and J.A. Beard. 1990. Population size, migrations, and feeding aggregations of the humpback whale (Megaptera novaeangliae) in the western North Atlantic ocean. Rep. int. Whal. Commn (Special Issue) 12:295-306.
Larsen, A.H., J. Sigurjónsson, N. Øien, G. Vikingsson, and P.J. Palsbøll. 1996. Population genetic analysis of mitochondrial and nuclear genetic loci in skin biopsies collected from central and northeastern North Atlantic humpback whales (Megaptera novaeangliae): population identity and migratory destinations. Proceedings of the Royal Society of London B 263:1611-1618.
Levenson, C., and W.T. Leapley. 1978. Distribution of humpback whales (Megaptera novaeangliae) in the Caribbean determined by a rapid acoustic method. J. Fish. Res. Board Can. 35:1150-1152.
Lien, J., W. Ledwell, and J. Naven. 1988. Incidental entrapment in inshore fishing gear during 1988: A preliminary report to the Newfoundland and Labrador Department of Fisheries and Oceans, 15 pp .
Mattila, D.K. and P.J. Clapham. 1989. Humpback whales and other cetaceans on Virgin Bank and in the northern Leeward Islands, 1985 and 1986. Can. J. Zool. 67:2201-2211.
Mattila, D.K., P.J. Clapham, S.K. Katona, and G.S. Stone. 1989. Population composition of humpback whales on Silver Bank. Can. J. Zool. 67:281-285.
Mattila, D.K., P.J. Clapham, O. Vásquez, and R. Bowman. 1994. Occurrence, population composition and habitat use of humpback whales in Samana Bay, Dominican Republic. Can. J. Zool. 72:1898-1907.
NMFS [National Marine Fisheries Service]. 1991. Recovery plan for the humpback whale (Megaptera novaeangliae). National Marine Fisheries Service, Silver Spring, MD, 105 pp.
Øien, N. 2001. Humpback whales in the Barents and Norwegian Seas. Paper SC/53/NAH21 presented to the International Whaling Commission Scientific Committee. Available from IWC, 135 Station Road, Impington, Cambridge, UK.
Palka, D. 1995. Abundance estimate of the Gulf of Maine harbor porpoise. Rep. int. Whal. Commn (Special Issue) 16:27-50.
Palka, D. 2000. Abundance of the Gulf of Maine/Bay of Fundy harbor porpoise based on shipboard and aerial surveys during 1999. U. S. Dep. Commer., Northeast Fish. Sci. Cent. Ref. Doc. 00-07. 29 pp.
Paquet, D., C. Haycock, and H. Whitehead. 1997. Numbers and seasonal occurrence of humpback whales (Megaptera novaeangliae) off Brier Island, Nova Scotia. Can. Field Nat. 111:548-552.
Palsbøll, P.J., J. Allen,, M. Bérubé, P.J. Clapham, T.P. Feddersen, P. Hammond, H. Jørgensen, S. Katona, A.H. Larsen, F. Larsen, J. Lien, D.K. Mattila, J. Sigurjónsson, R. Sears, T. Smith, R. Sponer, P. Stevick, and N. Øien. 1997. Genetic tagging of humpback whales. Nature 388:767-769.
Palsbøll, P.J., P.J. Clapham, D.K. Mattila, F. Larsen, R. Sears, H.R. Siegismund, J. Sigurjónsson, O. Vásquez, and P. Arctander. 1995. Distribution of mtDNA haplotypes in North Atlantic humpback whales: the influence of behavior on population structure. Mar. Eco. Prog. Series 116:1-10.

Palsbøll, P.J., J. Allen, T. H. Anderson, M. Bérubé, P.J. Clapham, T.P. Feddersen, N. Friday, P. Hammond, H. Jørgensen, S.K. Katona, A.H. Larsen, F. Larsen, J. Lien, D.K. Mattila, F.B. Nygaard, J. Robbins, R. Sponer, R. Sears, J. Sigurjónsson, T.D. Smith, P.T. Stevick, G. Vikingsson, and N. Øien. 2001. Stock structure and composition of the North Atlantic humpback whale, Megaptera novaeangliae. Paper SC/53/NAH11 presented to the International Whaling Commission Scientific Committee. Available from IWC, 135 Station Road, Impington, Cambridge, UK.
Payne, P.M., J.R. Nicholas, L. O'Brien, and K.D. Powers. 1986. The distribution of the humpback whale, Megaptera novaeangliae, on Georges Bank and in the Gulf of Maine in relation to densities of the sand eel, Ammodytes americanus. Fish. Bull. 84:271-277.
Payne, P.M., D.N. Wiley, S.B. Young, S. Pittman, P.J. Clapham, and J.W. Jossi. 1990. Recent fluctuations in the abundance of baleen whales in the southern Gulf of Maine in relation to changes in selected prey. Fish. Bull. 88:687-696.
Price, W.S. 1985. Whaling in the Caribbean: historical perspective and update. Rep. int. Whal. Commn 35:413420.

Reiner, F., M.E. Dos Santos, and F.W. Wenzel. 1996. Cetaceans of the Cape Verde archipelago. Mar. Mammal Sci. 12:434-443.
Robbins, J. and D.K. Mattila. 2001. Monitoring entanglements of humpback whales (Megaptera novaeangliae) in the Gulf of Maine on the basis of caudal peduncle scarring. Paper SC/53/NAH25 presented to the International Whaling Commission Scientific Committee. Available from IWC, 135 Station Road, Impington, Cambridge, UK.
Smith, T.D., J. Allen, P.J. Clapham, P.S. Hammond, S. Katona, F. Larsen, J. Lien, D. Mattila, P.J. Palsbøll, J. Sigurjónsson, P.T. Stevick, and N. Øien. 1999. An ocean-basin-wide mark-recapture study of the North Atlantic humpback whale (Megaptera novaeangliae). Mar. Mammal Sci. 15:1-32.
Stevick, P.T., J. Allen, P.J. Clapham, N. Friday, S.K. Katona, F. Larsen, J. Lien, D.K. Mattila, P.J. Palsbøll, J. Sigurjónsson, T.D. Smith, N. Øien, and P.S. Hammond. 2003. North Atlantic humpback whale abundance and rate of increase four decades after protection from whaling. Mar. Eco. Prog. Series 258: 263-273.
Stevick, P., N. Øien and D.K. Mattila. 1998. Migration of a humpback whale between Norway and the West Indies. Mar. Mammal Sci. 14:162-166.
Swingle, W.M., S.G. Barco, T.D. Pitchford, W.A. McLellan, and D.A. Pabst. 1993. Appearance of juvenile humpback whales feeding in the nearshore waters of Virginia. Mar. Mammal Sci. 9:309-315.
Volgenau, L., S.D. Kraus, and J. Lien. 1995. The impact of entanglements on two substocks of the western North Atlantic humpback whale, Megaptera novaeangliae. Can. J. Zool. 73:1689-1698.
Wade, P.R., and R.P. Angliss. 1997. Guidelines for assessing marine mammal stocks: Report of the GAMMS Workshop, April 3-5, 1996, Seattle, Washington. NOAA Tech. Memo. NMFS-OPR-12. U.S. Dept. of Commerce, Washington, DC. 93 pp.
Waring, G.T., D.L. Palka, P.J. Clapham, S. Swartz, M.C. Rossman, T.V.N. Cole, K.D. Bisack, and L.J. Hansen. 1999. U.S. Atlantic marine mammal stock assessment reports-1998. NOAA Tech. Memo. NMFS-NE116, 182 pp.
Whitehead, H. and M.J. Moore. 1982. Distribution and movements of West Indian humpback whales in winter. Can. J. Zool. 60:2203-2211.
Wiley, D.N., R.A. Asmutis, T.D. Pitchford, and D.P. Gannon. 1995. Stranding and mortality of humpback whales, Megaptera novaeangliae, in the mid-Atlantic and southeast United States, 1985-1992. Fish. Bull. 93:196205.

Winn, H.E., R.K. Edel and A.G. Taruski. 1975. Population estimate of the humpback whale (Megaptera novaeangliae) in the West Indies by visual and acoustic techniques. J. Fish. Res. Bd. Can. 32: 499-506.

FIN WHALE (Balaenoptera physalus): Western North Atlantic Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

The Scientific Committee of the International Whaling Commission (IWC) has proposed stock boundaries for North Atlantic fin whales. Fin whales off the eastern United States, Nova Scotia and the southeastern coast of Newfoundland are believed to constitute a single stock under the present IWC scheme (Donovan 1991). However, the stock identity of North Atlantic fin whales has received relatively little attention, and whether the current stock boundaries define biologically isolated units has long been uncertain. The existence of a subpopulation structure was suggested by local depletions that resulted from commercial overharvesting (Mizroch et al. 1984).

A genetic study conducted by Bérubé et al. (1998) using both mitochondrial and nuclear DNA provided strong support for an earlier population model proposed by Kellogg (1929) and others. This postulates the existence of several subpopulations of fin whales in the North Atlantic and Mediterranean, with limited gene flow among them. Bérubé et al. (1998) also proposed that the North Atlantic population showed recent divergence due to climatic changes (i.e., postglacial expansion), as well as substructuring over even relatively short distances. The genetic data are consistent with the idea that different subpopulations use the same feeding ground, a hypothesis that was also originally proposed by Kellogg (1929).

Fin whales are common in waters of the U. S. Atlantic Exclusive Economic Zone (EEZ), principally from Cape Hatteras northward. Fin whales accounted for 46% of the large whales and 24% of all cetaceans sighted over the continental shelf during aerial surveys (CETAP 1982) between Cape Hatteras and Nova Scotia during 1978-82. While much remains unknown, the magnitude of the ecological role of the fin whale is impressive. In this region, fin whales are probably the dominant large cetacean species during all seasons, having the largest standing stock, the largest food requirements, and therefore the largest impact on the ecosystem of any cetacean species (Kenney et al. 1997; Hain et al. 1992).

There is little doubt that New England waters represent a major feeding ground for fin whales. There is evidence of site fidelity by females, and perhaps some segregation by sexual, maturational or reproductive class in the feeding area (Agler et al. 1993). Seipt et al. (1990) reported that 49% of fin whales sighted on the Massachusetts Bay area feeding grounds were resighted within the same year, and 45% were resighted in multiple years. The authors suggested that fin whales on these grounds exhibited patterns of seasonal occurrence and annual return that in some respects were similar to those shown for humpback whales. This was reinforced by Clapham and Seipt (1991), who showed maternally directed site fidelity for fin whales in the Gulf of Maine. Information on life history and vital rates is also available in data from the Canadian fishery, 1965-1971 (Mitchell 1974). In seven years, 3,528 fin whales were taken at three whaling stations. The station at Blandford, Nova Scotia, took 1,402 fin whales.

Hain et al. (1992), based on an analysis of neonate stranding data, suggested that calving takes place during October to January in latitudes of the U.S. mid-Atlantic region; however, it is unknown where calving, mating, and wintering occurs for most of the population. Results from the Navy's SOSUS program (Clark 1995) indicate a substantial deep-ocean distribution of fin whales. It is likely that fin whales occurring in the U. S. Atlantic EEZ undergo migrations into Canadian waters, open-ocean areas, and perhaps even subtropical or tropical regions. However, the popular notion that entire fin whale populations make distinct annual migrations like some other mysticetes has questionable support in the data; in the North Pacific, year-round monitoring of fin whale calls found no evidence for large-scale migratory movements (Watkins et al. 2000).

POPULATION SIZE

Two estimates of abundance are available from line-transect surveys. An abundance estimate of 2,200 $(\mathrm{CV}=0.24)$ fin whales was obtained from a July to September 1995 sighting survey conducted by two ships and an airplane. The survey covered waters from Virginia to the mouth of the Gulf of St. Lawrence (Palka 1995).

A more recent estimate of $2,814(\mathrm{CV}=0.21)$ fin whales was derived from a 28 July to 31 August 1999 linetransect sighting survey conducted by a ship and airplane covering waters from Georges Bank to the mouth of the Gulf of St. Lawrence (NMFS unpublished data; Palka 2006). Shipboard data were analyzed using the modified direct duplicate method (Palka 1995) that accounts for school size bias and for $g(0)$, the probability of detecting a group on the track line. Aerial data were not corrected for $g(0)$ (Palka 2000).

The 1999 estimate is considered the best available for the western North Atlantic fin whale stock because it is relatively recent. However, this estimate must be considered extremely conservative in view of the known range of the fin whale in the entire western North Atlantic, the uncertainties regarding population structure, whale movements between surveyed and unsurveyed areas, and aerial data having not been corrected for $g(0)$.

Minimum Population Estimate

The minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the lognormally distributed best abundance estimate. This is equivalent to the 20th percentile of the log-normal distribution as specified by Wade and Angliss (1997). The best estimate of abundance for fin whales is 2,814 ($\mathrm{CV}=0.21$). The minimum population estimate for the western North Atlantic fin whale is 2,362 animals.

Current Population Trend

There are insufficient data to determine population trends for this species.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Current and maximum net productivity rates are unknown for this stock. Based on photographically identified fin whales, Agler et al. (1993) estimated that the gross annual reproduction rate was at 8%, with a mean calving interval of 2.7 years.

For purposes of this assessment, the maximum net productivity rate was assumed to be 0.04 . This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive life history (Barlow et al. 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential Biological Removal (PBR) is the product of minimum population size, one-half the maximum productivity rate, and a "recovery" factor (MMPA Sec. 3. 16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size is 2,362 . The maximum productivity rate is 0.04 , the default value for cetaceans. The "recovery" factor, which accounts for endangered, depleted, threatened stocks, or stocks of unknown status relative to optimum sustainable population (OSP) is assumed to be 0.10 because the fin whale is listed as endangered under the Endangered Species Act (ESA). PBR for the western North Atlantic fin whale is 4.7.

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

The number of fin whales taken at three whaling stations in Canada from 1965 to 1971 totaled 3,528 whales (Mitchell 1974). Reports of incidental takes of fin whales are fewer over the last two decades than for other endangered large whales such as right and humpback whales. No reported fishery-related mortality or serious injury to fin whales in fisheries was observed by NMFS during 2000 through 2004. A review of NMFS records from 2000 through 2004 yielded an average of 1.8 human-caused mortalities and serious injuries per year -0.8 per year resulting from fishery interactions/entanglements (U.S. waters, 0.4 ; Canadian waters, 0.2 ; Bermudian waters, 0.2), and 1.0 due to vessel collisions--all in U.S. waters (Table 1).

Fishery-Related Serious Injury and Mortality

No confirmed fishery-related mortalities or serious injuries of fin whales have been reported in the NMFS Fisheries Observer Program bycatch database. A review of the records of stranded, floating or injured fin whales for the period 2000 through 2004 on file at NMFS found three records with substantial evidence of fishery interactions causing mortality, and one record resulting in serious injury (Table 1), which results in an annual rate of serious injury and mortality of 0.8 fin whales from fishery interactions. While these records are not statistically quantifiable in the same way as the observer fishery records, they give a minimum estimate of the frequency of entanglements for the species. In addition to the records above, there are were five additional records of entanglement within the period that either lacked substantial evidence for a serious injury determination, or did not provide the detail necessary to determine if an entanglement had been a contributing factor in the mortality.

Table 1. Confirmed human-caused mortality and serious injury records of western North Atlantic fin whales, January 2000 - December 2004.						
Date ${ }^{\text {a }}$	Report Type ${ }^{\text {b }}$	Sex, age, ID length	Location ${ }^{\text {a }}$	Assigned Cause: $\mathrm{P}=$ primary, $\mathrm{S}=$ secondary		Notes
				Ship strike	Entang./ Fsh.inter	
12/11/00	mortality	10.9 m female	New York harbor	P		hemorrhage and fractured bones on right side
1/2/01	mortality	$\begin{aligned} & 18.1 \mathrm{~m} \\ & \text { female } \end{aligned}$	New York harbor	P		dorsal abrasion marks, hematoma
2/1/01	mortality	14.5 m female	Port Elizabeth, NJ	P		very fresh carcass hung on ship's bow
9/19/01	mortality	$10.7 \mathrm{~m}$ unknown	off Bermuda		P	extensive fresh entanglement marks, no gear recovered
7/28/02	mortality	unknown	165 miles east of Truro, Cape Cod, MA		P	heavy line seen on tail stock, appeared embedded, no gear recovered
2/12/04	serious injury	unknown	Pea Island, NC		P	Entangled whale noticeably emaciated; no gear recovered
2/25/04	mortality	$\begin{aligned} & 16.3 \mathrm{~m} \\ & \text { female } \end{aligned}$	Port Elizabeth, NJ	P		Displaced vertebrae, ruptured aorta; brought in on the bow of a cargo/container ship
6/30/04	mortality	12 m est. unknown	150 nm east of Sandy Hook, NJ		P	Fresh dead; heavy line constricting mid-section; no gear recovered
9/26/04	mortality	15 m est. unknown	St. Johns, NB	P		Fresh carcass on bow of cruise ship
a. The date sighted and location provided in the table are not necessarily when or where the serious injury or mortality occurred; rather, this information indicates when and where the whale was first reported beached, entangled, or injured. b. National guidelines for determining what constitutes a serious injury have not been finalized. Interim criteria as established by NERO/NMFS (Cole et al. 2005) have been used here. Some assignments may change as new information becomes available and/or when national standards are established.						

Other Mortality

After reviewing NMFS records for 2000 through 2004, five records were found with sufficient information to confirm the cause of death as collisions with vessels (Table 1). These records constitute an annual rate of serious injury or mortality of 1.0 fin whales from vessel collisions. NMFS data include six additional records of fin whale collisions with vessels, but the available supporting documentation is insufficient to determine if the whales sustained mortal injuries from the encounters.

STATUS OF STOCK

The status of this stock relative to OSP in the U.S. Atlantic EEZ is unknown, but the species is listed as endangered under the ESA. There are insufficient data to determine the population trend for fin whales. The total level of human-caused mortality and serious injury is unknown. NMFS records represent coverage of only a portion of the area surveyed for the population estimate for the stock. The total U.S. fishery-related mortality and serious injury for this stock derived from the available records is less than 10% of the calculated PBR , and therefore can be considered insignificant and approaching zero mortality and serious injury rate. This is a strategic stock because the fin whale is listed as an endangered species under the ESA. A Recovery Plan for fin whales has been prepared and is currently awaiting legal clearance.

REFERENCES CITED

Agler, B.A., R.L. Schooley, S.E. Frohock, S.K. Katona, and I.E. Seipt. 1993. Reproduction of photographically identified fin whales, Balaenoptera physalus, from the Gulf of Maine. J. Mamm. 74(3):577-587.
Barlow, J., S.L. Swartz, T.C. Eagle, and P.R. Wade. 1995. U.S. Marine Mammal Stock Assessments: Guidelines for preparation, background, and a summary of the 1995 assessments. NOAA Technical Memorandum NMFS-OPR-6. U.S. Department of Commerce, Washington, DC. 73 pp.
Bérubé, M., A.Aguilar, D. Dendanto, F. Larsen, G. Notarbartolo di Sciara, R. Sears, J. Sigurjónsson, J. Urban-R., and P.J. Palsbøll. 1998. Population genetic structure of North Atlantic, Mediterranean and Sea of Cortez fin whales, Balaenoptera physalus (Linnaeus 1758): analysis of mitochondrial and nuclear loci. Mol. Ecol. 15:585-599.
CETAP. 1982. A characterization of marine mammals and turtles in the mid- and north Atlantic areas of the U.S. outer continental shelf. Cetacean and Turtle Assessment Program, University of Rhode Island. Final Report \#AA551-CT8-48 to the Bureau of Land Management, Washington, DC, 538 pp.
Clapham, P.J. and I.E. Seipt. 1991. Resightings of independent fin whales, Balaenoptera physalus, on maternal summer ranges. J. Mamm. 72:788-790.
Clark, C.W. 1995. Application of U.S. Navy underwater hydrophone arrays for scientific research on whales. Rep. int. Whal. Commn 45:210-212.
Cole, T.V.N., D.L. Hartly, and R.L. Merrick. 2005. Mortality and serious injury determinations for large whale stocks along the eastern seaboard of the United States, 1999-2003. U. S. Dep. Commer., Northeast Fish. Sci. Cent. Ref. Doc. 05-08. 20 pp.
Donovan, G. P. 1991. A review of IWC stock boundaries. Rep. int. Whal. Commn (Special Issue) 13:39-68.
Hain, J.H.W., M.J. Ratnaswamy, R.D. Kenney, and H.E. Winn. 1992. The fin whale, Balaenoptera physalus, in waters of the northeastern United States continental shelf. Rep. int. Whal. Commn 42:653-669.
Kellogg, R. 1929. What is known of the migration of some of the whalebone whales. Ann. Rep. Smithsonian Inst. 1928:467-494.
Kenney, R.D., G.P. Scott, T.J. Thompson, and H.E. Winn. 1997. Estimates of prey consumption and trophic impacts of cetaceans in the USA northeast continental shelf ecosystem. J. Northw. Atl. Fish. Sci. 22:155171.

Mizroch, A.A., D.W. Rice, and J.M. Breiwick. 1984. The fin whale, Balaenoptera physalus. Mar. Fisheries Rev. 46:20-24.
Mitchell, E. 1974. Present status of northwest Atlantic fin and other whale stocks. Pages 109-169. In: W. E. Schevill (ed), The whale problem: A status report. Harvard University Press, Cambridge, Massachusetts, 419 pp.
Palka, D. 1995. Abundance estimate of the Gulf of Maine harbor porpoise. Rep. int. Whal. Commn (Special Issue) 16:27-50.
Palka, D. 2000. Abundance of the Gulf of Maine/Bay of Fundy harbor porpoise based on shipboard and aerial surveys during 1999. U.S. Dep. Commer., Northeast Fish. Sci. Cent. Ref. Doc. 00-07. 29 pp.
Palka, D.L. 2006. Summer abundance estimates of cetaceans in US North Atlantic Navy Operating Areas. U.S. Dep. Commer., Northeast Fish. Sci. Cent. Ref. Doc. 06-03. 41 p.
Seipt, I.E., P.J. Clapham, C.A. Mayo, and M.P. Hawvermale. 1990. Population characteristics of individually identified fin whales, Balaenoptera physalus, in Massachusetts Bay. Fish. Bull., U.S. 88:271-278
Wade, P.R. and R.P. Angliss. 1997. Guidelines for assessing marine mammal stocks: Report of the GAMMS Workshop, April 3-5, 1996, Seattle, Washington. NOAA Technical Memorandum NMFS-OPR-12. U.S. Dept. of Commerce, Washington, DC. 93 pp.
Watkins, W.A., M.A. Daher, G.M. Reppucci, J.E. George, D.L. Martin, N.A. DiMarzio, and D.P. Gannon. 2000. Seasonality and distribution of whale calls in the North Pacific. Oceanography 13:62-67.

MINKE WHALE (Balaenoptera acutorostrata): Canadian East Coast Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

Minke whales have a cosmopolitan distribution, being distributed in polar, temperate and tropical waters. In the North Atlantic, there are four recognized populations - Canadian East Coast, west Greenland, central North Atlantic, and northeastern North Atlantic (Donovan 1991). These divisions were defined by examining segregation by sex and length, catch distributions, sightings, marking data, and pre-existing ICES boundaries. However, there were very few data from the Canadian East Coast population.

Minke whales off the eastern coast of the United States are considered to be part of the Canadian East Coast stock, which inhabits the area from the eastern half of the Davis Strait $\left(45^{\circ} \mathrm{W}\right)$ to the Gulf of Mexico. The relationship between this stock and the other three stocks is uncertain. It is also uncertain if there are separate stocks within the Canadian East Coast stock.

The minke whale is common and widely distributed within the U.S. Atlantic Exclusive Economic Zone (EEZ) (CETAP 1982). There appears to be a strong seasonal component to minke whale distribution. Spring and summer are times of relatively widespread and common occurrence, and when the whales are most abundant in New England waters. During fall in New England waters, there are fewer whales, while during winter, the species appears to be largely absent. Like most other baleen whales, minke whales generally occupy the continental shelf proper, rather than the continental shelf edge region. Records summarized by Mitchell (1991) hint at a possible winter distribution in the West Indies, and in the mid-ocean south and east of Bermuda. As with several other cetacean species, the possibility of a deep-ocean component to the distribution of minke whales exists but remains unconfirmed.

Figure 1. Distribution of minke whale sightingsfrom NEFSC andSEFSCshipboard and aerial surveys during the summers of 1998, 1999, and 2004. Isobaths are the
$100 \mathrm{~m}, 1000 \mathrm{~m}$ and 4000 m depth contours.

POPULATION SIZE

The total number of minke whales in the Canadian East Coast population is unknown. However, seven estimates are available for portions of the habitat: a 1978-1982 estimate; a shipboard survey estimate from the summers of 1991 and 1992; a shipboard estimate from June-July 1993; an estimate made from a combination of shipboard and aerial surveys conducted during July to September 1995; an aerial survey estimate of the entire Gulf of St. Lawrence conducted in August to September 1995; an aerial survey estimate from the northern Gulf of St. Lawrence conducted during July and August 1996; and an aerial/shipboard survey conducted from Georges Bank to the mouth of the Gulf of St. Lawrence during July and August 1999.

An abundance of 320 minke whales $(C V=0.23)$ was estimated from an aerial survey program conducted from 1978 to 1982 on the continental shelf and shelf edge waters between Cape Hatteras, North Carolina and Nova Scotia (CETAP 1982).

An abundance estimate of $2,650(\mathrm{CV}=0.31)$ minke whales was obtained from two shipboard line-transect surveys conducted during July to September 1991 and 1992 in the northern Gulf of Maine-lower Bay of Fundy region. This estimate is a weighted-average of the 1991 and 1992 estimates, where each annual estimate was weighted by the inverse of its variance, using methods as described in Palka (1995).

An abundance estimate of 330 minke whales $(C V=0.66)$ was calculated from a June and July 1993 shipboard line-transect sighting survey conducted principally between the 200 and $2,000 \mathrm{~m}$ isobaths from the southern edge of Georges Bank, across the Northeast Channel, to the southeastern edge of the Scotian Shelf (NMFS 1993).

An abundance estmate of $2,790(\mathrm{CV}=0.32)$ minke whales was derived from a July to September 1995 sighting survey conducted by two ships and an airplane that covered waters from Virginia to the mouth of the Gulf of St.

Lawrence (NMFS unpublished data). Total track line length was $32,600 \mathrm{~km}$. The ships covered waters between the 50 and 1000 fathom isobaths, the northern edge of the Gulf Stream, and the northern Gulf of Maine/Bay of Fundy region. The airplane covered waters in the mid-Atlantic from the coastline to the 50 fathom depth contour, the southern Gulf of Maine, and shelf waters off Nova Scotia from the coastline to the 1000 fathom depth contour. Data collection and analysis methods are described in Palka (1996).

Kingsley and Reeves (1998) estimated there were $1,020(\mathrm{CV}=0.27)$ minke whales in the entire Gulf of St . Lawrence in 1995 and $620(\mathrm{CV}=0.52)$ in the northern Gulf of St. Lawrence in 1996. During the August-September 1995 survey, $8,427 \mathrm{~km}$ of track lines were flown in an area encompassing $221,949 \mathrm{~km}^{2}$. During the July-August 1996 survey, $3,993 \mathrm{~km}$ of track lines were flown in an area encompassing $94,665 \mathrm{~km}^{2}$. These estimates were uncorrected for visibility biases such as $g(0)$, the probability of detecting a group on the track line.

An abundance estimate of $2,998(\mathrm{CV}=0.19)$ minke whales was obtained from a July to August 1999 sighting survey conducted by a ship and airplane covering waters from Georges Bank to the mouth of the Gulf of St. Lawrence (Table 1; NMFS unpublished data; Palka 2006). Total track line length was $8,212 \mathrm{~km}$. Using methods similar the 1995 Virginia to Gulf of St. Lawrence survey, shipboard data were analyzed using the modified direct duplicate method that accounts for school size bias and $g(0)$. Aerial data were not corrected for $g(0)$ (Palka 2000).

The best available current abundance estimate for minke whales is 2,998 animals ($\mathrm{CV}=0.19$), because the 1999 survey is the most recent.

Table 1. Summary of abundance estimates for minke whales.			
Month/Year	Area	$\mathrm{N}_{\text {best }}$	CV
July-Aug 1999	Georges Bank to mouth of Gulf of St. Lawrence	2,998	0.19

Minimum Population Estimate

The minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the lognormally distributed best abundance estimate. This is equivalent to the 20th percentile of the log-normal distribution as specified by Wade and Angliss (1997). The best estimate of abundance for minke whales is 2,998 animals $(\mathrm{CV}=0.19)$. The minimum population estimate for the Canadian East Coast minke whale is 2,559 animals.

Current Population Trend

There are insufficient data to determine population trends for this species.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Current and maximum net productivity rates are unknown for this stock. Life history parameters that could be used to estimate net productivity are that females mature between 6-8 years old, and pregnancy rates are approximately 0.86 to 0.93 . Based on these parameters, the calving interval is between 1 and 2 years. Calves are probably born during October to March after 10 to 11 months gestation, and nursing lasts for less than 6 months. Maximum ages are not known, but for Southern Hemisphere minke whales maximum age appears to be about 50 years (Katona et al. 1993; IWC 1991).

For purposes of this assessment, the maximum net productivity rate was assumed to be 0.04 . This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive life history (Barlow et al. 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential Biological Removal (PBR) is the product of minimum population size, one-half the maximum productivity rate, and a "recovery" factor (MMPA Sec. 3. 16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size is 2,559 animals. The maximum productivity rate is 0.04 , the default value for cetaceans. The "recovery" factor, which accounts for endangered, depleted, threatened, or stocks of unknown status, relative to optimum sustainable population (OSP) is assumed to be 0.5 because this stock is of unknown status. PBR for the Canadian east coast minke whale is 26 .

ANNUAL HUMAN-CAUSED MORTALITY AND INJURY

Recent minke whale takes have been observed in - or attributed to - the Northeast bottom trawl, Northeast/MidAtlantic American lobster trap/pot, and unknown fisheries, although not all takes have resulted in mortalities (Tables 2 to 6).

Data to estimate the mortality and serious injury of minke whales come from the Northeast Fisheries Science Center Observer Program and from records of strandings and entanglements in U.S. waters. For the purposes of this report, only those strandings and entanglement records considered confirmed human-caused mortalities or serious injuries are shown in Tables 3 through 5.

During 2000 to 2004, the U.S. total annual estimated average human-caused mortality was 2.8 minke whales per year (CV=unknown), plus an unknown bycatch estimate from the Northeast bottom trawl fishery. This is derived from three components: an unknown number of minke whales per year from U.S. fisheries using observer data, 2.6 minke whales per year (unknown CV) from U.S. fisheries using strandings and entanglement data, and 0.2 minke whales per year from ship strikes. During 1997 to 2001 , there were no confirmed mortalities or serious injuries in Canadian waters as reported by the various, small-scale stranding and observer data collection programs in Atlantic Canada. No additional information is available on Canadian mortalities from 2002 to present.

Fishery Information

Detailed fishery information is reported in Appendix III.

Earlier Interactions

Little information is available about fishery interactions that took place before the 1990s. Read (1994) reported that a minke whale was found dead in a Rhode Island fish trap in 1976. A minke whale was caught and released alive in the Japanese tuna longline fishery in 3,000 m of water, south of Lydonia Canyon on Georges Bank, in September 1986 (Waring et al. 1990).

Two minke whales were observed taken in the Northeast sink gillnet fishery between 1989 and the present. The take in July 1991, south of Penobscot Bay, Maine resulted in a mortality and the take in October 1992, off the coast of New Hampshire near Jeffreys Ledge, was released alive.

A minke whale was trapped and released alive from a herring weir off northern Maine in 1990.
Four minke whale mortalities were observed in the Atlantic pelagic drift gillnet fishery during 1995.
One minke whale was reported caught in an Atlantic tuna purse seine off Stellwagen Bank in 1991(D. Beach, NMFS NE Regional Office, pers. comm.) and another in 1996. The minke caught during 1991 was released uninjured after a crew member cut the rope wrapped around the tail. The minke whale caught during 1996 escaped by diving beneath the net.

One minke whale, reported in the strandings and entanglement database maintained by the New England Aquarium and the Northeast Regional Office/NMFS, was taken in a 6-inch gill net on 6 July 1998 off Long Island, New York. This take was assigned to the mid-Atlantic gillnet fishery. No other minke whales have been taken in this fishery during observed trips in 1993 to 2004.

U.S.

Northeast Bottom Trawl

The fishery is active in New England waters in all seasons. Detailed fishery information is reported in Appendix III. One freshly dead minke whale was caught in 2004 on the northeast tip of Georges Bank in US waters (Table 2).

Northeast/Mid-Atlantic American lobster trap/pot fishery

The strandings and entanglement database, maintained by the New England Aquarium and the Northeast Regional Office/NMFS, reported 7 minke whale mortalities and serious injuries that were attributed to the lobster fishery during 1990 to 1994; 1 in 1990 (may be serious injury), 2 in 1991 (1 mortality and 1 serious injury), 2 in 1992 (both mortalities), 1 in 1993 (serious injury) and 1 in 1994 (mortality) (1997 List of Fisheries 62FR33, January 2, 1997). The one confirmed minke whale mortality during 1995 was attributed to the lobster fishery. No confirmed mortalities or serious injuries of minke whales occurred in 1996. From the four confirmed 1997 records, 1 minke whale mortality was attributed to the lobster trap fishery. One minke whale was disentangled and released alive from lobster gear on 21 August 2002 (Table 4). One minke whale mortality was attributed to the lobster fishery in 2002 (Tables 3 and 5). Annual mortalities due to this fishery, as determined from strandings and entanglement records that have been audited, were 1 in 1991, 2 in 1992, 1 in 1994, 1 in 1995, 0 in 1996, 1 in 1997, 0 in 1998 to 2001, 1 in 2002, and 0 in 2003 to 2004. Estimated average annual mortality related to this fishery during 2000 to 2004 was 0.2 minke whales per year (Table 3; 10/15/02 animal in Table 5).

Unknown Fisheries

The strandings and entanglement database, maintained by the New England Aquarium and the Northeast Regional Office/NMFS, include 36 records of minke whales within U.S. waters for 1975-1992. The gear include unspecified fishing nets, unspecified cables or lines, fish traps, weirs, seines, gillnets, and lobster gear. A review of these records is not complete. One confirmed entanglement was an immature female minke whale, entangled with line around the tail stock, that came ashore on the Jacksonville, Florida jetty on 31 January 1990 (R. Bonde, USFWS, Gainesville, FL, pers. comm.).

The audited NE Regional Office/NMFS entanglement/stranding database contains records of minke whales, of which the confirmed mortalities and serious injuries from the last five years are reported in Table 5. Mortalities (and serious injuries) that were likely a result of a fishery interaction with an unknown fishery include 3 (0) in 1997, $3(0)$ in $1999,1(1)$ in $2000,2(0)$ in 2001, $1(0)$ in 2002, $5(0)$ in $2003,2(0)$ in 2004 and $0(0)$ in other years. Examination of the minke entanglement records from 1997 indicate that 4 out of 4 confirmed records of mortality were likely a result of fishery interactions, one was attributed to the lobster pot fishery (see above), and three were not attributed to any particular fishery because the information from the entanglement event did not contain the necessary details. Of the 5 mortalities in 1999, 2 were attributed to an unknown trawl fishery and 3 to some other fishery. Of the two interactions from an unknown fishery in 2000 , one was a mortality and one was a serious injury. In 2001, of the two confirmed fishery interactions, both were with an unknown fishery. In 2002, there was one mortality in an unknown fishery. In 2003, 5 confirmed mortalities were due to interactions with an unknown fishery. In 2004, of the three confirmed mortalities, two were due to an interaction with an unknown fishery (Tables 3 and 5).

In general, an entangled or stranded cetacean could be an animal that is part of an expanded bycatch estimate from an observed fishery and thus it is not possible to know if an entangled or stranded animal is an additional mortality. During 1997 to 2003, no minke whales were observed taken in any fishery observed by the NEFSC Fisheries Observer Program, therefore, the strandings from 1997 to 2003 in which mortalities were attributable to a fishery interaction can be added to the human-caused mortality estimate. During 2000 to 2004, as determined from strandings and entanglement records, the estimated average annual mortality is 2.4 minke whales per year in unknown fisheries (Table 3).

CANADA

In Canadian waters, minke whale interactions with fishing gear are not well quantified or recorded, though some records are available. Read (1994) reported interactions between minke whales and gillnets in Newfoundland and Labrador, in cod traps in Newfoundland, and in herring weirs in the Bay of Fundy. Hooker et al. (1997) summarized bycatch data from a Canadian fisheries observer program that placed observers on all foreign fishing vessels operating in Canadian waters, on between 25% and 40% of large Canadian fishing vessels (greater than 100 feet long), and on approximately 5% of smaller Canadian fishing vessels. During 1991 through 1996, no minke whales were observed taken.

Herring Weirs

During 1980 to 1990 , 15 of 17 minke whales were released alive from herring weirs in the Bay of Fundy. During January 1991 to September 2002, 26 minke whales were trapped in herring weirs in the Bay of Fundy. Of these 26, 1 died (H. Koopman, pers. comm.) and several (number unknown) were released alive and unharmed (A. Westgate, pers. comm.).

Other Fisheries

Six minke whales were reported entangled during 1989 in the now non-operational groundfish gillnet fishery in Newfoundland and Labrador (Read 1994). One of these animals escaped and was still towing gear, the remaining 5 animals died.

Salmon gillnets in Canada, now no longer used, had taken a few minke whales. In Newfoundland in 1979, one minke whale died in a salmon net. In Newfoundland and Labrador, between 1979 and 1990, it was estimated that 15% of the Canadian minke whale takes were in salmon gillnets. A total of 124 minke whale interactions were documented in cod traps, groundfish gillnets, salmon gillnets, other gillnets and other traps. The salmon gillnet fishery ended in 1993 as a result of an agreement between the fishermen and North Atlantic Salmon Fund (Read 1994).

Five minke whales were entrapped and died in Newfoundland cod traps during 1989. The cod trap fishery closed in Newfoundland in 1993 due to the depleted groundfish resources (Read 1994).

Table 2. Summary of the incidental mortality of minke whales (Balaenoptera acutorostrata) by commercial fishery including the years sampled (Years), the number of vessels active within the fishery (Vessels), the type of data used (Data Type), the annual observer coverage (Observer Coverage), the mortalities recorded by on-board observers (Observed Mortality), the estimated annual mortality (Estimated Mortality), the estimated CV of the annual mortality (Estimated CVs) and the mean annual mortality (CV in parentheses).

Fishery	Years	Vessels	Data Type ${ }^{\text {a }}$	$\frac{\text { Observer }}{\text { Coverage }}{ }^{\text {b }}$	$\begin{aligned} & \text { Observed } \\ & \text { Mortality } \end{aligned}$	Estimated Mortality	$\frac{\text { Estimated }}{\mathrm{CVs}}$	$\frac{\frac{\text { Mean }}{\text { Annual }}}{\text { Mortality }}$
Northeast Bottom Trawl	00-04	unk	Obs. Data	$\begin{gathered} .004, .004, \\ .021, .028, .045 \end{gathered}$	$\begin{gathered} 0,0, \\ 0,0,1 \end{gathered}$	unk ${ }^{\text {c }}$	unk ${ }^{\text {c }}$	unk ${ }^{\text {c }}$
Total								unk ${ }^{\text {c }}$
a) Observer data (Obs. Data), used to measure bycatch rates, are collected within the Northeast Fisheries Science Center (NEFSC) Fisheries Observer Program. b) Observer coverage for trawl fishery is measured in trips. c) Analysis of bycatch mortality attributed to the Northeast bottom trawl fishery has not been generated.								

Table 3. From strandings and entanglement data, summary of confirmed incidental mortalities and serious injuries of minke whales (Balaenoptera acutorostrata) by commercial fishery: includes years sampled (Years), number of vessels active within the fishery (Vessels), type of data used (Data Type), mortalities and serious injuries assigned to this fishery (Assigned Mortality), and mean annual mortality and serious injuries. See Table 4 for details. (NA=Not Available)

Fishery	Years	Vessels	Data Type $^{\text {a }}$	Assigned Mortality	Mean Annual Mortality
Northeast/Mid-Atlantic American lobster trap/pot	$00-04$	$1997=6880$ $2000=7539$ licenses	Entanglement \& Strandings	$0,0,1,0,0$	0.2
Unknown Fisheries	$00-04$	NA	Entanglement \& Strandings	$2,2,1,5,2$	2.4
TOTAL	2.6 (unk)				

a. Data from records in the entanglement and strandings data base maintained by the New England Aquarium and the Northeast Regional Office/NMFS (Entanglement and Strandings).

Table 4. Summary of minke whales (Balaenoptera acutorostrata) released alive, by commercial fishery, years sampled (Years), ratio of observed mortalities recorded by on-board observers to the estimated mortality (Ratio), the number of observed animals released alive and injured (Injured), and the number of observed animals released alive and uninjured (Uninjured). (N/A = Not Available)

Fishery	Years	Ratio	Injured	Uninjured
Lobster trap pot	None	unk $^{\mathrm{a}}$	1^{a}	0

a. Minke whale disentangled and released alive from lobster gear by owner of gear on 21 August 2002 near Mount Desert Island, ME.

Table 5. Summarized records of mortality and serious injury likely to result in mortality. Canadian East Coast stock of minke whales, January 2000 - December 2004. This listing includes only confirmed records related to U.S. commercial fisheries and/or ship strikes in U.S. waters. Causes of mortality or injury, assigned as primary or secondary, are based on records maintained by NMFS/NER and NMFS/SER.

Date ${ }^{\text {a }}$	Report Type ${ }^{\text {b }}$	Sex, age, ID	Location ${ }^{\text {a }}$	Assigned Cause ${ }^{\text {c }}$: $\mathrm{P}=$ primary, $\mathrm{S}=$ secondary		Notes
				Ship strike	Entang./ Fsh.inter	
8/11/00	serious injury	unk sex and size	Port Clyde, ME $\left(43^{\circ} 55^{\prime} \mathrm{N}\right.$ $\left.69^{\circ} 11^{\prime} \mathrm{W}\right)$		P	Unknown fishery. Dark line with several bullet buoys. Unusual minke behavior - whale probably anchored. No gear recovered.
10/03/00	mortality	unk sex and size	$\begin{aligned} & \text { Rockland ME } \\ & \left(44^{\circ} 05^{\prime} \mathrm{N}\right. \\ & \left.69^{\circ} 01^{\prime} \mathrm{W}\right) \end{aligned}$		P	Unknown fishery. Very fresh carcass with fresh entanglement wounds on tail stock. No gear recovered.
8/17/01	mortality	male, $3.9 \mathrm{~m}$	Middletown, RI $\begin{aligned} & \left(41^{\circ} 28^{\prime} \mathrm{N}\right. \\ & \left.71^{\circ} 15^{\prime} \mathrm{W}\right) \end{aligned}$		P	Unknown fishery. Severe rope entanglement around mouth and rostrum caused malnutrition and infection. No gear recovered.
12/13/01	mortality	$\begin{aligned} & \text { unk sex, } \\ & 7 \mathrm{~m} \text { (est) } \end{aligned}$	Massachusetts Bay, MA ($42^{\circ} 21^{\prime} \mathrm{N}$ $70^{\circ} 43^{\prime} \mathrm{W}$)		P	Unknown fishery. Pictures show evidence of fairly fresh entanglement marks on tail stock and across tail flukes. No gear recovered.
7/17/02	mortality	female, 4.6 m (est)	Bar Harbor, ME ($44^{\circ} 18.22^{\prime} \mathrm{N}$ $\left.68^{\circ} 07.43^{\prime} \mathrm{W}\right)$		P	Unknown fishery. Carcass had a rope scar on the peduncle with associated hemorrhaging. Additional bruising around the epiglottis and larynx. No gear recovered.
10/15/02	mortality	female, 5.1 m	$\begin{aligned} & \text { Gloucester, MA } \\ & \left(42^{\circ} 36^{\prime} \mathrm{N}\right. \\ & \left.70^{\circ} 39 \mathrm{~W}\right) \end{aligned}$		P	Whale was entangled through the mouth and around the pectoral flippers. Gear from state water lobster fishery was still on the whale.

$\left.\begin{array}{|l|l|l|l|l|l|l|}\hline 5 / 24 / 03 & \text { mortality } & \begin{array}{l}\text { male, } \\ 7.6 \mathrm{~m}\end{array} & \begin{array}{l}\text { Gloucester, MA } \\ \left(42^{\circ} 40.8^{\prime} \mathrm{N}\right. \\ \left.70^{\circ} 39.6^{\prime} \mathrm{W}\right)\end{array} & & \begin{array}{l}\text { Unknown fishery. Line } \\ \text { marks on head and dorsal } \\ \text { fin, no line present. Cut } \\ \text { across back anterior to } \\ \text { dorsal fin. No gear }\end{array} \\ \text { recovered. }\end{array}\right]$
a. The date sighted and location provided in the table are not necessarily when or where the serious injury or mortality occurred; rather, this information indicates when and where the whale was first reported beached, entangled, or injured.
b. National guidelines for determining what constitutes a serious injury have not been finalized. Interim criteria as established by NERO/NMFS (Cole et al. 2005) have been used here. Some assignments may change as new information becomes available and/or when national standards are established.
c. Assigned cause based on best judgement of available data. Additional information may result in revisions.

Other Mortality

Minke whales have been and continue to be hunted in the North Atlantic. From the Canadian East Coast population, documented whaling occurred from 1948 to 1972 with a total kill of 1,103 animals (IWC 1992). Animals from other North Atlantic minke populations are presently still being harvested at low levels.

U.S.

Minke whales inhabit coastal waters during much of the year and are subject to collision with vessels. According to the NMFS/NER marine mammal entanglement and stranding database, on 7 July 1974, a necropsy of a minke whale suggested a vessel collision; on 15 March 1992, a juvenile female minke whale with propeller scars was found floating east of the St. Johns Channel entrance (R. Bonde, USFWS, Gainesville, FL, pers. comm.); and on 15 July 1996 the captain of a vessel reported hitting a minke whale offshore of Massachusetts. After reviewing this record, it was concluded the animal struck was not a serious injury or mortality. On 12 December 1998, a minke whale was struck and presumed killed by a whale watching vessel in Cape Cod Bay off Massachusetts.

During 1999 to 2003, no minke whale was confirmed struck by a ship. During 2004, one minke whale mortality was contributed to a ship strike (Table 5). Thus, during 2000 to 2004, as determined from stranding and entanglement records, the estimated annual average was 0.2 minke whales per year struck by ships.

In October 2003, an Unusual Mortality Event was declared involving minke whales and harbor seals along the coast of Maine. Two of the seven criteria established to designate such an event were met by these species. Specifically, there was a marked increase in mortalities when compared with historical records, and the mortalities were occurring in a localized area of the Maine coast. From September 11-30, 2003, nine minke whales were reported along the mid-coast to southern Maine. Results from analyses for biotoxins failed to show the presence of either saxitoxin or domoic acid (by ELISA and Receptor Binding Assay). Most whale carcasses that were examined appeared to be in good body condition immediately prior to death. Since October 2003, the number of minke whale stranding reports has returned to normal.

CANADA

The Nova Scotia Stranding Network documented whales and dolphins stranded on the coast of Nova Scotia between 1991 and 1996 (Hooker et al. 1997). Researchers with the Dept. of Fisheries and Oceans, Canada documented strandings on the beaches of Sable Island (Lucas and Hooker 2000). Sable Island is approximately 170 km southeast of mainland Nova Scotia. Lucas and Hooker (2000) reported 4 minke whales stranded on Sable Island between 1970 and 1998, 1 in spring 1982, 1 in January 1992, and a mother/calf in December 1998. On the mainland of Nova Scotia, a total of 7 reported minke whales stranded during 1991 to 1996. The 1996 stranded minke whale was released alive off Cape Breton on the Atlantic Ocean side, the rest were found dead. All the minke whales stranded between July and October. One was from the Atlantic Ocean side of Cape Breton, 1 from Minas Basin, 1 was at an unknown location, and the rest stranded in the vicinity of Halifax, Nova Scotia. It is unknown how many of the strandings resulted from fishery interactions.

Whales and dolphins stranded between 1997 and 2004 on the coast of Nova Scotia as recorded by the Marine Animal Response Society (MARS) and the Nova Scotia Stranding Network are as follows (Table 6): 4 minke whales stranded in 1997 (1 in June and 3 in July), 0 documented strandings in 1998 to 2000, 1 in September 2001, 4 in 2002 (1 in July, 1 in August, and 2 in November), 2 in 2003 (1 in August and 1 in October) and 0 in 2004.

| Table 6. Documented number of stranded minke whales along the coast of Nova Scotia |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| during 2000 to 2004 by year, according to records maintained by the Canadian |
| Marine Animal Response Society. |

STATUS OF STOCK

The status of minke whales, relative to OSP, in the U.S. Atlantic EEZ is unknown. The minke whale is not listed as endangered under the Endangered Species Act (ESA). The total U.S. fishery-related mortality and serious injury for this stock derived from the available records is not less than 10% of the calculated PBR, and therefore cannot be considered insignificant and approaching zero mortality and serious injury rate.

This is not a strategic stock because estimated human-related mortality and serious injury does not exceed PBR and the minke whale is not listed as a threatened or endangered species under the ESA.

REFERENCES CITED

Barlow, J., S.L. Swartz, T.C. Eagle, and P.R. Wade. 1995. U.S. Marine mammal stock assessments: Guidelines for preparation, background, and a summary of the 1995 assessments. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-6, 73 pp .
CETAP. 1982. A characterization of marine mammals and turtles in the mid- and north Atlantic areas of the U.S. outer continental shelf. Cetacean and Turtle Assessment Program, University of Rhode Island. Final Report, Contract AA51-C78-48, Bureau of Land Management, Washington, DC, 538 pp.
Cole, T.V.N., D.L. Hartly, and R.L. Merrick. 2005. Mortality and serious injury determinations for large whale stocks along the eastern seaboard of the United States, 1999-2003. U. S. Dep. Commer., Northeast Fish. Science Cent. Ref. Doc. 05-08, 20 pp.
Donovan, G.P. 1991. A review of IWC stock boundaries. Rep. int. Whal. Commn (Special Issue) 13:39-68.
Hooker, S.K., R.W. Baird, and M.A. Showell. 1997. Cetacean strandings and bycatches in Nova Scotia, Eastern Canada, 1991-1996. Meeting document SC/49/O5 submitted to the 1997 International Whaling Commission meeting in Bournemouth, UK.
IWC [International Whaling Commission]. 1991. Appendix 11. Biological parameters of North Atlantic minke whales in Annex F Report of the sub-committee on North Atlantic Minke whales. Rep. int Whal. Commn 41:160.
IWC [International Whaling Commission]. 1992. Annex K. Report of the working group on North Atlantic Minke trials. Rep. int Whal. Commn 42:246-251.
Katona, S.K., V. Rough, and D.T. Richardson. 1993. A field guide to whales, porpoises, and seals from Cape Cod to Newfoundland. Smithsonian Institution Press. Washington D.C., 316 pp .
Kingsley, M.C.S. and R.R. Reeves. 1998. Aerial surveys of cetaceans in the Gulf of St. Lawrence in 1995 and 1996. Can. J. Zool. 76:1529-1550.

Lucas, Z.N. and S.K. Hooker. 2000. Cetacean strandings on Sable Island, Nova Scotia, 1970-1998. Can. Field Nat. 114(1):46-61.
Mitchell, E.D. 1991. Winter records of the minke whale (Balaenoptera acutorostrata Lacepede 1804) in the southern North Atlantic. Rep. int Whal. Commn 41:455-457.
NMFS [National Marine Fisheries Service]. 1993. Cruise results, NOAA ship DELAWARE II, Cruise No. DEL 93-06, Marine Mammal Survey. 5 pp. Available from: National Marine Fisheries Service, 166 Water Street, Woods Hole, MA 02543-1026.
Palka, D. 1995. Abundance estimate of the Gulf of Maine harbor porpoise. pp. 27-50. In: A. Bjprge and G.P. Donovan (eds.) Biology of the Phocoenids. Rep. int Whal. Commn (Special Issue) 16.
Palka, D. 1996. Update on abundance of Gulf of Maine/Bay of Fundy harbor porpoises. U.S. Dep. Commer., Northeast Fish. Sci. Cent. Ref. Doc. 96-04, 37 pp.
Palka, D. 2000. Abundance of the Gulf of Maine/Bay of Fundy harbor porpoise based on shipboard and aerial surveys during 1999. U.S. Dep. Commer., Northeast Fish. Sci. Cent. Ref. Doc. 00-07, 29 pp.
Palka, D.L. 2006. Summer abundance estimates of cetaceans in US North Atlantic Navy Operating Areas. U.S. Dep. Commer., Northeast Fish. Sci. Cent. Ref. Doc. 06-03, 41 pp.
Read, A.J. 1994. Interactions between cetaceans and gillnet and trap fisheries in the northwest Atlantic. Rep. int Whal. Commn (Special Issue) 15:133-147.
Wade, P.R. and R.P. Angliss. 1997. Guidelines for assessing marine mammal stocks: Report of the GAMMS workshop April 3-5, 1996, Seattle, Washington. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR12, 93 pp .
Waring, G.T., P. Gerrior, P.M. Payne, B.L. Parry, and J.R. Nicolas. 1990. Incidental take of marine mammals in foreign fishery activities off the northeast United States, 1977-1988. Fish. Bull., U.S. 88(2):347-360.

RISSO'S DOLPHIN (Grampus griseus): Western North Atlantic Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

Risso's dolphins are distributed worldwide in tropical and temperate seas and in the northeast Atlantic occur from Florida to eastern Newfoundland (Leatherwood et al. 1976; Baird and Stacey 1990). Off the northeast U.S. coast, Risso's dolphins are distributed along the continental shelf edge from Cape Hatteras northward to Georges Bank during spring, summer, and autumn (CETAP 1982; Payne et al. 1984). In winter, the range is in the mid-Atlantic Bight and extends outward into oceanic waters (Payne et al. 1984). In general, the population occupies the mid-Atlantic continental shelf edge year round, and is rarely seen in the Gulf of Maine (Payne et al. 1984). During 1990, 1991 and 1993, spring/summer surveys conducted along the continental shelf edge and in deeper oceanic waters sighted Risso's dolphins associated with strong bathymetric features, Gulf Stream warm-core rings, and the Gulf Stream north wall (Waring et al. 1992; Waring 1993). There is no information on stock structure of Risso's dolphin in the western North Atlantic.

POPULATION SIZE

The total number of Risso's dolphins off the U.S. or Canadian Atlantic coasts is unknown, although ten estimates from selected regions of the habitat are available for select time periods. Sightings have been almost exclusively in continental shelf edge and continental slope areas (Figure 1). An abundance estimate of 4,980 Risso's dolphins ($\mathrm{CV}=0.34$) was derived from an aerial survey program conducted from 1978 to 1982 in continental shelf and shelf edge waters between Cape Hatteras, North Carolina and Nova Scotia (CETAP 1982). An abundance estimate of 11,017 (CV=0.58) Risso's dolphins was obtained from a June and July 1991 shipboard line transect sighting survey conducted primarily between the 200 and $2,000 \mathrm{~m}$ isobaths between Cape Hatteras and Georges Bank (Waring

Figure 1. Distribution of Risso's dolphin sightings from NEFSC and SEFSC shipboard and aerial surveys during the summer in 1998, 1999, and 2004. Isobaths are 100 m,1,000 m,and 4,000m. et al. 1992; Waring 1998). Abundance estimates of $6,496(\mathrm{CV}=0.74)$ and $16,818(\mathrm{CV}=0.52)$ Risso's dolphins were calculated from line transect aerial surveys conducted during AugustSeptember 1991 using Twin Otter and AT-11 aircraft, respectively (NMFS 1991). As recommended in the GAMMS Workshop Report (Wade and Angliss 1997), estimates older than eight years are deemed unreliable and should not be used for PBR determinations. Further, due to changes in survey methodology, these earlier estimates should not be compared to more current estimates.

An abundance estimate of 212 (CV=0.62) Risso's dolphins was obtained from a June and July 1993 shipboard line transect sighting survey conducted principally between the 200 and $2,000 \mathrm{~m}$ isobaths from the southern edge of Georges Bank, across the Northeast Channel, to the southeastern edge of the Scotian Shelf (NMFS 1993). Sightings data were collected by two alternating teams that searched with 25×150 binoculars and the data were analyzed using DISTANCE (Buckland et al. 1993; Laake et al. 1993). Estimates include school-size bias, if applicable, but do not include corrections for $g(0)$ or dive-time. Variability was estimated using bootstrap resampling techniques.

An abundance estimate of $5,587(\mathrm{CV}=1.16)$ Risso's dolphins was derived from a July to September 1995 sighting survey conducted by two ships and an airplane that surveyed waters from Virginia to the mouth of the Gulf of St. Lawrence (NMFS unpublished data). Total track line length was $32,600 \mathrm{~km}$. The ships covered waters between the 50 and 1000 fathom depth contour lines, the northern edge of the Gulf Stream, and the northern Gulf of Maine/Bay of Fundy region. The airplane covered waters in the mid-Atlantic from the coastline to the 50 fathom depth contour line, the southern Gulf of Maine, and shelf waters off Nova Scotia from the coastline to the 1000 fathom depth contour line. Data collection and analysis methods used are described in Palka (1996).

An abundance estmate of $18,631(\mathrm{CV}=0.35)$ Risso's dolphins was obtained from a line transect sighting survey conducted during 6 July to 6 September 1998 by a ship and plane that surveyed $15,900 \mathrm{~km}$ of track line in waters north of Maryland ($38^{\circ} \mathrm{N}$) (Table 1; NMFS unpublished data; Palka 2006). Shipboard data were analyzed using the modified direct duplicate method (Palka 1995) which accounts for school size bias and $g(0)$, the probability of detecting a group on the track line. Aerial data were not corrected for $g(0)$.

An abundance estimate of $9,533(\mathrm{CV}=0.50)$ Risso's dolphins was obtained from a shipboard line transect sighting survey conducted between 8 July and 17 August 1998 that surveyed 4,163 km of track line in waters south of Maryland ($38^{\circ} \mathrm{N}$) (Table 1; Mullin and Fulling 2003). Abundance was estimated using the program DISTANCE (Buckland et al. 1993; Laake et al. 1993) in which school size bias and ship attraction were accounted for.

The best 1998 abundance estimate for Risso's dolphins, 28,164 ($\mathrm{CV}=0.29$), is the sum of the estimates from the two 1998 U.S. Atlantic surveys. This joint estimate ($18,631+9,533=28,164$ dolphins) is considered best because the two surveys together have the most complete coverage of the species' habitat.

An abundance estimate of $15,053(\mathrm{CV}=0.78)$ Risso's dolphins was obtained from a line transect sighting survey conducted during 12 June to 4 August 2004 by a ship and plane that surveyed $10,761 \mathrm{~km}$ of track line in waters north of Maryland $\left(38^{\circ} \mathrm{N}\right)$ to the Bay of Fundy $\left(45^{\circ} \mathrm{N}\right)$ (Table 1; Palka 2006). Shipboard data were collected using the two independent team line transect method and analyzed using the modified direct duplicate method (Palka 1995) accounting for biases due to school size and other potential covariates, reactive movements (Palka and Hammond 2001), and $g(0)$, the probability of detecting a group on the track line. Aerial data were collected using the Hiby circle-back line transect method (Hiby 1999) and analyzed accounting for $g(0)$ and biases due to school size and other potential covariates (Palka 2005).

A survey of the U.S. Atlantic outer continental shelf and continental slope (water depths $>50 \mathrm{~m}$) between Florida and Maryland (27.5 and $38^{\circ} \mathrm{N}$ latitude) was conducted during June-August 2004. The survey employed two independent visual teams searching with 50 x bigeye binoculuars. Survey effort was stratified to include increased effort along the continental shelf break and Gulf stream front in the Mid-Atlantic. The survey included 5,659 km of track line and accomplished a total of 473 cetacean sightings. Sightings were most frequent in waters north of Cape Hatteras, North Carolina along the shelf break. Data were corrected for visibility bias $(g(0))$ and group-size bias and analyzed using line transect distance analysis (Palka, 1995; Buckland et al. 2001). The resulting abundance estimate for Risso's dolphins between Florida and Maryland was 5,426 animals ($\mathrm{CV}=0.54$).

The best abundance estimate for Risso's dolphins is the sum of the estimates from the two 2004 U.S. Atlantic surveys. This joint estimate ($15,053+5,426=20,479$ dolphins) is considered best because these two surveys together have the most complete coverage of the species' habitat.

Table 1. Summary of abundance estimates for the western North Atlantic stock of Risso's dolphin. Month, year, and area covered during each abundance survey, resulting abundance estimate $\left(\mathrm{N}_{\text {best }}\right)$ and coefficient of variation (CV).			
Month/Year	Area	$\mathbf{N}_{\text {best }}$	CV
Jul-Sep 1998	Maryland to Gulf of St. Lawrence	18,631	0.35
Jul-Aug 1998	Florida to Maryland	9,533	0.50
Jul-Sep 1998	Florida to Gulf of St. Lawrence (COMBINED)	28,164	0.29
Jun-Aug 2004	Maryland to Bay of Fundy	15,053	0.78
Jun-Aug 2004	Florida to Maryland	5,426	0.54
Jun-Aug 2004	Florida to Bay of Fundy (COMBINED)	20,479	0.59

Minimum Population Estimate

The minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the lognormally distributed best abundance estimate. This is equivalent to the 20th percentile of the log-normal distribution as specified by Wade and Angliss (1997). The best estimate of abundance for Risso's dolphins is 20,479 (CV=0.59) obtained from the 2004 surveys. The minimum population estimate for the western North Atlantic Risso's dolphin is 12,920 .

Current Population Trend

There are insufficient data to determine population trends for this species.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Current and maximum net productivity rates are unknown for this stock. For purposes of this assessment, the maximum net productivity rate was assumed to be 0.04 . This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive life history (Barlow et al. 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential Biological Removal (PBR) is the product of minimum population size, one-half the maximum productivity rate, and a "recovery" factor (MMPA Sec. 3. 16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size is 12,920 . The maximum productivity rate is 0.04 , the default value for cetaceans (Barlow et al.1995). The "recovery" factor, which accounts for endangered, depleted, threatened stocks, or stocks of unknown status relative to optimum sustainable population (OSP) is assumed to be 0.48 because the CV of the average mortality estimate is between 0.3 and 0.6 (Wade and Angliss 1997). PBR for the western North Atlantic stock of Risso's dolphin is 124 .

ANNUAL HUMAN-CAUSED MORTALITY

Total annual estimated average fishery-related mortality or serious injury to this stock during 2000-2004 was 52 Risso's dolphins ($\mathrm{CV}=0.34$; Table 2).

Fishery Information

Detailed fishery information is reported in Appendix III.

Earlier Interactions

Prior to 1977, there was no documentation of marine mammal bycatch in distant-water fleet (DWF) activities off the northeast coast of the U.S. With implementation of the Magnuson-Stevens Fishery Conservation and Management Act (MSFCMA) in that year, an observer program was established which recorded fishery data and information on incidental bycatch of marine mammals. DWF effort in the U.S. Atlantic Exclusive Economic Zone (EEZ) under MSFCMA has been directed primarily towards Atlantic mackerel and squid. From 1977 through 1982, an average of 120 different foreign vessels per year (range 102-161) operated within the US Atlantic EEZ. In 1982, there were 112 different foreign vessels; 16%, or 18 , were Japanese tuna longline vessels operating along the USA east coast. This was the first year that the Northeast Regional Observer Program assumed responsibility for observer coverage of the longline vessels. Between 1983 and 1991, the numbers of foreign vessels operating within US Atlantic EEZ each year were 67, 52, 62, 33, 27, 26, 14, 13, and 9, respectively. Between 1983 and 1988, the numbers of DWF vessels included 3, 5, 7, 6, 8, and 8, respectively, Japanese longline vessels. Observer coverage on DWF vessels was $25-35 \%$ during 1977-82, and increased to 58%, 86%, 95%, and 98%, respectively, in 1983-86. From 1987-91, 100\% observer coverage was maintained. Foreign fishing operations for squid and mackerel ceased at the end of the 1986 and 1991 fishing seasons, respectively. NMFS foreign-fishery observers have reported four deaths of Risso's dolphins incidental to squid and mackerel fishing activities in the continental shelf and continental slope waters between March 1977 and December 1991 (Waring et al. 1990; NMFS unpublished data). Three animals were taken by squid trawlers and a single animal was killed in longline fishing operations.

Data on current incidental takes in U.S. fisheries are available from several sources. In 1986, NMFS established a mandatory self-reported fisheries information system for large pelagic fisheries. Data files are maintained at the Southeast Fisheries Science Center (SEFSC). The Northeast Fisheries Observer Program was initiated in 1989, and since that year several fisheries have been covered by the program. In late 1992 and in 1993, the SEFSC provided observer coverage of pelagic longline vessels fishing off the Grand Banks (Tail of the Banks) and provides observer coverage of vessels fishing south of Cape Hatteras.

In the pelagic drift gillnet fishery fifty-one Risso's dolphin mortalities were observed between 1989 and 1998. One animal was entangled and released alive. Bycatch occurred during July, September and October along continental shelf edge canyons off the southern New England coast. Estimated annual mortality and serious injury (CV in parentheses) attributable to the drift gillnet fishery was 87 in 1989 (0.52), 144 in $1990(0.46), 21$ in 1991 (0.55), 31 in 1992 (0.27), 14 in 1993 (0.42), 1.5 in 1994 (0.16), 6 in 1995 (0), 0 in 1996, no fishery in 1997, 9 in 1998 (0).

In the pelagic pair trawl fishery one mortality was observed in 1992. Estimated annual fishery-related mortality (CV in parentheses) attributable to the pelagic pair trawl fishery was 0.6 dolphins in 1991 (1.0), 4.3 in 1992 (0.76), 3.2 in 1993 (1.0), 0 in 1994 and 3.7 in 1995 (0.45).

Pelagic Longline

Pelagic longline bycatch estimates of Risso's dolphins in 1998, 1999, and 2000 were obtained from Yeung (1999a), Yeung et al. (2000), and Yeung (2001), respectively. Bycatch estimates for 2001and 2002, 2003, and 2004 were obtained from Garrison (2003), Garrison and Richards (2003), and Garrison (2005). Most of the estimated marine mammal bycatch was from U.S. Atlantic EEZ waters between South Carolina and Cape Cod. Excluding the Gulf of Mexico, from 1992 to 2000 one mortality was observed in both 1994 and 2000, and 0 in other years. The observed numbers of seriously injured but released alive individuals from 1992 to 2000 were, respectively, $2,0,6,4$, 1, 0, 1, 1, and 1 (Cramer 1994; Scott and Brown 1997; Johnson et al. 1999; Yeung 1999a; Yeung et al. 2000; Yeung 2001) (Table 2). Estimated annual fishery-related mortality (CV in parentheses) was 17 animals in 1994 (1.0), 41 in 2000 (1.0), 24 in 2001(1.0), 20 in 2002 (0.86), and 0 in 2003 and 2004 (Table 2). Seriously injured and released alive animals were estimated to be 54 dolphins (0.7) in 1992, 0 in 1993, 120 (0.57) in 1994, 103 (0.68) in 1995, 99 (1.0) in 1996, 0 in 1997, $57(1.0)$ in 1998, $22(1.0)$ in 1999, $23(1.0)$ in 2000, $45(0.7)$ in 2001, $8(1.0)$ in 2002, 40 (0.63) in 2003 and 28 in 2004 (Table 2). The annual average combined mortality and serious injury for 2000-2004 is 46 Risso's dolphins ($\mathrm{CV}=0.37$; Table2).

Northeast Sink Gillnet

Estimated annual mortalities (CV in parentheses) from this fishery are: 0 in 1999, 15 (1.06) in 2000, and 0 in 2001-2004 (Table 2). The 2000-2004 average mortality in this fishery is 3 Risso's dolphins ($\mathrm{CV}=1.06$).

Table 2. Summary of the incidental mortality of Risso's dolphin (Grampus griseus) by commercial fishery including the years sampled (Years), the number of vessels active within the fishery (Vessels), the type of data used (Data Type), the annual observer coverage (Observer Coverage), the observed mortalities and serious injuries recorded by on-board observers, the estimated annual mortality and serious injury, the combined annual estimates of mortality and serious injury (Estimated Combined Mortality), the estimated CV of the combined estimates (Estimated CVs) and the mean of the combined estimates (CV in parentheses).											
Fishery	Years	Vessels ${ }^{\text {c }}$	Data Type	Observer Coverage	Observed Serious Injury	Observed Mortality	Estimated Serious Injury	Estimated Mortality	Estimated Combined Mortality	$\begin{gathered} \text { Estimated } \\ \text { CVs } \end{gathered}$	Mean Annual Mortality
Pelagic Longline (excluding NED-E) ${ }^{\text {b,d }}$	00-0	$\begin{gathered} 116, \\ 98,87, \\ 63,58 \end{gathered}$	$\begin{array}{\|l} \text { Obs. D } \\ \text { Logb } \end{array}$	$\begin{gathered} .04, \\ .04, .05, \\ .09, .09 \end{gathered}$	$\begin{gathered} 1,6, \\ 4,2,2 \end{gathered}$	$\begin{gathered} 1,1, \\ 0,0,0 \end{gathered}$	23, $45,8,40$, 28	$\left\lvert\, \begin{gathered}41, \\ 24,20^{\text {e }}, 0 \\ 0\end{gathered}\right.$	$\begin{gathered} 64,69,28, \\ 40,28 \end{gathered}$	$\begin{gathered} 1, .57, \\ .67, .63 \\ 72 \end{gathered}$	$\begin{gathered} 46 \\ (0.37) \end{gathered}$
Pelagic Longline -NED-E area only ${ }^{\text {d }}$	01-03	9, 14, 11	Obs. Data Logbook	1, 1, 1	4, 3, 0	$0,0,1$	4, 3, 0	0, 0, 1	4, 3, 1	0, 0, 0	3
Northeast Sink Gillnet	00-04	$1993=349$ $1998=301$	Obs. Data Weighout Trip Logbook	$\begin{gathered} .06, .04, \\ .02, .03 \\ .06 \end{gathered}$	$0,0,0$, 0,0	1, $0,0,0,0$	0, 0,0, 0,0	$\begin{gathered} 15, \\ 0,0,0,0 \end{gathered}$	$\begin{aligned} & 15,0 \\ & 0,0,0, \end{aligned}$	$\begin{gathered} 1.06, \\ 0,0,0,0 \end{gathered}$	$\begin{gathered} 3 \\ (1.06) \end{gathered}$
TOTAL											$\begin{gathered} 52 \\ (0.34) \end{gathered}$
Observer data (Obs. Data) are used to measure bycatch rates and the data are collected within the Northeast Fisheries Observer Program. The Observer Program collects landings data (Weighout), and total landings are used as a measure of total effort for the coastal gillnet fishery. 2000 mortality estimates were taken from Yeung (2001), 2001 and 2002 from Garrison (2003), 2003 from Garrison and Richards (2004) and 2004 from Garrison (2005). Number of vessels in the fishery are based on vessels reporting effort to the pelagic longline logbook. An experimental program to test effects of gear characteristics, environmental factors, and fishing practices on marine turtle bycatch rates in the Northeast Distant (NED-E) water component of the fishery was conducted from June 1, 2001-December 31, 2003. Observer coverage was 100% during this experimental fishery. Summaries are provided for the pelagic longline EXCLUDING the NED-E area in one row and for ONLY the NED in the second row (Garrison 2003; Garrison and Richards 2004). Note that the 2002 estimate of Risso's dolphin mortality is estimated from observed mortality rates in previous years (1998-2002) due to a gap in coverage during the $3^{\text {rd }}$ quarter of 2002 .											

Other mortality

From 2000-2004, thirty-nine Risso's dolphin strandings were recorded along the U.S. Atlantic coast (NMFS unpublished data). In eastern Canada, one Risso's dolphin stranding was reported on Sable Island, Nova Scotia from 1970-1998 (Lucas and Hooker 2000).

Risso's dolphin	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	$\mathbf{2 0 0 3}$	$\mathbf{2 0 0 4}$	TOTAL
Maine					2	$\mathbf{2}$
New Hampshire						
Massachusetts		1^{a}	5		4^{b}	$\mathbf{1 0}$
Rhode Island					1	$\mathbf{1}$
Connecticut						
New York			1		3	$\mathbf{4}$
New Jersey	1					$\mathbf{1}$
Delaware					1	$\mathbf{1}$
Maryland		1	1		1	$\mathbf{3}$
Virginia		1			1	$\mathbf{2}$
North Carolina		3	2	1	2	$\mathbf{8}$
South Carolina						
Georgia						
Florida		1	1	1	3	$\mathbf{6}$
EZ					1	$\mathbf{1}$
TOTAL	1	7	10	2	19	$\mathbf{3 9}$

a. Carcass showed signs of human interaction
b. One animal was mutilated, fluke cut off

Stranding data probably underestimate the extent of fishery-related mortality and serious injury because all of the marine mammals that die or are seriously injured may not wash ashore, nor will all of those that do wash ashore necessarily show signs of entanglement or other fishery-interaction. Finally, the level of technical expertise among stranding network personnel varies widely as does the ability to recognize signs of fishery interaction.

STATUS OF STOCK

The status of Risso's dolphins relative to OSP in the U.S. Atlantic EEZ is unknown. The species is not listed as threatened or endangered under the Endangered Species Act. There are insufficient data to determine the population trends for this species. The total U.S. fishery mortality and serious injury for this stock is not less than 10% of the calculated PBR and, therefore, can not be considered to be insignificant and approaching a zero mortality and serious injury rate. The 2000-2004 average annual human-related mortality does not exceed PBR; therefore, this is not a strategic stock.

REFERENCES CITED

Barlow, J., S.L. Swartz, T.C. Eagle, and P.R. Wade. 1995. U.S. Marine Mammal Stock Assessments: Guidelines for Preparation, Background, and a Summary of the 1995 Assessments. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-6, 73 pp.
Baird, R.W. and P.J. Stacey. 1990. Status of Risso's dolphin, Grampus griseus, in Canada. Can. Field Nat. 105:233-242.
Buckland, S.T., D.R. Anderson, K.P. Burnham, and J.L. Laake. 1993. Distance sampling: estimating abundance of biological populations. Chapman and Hall, New York, NY, 446 pp.
Buckland, S.T., D.R. Andersen, K.P Burnham, J.L. Laake, D.L. Borchers, and L. Thomas. 2001. Introduction to Distance Sampling estimating abundance of biological populations. Oxford University Press, New York, 432 pp.
CETAP. 1982. A characterization of marine mammals and turtles in the mid- and north Atlantic areas of the U.S. outer continental shelf. Cetacean and Turtle Assessment Program, University of Rhode Island. Final Report \#AA551-CT8-48 to the Bureau of Land Management, Washington, DC, 538 pp .

Cramer J. 1994. Large pelagic logbook newsletter - 1993. NOAA Tech. Mem. NMFS-SEFSC-352, 19 pp. NMFS, Southeast Fisheries Science Center, Miami, FL.
Garrison, L.P. 2003. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2001-2002. NOAA Tech. Memo. NMFS-SEFSC-515, 52 pp. NMFS, Southeast Fisheries Science Center, Miami, FL.
Garrison, L.P. and P.M. Richards. 2004. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2003. NOAA Tech. Memo. NMFS-SEFSC-527, 57 pp . NMFS, Southeast Fisheries Science Center, Miami, FL.
Garrison, L.P. 2005. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2004. NOAA Tech. Memo. NMFS-SEFSC-531, 52 pp. NMFS, Southeast Fisheries Science Center, Miami, FL.
Hiby, L. 1999. The objective identification of duplicate sightings in aerial survey for porpoise. Pages 179-189 in: Garner G.W. Garner, S.C. Amstrup, J.L. Laake, B.F.J. Manly, L.L. McDonald, and D.G. Robertson. (eds). Marine Mammal Survey and Assessment Methods. Balkema, Rotterdam.
Johnson, D.R., C.A. Brown, and C. Yeung. 1999. Estimates of marine mammal and marine turtle catch by the U.S. Atlantic pelagic longline fleet in 1992-1997. NOAA Tech. Memo. NMFS-SEFSC-418, 70 pp. NMFS, Southeast Fisheries Science Center, Miami, FL.
Laake, J.L., S.T. Buckland, D.R. Anderson, and K.P. Burnham. 1993. DISTANCE user's guide, V2.0. Colorado Cooperative Fish and Wildlife Research Unit, Colorado State University, Ft. Collins, Colorado. 72 pp.
Leatherwood, S., D.K. Caldwell, and H.E. Winn. 1976. Whales, dolphins, and porpoises of the western North Atlantic. A guide to their identification. U.S. Dept. of Commerce, NOAA Tech. Rep. NMFS Circ. 396, 176 pp.
Lucas, Z.N. and S.K. Hooker. 2000. Cetacean strandings on Sable Island, Nova Scotia, 1970-1998. Can. Field Nat.: 114 (45-61).
Mullin, K.D. and G.L. Fulling. 2003. Abundance of cetaceans in the southern U.S. North Atlantic Ocean during summer 1998. Fish. Bull., U.S. 101:603-613.
NMFS [National Marine Fisheries Service]. 1991. Northeast cetacean aerial survey and interplatform study. NOAA-NMFS-SEFSC and NEFSC, 4 pp. Available from: National Marine Fisheries Service, 166 Water Street, Woods Hole, MA 02543-1026.
NMFS [National Marine Fisheries Service]. 1993. Cruise results, NOAA ship DELAWARE II, Cruise No. DEL 93-06, Marine Mammal Survey. 5 pp. Available from: National Marine Fisheries Service, 166 Water Street, Woods Hole, MA 02543-1026.
Palka, D. 1995. Abundance estimate of the Gulf of Maine harbor porpoise. Biology of the Phocoenids. Rep. int Whal. Commn (Special Issue) 16:27-50.
Palka, D. 1996. Update on abundance of Gulf of Maine/Bay of Fundy harbor porpoises. NOAA-NMFS-NEFSC. Ref. Doc. 96-04; 37 pp.
Palka, D. and P.S. Hammond. 2001. Accounting for responsive movement in line transect estimates of abundance. Can. J. Fish. Aquat. Sci. 58:777-787.
Palka, D. 2005. Aerial surveys in the northwest Atlantic: estimation of $g(0)$. In Proceedings of the workshop on Estimation of $\mathrm{g}(0)$ in line-transect surveys of cetaceans, ed. F. Thomsen, F. Ugarte, and P.G.H. Evans. European Cetacean Society Newletter No. 44 - Special Issue. April 2005. Pgs 12-7.
Palka, D.L. 2006. Summer abundance estimates of cetaceans in US North Atlantic Navy Operating Areas. U.S. Dep. Commer., Northeast Fish. Sci. Cent. Ref. Doc. 06-03; 41 pp.
Payne, P.M., L.A. Selzer and A.R. Knowlton. 1984. Distribution and density of cetaceans, marine turtles, and seabirds in the shelf waters of the northeastern United States, June 1980-December 1983, based on shipboard observations. 245 pp. NOAA/NMFS Contract No. NA-81-FA-C-00023.
Scott, G.P. and C.A. Brown. 1997. Estimates of marine mammal and marine turtle catch by the U.S. Atlantic pelagic longline fleet in 1994-1995. Miami Laboratory Contribution MIA-96/97-28
Wade, P.R. and R.P. Angliss. 1997. Guidelines for assessing marine mammal stocks: Report of the GAMMS Workshop April 3-5, 1996, Seattle, Washington. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR12, 93 pp .
Waring, G.T., P. Gerrior, P.M. Payne, B.L. Parry, and J.R. Nicolas. 1990. Incidental take of marine mammals in foreign fishery activities off the northeast United States, 1977-1988. Fish. Bull., U.S., 88:347-360.
Waring, G.T., C.P. Fairfield, C.M. Ruhsam, and M. Sano. 1992. Cetaceans associated with Gulf Stream features off the northeastern USA shelf. ICES Marine Mammals Comm. ICES CM 1992/N:12, 29 pp.

Waring, G.T. 1993. Spatial patterns of six cetaceans along a linear habitat. Proceedings of the Tenth Biennial Conference on the Biology of Marine Mammals, Nov. 11-15, 1993, Galveston, TX (Abstract)
Waring, G.T. 1998. Results of the summer 1991 R/V Chapman marine mammal sighting survey. NOAA-NMFSNEFSC, Lab. Ref. Doc. No. 98-09, 21 pp.
Yeung, C. 1999a. Estimates of marine mammal and marine turtle bycatch by the U.S. Atlantic pelagic longline fleet in 1998. NOAA Tech. Memo. NMFS-SEFSC-430, 26 pp. NMFS, Southeast Fisheries Science Center, Miami, FL.
Yeung, C. 1999b. Revised Mortality Estimates of Marine Mammal Bycatch in 1992-1997 based on Serious Injury Guidelines. NOAA Tech. Memo. NMFS-SEFSC-429, 23 pp. NMFS, Southeast Fisheries Science Center, Miami, FL.
Yeung, C., S. Epperly, and C.A. Brown. 2000. Preliminary revised estimates of marine mammal and marine turtle bycatch by the U.S. Atlantic pelagic longline fleet, 1992-1999. NMFS, Miami Lab. PRD Contribution Number 99/00-13. 58 pp.
Yeung, C. 2001. Estimates of marine mammal and marine turtle bycatch by the U.S. Atlantic pelagic longline fleet in 1999-2000. NOAA Tech. Memo. NMFS-SEFSC-467, 43 pp. NMFS, Southeast Fisheries Science Center, Miami, FL.

LONG-FINNED PILOT WHALE (Globicephala melas): Western North Atlantic Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

There are two species of pilot whales in the western Atlantic - the Atlantic or long-finned pilot whale, Globicephala melas, and the short-finned pilot whale, G. macrorhynchus. These species are difficult to identify at sea; therefore, some of the descriptive material below refers to Globicephala sp., and is identified as such. The species is considered to occur from Canada to Cape Hatteras. NMFS is currently conducting research to improve the understanding of species delineation and distribution.

Pilot whales (Globicephala sp.) are distributed principally along the continental shelf edge off the northeast U.S. coast in winter and early spring, (CETAP 1982; Payne and Heinemann 1993; Abend and Smith 1999). In late spring, pilot whales move onto Georges Bank and into the Gulf of Maine and more northern waters, and remain in these areas through late autumn (CETAP 1982; Payne and Heinemann 1993). Pilot whales tend to occupy areas of high relief or submerged banks. They are also associated with the Gulf Stream wall and thermal fronts along the continental shelf edge (Waring et al. 1992; NMFS unpublished data).

The long-finned pilot whale is distributed from North Carolina to North Africa (and the Mediterranean) and north to Iceland, Greenland and the Barents Sea (Sergeant 1962; Leatherwood et al. 1976; Abend 1993; Buckland et al. 1993a; Abend and Smith 1999). The stock structure of the North Atlantic population is uncertain (Anonymous 1993; Fullard et al. 2000). Recent morphometric (Bloch and Lastein 1993) and genetic (Siemann 1994; Fullard et al. 2000) studies have provided little support for stock structure across the Atlantic (Fullard et al. 2000). However, Fullard et al. (2000) have proposed a stock structure that is related to sea surface temperature: 1) a cold-water population west of the Labrador/North Atlantic current, and 2) a warm-water population that extends across the Atlantic in the Gulf Stream.

Figure 1. Distribution of pilot whales sightings from NEFSC and SEFSC shipboard and aerial surveys during the summer in 1998, 1999, and 2004. Isobaths are at $100 \mathrm{~m}, 1,000 \mathrm{~m}$, and $4,000 \mathrm{~m}$.

POPULATION SIZE

The total number of long-finned pilot whales off the eastern U.S. and Canadian Atlantic coasts is unknown, although several abundance estimates are available from selected regions for select time periods. Sightings have been made almost exclusively in continental shelf edge and continental slope areas (Figure 1). Two estimates were derived from catch data and population models that estimated the abundance of the entire stock. Seasonal estimates are available from selected regions in U.S. waters during spring, summer and autumn 1978-1982, August 1990, June-July 1991, August-September 1991, June-July 1993, July-September 1995, July-August 1998, and JuneAugust 2004. Because long-finned and short-finned pilot whales are difficult to identify at sea, seasonal abundance estimates were reported for Globicephala sp., both long-finned and short-finned pilot whales. One estimate is available from the Gulf of St. Lawrence.

Mitchell (1974) used cumulative catch data from the 1951-1961 drive fishery off Newfoundland to estimate the initial population size (ca. 50,000 animals).

Mercer (1975) used population models to estimate a population in the same region of between 43,000 and 96,000 long-finned pilot whales, with a range of $50,000-60,000$ being considered the best estimate.

An abundance of $11,120(\mathrm{CV}=0.29)$ Globicephala sp . was estimated from an aerial survey program conducted from 1978 to 1982 in continental shelf and shelf edge waters between Cape Hatteras, North Carolina and Nova

Scotia (CETAP 1982). An abundance estimate of $3,636(\mathrm{CV}=0.36)$ Globicephala sp. was obtained from a June and July 1991 shipboard line-transect sighting survey conducted primarily between the 200 and 2,000 m isobaths from Cape Hatteras to Georges Bank (Waring et al. 1992; Waring 1998). Abundances estimates of $3,368(\mathrm{CV}=0.28)$ and $5,377(\mathrm{CV}=0.53)$ Globicephala sp. were obtained from line-transect aerial surveys conducted from August to September 1991 using Twin Otter and AT-11 aircraft, respectively (NMFS 1991). As recommended in the GAMMS Workshop Report (Wade and Angliss 1997), estimates older than 8 years are deemed unreliable and should not be used for PBR determinations. Further, due to changes in survey methodology, the earlier data should not be used to make comparisons with more current estimates.

An abundance estimate of $668(\mathrm{CV}=0.55)$ Globicephala sp. was obtained from a June and July 1993 shipboard line-transect sighting survey conducted principally between the 200 and $2,000 \mathrm{~m}$ isobaths from the southern edge of Georges Bank, across the Northeast Channel, to the southeastern edge of the Scotian Shelf (NMFS 1993a). Data were collected by two alternating teams that searched with 25×150 binoculars and were analyzed using DISTANCE (Buckland et al. 1993b; Laake et al. 1993). Estimates include school-size bias, if applicable, but do not include corrections for $g(0)$, the probability of detecting a group on the track line, or for dive-time. Variability was estimated using bootstrap resampling techniques.

An abundance estimate of $8,176(\mathrm{CV}=0.65)$ Globicephala sp. was derived from a July to September 1995 sighting survey conducted by two ships and an airplane that covered waters from Virginia to the mouth of the Gulf of St. Lawrence (NMFS unpublished data). Total track line length was $32,600 \mathrm{~km}$. The ships covered waters between the 50 and 1,000 fathom depth contour lines, the northern edge of the Gulf Stream, and the northern Gulf of Maine/Bay of Fundy region. The airplane covered waters in the mid-Atlantic from the coastline to the 50 fathom depth contour line, the southern Gulf of Maine, and shelf waters off Nova Scotia from the coastline to the 1,000 fathom isobath. Data collection and analysis methods used are described in Palka (1996).

Kingsley and Reeves (1998) obtained an abundance estimate of 1,600 long-finned pilot whales (CV=0.65) from a late August and early September aerial survey of cetaceans in the Gulf of St. Lawrence in 1995 and 1998. Based on an examination of long-finned pilot whale summer distribution patterns and information on stock structure, it was deemed appropriate to combine these estimates with NMFS 1995 summer survey data. The best 1995 abundance estimate for Globicephala sp. was $9,776(\mathrm{CV}=0.55)$, the sum of the estimates from the U.S. and Canadian surveys, where the estimate from the U.S. survey was $8,176(\mathrm{CV}=0.65)$ and from the Canadian was $1,600(\mathrm{CV}=0.65)$.

An abundance estimate of $9,800(\mathrm{CV}=0.34)$ Globicephala sp . was estimated from a line-transect sighting survey conducted during 6 July to 6 September 1998 by a ship and plane that surveyed $15,900 \mathrm{~km}$ of track line in waters north of Maryland ($38^{\circ} \mathrm{N}$) (Table 1; Palka 2006). Shipboard data were analyzed using the modified direct duplicate method (Palka 1995) which accounts for school size bias and for $g(0)$, the probability of detecting a group on the track line. Aerial data were not corrected for $g(0)$.

An abundance estimate of $5,109(\mathrm{CV}=0.41)$ Globicephala sp . was obtained from a shipboard line-transect sighting survey conducted between 8 July and 17 August 1998 that surveyed $4,163 \mathrm{~km}$ of track line in waters south of Maryland $\left(38^{\circ} \mathrm{N}\right)$ (Table 1; Mullin and Fulling 2003). Abundance was estimated using the program DISTANCE (Buckland et al. 1993b; Laake et al. 1993) in which school size bias and ship attraction were accounted for.

The best 1998 abundance estimate for Globicephala sp. is $14,909(\mathrm{CV}=0.26)$, the sum of the estimates from the two U.S. Atlantic surveys. This estimate is a recalculation of the same data reported in previous SARs. This joint estimate $(9,800+5,109=14,909$ whales) is considered best because the two surveys together have the most complete coverage of the species' habitat.

An abundance estimate of $15,728(\mathrm{CV}=0.34)$ for Globicephala sp . was obtained from a line-transect sighting survey conducted during 12 June to 4 August 2004 by a ship and plane that surveyed $10,761 \mathrm{~km}$ of track line in waters north of Maryland $\left(38^{\circ} \mathrm{N}\right)$ to the Bay of Fundy $\left(45^{\circ} \mathrm{N}\right)$ (Table 1; Palka 2006). Shipboard data were collected using the two independent team line transect method and analyzed using the modified direct duplicate method (Palka 1995) accounting for biases due to school size and other potential covariates, reactive movements (Palka and Hammond 2001), and $g(0)$, the probability of detecting a group on the track line. Aerial data were collected using the Hiby circle-back line transect method (Hiby 1999) and analyzed accounting for $g(0)$ and biases due to school size and other potential covariates (Palka 2005).

A shipboard survey of the U.S. Atlantic outer continental shelf and continental slope (water depths $>50 \mathrm{~m}$) between Florida and Maryland (27.5 and $38^{\circ} \mathrm{N}$ latitude) was conducted during June-August 2004. The survey employed two independent visual teams searching with 50 x bigeye binoculars. Survey effort was stratified to include increased effort along the continental shelf break and Gulf Stream front in the Mid-Atlantic. The survey included $5,659 \mathrm{~km}$ of trackline, and accomplished a total of 473 cetacean sightings. Sightings were most frequent in waters north of Cape Hatteras, North Carolina along the shelf break. Data were corrected for visibility bias $g(0)$ and
group-size bias and analyzed using line-transect distance analysis (Palka, 1995; Buckland et al. 2001). The resulting abundance estimate for Globicephala sp. between Florida and Maryland was 15,411 animals ($\mathrm{CV}=0.43$).

The best abundance estimate for Globicephala sp. is the sum of the estimates from the two 2004 U.S. Atlantic surveys. This joint estimate $(15,728+15,411=31,139$ whales $)$ is considered best because the two surveys together have the most complete coverage of the species' habitat.

Table 1. Summary of abundance estimates for the western North Atlantic Globicephala sp. by month, year, and area covered during each abundance survey, and resulting abundance estimate $\left(\mathrm{N}_{\text {best }}\right)$ and coefficient of variation (CV)					
Month/Year	Area	$\mathrm{N}_{\text {best }}$	CV		
Jul-Sep 1998	Maryland to Gulf of St. Lawrence	9,800	0.34		
Jul-Aug 1998	Florida to Maryland	5,109	0.41		
Jul-Sep 1998	Florida to Gulf of St. Lawrence (COMBINED)	14,909	0.40		
Jun-Aug 2004	Maryland to the Bay of Fundy	15,728	0.34		
Jun-Aug 2004	Florida to Maryland	15,411	0.43		
Jun-Aug 2004	Florida to Bay of Fundy (COMBINED)	31,139	0.27		

Minimum Population Estimate

The minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the lognormally distributed best abundance estimate. This is equivalent to the 20th percentile of the log-normal distribution as specified by Wade and Angliss (1997). The best estimate of abundance for Globicephala sp. is 31,139 animals $(\mathrm{CV}=0.27)$ derived from the 2004 surveys. The minimum population estimate for Globicephala sp . is 24,866 .

Current Population Trend

There are insufficient data to determine population trends for Globicephala sp .

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Current and maximum net productivity rates are unknown for this stock. Life history parameters that could be used to estimate net productivity (obtained from animals taken in the Newfoundland drive fishery) includes calving interval 3.3 years; lactation period about 21-22 months; gestation period 12 months; births mainly from June to November; length at birth is 177 cm ; mean length at sexual maturity is 490 cm for males and 356 cm for females; age at sexual maturity is 12 years for males and 6 years for females; mean adult length is 557 cm for males and 448 cm for females; and maximum age was 40 for males and 50 for females (Sergeant 1962; Kasuya et al. 1988). Analysis of data from animals taken in the Faroe Islands drive fishery produced higher values for all parameters (Bloch et al. 1993; Desportes et al. 1993; Martin and Rothery 1993). These differences are likely related, at least in part, to larger sample sizes and different analytical techniques.

For purposes of this assessment, the maximum net productivity rate was assumed to be 0.04 . This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive life history (Barlow et al. 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential Biological Removal (PBR) is the product of minimum population size, one-half the maximum productivity rate, and a "recovery" factor (MMPA Sec. 3. 16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size for Globicephala sp . is 24,866 . The maximum productivity rate is 0.04 , the default value for cetaceans. The "recovery" factor, which accounts for endangered, depleted, threatened stocks, or stocks of unknown status relative to optimum sustainable population (OSP) is assumed to be 0.5 because this stock is of unknown status. PBR for the western North Atlantic Globicephala sp. is 249.

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

Fishery Information

Detailed fishery information is reported in Appendix III.
Total fishery-related mortality and serious injury cannot be estimated separately for the two species of pilot whales in the U.S. Atlantic EEZ because of the uncertainty in species identification by fishery observers. The Atlantic Scientific Review Group advised adopting the risk-averse strategy of assuming that either species might have been subject to the observed fishery-related mortality and serious injury.

Earlier Interactions

Prior to 1977, there was no documentation of marine mammal bycatch in distant-water fleet (DWF) activities off the northeast coast of the U.S. A fishery observer program, which has collected fishery data and information on incidental bycatch of marine mammals, was established in 1977 with the implementation of the Magnuson-Stevens Fisheries Conservation and Management Act (MSFCMA). Foreign fishing operations for squid ceased at the end of the 1986 fishing season and, for mackerel, at the end of the 1991 fishing season.

During 1977-1991, observers in this program recorded 436 pilot whale mortalities in foreign-fishing activities (Waring et al. 1990; Waring 1995). A total of 391 pilot whales (90%) was taken in the mackerel fishery, and 41 (9%) occurred during Loligo and Illex squid-fishing operations. This total includes 48 documented takes by U.S. vessels involved in joint-venture fishing operations in which U.S. captains transfer their catches to foreign processing vessels. Due to temporal fishing restrictions, the bycatch occurred during winter/spring (December to May) in continental shelf and continental shelf edge waters (Fairfield et al. 1993; Waring 1995); however, the majority of the takes occurred in late spring along the 100 m isobath. Two animals were also caught in both the hake and tuna longline fisheries (Waring et al. 1990).

Between 1989 and 1998, 87 mortalities were observed in the large pelagic drift gillnet fishery. The annual fishery-related mortality (CV in parentheses) was 77 in 1989 (0.24), 132 in 1990 (0.24), 30 in 1991 (0.26), 33 in 1992 (0.16), 31 in 1993 (0.19), 20 in 1994 (0.06), 9.1 in 1995 (0), 11 in 1996 (0.17), no fishery in 1997 and 12 in 1998 (0).

Five pilot whale (Globicephala sp.) mortalities were reported in the self-reported fisheries information for the Atlantic tuna pair trawl in 1993. In 1994 and 1995 observers reported 1 and 12 mortalities, respectively. The estimated fishery-related mortality to pilot whales in the U.S. Atlantic attributable to this fishery in 1994 was 2.0 $(\mathrm{CV}=0.49)$ and $22(\mathrm{CV}=0.33)$ in 1995.

Two interactions with pilot whales in the Atlantic tuna purse seine fishery were observed in 1996. In one interaction, the net was actually pursed around one pilot whale, the rings were released and the animal escaped alive, condition unknown. This set occurred east of the Great South Channel and just north of the Cultivator Shoals region on Georges Bank. In a second interaction, 5 pilot whales were encircled in a set. The net was opened prior to pursing to let the whales swim free, apparently uninjured. This set occurred on the Cultivator Shoals region on Georges Bank. No trips were observed during 1997 through 1999. Four trips were observed in September 2001. No marine mammals were observed taken during these trips.

No pilot whales were taken in observed mid-Atlantic Coastal Gillnet trips during 1993-1997. One pilot whale was observed taken in 1998, 0 during 1999-2003. Observed effort was scattered between New York and North Carolina from 1 to 50 miles off the beach. All bycatches were documented during January to April. Using the observed takes, the estimated annual mortality (CV in parentheses) attributed to this fishery was 7 in 1998 (1.10).

One pilot whale take was observed in the Ilex squid portion of the Southern New England/Mid-Atlantic Squid, Mackerel, Butterfish Trawl fisheries in 1996 and 1 in 1998. The estimated fishery-related mortality to pilot whales in the U.S. Atlantic attributable to this fishery was 45 in $1996(\mathrm{CV}=1.27), 0$ in 1997, 85 in $1998(\mathrm{CV}=0.65)$ and 0 in 1999. However, these estimates should be viewed with caution due to the extremely low ($<1 \%$) observer coverage. After 1999 this fishery is included as a component of the mid-Atlantic bottom trawl fishery.

One pilot whale take was observed in the Loligo squid portion of the Southern New England/Mid-Atlantic Squid, Mackerel, Butterfish Trawl fisheries in 1999. The estimated fishery-related mortality to pilot whales in the U.S. Atlantic attributable to this fishery was 0 between 1996 and 1998 and 49 in 1999 (CV=.97). However, these estimates should be viewed with caution due to the extremely low ($<1 \%$) observer coverage. After 1999 this fishery is included as a component of the mid-Atlantic bottom trawl fishery.

There was one observed take in the Southern New England/mid-Atlantic Bottom Trawl fishery reported in 1999. The estimated fishery-related mortality for pilot whales attributable to this fishery was 0 in 1996-1998, and $228(\mathrm{CV}=1.03)$ in 1999. After 1999 this fishery is included as a component of the mid-Atlantic bottom fishery.

Pelagic Longline

Most of the estimated marine mammal bycatch is from U.S. Atlantic EEZ waters between South Carolina and Cape Cod (Johnson et al. 1999; Garrison 2005). Pilot whales are frequently observed to feed on hooked fish, particularly big-eye tuna (NMFS unpublished data). Between 1992 and 200468 pilot whales (including 2 identified as short-finned pilot whales) were released alive, including 38 that were considered seriously injured (of which 1 was identified as a short-finned pilot whale), and 3 mortalities were observed. January-March bycatch was concentrated on the continental shelf edge northeast of Cape Hatteras. Bycatch was recorded in this area during April-June, and takes also occurred north of Hydrographer Canyon off the continental shelf in water over 1,000 fathoms during April-June. During the July-September period, takes occurred on the continental shelf edge east of Cape Charles, Virginia, and on Block Canyon slope in over 1,000 fathoms of water. October-December bycatch occurred between the 20 and 50 fathom isobaths between Barnegat Bay and Cape Hatteras. The estimated fisheryrelated mortality to pilot whales in the U.S. Atlantic (excluding the Gulf of Mexico) attributable to this fishery was: 127 in 1992 ($\mathrm{CV}=1.00$), 0 from 1993-1998, 93 in $1999(\mathrm{CV}=1.00)$, 24 in $2000(\mathrm{CV}=1.0), 20(\mathrm{CV}=1.0)$ in 2001, 2 $(\mathrm{CV}=1.0)$ in 2002, 0 in 2003-2004. The estimated serious injuries were $40(\mathrm{CV}=0.71)$ in $1992,19(\mathrm{CV}=1.00)$ in 1993, $232(\mathrm{CV}=0.53)$ in 1994, $345(\mathrm{CV}=0.51)$ in 1995, (includes 37 estimated short-finned pilot whales in 1995 ($\mathrm{CV}=1.00$), 0 from 1996 to 1998, $288(\mathrm{CV}=0.74)$ in 1999, $109(\mathrm{CV}=1.00)$ in 2000, 50 in $2001(\mathrm{CV}=0.58)$, 51 in $2002(\mathrm{CV}=0.48)$, 21 in $2003(\mathrm{CV}=0.78)$, and 74 in $2004(\mathrm{CV}=0.42)$. The average 'combined' annual mortality in 2000-2004 was 70 pilot whales $(\mathrm{CV}=0.37)$ (Table 2).

Mid-Atlantic Bottom Trawl

Two pilot whales were taken in the Gulf of Maine in 2000.

GOM/GB Herring Mid-Water Trawl JV and TALFF

There were no marine mammal takes observed from the domestic mid-water trawl fishing trips between 2000 and 2004.

A U.S. joint venture (JV) mid-water (pelagic) trawl fishery was conducted on Georges Bank from August to December 2001. Eight pilot whales were incidentally captured in a single mid-water trawl during JV fishing operations. Three pilot whales were incidentally captured in a single mid-water trawl during foreign fishing operations (TALFF) (Table 2). The 2000-2004 average mortality attributed to the Atlantic herring mid-water trawl fishery was 11 animals (Table 2).

Northeast Bottom Trawl

The fishery is active in New England waters in all seasons. Two pilot whales were taken in the Gulf of Maine in 2004.

Northeast Mid-Water Trawl - Including Pair Trawl

The two most commonly targeted fish in this fishery are herring (94% of VTR records) and mackerel (0.4%). Thus, the observer coverage and bycatch estimates are only for these two sub-fisheries. The observer coverage in this fishery was highest during 2003 and 2004, though a few trips in earlier years were observed (Table 2). A pilot whale was observed taken in the single trawl fishery on the northern edge of Georges Bank (off of Massachusetts) in a haul that was targeting (and primarily caught) herring. Due to small sample sizes, the bycatch rate model used all observed mid-water trawl data, including paired and single, and Northeast and mid-Atlantic mid-water trawls, that targeted either herring or mackerel and were observed between 1999 and 2004 (NMFS unpublished data). The model that best fit these data was a binomial logistic regression model that included target species and bottom slope as significant explanatory variables, and soak duration as the unit of effort. Estimated annual fishery-related mortalities (CV in parentheses) were: $4.6(0.74)$ in 2000, 11 (0.74) in 2001, 8.9 (0.74) in 2002, 14 (0.74) in 2003, and 5.8 (0.74) in 2004 (Table 2; NMFS unpublished data). The average annual estimated fishery-related mortality during 2002-2004 was 8.9 (0.35).

CANADA

An unknown number of pilot whales have also been taken in Newfoundland, Labrador, and Bay of Fundy groundfish gillnets; Atlantic Canada and Greenland salmon gillnets; and Atlantic Canada cod traps (Read 1994).

Between January 1993 and December 1994, 36 Spanish deep-water trawlers, covering 74 fishing trips (4,726 fishing days and 14,211 sets), were observed in NAFO Fishing Area 3 (off the Grand Banks) (Lens 1997). A total of 47 incidental catches were recorded, which included 1 long-finned pilot whale. The incidental mortality rate for pilot whales was $0.007 /$ set.

In Canada, the fisheries observer program places observers on all foreign fishing vessels, on between 25% and 40% of large Canadian vessels (greater than 100ft), and on approximately 5% of small vessels (Hooker et al. 1997). Fishery observer effort off the coast of Nova Scotia during 1991-1996 varied on a seasonal and annual basis, reflecting changes in fishing effort (see Figure 3, Hooker et al. 1997). During the 1991-1996 period, long-finned pilot whales were bycaught (number of animals in parentheses) in bottom trawl (65); midwater trawl (6); and longline (1) gear. Recorded bycatches by year were: 16 in 1991, 21 in 1992, 14 in 1993, 3 in 1994, 9 in 1995 and 6 in 1996. Pilot whale bycatches occurred in all months except January-March and September (Hooker et al. 1997).

Table 2. Summary of the incidental mortality and serious injury of pilot whales (Globicephala sp.) by commercial fishery including the years sampled (Years), the number of vessels active within the fishery (Vessels), the type of data used (Data Type), the annual observer coverage (Observer Coverage), the observed mortalities and serious injuries recorded by on-board observers, the estimated annual mortality and serious injury, the combined annual estimates of mortality and serious injury (Estimated Combined Mortality), the estimated CV of the combined estimates (Estimated CVs) and the mean of the combined estimates (CV in parentheses).											
Fishery	Years	Vessels ${ }^{\text {a }}$	$\begin{gathered} \text { Data }{ }_{\text {b }} \\ \text { Type } \end{gathered}$	Observer Coverage ${ }^{\text {c }}$	Observed Serious Injury	Observed Mortality	Estimated Serious Injury	Estimated Mortality ${ }^{\text {d }}$	Estimated Combined Mortality	Estimated CVs	Mean Annual Mortality
Mid- Atlantic Bottom Trawl ${ }^{\text {d }}$	00-04	unk	Obs. Data Dealer	.01, . 01 , 01, .01, 03	$\begin{gathered} 0,0,0,0 \\ 0 \end{gathered}$	$\begin{gathered} 2,0,0,0 \\ 0 \end{gathered}$	unk	unk	unk	unk	unk
Northeast Bottom Trawl ${ }^{\text {d }}$	00-04	unk	Obs. Data Dealer Data VTR Data	$\begin{gathered} .01, .01 \\ .03, .04 \\ .05 \end{gathered}$	$\begin{gathered} 0,0,0,0 \\ 0 \end{gathered}$	$\begin{gathered} 0,0,0,0 \\ 2 \end{gathered}$	unk	unk	unk	unk	unk
GOM/GB Herring Mid- Water Trawl JV and TALFF ${ }^{\text {e }}$	2001	$10^{\text {f }}$	Obs. Data	$1^{\text {g }}$	0	11	0	11	11	na	$\begin{gathered} 11 \\ \text { (na) } \end{gathered}$
Northeast Mid- Water Trawl - Including Pair Trawl (Herring and Mackerel only)	00-04	unk	Obs. Data Dealer Data VTR Data		$\begin{gathered} 0,0,0,0 \\ 0 \end{gathered}$	$\begin{gathered} 0,0,0,0 \\ 1 \end{gathered}$	$\begin{gathered} 0,0,0,0 \\ 0 \end{gathered}$	$\begin{gathered} 4.6,11, \\ 8.9,14, \\ 5.8 \end{gathered}$	$\begin{gathered} 4.6,11, \\ 8.9,14, \\ 5.8 \end{gathered}$	$\begin{gathered} .74, .74, \\ .74, .74 \\ .74 \end{gathered}$	$\begin{gathered} 8.9 \\ (.35) \end{gathered}$
Pelagic Longline (excluding NED-E)	00-04	$\begin{gathered} 116,98 \\ 87,63 \\ 58 \end{gathered}$	Obs. Data Logbook	$\begin{gathered} .04, .04 \\ .05, .09 \\ .09 \end{gathered}$	$\begin{gathered} 4,4,4,2 \\ 6 \end{gathered}$	$\begin{gathered} 1,1,0,0 \\ 0 \end{gathered}$	$\begin{gathered} 109,50 \\ 52,21,74 \end{gathered}$	$\begin{gathered} 24,20,2 \\ 0,0 \end{gathered}$	$\begin{gathered} 133,70 \\ 54,21,74 \end{gathered}$	$\begin{gathered} .88, .50, \\ .46, .77, \\ .42 \end{gathered}$	$\begin{gathered} 70 \\ (.37) \end{gathered}$
Pelagic Longline -NED-E area only ${ }^{1}$	01-03	$\begin{gathered} 9,14 \\ 11 \end{gathered}$	Obs. Data Logbook	$1,1,1$	0, 0, 0	0, 0, 0	0, 0, 0	0, 0, 0	0, 0, 0	0, 0, 0	0
TOTAL											unk
a Number b Observer Mandato Center (Observe terms of d A new m	vessel data (Ob logboo EFSC). coverag ts. The thod was	in the fish Data) are data were of the Mid rawl fishe used to de	y is based used to mea used to me Atlantic co es are mea elop prelim	vessels rep ure bycatch ure total eff tal gillnet fi red in trips. nary estimat	ting effort tes, and the for the lon ery is mea of mortali	the pelagic data are col line fishery red in tons for the Mi	ongline log cted within These data fish lande Atlantic an	ok. e Northeas e collected Observer Northeast b	isheries Ob the South erage for t om trawl fis	ver Progr Fisheries ongline fi ries durin	ence ry is in 000-2004.

[^1]
Other Mortality

Pilot whales have a propensity to mass strand throughout their range, but the role of human activity in these events is unknown. Between 2 and 168 pilot whales have stranded annually, either individually or in groups, along the eastern U.S. seaboard since 1980 (NMFS 1993b, stranding databases maintained by NMFS NER, NEFSC and SEFSC). From 2000-2004, 42 short-finned pilot whales, 117 long-finned pilot whales, and 7 pilot whales not specified to the species level were reported stranded between Maine and Florida, including Puerto Rico and the Exclusive Economic Zone (EEZ) (Table 3). This includes several mass strandings as follows: 11 long-finned pilot whales mass stranded in Nantucket, MA in 2000 and 57 in 2002 in Dennis, MA; and 28 short-finned pilot whales stranded in Content Passage, Monroe County, FL (ocean side) on April 18, 2003. Two juvenile animals that live stranded in Chatham, Massachusetts in 1999 were rehabilitated, satellite tagged and released (Nawojchik et al. 2003). Both animals were released off eastern Long Island, New York and tracked for four months in the Gulf of Maine. Four of 6 animals from one live stranding event in Massachusetts in 2000 were rehabilitated and released. However, certain studies have shown that frequently, animals that are returned to the water swim away and strand someplace else (Fehring and Wells 1976; Irvine et al. 1979; Odell et al. 1980). The fate of the animals is footnoted in Table 3, when recorded.

An Unusual Mortality Event (UME) occurred along the coast of Virginia from May to July 2004, when 66 small cetaceans stranded mostly along the outer (eastern) coast of Virginia's barrier islands. Species included: 52 bottlenose dolphins (Tursiops truncatus - stock undetermined to date), 4 harbor porpoise (Phocoena phocoena), 4 common dolphins (Delphinus delphis), 4 Atlantic white-sided dolphins (Lagenorhynchus acutus), 1 Risso’s dolphin (Grampus griseus), and 1 pilot whale (Globicephala sp.). Additional strandings occurring from August through December were found to be at similar rates to previous years, and were not included in this UME. Human interactions were implicated in 17 of the strandings (1 common and 16 bottlenose dolphins), other causes were implicated in 14 strandings (1 Atlantic white-sided dolphin, 2 harbor porpoises and 11 bottlenose dolphins), and the no cause could be determined for the remaining strandings, including the pilot whale. Five bottlenose dolphins and 1 common dolphin were entangled in pound nets when they stranded, 1 bottlenose dolphins was entangled in pot gear, and 3 bottlenose dolphins were entangled in unidentified netting or lines, and 2 bottlenose dolphins were found with cinder blocks tied to their flukes (one on Cedar Island in June, and one on the Chincoteague National Wildlife refuge in July), and a third had a frayed line tied to its flukes and was found in Wallops Island in July 2004.

Another UME was declared when 36 small cetaceans stranded from Maryland to Georgia between 3 July and 2 December 2004. The species involved, which are generally found offshore and are not expected to strand along the coast, include: 15 pygmy sperm whales (Kogia breviceps), 1 dwarf sperm whale (K. sima), 8 offshore bottlenose dolphins, 3 common dolphins, 3 Risso's dolphins, 1 Clymene dolphin (Stenella clymene), 1 pantropical spotted dolphin (S. attenuata), 1 short-finned pilot whale, 1 unidentified pilot whale, 1 Sowerby's beaked whale (Mesoplodon bidens), and 1 unidentified small cetacean that was pushed off the beach alive. Preliminary necropsy results indicate that several bottlenose dolphins and the Clymene dolphin that stranded in NC exhibited inflammation in the spinal chord and brain, though necropsy analyses are still underway and no final determination on this UME has been made.

Short-finned pilot whales strandings have been reported stranded as far north as Nova Scotia (1990) and Block Island, Rhode Island (2001), though the majority of the strandings occurred from North Carolina southward (Table 3). Long-finned pilot whales have been reported stranded as far south as Florida, when 2 long-finned pilot whales were reported stranded in Florida in November 1998, though their flukes had been apparently cut off, so it is unclear
where these animals actually may have died. One additional long-finned pilot whale stranded in South Carolina in 2003, though the confidence in the species identification was only moderate. Most of the remaining long-finned pilot whale strandings were from North Carolina northward (Table 3).

In eastern Canada, 37 strandings of long-finned pilot whales (173 individuals) were reported on Sable Island, Nova Scotia from 1970 to 1998 (Lucas and Hooker 1997; Lucas and Hooker 2000). This included 130 animals that mass stranded in December 1976, and 2 smaller groups (<10 each) in autumn 1979 and summer 1992. Fourteen strandings were also recorded along Nova Scotia in 1991-1996 (Hooker et al. 1997). Several mass live strandings occurred in Nova Scotia recently - 14 pilot whales live mass stranded in 2000 and 3 in 2001 in Judique, Inverness County and 4 pilot whales live mass stranded at Point Tupper, Inverness County, in 2002, though no specification to species was made.

Table 3. Pilot whale (Globicephala macrorhynchus (SF), Globicephala melas (LF) and Globicephala sp. (Sp) strandings along the Atlantic coast, 2000-2004. Strandings which were not reported to species have been reported as Globicephala sp. The level of technical expertise among stranding network personnel varies, and given the potential difficulty in correctly identifying stranded pilot whales to species, reports to specific species should be viewed with caution.

STATE	2000			2001			2002			2003			2004			TOTALS		
	SF	LF	Sp															
Nova Scotia ${ }^{\text {a }}$	0	0	$16^{\text {a,b }}$	0	0	$3^{\text {a,c }}$	0	0	$7^{\text {a,d }}$	0	0	$2^{\text {a }}$	0	0	$3^{\text {a }}$	0	0	$31^{\text {a }}$
Maine	0	0	0	1	$5^{\text {c }}$	0	0	2	0	0	1	0	0	4	0	1	12	0
New Hampshire	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Massachusetts	0	11	2	0	3	0	0	$65^{\text {f }}$	0	0	5	0	0	1	0	0	87	0
Rhode Island	0	0	0	1	0	0	0	1	0	0	1	0	0	1	0	1	3	0
Connecticut	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
New York	0	1	0	0	1	0	0	0	0	0	0	0	0	3	0	0	5	0
New Jersey	0	0	0	0	0	0	0	0	0	0	$6^{\text {g }}$	0	0	0	0	0	6	0
Delaware	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Maryland	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Virginia	0	0	0	0	0	0	0	0	0	0	3	0	0	0	$1^{\text {h }}$	0	3	1
North Carolina	0	0	0	1	0	$1^{\text {i }}$	0	0	0	2	0	$1^{\text {i }}$	$1^{\text {j }}$	$1^{\text {j }}$	$1^{\text {j }}$	4	1	3
South Carolina	0	0	0	1	0	0	0	0	0	0	$1^{\text {k }}$	0	0	0	0	1	$1^{\text {k }}$	0
Georgia	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
Florida	0	0	0	0	0	0	0	0	0	$29^{1, \mathrm{~m}}$	0	0	4	0	0	33	0	0
Puerto Rico	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0
EEZ	0	0	$1^{\text {n }}$	0	0	0	0	0	0	0	1°	0	0	0	0	0	2	0
TOTALS U.S., Puerto Rico, \& EEZ	1	12	3	5	9	1	0	68	0	31	18	1	5	10	2	42	117	7

a. Data supplied by Tonya Wimmer, Nova Scotia Marine Animal Response Society (pers. comm.). All Nova Scotia pilot whale strandings reported as pilot whales, so included as Globicephala sp.
b. Includes 14 mass live strandings at Judique, Inverness County on August 6, 2000-11 returned to sea. Reported as pilot whales, so included as Globicephala sp.
c. Three mass live stranded animals at Judique, Inverness County on July 19, 2001 - all returned to sea. Reported as pilot whales, so included as Globicephala sp.
d. Includes 4 mass live strandings at Point Tupper, Inverness County on January 11, 2002 - fate unreported. Reported as pilot whales, so included as Globicephala sp.
e. Includes one long finned pilot whale stranded with possible propeller marks in Maine in September 2001.
f. Includes mass stranding of 57 long-finned pilot whales in Dennis, MA in July 2002 - majority of pod refloated and released, but rebeached 1-2 days later ; ~ 30 animals euthanized, and ~ 11 animals died during the strandings.
g. Two long-finned pilot whales stranded dead separately in April 2003 off New Jersey with rope tied around the flukes.
h. One pilot whale stranded in Virginia in 2004 during an Unusual Mortality Event but was not identified to species(decomposed and decapitated), so included as Globicephala sp.
i. Reported as pilot whale, so included as Globicephala sp.
j. One short-finned pilot whale (September '04) and one pilot whale (November '04) not identified to species stranded in North Carolina during an Unusual Mortality Event (UME). A long-finned pilot whale also stranded in North Carolina in February, not related to any UME.
k. Only moderate confidence on species identification as long-finned pilot whale.

1. Includes mass live stranding of 28 short-finned pilot whales in Content Passage, Monroe County, FL (Ocean side) on April 19, 2003-12 animals died or were euthanized at the scene, 9 were returned to sea, 7 were taken into rehabilitation of which 2 subsequently died and 5 were released to sea on August 10, 2003.
m. Signs of human interaction reported on 1 stranded short-finned pilot whale (not part of the live mass stranding), which stranded in May 2003 in Florida.
n. One pilot whale floating dead in Great South Channel offshore.
o. One long-finned pilot whale floating dead on Georges Bank offshore.

Between 2000-2004, human and/or fishery interactions were documented as follows: one long-finned pilot whale stranded with possible propeller marks in Maine in September 2001, two long-finned pilot whales stranded dead separately in April 2003 off New Jersey with rope tied around the flukes, and signs of human interaction were reported (but no specifics recorded in database) on 1 stranded short-finned pilot whale (not part of the live mass stranding), which stranded in May 2003 in Florida.

Stranding data probably underestimate the extent of fishery-related mortality and serious injury because all of the marine mammals that die or are seriously injured may not wash ashore, nor will all of those that do wash ashore necessarily show signs of entanglement or other fishery-interaction. Finally, the level of technical expertise among stranding network personnel varies widely as does the ability to recognize signs of fishery interaction.

A potential human-caused source of mortality is from polychlorinated biphenyls (PCBs) and chlorinated pesticides (DDT, DDE, dieldrin, etc.), moderate levels of which have been found in pilot whale blubber (Taruski et al.1975; Muir et al. 1988; Weisbrod et al. 2000). Weisbrod et al. (2000) reported that bioaccumulation levels were more similar in whales from the same stranding group than animals of the same sex or age. Also, high levels of toxic metals (mercury, lead, cadmium) and selenium were measured in pilot whales harvested in the Faroe Island drive fishery (Nielsen et al. 2000). Similarly, Dam and Bloch (2000) found very high PCB levels in pilot whales in the Faroes. The population effect of the observed levels of such contaminants is unknown.

STATUS OF STOCK

The status of long-finned pilot whales relative to OSP in U.S. Atlantic EEZ is unknown. There are insufficient data to determine population trends for this species. The species is not listed under the Endangered Species Act. The total U.S. fishery-related mortality and serious injury for this stock is not less than 10% of the calculated PBR and, therefore, cannot be considered to be insignificant and approaching zero mortality and serious injury rate. The status of the stock is unknown.

REFERENCES CITED

Abend, A. 1993. Long-finned pilot whale distribution and diet as determined from stable carbon and nitrogen ratio isotope tracers. M.S. Thesis, University of Massachusetts, Amherst, MA.
Abend, A. and T.D. Smith. 1999. Review of the distribution of the long-finned pilot whale (Globicephala melas) in the North Atlantic and Mediterranean. U. S. Dep. Commer., NOAA Tech. Memo. NMFS-NE-117, 22 pp.
Anonymous 1993. Report of the study group on long-finned pilot whales. ICES C.M. 1993/N:5 29 pp .

Barlow, J., S.L. Swartz, T.C. Eagle, and P.R. Wade. 1995. U.S. Marine Mammal Stock Assessments: Guidelines for Preparation, Background, and a Summary of the 1995 Assessments. U. S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-6, 73 pp.
Bloch, D. and L. Lastein. 1993. Morphometric segregation of long-finned pilot whales in eastern and western North Atlantic. Ophelia 38:55-68.
Bloch, D., M. Zachariassen, and P. Zachariassen. 1993. Some external characters of the long-finned pilot whale off Faroe Island and a comparison with the short-finned pilot whale. Rep. int Whal. Commn (Special Issue) 14:117-135.
Buckland, S.T., D.R. Anderson, K.P. Burnham, and S.L. Laake. 1993b. Distance Sampling: Estimating abundance of biological populations. Chapman and Hall, New York, NY, 446 pp.
Buckland, S.T., D. Bloch, K.L. Cattanach, Th. Gunnlaugsson, K. Hoydal, S. Lens, and J. Sigurjónsson. 1993a. Distribution and abundance of long-finned pilot whales in the North Atlantic, estimated from NASS-87 and NASS-89 data. Rep. int Whal. Commn (Special Issue) 14: 33-49.
Buckland, S. T., D.R. Andersen, K.P Burnham, J.L. Laake, D.L. Borchers, and L. Thomas. 2001. Introduction to Distance Sampling: Estimating abundance of biological populations. Oxford University Press, New York, 432 pp .
CETAP. 1982. A characterization of marine mammals and turtles in the mid- and north Atlantic areas of the U.S. outer continental shelf. Cetacean and Turtle Assessment Program, University of Rhode Island. Final Report, Contract AA51-C78-48, Bureau of Land Management, Washington, DC, 538 pp.
Dam, M. and D. Bloch. 2000. Screening of mercury and persistent organochlorine pollutants in long-finned pilot whale (Globicephala melas) in the Faroe Islands. Mar. Pollut. Bull. 40:1090-1099.
Desportes, G., M. Saboureau, and A. Lacroix. 1993. Reproductive maturity and seasonality of male pilot longfinned whales off the Faroe Islands. Rep. int Whal. Commn (Special Issue) 14:233-262.
Fairfield, C.P., G.T. Waring, and M.H. Sano. 1993. Pilot whales incidentally taken during the distant water fleet Atlantic mackerel fishery in the mid-Atlantic Bight, 1984-88. Rep. int Whal. Commn (Special Issue) 14:107-116.
Fehring, W.K. and R.S. Wells. 1976. A series of strandings by a single herd of pilot whales on the west coast of Florida. J. Mamm. 57(1):191-194.
Fullard, K.J., G. Early, M.P. Heide-Jørgensen, D. Bloch, A. Rosing-Asvid, and W. Amos. 2000. Population structure of long-finned pilot whales in the North Atlantic: a correlation with sea surface temperature? Mol. Ecol. 9:949-958.
Garrison, L.P. 2003. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2001-2002. NOAA Tech. Memo. NMFS-SEFSC-515, 52 pp. NMFS, Southeast Fisheries Science Center, Miami, FL.
Garrison, L.P. and P.M. Richards. 2004. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2003. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SEFSC-527, 57 pp. Available from NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Road, Miami, Fl 33149.
Garrison, L.P. 2005. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2004. NOAA Tech. Memo. NMFS-SEFSC-531, 52 pp. NMFS, Southeast Fisheries Science Center, Miami, FL.
Hiby, L. 1999. The objective identification of duplicate sightings in aerial survey for porpoise. Pages 179-189 in: G. W. Garner, S. C. Amstrup, J. L. Laake, B. F. J. Manly, L. L. McDopnald, and D. G. Robertson. (eds). Marine Mammal Survey and Assessment Methods. Balkema, Rotterdam.
Hooker, S. K., R. W. Baird, and M. A. Showell. 1997. Cetacean Strandings and bycatches in Nova Scotia, Eastern Canada, 1991-1996. Paper SC/49/05 presented to the IWC Scientific Committee, September 1997. 11 pp.
Irvine, A.B., M.D. Scott, R.S. Wells, and J.G. Mead. 1979. Stranding of the pilot whale, Globicephala macrorhynchus, in Florida and South Carolina. Fish. Bull., U.S. 77 (2):511-513.
Johnson, D. R., C.A. Brown, and C. Yeung. 1999. Estimates of marine mammal and marine turtle catch by the U.S. Atlantic pelagic longline fleet in 1992-1997. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SEFSC418. 70 pp. NMFS, Southeast Fisheries Science Center, Miami, FL.

Kasuya, T., D.E. Sergeant, and K. Tanaka. 1988. Re-examination of life history parameters of long-finned pilot whales in the Newfoundland waters. Sci. Rep. Whales Res. Inst. No. 39:103-119.
Kingsley, M.C.S. and R.R. Reeves. 1998. Aerial surveys of cetaceans in the Gulf of St. Lawrence in 1995 and 1996. Can. J. Zool. 76:1529-1550.

Laake, J.L., S.T. Buckland, D.R. Anderson, and K.P. Burnham. 1993. DISTANCE user's guide, V2.0. Colorado Cooperative Fish and Wildlife Research Unit, Colorado State University, Ft. Collins, CO. 72 pp.

Leatherwood, S., D.K. Caldwell and H.E. Winn. 1976. Whales, dolphins, and porpoises of the western North Atlantic. A guide to their identification. U.S. Dep. Commer., NOAA Tech. Rep. NMFS Circ. 396, 176 pp.
Lens, S. 1997. Interactions between marine mammals and deep water trawlers in the NAFO regulatory area. ICES CM 1997/Q:8. 10 pp .
Lucas, Z. N. and S. K. Hooker. 1997. Cetacean strandings on Sable Island, Nova Scotia, 1990-1996. Paper SC/49/06 presented to the IWC Scientific Committee, September 1997. 10 pp.
Lucas, Z.N. and S.K. Hooker. 2000. Cetacean strandings on Sable Island, Nova Scotia, 1970-1998. Can. Field Nat. 114:45-61.
Martin, A.R. and P. Rothery. 1993. Reproductive parameters of female long-finned pilot whales (Globicephala melas) around the Faroe Islands. Rep. int Whal. Commn (Special Issue) 14:263-304.
Mercer, M.C. 1975. Modified Leslie-DeLury population models of the long-finned pilot whale (Globicephala melaena) and annual production of the short-finned squid (Illex illecebrosus) based upon their interactions at Newfoundland. J. Fish. Res. Bd. Can. 32(7): 1145-54.
Mitchell, E. 1974. Present status of northwest Atlantic fin and other whale stocks. Pages 108-169 in: W. E. Schevill (ed.), The whale problem: A status report. Harvard University Press, Cambridge, Massachusetts, 419 pp.
Muir, D.C.G., R. Wagermann, N.P. Grift, R.J. Norstrom, M. Simon and J. Lien. 1988. Organochlorine chemical and heavy metal contaminants in white-beaked dolphins (Lagenorhynchus albirostris) and pilot whales (Globicephala melaena) from the coast of Newfoundland. Canada. Arch. Environ. Contam. Toxicol. 17:613-629.
Mullin, K.D. and G.L. Fulling. 2003. Abundance of cetaceans in the southern U.S. North Atlantic Ocean during summer 1998. Fish. Bull., U.S. 101:603-613.
Nawojchik, R., D.J. St. Aubin, and A. Johnson. 2003. Movements and dive behavior of two stranded, rehabilitated long-finned pilot whales (Globicephala melas) in the northwest Atlantic. Mar. Mammal Sci. 19:232-239.
Nielsen, J.B., F. Nielsen, P-J. Jørgensen, and P. Grandjean. 2000. Toxic metals and selenium in blood from pilot whales (Globicephala melas) and sperm whales (Physeter catodon). Mar. Pollut. Bull. 40:348-351.
NMFS [National Marine Fisheries Service] 1991. Northeast cetacean aerial survey and interplatform study. NOAA-NMFS-SEFSC and NEFSC. 4 pp. Available from: National Marine Fisheries Service, 166 Water Street, Woods Hole, MA 02543-1026.
NMFS [National Marine Fisheries Service]. 1993a. Cruise results, NOAA ship DELAWARE II, Cruise No. DEL 93-06, Marine mammal Survey. 5 pp. Available from: National Marine Fisheries Service, 166 Water Street, Woods Hole, MA 02543-1026.
NMFS [National Marine Fisheries Service]. 1993b. Status of fishery resources off the northeastern United States for 1993. U. S. Dep. Commer., NOAA Tech. Memo NMFS-F/NEC-101, 140 pp.
Odell, D. K., E. D. Asper, J. Baucom, and L. H. Cornell. 1980. A recurrent mass stranding of the false killer whale, Pseudorca crassidens, in Florida. Fish. Bull., U.S. 78(1):171-177.
Palka, D. 1995. Abundance estimate of the Gulf of Maine harbor porpoise. Rep. int Whal. Commn (Special Issue) 16:27-50.
Palka, D. 1996. Update on abundance of Gulf of Maine/Bay of Fundy harbor porpoises. NOAA-NMFS-NEFSC. Ref. Doc. 96-04, 37 pp.
Palka, D. and Hammond, P.S. 2001. Accounting for responsive movement in line transect estimates of abundance. Can. J. Fish. Aquat. Sci. 58:777-787.
Palka, D. 2005. Aerial surveys in the northwest Atlantic: estimation of $g(0)$. In Proceedings of the workshop on Estimation of $g(0)$ in line-transect surveys of cetaceans, ed. F. Thomsen, F. Ugarte, and P.G.H. Evans. ECS Newletter No. 44 - Special Issue. April 2005. Pgs 12-7.
Palka, D.L. 2006. Summer abundance estimates of cetaceans in US North Atlantic Navy Operating Areas. U.S. Dep. Commer., Northeast Fish. Sci. Cent. Ref. Doc. 06-03, 41 pp.
Payne, P.M. and D.W. Heinemann. 1993. The distribution of pilot whales (Globicephala sp.) in shelf/shelf edge and slope waters of the northeastern United States, 1978-1988. Rep. int Whal. Commn (Special Issue) 14:51-68.
Read, A.J. 1994. Interactions between cetaceans and gillnet and trap fisheries in the northwest Atlantic. Rep. int Whal. Commn (Special Issue) 15:133-147.
Sergeant D.E. 1962. The biology of the pilot or pothead whale (Globicephala melaena (Traill) in Newfoundland waters. Bull. Fish. Res. Bd. Can. 132:1-84.

Siemann, L. 1994. Mitochondrial DNA sequence variation in North Atlantic long-finned pilot whales, Globicephala melas. Ph.D. Thesis, Massachusetts Institute of Technology/ Woods Hole Oceanographic Institution.
Taruski, A.G., C.E. Olney and H.E. Winn. 1975. Chlorinated hydrocarbons in cetaceans. J. Fish. Res. Bd. Can. 32(11):2205-9.
Wade, P.R. and R.P. Angliss. 1997. Guidelines for assessing marine mammal stocks: Report of the GAMMS Workshop April 3-5, 1996, Seattle, Washington. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR12, 93 pp .
Waring, G.T. 1995. Fishery and ecological interactions for selected cetaceans off the northeast USA. Ph.D. dissertation, University of Massachusetts, Amherst, MA 260 pp.
Waring, G.T. 1998. Results of the summer 1991 R/V Chapman marine mammal sighting survey. NOAA-NMFSNEFSC Lab. Ref. Doc. No. 98-09, 21pp. Available from: National Marine Fisheries Service, 166 Water Street, Woods Hole, MA 02543.
Waring, G.T., P. Gerrior, P.M. Payne, B.L. Parry, and J.R. Nicolas. 1990. Incidental take of marine mammals in foreign fishery activities off the northeast United States, 1977-1988. Fish. Bull., U.S. 88(2):347-360.
Waring, G.T., C.P. Fairfield, C.M. Ruhsam, and M. Sano. 1992. Cetaceans associated with Gulf Stream features off the northeastern USA shelf. ICES Marine Mammals Comm. CM 1992/N:12, 29 pp.
Weisbrod, A.V., D. Shea, M.J. Moore, and J.J. Stegeman. 2000. Bioaccumulation patterns of polychlorinated biphenyls and chlorinated pesticides in northwest Atlantic pilot whales. Environ. Toxicol. Chem. 19:667677.

Yeung, C. 2001. Estimates of marine mammal and marine turtle bycatch by the U.S. Atlantic pelagic longline fleet in 1999-2000. U. S. Dep. Commer., NOAA Tech. Memo. NMFS-SEFSC-467, 43 pp. Available from: NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL, 33149.

SHORT-FINNED PILOT WHALE (Globicephala macrorhynchus): Western North Atlantic Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

There are two species of pilot whales in the western North Atlantic - the Atlantic or long-finned pilot whale, Globicephala melas, and the short-finned pilot whale, G. macrorhynchus. These species are difficult to differentiate at sea; therefore, some of the descriptive material below refers to Globicephala sp . and is identified as such. NMFS currently is conducting research to improve the understanding of species delineation and distribution.

The short-finned pilot whale is distributed worldwide in tropical to warm temperate waters (Leatherwood and Reeves 1983). The northern extent of the range of this species within the U.S. Atlantic Exclusive Economic Zone (EEZ) is generally thought to be Cape Hatteras, North Carolina (Leatherwood and Reeves 1983). Sightings of these animals in the U.S. Atlantic EEZ occur in oceanic waters (Mullin and Fulling 2003) and along the continental shelf and continental slope in the northern Gulf of Mexico (Hansen et al. 1996; Mullin and Hoggard 2000; Mullin and Fulling 2003). The stock structure of the Atlantic population is uncertain.

POPULATION SIZE

The total number of short-finned pilot whales off the eastern U.S. and Canadian Atlantic coasts is unknown, although several abundance estimates from selected regions are available for select time periods. Sightings have been almost exclusively in the continental shelf edge and continental slope areas (Figure 1). Two estimates were derived from catch data and population models that estimated the abundance of the entire stock. Seasonal estimates are available from selected regions in U.S. waters during spring, summer and autumn 1978-82, August 1990, June-July 1991, August-September 1991, June-July 1993, July-September 1995,

Figure 1. Distribution of pilot whale sightings from NEFSC and SEFSC vessel and aerial summer surveys during 1998 and 2004. Isobaths are at $100 \mathrm{~m}, 1,000 \mathrm{~m}$, and 4,000 m. July-August 1998, and June-August 2004. Because long-finned and short-finned pilot whales are difficult to identify at sea, seasonal abundance estimates were reported for Globicephala sp., both long-finned and short-finned pilot whales. One estimate is available from the Gulf of St. Lawrence.

Mitchell (1974) used cumulative catch data from the 1951-1961 drive fishery off Newfoundland to estimate the initial population size (ca. 50,000 animals).

Mercer (1975) used population models to estimate a population in the same region of between $43,000-96,000$ long-finned pilot whales, with a range of 50,000-60,000 being considered the best estimate.

An abundance estimate of $11,120(\mathrm{CV}=0.29)$ Globicephala sp . was generated from an aerial survey program conducted from 1978 to 1982 in continental shelf and shelf edge waters between Cape Hatteras, North Carolina, and Nova Scotia (CETAP 1982). An abundance estimate of $3,636(\mathrm{CV}=0.36)$ Globicephala sp. was obtained from a June and July 1991 shipboard line-transect sighting survey conducted primarily between the 200 and 2,000 m isobaths from Cape Hatteras to Georges Bank (Waring et al. 1992; Waring 1998).

Abundance estimates of $3,368(\mathrm{CV}=0.28)$ and $5,377(\mathrm{CV}=0.53)$ Globicephala sp . were obtained from linetransect aerial surveys conducted from August to September 1991 using Twin Otter and AT-11 aircraft, respectively (NMFS 1991).

An abundance estimate of $668(\mathrm{CV}=0.55)$ Globicephala sp. was obtained from a June and July 1993 shipboard line-transect survey conducted principally between the 200 m and $2,000 \mathrm{~m}$ isobaths from the southern edge of Georges Bank, across the Northeast Channel, to the southeastern edge of the Scotian Shelf (NMFS 1993a). Data were collected by two alternating teams that searched with 25×150 binoculars and were analyzed using DISTANCE
(Buckland et al., 1993; Laake et al., 1993). Estimates include school-size bias, if applicable, but do not include corrections for $g(0)$, the probability of detecting a group on the track line, or for dive-time. Variability was estimated using bootstrap resampling techniques.

An abundance estimate of $8,176(\mathrm{CV}=0.65)$ Globicephala sp. was derived from a July to September 1995 sighting survey conducted by two ships and an airplane that covered waters from Virginia to the mouth of the Gulf of St. Lawrence (NMFS unpublished data). Total track line length was $32,600 \mathrm{~km}$. The ships covered waters between the 50 and 1,000 fathom depth contour lines, the northern edge of the Gulf Stream, and the northern Gulf of Maine/Bay of Fundy region. The airplane covered waters in the mid-Atlantic from the coastline to the 50 fathom depth contour line, the southern Gulf of Maine, and shelf waters off Nova Scotia from the coastline to the 1,000 fathom isobath. Data collection and analysis methods used are described in Palka (1996). As recommended in the GAMMS Workshop Report (Wade and Angliss 1997), estimates older than 8 years are deemed unreliable, and therefore should not be used for PBR determinations. Further, due to changes in survey methodology, the earlier data should not be used to make comparisons with more current estimates.

Kingsley and Reeves (1998) obtained an abundance estimate of 1,600 long-finned pilot whales (CV=0.65) from a late August and early September aerial survey of cetaceans in the Gulf of St. Lawrence in 1995 and 1998 (Table 1). Based on an examination of long-finned pilot whale summer distribution patterns and information on stock structure, it was deemed appropriate to combine these estimates with NMFS 1995 summer survey data. The best 1995 abundance estimate for Globicephala sp. is $9,776(\mathrm{CV}=0.55)$, the sum of the estimates from the U.S. and Canadian surveys, where the estimate from the U.S. survey was 8,176 animals $(\mathrm{CV}=0.65)$ and from the Canadian survey was 1,600 animals ($\mathrm{CV}=0.65$).

An abundance estimate of $9,800(\mathrm{CV}=0.34)$ Globicephala sp . was obtained from a line-transect survey conducted during July 6 to September 6, 1998, by a ship and plane that surveyed $15,900 \mathrm{~km}$ of track line in waters north of Maryland ($38^{\circ} \mathrm{N}$) (Figure 1; Table 1; Palka 2006). Shipboard data were analyzed using the modified direct duplicate method (Palka 1995) which accounts for school size bias and for $g(0)$, the probability of detecting a group on the track line. Aerial data were not corrected for $g(0)$.

An abundance estimate of $5,109(\mathrm{CV}=0.41)$ Globicephala sp . was obtained from a shipboard line-transect survey conducted between 8 July and 17 August 1998 that surveyed $4,163 \mathrm{~km}$ of track line in waters south of Maryland ($38^{\circ} \mathrm{N}$) (Table 1; Mullin and Fulling 2003). Abundance was estimated using the program DISTANCE (Buckland et al. 1993; Laake et al. 1993), in which school size bias and ship attraction were accounted for.

The best 1998 abundance estimate for Globicephala sp. is 14,909 animals. This estimate is a recalculation of the same data reported in previous SARs. This joint estimate $(9.800+5,109=14,909$ whales) is considered best because these two surveys have the most complete coverage of the species' habitat.

An abundance estimate of $15,728(\mathrm{CV}=0.34)$ Globicephala sp . was obtained from a line-transect sighting survey conducted during 12 June to 4 August 2004 by a ship and plane that surveyed $10,761 \mathrm{~km}$ of track line in waters north of Maryland $\left(38^{\circ} \mathrm{N}\right)$ to the Bay of Fundy $\left(45^{\circ} \mathrm{N}\right)$ (Table 1; Palka 2006). Shipboard data were collected using the two independent team line transect method and analyzed using the modified direct duplicate method (Palka 1995) accounting for biases due to school size and other potential covariates, reactive movements (Palka and Hammond 2001), and $g(0)$, the probability of detecting a group on the track line. Aerial data were collected using the Hiby circle-back line transect method (Hiby 1999) and analyzed accounting for $g(0)$ and biases due to school size and other potential covariates (Palka 2005).

A shipboard survey of the U.S. Atlantic outer continental shelf and continental slope (water depths $\geq 50 \mathrm{~m}$) between Florida and Maryland (27.5 and $38^{\circ} \mathrm{N}$ latitude) was conducted during June-August 2004. The survey employed two independent visual teams searching with 50 x bigeye binoculars. Survey effort was stratified to include increased effort along the continental shelf break and Gulf Stream front in the mid-Atlantic. The survey included $5,659 \mathrm{~km}$ of trackline, resulting in a total of 473 cetacean sightings. Sightings were most frequent in waters north of Cape Hatteras, North Carolina along the shelf break. Data corrected for visibility bias $g(0)$ and group-size bias and analyzed using line-transect distance analysis (Palka 1995; Buckland et al. 2001). The resulting abundance estimate for Globicephala sp. between Florida and Maryland was 15,411 animals (CV=0.43).

The best abundance estimate for Globicephala sp. is the sum of the estimates from the two 2004 U.S. Atlantic surveys. This joint estimate $(15,728+15,411=31,139$ whales $)$ is considered the best because these two surveys together have the most complete coverage of the species' habitat.

Table 1. Summary of abundance estimates for the western North Atlantic stock of Globicephala sp. by month, year, and area covered during each abundance survey, and resulting abundance estimate ($\mathrm{N}_{\text {best }}$) and coefficient of variation (CV).

Month/Year	Area	$\mathrm{N}_{\text {best }}$	CV
Jul-Sep 1998	Maryland to Gulf of St. Lawrence	9,800	0.34
Jul-Aug 1998	Florida to Maryland	5,109	0.41
Jul-Sep 1998	Florida to Gulf of St. Lawrence (COMBINED)	14,909	0.26
Jun-Aug 2004	Maryland to Bay of Fundy	15,728	0.34
Jun-Aug 2004	Florida to Maryland	15,411	0.43
Jun-Aug 2004	Florida to Bay of Fundy (COMBINED)	31,139	0.27

Minimum Population Estimate

The minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the lognormally distributed best abundance estimate. This is equivalent to the 20 th percentile of the log-normal distribution as specified by Wade and Angliss (1997). The best estimate of abundance for Globicephala sp. is 31,139 animals $(\mathrm{CV}=0.27)$ derived from the 2004 surveys. The minimum population estimate for Globicephala $\mathrm{sp} .24,866$.

Current Population Trend

There are insufficient data to determine population trends for Globicephala sp .

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Current and maximum net productivity rates are unknown for this stock. Life history parameters that could be used to estimate net productivity (obtained from animals taken in the Newfoundland drive fishery) include: calving interval 3.3 years; lactation period about 21-22 months; gestation period 12 months; births mainly from June to November; length at birth is 177 cm ; mean length at sexual maturity is 490 cm for males and 356 cm for females; age at sexual maturity is 12 years for males and 6 years for females; mean adult length is 557 cm for males and 448 cm for females; and maximum age was 40 for males and 50 for females (Sergeant 1962; Kasuya et al. 1988). Analysis of data from animals taken in the Faroe Islands drive fishery produced higher values for all parameters (Bloch et al. 1993; Desportes et al. 1993; Martin and Rothery 1993). These differences are likely related, at least in part, to larger sample sizes and different analytical techniques.

For purposes of this assessment, the maximum net productivity rate was assumed to be 0.04 . This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive life history (Barlow et al. 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential Biological Removal (PBR) is the product of minimum population size, one-half the maximum productivity rate, and a "recovery" factor (MMPA Sec. 3. 16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size for Globicephala sp . is 24,866 . The maximum productivity rate is 0.04 , the default value for cetaceans. The "recovery" factor, which accounts for endangered, depleted, threatened stocks, or stocks of unknown status relative to optimum sustainable population (OSP) is assumed to be 0.5 this stock is of unknown status. PBR for the western North Atlantic Globicephala sp. is 249.

ANNUAL HUMAN-CAUSED MORTALITY

Fishery Information

Detailed fishery information is reported in Appendix III. Total fishery-related mortality and serious injury cannot be estimated separately for the two species of pilot whales in the U.S. Atlantic EEZ because of the uncertainty in species identification by fishery observers. The Atlantic Scientific Review Group advised adopting the risk-averse strategy of assuming that either species might have been subject to the observed fishery-related mortality and serious injury.

Earlier Interactions

Prior to 1977, there was no documentation of marine mammal bycatch in distant-water fleet (DWF) activities off the northeast coast of the U.S. A fishery observer program, which has collected fishery data and information on incidental bycatch of marine mammals, was established in 1977 with the implementation of the Magnuson-Stevens Fisheries Conservation and Management Act (MSFCMA). Foreign fishing operations for squid ceased at the end of the 1986 fishing season and, for mackerel, at the end of the 1991 fishing season.

During 1977-1991, observers in this program recorded 436 pilot whale mortalities in foreign-fishing activities (Waring et al. 1990; Waring 1995). A total of 391 pilot whales (90%) was taken in the mackerel fishery, and 41 (9%) occurred during Loligo and Illex squid-fishing operations. This total includes 48 documented takes by U.S. vessels involved in joint-venture fishing operations in which U.S. captains transfer their catches to foreign processing vessels. Due to temporal fishing restrictions, the bycatch occurred during winter/spring (December to May) in continental shelf and continental shelf edge waters (Fairfield et al. 1993; Waring 1995); however, the majority of the takes occurred in late spring along the 100 m isobath. Two animals were also caught in both the hake and tuna longline fisheries (Waring et al. 1990).

Between 1989 and 1998, 87 mortalities were observed in the large pelagic drift gillnet fishery. The annual fishery-related mortality (CV in parentheses) was 77 in 1989 (0.24), 132 in 1990 (0.24), 30 in 1991 (0.26), 33 in 1992 (0.16), 31 in 1993 (0.19), 20 in 1994 (0.06), 9.1 in 1995 (0), 11 in 1996 (0.17), no fishery in 1997 and 12 in 1998 (0).

Five pilot whale (Globicephala sp.) mortalities were reported in the self-reported fisheries information for the Atlantic tuna pair trawl in 1993. In 1994 and 1995 observers reported 1 and 12 mortalities, respectively. The estimated fishery-related mortality to pilot whales in the U.S. Atlantic attributable to this fishery in 1994 was 2.0 $(\mathrm{CV}=0.49)$ and $22(\mathrm{CV}=0.33)$ in 1995.

Two interactions with pilot whales in the Atlantic tuna purse seine fishery were observed in 1996. In one interaction, the net was actually pursed around one pilot whale, the rings were released and the animal escaped alive, condition unknown. This set occurred east of the Great South Channel and just north of the Cultivator Shoals region on Georges Bank. In a second interaction, 5 pilot whales were encircled in a set. The net was opened prior to pursing to let the whales swim free, apparently uninjured. This set occurred on the Cultivator Shoals region on Georges Bank. No trips were observed during 1997 through 1999. Four trips were observed in September 2001. No marine mammals were observed taken during these trips.

No pilot whales were taken in observed mid-Atlantic Coastal Gillnet trips during 1993-1997. One pilot whale was observed taken in 1998, 0 during 1999-2003. Observed effort was scattered between New York and North Carolina from 1 to 50 miles off the beach. All bycatches were documented during January to April. Using the observed takes, the estimated annual mortality (CV in parentheses) attributed to this fishery was 7 in 1998 (1.10).

One pilot whale take was observed in the Ilex squid portion of the Southern New England/Mid-Atlantic Squid, Mackerel, Butterfish Trawl fisheries in 1996 and 1 in 1998. The estimated fishery-related mortality to pilot whales in the U.S. Atlantic attributable to this fishery was 45 in $1996(\mathrm{CV}=1.27), 0$ in 1997, 85 in $1998(\mathrm{CV}=0.65)$ and 0 in 1999. However, these estimates should be viewed with caution due to the extremely low ($<1 \%$) observer coverage. After 1999 this fishery is included as a component of the mid-Atlantic bottom trawl fishery.

One pilot whale take was observed in the Loligo squid portion of the Southern New England/Mid-Atlantic Squid, Mackerel, Butterfish Trawl fisheries in 1999. The estimated fishery-related mortality to pilot whales in the U.S. Atlantic attributable to this fishery was 0 between 1996 and 1998 and 49 in 1999 (CV=.97). However, these estimates should be viewed with caution due to the extremely low ($<1 \%$) observer coverage. After 1999 this fishery is included as a component of the mid-Atlantic bottom trawl fishery.

There was one observed take in the Southern New England/mid-Atlantic Bottom Trawl fishery reported in 1999. The estimated fishery-related mortality for pilot whales attributable to this fishery was 0 in 1996-1998, and $228(\mathrm{CV}=1.03)$ in 1999. After 1999 this fishery is a component of the mid-Atlantic bottom fishery.

Pelagic Longline

Most of the estimated marine mammal bycatch is from U.S. Atlantic EEZ waters between South Carolina and Cape Cod (Johnson et al. 1999; Garrison 2005). Pilot whales are frequently observed to feed on hooked fish, particularly big-eye tuna (NMFS unpublished data). Between 1992 and 200468 pilot whales (including 2 identified as short-finned pilot whales) were released alive, including 38 that were considered seriously injured (of which 1 was identified as a short-finned pilot whale), and 3 mortalities were observed. January-March bycatch was concentrated on the continental shelf edge northeast of Cape Hatteras. Bycatch was recorded in this area during April-June, and takes also occurred north of Hydrographer Canyon off the continental shelf in water over 1,000 fathoms during April-June. During the July-September period, takes occurred on the continental shelf edge east of Cape Charles, Virginia, and on Block Canyon slope in over 1,000 fathoms of water. October-December bycatch occurred between the 20 and 50 fathom isobaths between Barnegat Bay and Cape Hatteras. The estimated fisheryrelated mortality to pilot whales in the U.S. Atlantic (excluding the Gulf of Mexico) attributable to this fishery was: 127 in 1992 ($\mathrm{CV}=1.00$), 0 from 1993-1998, 93 in $1999(\mathrm{CV}=1.00)$, 24 in $2000(\mathrm{CV}=1.0), 20(\mathrm{CV}=1.0)$ in 2001, 2 $(\mathrm{CV}=1.0)$ in 2002, 0 in 2003-2004. The estimated serious injuries were $40(\mathrm{CV}=0.71)$ in 1992, $19(\mathrm{CV}=1.00)$ in 1993, $232(\mathrm{CV}=0.53)$ in 1994, $345(\mathrm{CV}=0.51)$ in 1995, (includes 37 estimated short-finned pilot whales in 1995 ($\mathrm{CV}=1.00$), 0 from 1996 to 1998, $288(\mathrm{CV}=0.74)$ in 1999, $109(\mathrm{CV}=1.00)$ in 2000, 50 in $2001(\mathrm{CV}=0.58)$, 51 in $2002(\mathrm{CV}=0.48)$, 21 in $2003(\mathrm{CV}=0.78)$, and 74 in $2004(\mathrm{CV}=0.42)$. The average 'combined' annual mortality in 2000-2004-was 70 pilot whales ($\mathrm{CV}=0.37$) (Table 2).

Mid-Atlantic Bottom Trawl

Two pilot whales were taken in the Gulf of Maine in 2000.

GOM/GB Herring Mid-Water Trawl JV and TALFF

There were no marine mammal takes observed from the domestic mid-water trawl fishing trips between 20002004.

A U.S. joint venture (JV) mid-water (pelagic) trawl fishery was conducted on Georges Bank from August to December 2001. Eight pilot whales were incidentally captured in a single mid-water trawl during JV fishing operations. Three pilot whales were incidentally captured in a single mid-water trawl during foreign fishing operations (TALFF) (Table 2). The 2000-2004 average mortality attributed to the Atlantic herring mid-water trawl fishery was 11 animals (Table 2).

Northeast Bottom Trawl

The fishery is active in New England waters in all seasons. Two pilot whales were taken in the Gulf of Maine in 2004.

Northeast Mid-Water Trawl - Including Pair Trawl

The two most commonly targeted fish in this fishery are herring (94% of VTR records) and mackerel (0.4%). Thus, the observer coverage and bycatch estimates are only for these two sub-fisheries. The observer coverage in this fishery was highest during 2003 and 2004, though a few trips in earlier years were observed (Table 2). A pilot whale was observed taken in the single trawl fishery on the northern edge of Georges Bank in a haul targeting herring. Due to small sample sizes, the bycatch rate model used all observed mid-water trawl data, including paired and single, and Northeast and mid-Atlantic mid-water trawls, that targeted either herring or mackerel and were observed between 1999 and 2004 (NMFS unpublished data). The model that best fit these data was a binomial logistic regression model that included target species and bottom slope as significant explanatory variables, and soak duration as the unit of effort. Estimated annual fishery-related mortalities (CV in parentheses) were 4.6 (0.74) in 2000, 11 (0.74) in 2001, 8.9 (0.74) in 2002, 14 (0.74) in 2003, and 5.8 (0.74) in 2004 (Table 2; NMFS unpublished data). The average annual estimated fishery-related mortality during 2002-2004 was 8.9 (0.35).

CANADA

An unknown number of pilot whales have also been taken in Newfoundland and Labrador, and Bay of Fundy groundfish gillnets, Atlantic Canada and Greenland salmon gillnets, and Atlantic Canada cod traps (Read 1994).

Between January 1993 and December 1994, 36 Spanish deep-water trawlers, covering 74 fishing trips (4,726 fishing days and 14,211 sets), were observed in NAFO Fishing Area 3 (off the Grand Banks) (Lens 1997). A total of 47 incidental catches were recorded, which included 1 long-finned pilot whale. The incidental mortality rate for pilot whales was $0.007 /$ set.

In Canada, the fisheries observer program places observers on all foreign fishing vessels, on between 25% and 40% of large Canadian vessels (greater than 100 ft), and on approximately 5% of small vessels (Hooker et al. 1997). Fishery observer effort off the coast of Nova Scotia during 1991-1996 varied on a seasonal and annual basis, reflecting changes in fishing effort (see Figure 3, Hooker et al. 1997). During the 1991-1996 period, long-finned pilot whales were bycaught (number of animals in parentheses) in bottom trawl (65); midwater trawl (6); and longline (1) gear. Recorded bycatches by year were: 16 in 1991, 21 in 1992, 14 in 1993, 3 in 1994, 9 in 1995 and 6 in 1996. Pilot whale bycatches occurred in all months except January-March and September (Hooker et al. 1997).

Table 2. Summary of the incidental mortality and serious injury of pilot whales (Globicephala sp.) by commercial fishery including the years sampled (Years), the number of vessels active within the fishery (Vessels), the type of data used (Data Type), the annual observer coverage (Observer Coverage), the observed mortalities and serious injuries recorded by on-board observers, the estimated annual mortality and serious injury, the combined annual estimates of mortality and serious injury (Estimated Combined Mortality), the estimated CV of the combined estimates (Estimated CVs) and the mean of the combined estimates (CV in parentheses).											
Fishery	Years	Vessels ${ }^{\text {a }}$	$\begin{gathered} \text { Data }{ }_{\text {b }} \\ \text { Type } \end{gathered}$	Observer Coverage ${ }^{\text {c }}$	Observed Serious Injury	Observed Mortality	Estimated Serious Injury	Estimated Mortality	Estimated Combined Mortality	Estimated CVs	Mean Annual Mortality
Mid- Atlantic Bottom Trawl ${ }^{\text {d }}$	00-04	unk	Obs. Data Dealer	.01, .01, .01, .01, .03	$\begin{gathered} 0,0,0,0 \\ 0 \end{gathered}$	$\begin{gathered} 2,0,0,0 \\ 0 \end{gathered}$	unk	unk	unk	unk	unk
Northeast Bottom Trawl ${ }^{\text {d }}$	00-04	unk	Obs. Data Dealer Data VTR Data	.01, .01, .03, .04, . 05	$0,0,0,0$ 0	$0,0,0,0$, 2	unk	unk	unk	unk	unk
GOM/GB Herring Mid- Water Trawl JV and TALFF ${ }^{\text {e }}$	2001	10^{h}	Obs. Data	$1^{\text {g }}$	0	11	0	11	11	na	$\begin{gathered} 11 \\ \text { (na) } \end{gathered}$
Northeast Mid- Water Trawl - Including Pair Trawl (Herring and Mackerel only) ${ }^{\text {d }}$	00-04	unk	Obs. Data Dealer Data VTR Data		$\begin{gathered} 0,0,0,0 \\ 0 \end{gathered}$	$\begin{gathered} 0,0,0,0 \\ 1 \end{gathered}$	$\begin{gathered} 0,0,0,0 \\ 0 \end{gathered}$	$\begin{gathered} 4.6,11, \\ 8.9,14, \\ 5.8 \end{gathered}$	$\begin{gathered} 4.6,11, \\ 8.9,14 \\ 5.8 \end{gathered}$	$\begin{gathered} .74, .74, \\ .74, .74, \\ .74 \end{gathered}$	$\begin{gathered} 8.9 \\ (.35) \end{gathered}$
Pelagic Longline (excluding $\text { NED-E) }{ }^{\text {h }}$	00-04	$\begin{gathered} 116,98, \\ 87,63 \\ 58 \end{gathered}$	Obs. Data Logbook	.04, .04, .05, .09, .09	$\begin{gathered} 4,4,4,2 \\ 6 \end{gathered}$	$\begin{gathered} 1,1,0,0 \\ 0 \end{gathered}$	$\begin{gathered} 109,50 \\ 52,21,74 \end{gathered}$	$\begin{gathered} 24,20,2 \\ 0,0 \end{gathered}$	$\begin{gathered} 133,70 \\ 54,21,74 \end{gathered}$	$\begin{gathered} .88, .50 \\ .46, .77, \\ .42 \end{gathered}$	$\begin{gathered} 70 \\ (.37) \end{gathered}$
Pelagic Longline -NED-E area only ${ }^{i}$	01-03	$\begin{gathered} 9,14 \\ 11 \end{gathered}$	Obs. Data Logbook	1, 1, 1	$0,0,0$	0, 0, 0	0, 0, 0	0, 0, 0	0, 0, 0	$0,0,0$	0
TOTAL											unk
${ }^{\text {a }}$ Number b Observe Mandato Center (Observe terms of d A new	vessels data (Ob logboo EFSC). overage ts. The hod wa	in the fish Data) are data were of the mid rawl fishe used to de	is based used to mea used to me tlantic coa es are mea elop prelim	vessels rep ure bycatch ure total effo tal gillnet fis red in trips. nary estimat	ting effort tes, and the t for the lon ery is meas of mortali	the pelagic data are coll line fishery ed in tons for the mid	ongline log cted within These data fish lande Atlantic an	ook. e Northeas e collected Observer Northeast b	isheries Ob the Southe erage for t om trawl fis	rver Progr Fisheries ongline fis ries durin	ience ry is in $000-2004$

[^2]
Other Mortality

Pilot whales have a propensity to mass strand throughout their range, but the role of human activity in these events is unknown. Between 2 and 168 pilot whales have stranded annually, either individually or in groups, along the eastern U.S. seaboard since 1980 (NMFS 1993b, stranding databases maintained by NMFS NER, NEFSC and SEFSC). From 2000-2004, 42 short-finned pilot whales, 117 long-finned pilot whales, and 7 pilot whales not specified to the species level were reported stranded between Maine and Florida, including Puerto Rico and the Exclusive Economic Zone (EEZ), (Table 3). This includes several mass strandings as follows: 11 long-finned pilot whales mass stranded in Nantucket, MA in 2000 and 57 in 2002 in Dennis, MA; and 28 short-finned pilot whales stranded in Content Passage, Monroe County, FL (ocean side) on April 18, 2003. Two juvenile animals that live stranded in Chatham, Massachusetts in 1999 were rehabilitated, satellite tagged and released (Nawojchik et al. 2003). Both animals were released off eastern Long Island, New York and tracked for four months in the Gulf of Maine. Four of 6 animals from one live stranding event in Massachusetts in 2000 were rehabilitated and released. However, certain studies have shown that frequently, animals that are returned to the water swim away and strand someplace else (Fehring and Wells 1976; Irvine et al. 1979; Odell et al. 1980). The fate of the animals is footnoted in Table 3, when recorded.

An Unusual Mortality Event (UME) occurred along the coast of Virginia from May to July 2004, when 66 small cetaceans stranded mostly along the outer (eastern) coast of Virginia's barrier islands. Species included: 52 bottlenose dolphins (Tursiops truncatus - stock undetermined to date), 4 harbor porpoise (Phocoena phocoena), 4 common dolphins (Delphinus delphis), 4 Atlantic white-sided dolphins (Lagenorhynchus acutus), 1 Risso's dolphin (Grampus griseus), and 1 pilot whale (Globicephala sp.). Additional strandings occurring from August through December were found to be at similar rates to previous years, and were not included in this UME. Human interactions were implicated in 17 of the strandings (1 common and 16 bottlenose dolphins), other causes were implicated in 14 strandings (1 Atlantic white-sided dolphin, 2 harbor porpoises and 11 bottlenose dolphins), and the no cause could be determined for the remaining strandings, including the pilot whale. Five bottlenose dolphins and 1 common dolphin were entangled in pound nets when they stranded, 1 bottlenose dolphins was entangled in pot gear, and 3 bottlenose dolphins were entangled in unidentified netting or lines, and 2 bottlenose dolphins were found with cinder blocks tied to their flukes (one on Cedar Island in June, and one on the Chincoteague National Wildlife refuge in July), and a third had a frayed line tied to its flukes and was found in Wallops Island in July 2004.

Another UME was declared when 36 small cetaceans stranded from Maryland to Georgia between 3 July and 2 December 2004. The species involved, which are generally found offshore and are not expected to strand along the coast, include: 15 pygmy sperm whales (Kogia breviceps), 1 dwarf sperm whale (K. sima), 8 offshore bottlenose dolphins, 3 short-beaked common dolphins, 3 Risso's dolphins (Grampus griseus), 1 Clymene dolphin (Stenella clymene), 1 pantropical spotted dolphin (S. attenuata), 1 short-finned pilot whale, 1 unidentified pilot whale, 1 Sowerby's beaked whale (Mesoplodon bidens), and 1 unidentified small cetacean that was pushed off the beach alive. Preliminary necropsy results indicate that several bottlenose dolphins and the Clymene dolphin that stranded in NC exhibited inflammation in the spinal chord and brain, though necropsy analyses are still underway and no final determination on this UME has been made.

Short-finned pilot whales strandings have been reported stranded as far north as Nova Scotia (1990) and Block Island, Rhode Island (2001), though the majority of the strandings occurred from North Carolina southward (Table 3). Long-finned pilot whales have been reported stranded as far south as Florida, when 2 long-finned pilot whales were reported stranded in Florida in November 1998, though their flukes had been apparently cut off, so it is unclear
where these animals actually may have died. One additional long-finned pilot whale stranded in South Carolina in 2003, though the confidence in the species identification was only moderate. Most of the remaining long-finned pilot whale strandings were from North Carolina northward (Table 3).

In eastern Canada, 37 strandings of long-finned pilot whales (173 individuals) were reported on Sable Island, Nova Scotia from 1970 to 1998 (Lucas and Hooker 1997; Lucas and Hooker 2000). This included 130 animals that mass stranded in December 1976, and 2 smaller groups (<10 each) in autumn 1979 and summer 1992. Fourteen strandings were also recorded along Nova Scotia in 1991-1996 (Hooker et al. 1997). Several mass live strandings occurred in Nova Scotia recently - 14 pilot whales live mass stranded in 2000 and 3 in 2001 in Judique, Inverness County and 4 pilot whales live mass stranded at Point Tupper, Inverness County, in 2002, though no specification to species was made.

Table 3. Pilot whale (Globicephala macrorhynchus (SF), Globicephala melas (LF) and Globicephala sp. (Sp) strandings along the Atlantic coast, 2000-2004. Strandings which were not reported to species have been reported as Globicephala sp. The level of technical expertise among stranding network personnel varies, and given the potential difficulty in correctly identifying stranded pilot whales to species, reports to specific species should be viewed with caution.																		
STATE	2000			2001			2002			2003			2004			TOTALS		
	SF	LF	Sp															
Nova Scotia ${ }^{\text {a }}$	0	0	$16^{\text {a,b }}$	0	0	$3^{\text {a,c }}$		0		0	0	$2^{\text {a }}$	0	0	$3^{\text {a }}$	0	0	$31^{\text {a }}$
Maine	0	0	0	1	$5^{\text {e }}$	0	0	2	0	0	1	0	0	4	0	1	12	0
New Hampshire	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Massachusetts	0	11	2	0	3	0	0	$65^{\text {f }}$	0	0	5	0	0	1	0	0	87	0
Rhode Island	0	0	0	1	0	0	0	1	0	0	1	0	0	1	0	1	3	0
Connecticut	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
New York	0	1	0	0	1	0	0	0	0	0	0	0	0	3	0	0	5	0
New Jersey	0	0	0	0	0	0	0	0	0	0	$6^{\text {g }}$	0	0	0	0	0	6	0
Delaware	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Maryland	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Virginia	0	0	0	0	0	0	0	0	0	0	3	0	0	0	$1^{\text {h }}$	0	3	1
North Carolina	0	0	0	1	0	$1^{\text {i }}$	0	0	0	2	0	$1{ }^{\text {i }}$	1^{j}	$1^{\text {j }}$	$1^{\text {j }}$	4	1	3
South Carolina	0	0	0	1	0	0	0	0	0	0	1^{k}	0	0	0	0	1	1^{12}	0
Georgia	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
Florida	0	0	0	0	0	0	0	0	0	$29^{1, \mathrm{~m}}$	0	0	4	0	0	33	0	0
Puerto Rico	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0
EEZ	0		$1^{\text {n }}$	0	0	0	0	0	0	0	1°	0	0	0	0	0	2	0
TOTALS U.S., Puerto Rico, \& EEZ	1	12	3	5	9	1		68	0	31	18	1	5	10	2	42	117	7

${ }^{\text {a. }}$ Data supplied by Tonya Wimmer, Nova Scotia Marine Animal Response Society (pers. comm.). All Nova Scotia pilot whale strandings reported as pilot whales, so included as Globicephala sp.
b. Includes 14 mass live strandings at Judique, Inverness County on August 6, 2000-11 returned to sea. Reported as pilot whales, so included as Globicephala sp.
${ }^{\text {c. Three mass live stranded animals at Judique, Inverness County on July 19, } 2001 \text { - all returned to sea. Reported as }}$ pilot whales, so included as Globicephala sp.
d. Includes 4 mass live strandings at Point Tupper, Inverness County on January 11, 2002 - fate unreported. Reported as pilot whales, so included as Globicephala sp.
${ }^{\text {e. }}$ Includes one long finned pilot whale stranded with possible propeller marks in Maine in September 2001.
f. Includes mass stranding of 57 long-finned pilot whales in Dennis, MA in July 2002 - majority of pod refloated and released, but rebeached 1-2 days later; ~ 30 animals euthanized, and ~ 11 animals died during the strandings.
${ }^{\text {g. }}$ Two long-finned pilot whales stranded dead separately in April 2003 off New Jersey with rope tied around the flukes.
h. One pilot whale stranded in Virginia in 2004 during an Unusual Mortality Event but was not identified to species(decomposed and decapitated), so included as Globicephala sp.
i. Reported as pilot whale, so included as Globicephala sp.
j. One short-finned pilot whale (September '04) and one pilot whale (November '04) not identified to species stranded in North Carolina during an Unusual Mortality Event (UME). A long-finned pilot whale also stranded in North Carolina in February, not related to any UME.
k. Only moderate confidence on species identification as long-finned pilot whale.

1. Includes mass live stranding of 28 short-finned pilot whales in Content Passage, Monroe County, FL (Ocean side) on April 19, 2003-12 animals died or were euthanized at the scene, 9 were returned to sea, 7 were taken into rehabilitation of which 2 subsequently died and 5 were released to sea on August 10, 2003.
${ }^{\text {m. }}$ Signs of human interaction reported on 1 stranded short-finned pilot whale (not part of the live mass stranding), which stranded in May 2003 in Florida.
${ }^{\text {n. }}$ One pilot whale floating dead in Great South Channel offshore.
${ }^{\text {o. }}$ One long-finned pilot whale floating dead on Georges Bank offshore.
Between 2000-2004, human and/or fishery interactions were documented as follows: one long-finned pilot whale stranded with possible propeller marks in Maine in September 2001, two long-finned pilot whales stranded dead separately in April 2003 off New Jersey with rope tied around the flukes, and signs of human interaction were reported (but no specifics recorded in database) on 1 stranded short-finned pilot whale (not part of the live mass stranding), which stranded in May 2003 in Florida.

Stranding data probably underestimate the extent of fishery-related mortality and serious injury because all of the marine mammals that die or are seriously injured may not wash ashore, nor will all of those that do wash ashore necessarily show signs of entanglement or other fishery-interaction. Finally, the level of technical expertise among stranding network personnel varies widely as does the ability to recognize signs of fishery interaction.

A potential human-caused source of mortality is from polychlorinated biphenyls (PCBs) and chlorinated pesticides (DDT, DDE, dieldrin, etc.), moderate levels of which have been found in pilot whale blubber (Taruski et al.1975; Muir et al. 1988; Weisbrod et al. 2000). Weisbrod et al. (2000) reported that bioaccumulation levels were more similar in whales from the same stranding group than animals of the same sex or age. Also, high levels of toxic metals (mercury, lead, cadmium) and selenium were measured in pilot whales harvested in the Faroe Island drive fishery (Nielsen et al. 2000). Similarly, Dam and Bloch (2000) found very high PCB levels in pilot whales in the Faroes. The population effect of the observed levels of such contaminants is unknown.

STATUS OF STOCK

The status of short-finned pilot whales relative to OSP in the U.S. Atlantic EEZ is unknown. There are insufficient data to determine the population trends for this species. The species is not listed under the Endangered Species Act. The U.S. fishery-related mortality and serious injury for this stock is not less than 10% of the calculated PBR, and therefore cannot be considered to be insignificant and approaching zero mortality and serious injury rate. The status of the stock is unknown.

REFERENCES CITED

Barlow, J., S.L. Swartz, T.C. Eagle, and P.R. Wade. 1995. U.S. Marine mammal stock assessments: Guidelines for preparation, background, and a summary of the 1995 assessments. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-6, 73 pp. Available from NMFS, Southwest Fisheries Science Center, 8604 La Jolla Shores Drive, La Jolla, CA, 92037-1508.
Bloch, D., M. Zachariassen, and P. Zachariassen. 1993. Some external characters of the long-finned pilot whale off Faroe Island and a comparison with the short-finned pilot whale. Rep. Int Whal. Commn (Special Issue) 14:117-135.
Buckland, S.T., D.R. Anderson, K.P. Burnham, and S.L. Laake. 1993. Distance Sampling: Estimating abundance of biological populations. Chapman and Hall, New York, NY, 446 pp.
Buckland, S.T., D.R. Anderson, K.P. Burnham, J.L. Laake, D.L. Borchers, and L. Thomas. 2001. Introduction to distance sampling: estimating abundance of biological populations. Oxford University Press, New York, 432 pp.
CETAP (Cetacean and Turtle Assessment Program). 1982. A Characterization of Marine Mammals and Turtles in the Mid- and North Atlantic Areas of the U.S. Outer Continental Shelf, Final Report, Contract AA551-CT8-48, U.S. NTIS PB83-215855, Bureau of Land Management, Washington, DC, 576 pp.

Dam, M. and D. Bloch. 2000. Screening of mercury and persistent organochlorine pollutants in long-finned pilot whale (Globicephala melas) in the Faroe Islands. Marine Pollut. Bulletin 40:1090-1099.
Desportes, G., M. Saboureau, and A. Lacroix. 1993. Reproductive maturity and seasonality of male pilot long-finned whales off the Faroe Islands. Rep. Int Whal. Commn (Special Issue) 14:233-262.
Fairfield, C.P., G.T. Waring, and M.H. Sano. 1993. Pilot whales incidentally taken during the distant water fleet Atlantic mackerel fishery in the mid-Atlantic Bight, 1984-88. pp. 107-116. In: G.P. Donovan, C.H. Lockyer and A. R. Martin (eds.) Biology of Northern Hemisphere Pilot Whales. Rep. int. Whal. Commn (Special Issue) $14: i-x+479 \mathrm{pp}$.
Fehring, W.K. and R.S. Wells. 1976. A series of strandings by a single herd of pilot whales on the west coast of Florida. J. Mamm. 57(1):191-194.
Garrison, L.P. 2003. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2001-2002. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SEFSC-515, 52 pp. Available from NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Road, Miami, Fl 33149.
Garrison, L.P. and P.M. Richards. 2004. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2003. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SEFSC-527, 57 pp. Available from NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Road, Miami, Fl 33149.
Garrison, L.P. 2005. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2004. NOAA Tech. Memo. NMFS-SEFSC-531, 52 pp. NMFS, Southeast Fisheries Science Center, Miami, FL.
Hansen, L.J., K.D. Mullin, T.A. Jefferson, and G.P. Scott. 1996. Visual surveys aboard ships and aircraft. pp. 55-132. In: R. W. Davis and G. S. Fargion (eds.), Distribution and abundance of marine mammals in the north-central and western Gulf of Mexico: Final report. Volume II: Technical report. OCS Study MMS 96- 0027. Minerals Management Service, Gulf of Mexico OCS Region, New Orleans.
Hiby, L. 1999. The objective identification of duplicate sightings in aerial survey for porpoise. pp. 179-189. In: G.W. Garner, S. C. Amstrup, J. L. Laake, B. F. J. Manly, L. L. McDonald, and D. G. Robertson (eds.) Marine mammal survey and assessment methods. Balkema, Rotterdam. 287 pp.
Hooker, S. K., R. W. Baird, and M. A. ShowelI. 1997. Cetacean strandings and bycatches in Nova Scotia, Eastern Canada, 1991-1996. Paper SC/49/05 presented to the IWC Scientific Committee, September 1997. 11 pp.
Irvine, A.B., M.D. Scott, R.S. Wells, and J.G. Mead. 1979. Stranding of the pilot whale, Globicephala macrorhynchus, in Florida and South Carolina. Fish. Bull., U.S. 77 (2): 511-513.
Johnson, D.R., C.A. Brown, and C. Yeung. 1999. Estimates of marine mammal and marine turtle catch by the U.S. Atlantic pelagic longline fleet in 1992-1997. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SEFSC-418. 70 pp. NMFS, Southeast Fisheries Science Center, Miami, FL.
Kasuya, T., D.E. Sergeant, and K. Tanaka. 1988. Re-examination of life history parameters of long-finned pilot whales in the Newfoundland waters. Sci. Rep. Whales Res. Inst. No. 39:103-119.
Kingsley, M.C.S. and R.R. Reeves. 1998. Aerial survey of cetaceans in the Gulf of St. Lawrence in 1995 and 1996. Can. J. Zool. 76:1529-1550.
Laake, J.L., S.T. Buckland, D.R. Anderson, and K.P. Burnham. 1993. DISTANCE user's guide, V2.0. Colorado Cooperative Fish and Wildlife Research Unit, Colorado State University, Ft. Collins, CO. 72 pp.

Leatherwood, S. and R.R. Reeves. 1983. The Sierra Club handbook of whales and dolphins. Sierra Club Books, San Francisco, 302 pp.
Lens, S. 1997. Interactions between marine mammals and deep water trawlers in the NAFO regulatory area. ICES CM 1997/Q:8. 10 pp.
Lucas, Z.N. and S.K. Hooker. 1997. Cetacean strandings on Sable Island, Nova Scotia, 1990-1996. Paper SC/49/06 presented to the IWC Scientific Committee, September 1997. 10 pp .
Lucas, Z.N. and S.K. Hooker. 2000. Cetacean strandings on Sable Island, Nova Scotia, 1970-1998. Can. Field Nat. 114:45-61.
Martin, A.R. and P. Rothery. 1993. Reproductive parameters of female long-finned pilot whales (Globicephala melas) around the Faroe Islands. Rep. int Whal. Commn (Special Issue) 14:263-304.
Mercer, M.C. 1975. Modified Leslie-DeLury population models of the long-finned pilot whale (Globicephala melaena) and annual production of the short-finned squid (Illex illecebrosus) based upon their interactions at Newfoundland. J. Fish. Res. Bd. Can. 32(7):1145-1154.
Mitchell, E. 1974. Present status of northwest Atlantic fin and other whale stocks. Pages 108-169. In: W. E. Schevill (ed.) The whale problem: A status report. Harvard University Press, Cambridge, MA, 419 pp.
Muir, D.C.G., R. Wagermann, N.P. Grift, R.J. Norstrom, M. Simon and J. Lien. 1998. Organochlorine chemical and heavy metal contaminants in white-beaked dolphins (Lagenorhynchus albirostris) and pilot whales (Globicephala melaena) from the coast of Newfoundland. Canada Arch. Environ. Contam. Toxicol. 17:613629.

Mullin, K. D. and G.L. Fulling. 2003. Abundance and distribution of cetaceans in the southern U.S. North Atlantic Ocean during summer 1998. Fish. Bull., U.S. 101:603-613.
Mullin, K. D. and W. Hoggard. 2000. Visual surveys of cetaceans and sea turtles from aircraft and ships. Pages 111-172. In: R. W. Davis, W. E. Evans, and B. Würsig (editors), Cetaceans, sea turtles and seabirds in the northern Gulf of Mexico: Distribution, abundance and habitat associations. Volume II: Technical report. OCS Study MMS 960027. Minerals Management Service, Gulf of Mexico OCS Region, New Orleans.

Nawojchik, R., D. J. St. Aubin, and A. Johnson. 2003. Movements and dive behavior of two stranded, rehabilitated long-finned pilot whales (Globicephala melas) in the northwest Atlantic. Mar. Mammal Sci. 19(1):232-239.
Nielsen, J. B., F. Nielsen, P-J. Jprgensen, and P. Grandjean. 2000. Toxic metals and selenium in blood from pilot whales (Globicephala melas) and sperm whales (Physeter catodon). Mar. Pollut. Bull. 40:348-35.
NMFS [National Marine Fisheries Service] 1991. Northeast cetacean aerial survey and interplatform study. NOAA-NMFS-SEFSC and NEFSC. 4 pp. Available from: National Marine Fisheries Service, 166 Water Street, Woods Hole, MA 02543-1026.
NMFS [National Marine Fisheries Service]. 1993a. Cruise results, NOAA ship DELAWARE II, Cruise No. DEL 9306, Marine mammal Survey. 5 pp. Available from: National Marine Fisheries Service, 166 Water Street, Woods Hole, MA 02543-1026.
NMFS [National Marine Fisheries Service]. 1993b. Status of fishery resources off the northeastern United States for 1993. U. S. Dep. Commer., NOAA Tech. Mem. NMFS-F/NEC-101, 140 pp.

Northridge, S. 1996. Estimation of cetacean mortality in the U.S. Atlantic swordfish and tuna drift gillnet and pair trawl fisheries. Final report to the Northeast Fisheries Science Center, Contract No. 40ENNF500160.
Odell, D. K., E. D. Asper, J. Baucom, and L. H. Cornell. 1980. A recurrent mass stranding of the false killer whale, Pseudorca crassidens, in Florida. Fish. Bull., U.S. 78(1):171-177.
Palka, D. 1995. Abundance estimate of the Gulf of Maine harbor porpoise. Rep. int. Whal. Commn (Special Issue) 16:27-50
Palka, D. 1996. Update on abundance of Gulf of Maine/Bay of Fundy harbor porpoises. U.S. Dep. Commer., Northeast Fish. Sci. Cent. Ref. Doc. 96-04; 37 pp.
Palka, D. and P.S. Hammond. 2001. Accounting for responsive movement in line transect estimates of abundance. Can. J. Fish. Aquat. Sci. 58:777-787.

Palka, D. 2005. Aerial surveys in the northwest Atlantic: estimation of $g(0)$. In: Proceedings of the workshop on Estimation of $g(0)$ in line-transect surveys of cetaceans, ed. F. Thomsen, F. Ugarte, and P.G.H. Evans. ECS Newletter No. 44 - Special Issue. April 2005. Pgs 12-7.
Palka, D.L. 2006. Summer abundance estimates of cetaceans in US North Atlantic Navy Operating Areas. U.S. Dep. Commer., Northeast Fish. Sci. Cent. Ref. Doc. 06-03, 41 pp.
Read, A.J. 1994. Interactions between cetaceans and gillnet and trap fisheries in the northwest Atlantic. Rep. int. Whal. Commn (Special Issue) 15:133-147.
Sergeant D.E. 1962. The biology of the pilot or pothead whale (Globicephala melaena (Traill) in Newfoundland waters. Bull. Fish. Res. Bd. Can. 132:1-84.

Taruski, A.G., C.E. Olney, and H.E. Winn. 1975. Chlorinated hydrocarbons in cetaceans. J. Fish. Res. Bd. Can. 32(11):2205-2209.
Wade, P.R., and R.P. Angliss. 1997. Guidelines for assessing marine mammal stocks: Report of the GAMMS Workshop April 3-5, 1996, Seattle, Washington. U.S. Dep. Commer., NOAA Tech. Mem. NMFS-OPR-12, 93 pp. Waring, G.T. 1995. Fishery and ecological interactions for selected cetaceans off the northeast USA. Ph.D. dissertation, University of Massachusetts, Amherst, 260 pp.
Waring, G. T. 1998. Results of the summer 1991 R/V Chapman marine mammal sighting survey. NOAA NMFS NEFSC, Lab. Ref. Doc. No. 98-09, 21 pp.
Waring, G.T., P. Gerrior, P.M. Payne, B.L. Parry, and J.R. Nicolas. 1990. Incidental take of marine mammals in foreign fishery activities off the northeast United States, 1977-1988. Fish. Bull., U.S. 88(2): 347-360.
Waring, G.T., C.P. Fairfield, C.M. Ruhsam, and M. Sano. 1992. Cetaceans associated with Gulf Stream features off the northeastern USA shelf. ICES Marine Mammals Comm. CM 1992/N:12, 29 pp.
Weisbrod, A.V., D. Shea, M.J. Moore, and J.J. Stegeman. 2000. Bioaccumulation patterns of polychlorinated biphenyls and chlorinated pesticides in northwest Atlantic pilot whales. Environ. Toxicol. Chem. 19:667-677.
Yeung, C. 2001. Estimates of marine mammal and marine turtle bycatch by the U.S. Atlantic pelagic longline fleet in 1999-2000. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SEFSC-467, National Marine Fisheries Service, Miami, FL, 43 pp. Available from NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Road, Miami, Fl 33149.

ATLANTIC WHITE-SIDED DOLPHIN (Lagenorhynchus acutus): Western North Atlantic Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

White-sided dolphins are found in temperate and sub-polar waters of the North Atlantic, primarily in continental shelf waters to the 100 m depth contour. The species inhabits waters from central West Greenland to North Carolina (about $35^{\circ} \mathrm{N}$) and perhaps as far east as $43^{\circ} \mathrm{W}$ (Evans 1987). Distribution of sightings, strandings and incidental takes suggest the possible existence of three stocks units: Gulf of Maine, Gulf of St. Lawrence and Labrador Sea stocks (Palka et al. 1997). Evidence for a separation between the population in the southern Gulf of Maine and the Gulf of St. Lawrence population comes from a virtual absence of summer sightings along the Atlantic side of Nova Scotia. This was reported in Gaskin (1992), is evident in Smithsonian stranding records, and was obvious during abundance surveys conducted in the summers of 1995 and 1999 which covered waters from Virginia to the Gulf of St. Lawrence. White-sided dolphins were seen frequently in Gulf of Maine waters and in waters at the mouth of the Gulf of St. Lawrence, but only a few sightings were recorded between these two regions.

The Gulf of Maine population of white-sided dolphins is most common in continental shelf waters from Hudson Canyon (approximately $39^{\circ} \mathrm{N}$) on to Georges Bank, and in the Gulf of Maine and lower Bay of Fundy. Sightings data indicate seasonal shifts in distribution (Northridge et al. 1997). During January to May, low numbers of white-sided dolphins are found from Georges Bank to Jeffreys Ledge (off New Hampshire), with even lower numbers south of Georges Bank, as documented by a few strandings collected on beaches of Virginia and North Carolina. From June through September, large numbers of white-sided dolphins are found from Georges Bank to the lower Bay of Fundy. From October to December, white-sided dolphins occur at intermediate densities from southern Georges Bank to southern Gulf of Maine (Payne and Heinemann 1990). Sightings south of Georges Bank, particularly around Hudson Canyon, occur year round but at low densities. The Virginia and North Carolina observations appear to represent the southern extent of the species'

Figure 1. Distribution of white-sided dolphin sightings from NEFSC and SEFSC vessel and aerial summer surveys during 1998 and 2004. Isobaths are at 100 m , $1,000 \mathrm{~m}$, and $4,000 \mathrm{~m}$ range.

Prior to the 1970s, white-sided dolphins in U.S. waters were found primarily offshore on the continental slope, while white-beaked dolphins (L. albirostris) were found on the continental shelf. During the 1970s, there was an apparent switch in habitat use between these two species. This shift may have been a result of the decrease in herring and increase in sand lance in the continental shelf waters (Katona et al. 1993; Kenney et al. 1996).

POPULATION SIZE

The total number of white-sided dolphins along the eastern U.S. and Canadian Atlantic coast is unknown. However, seven estimates are available for portions of the habitat: a 1978-1982 estimate; a shipboard survey estimate from the summers of 1991 and 1992; a shipboard estimate from June-July 1993; an estimate made from a combination of shipboard and aerial surveys conducted during July to September 1995; an aerial survey estimate of the entire Gulf of St. Lawrence conducted in August to September 1995; an aerial survey estimate from the northern Gulf of St. Lawrence conducted during July and August 1996; and an aerial/shipboard survey conducted from Georges Bank to the mouth of the Gulf of St. Lawrence during July and August 1999.

An abundance estimate of 28,600 white-sided dolphins $(\mathrm{CV}=0.21)$ was obtained from an aerial survey program conducted from 1978 to 1982 on the continental shelf and shelf edge waters between Cape Hatteras, North Carolina and Nova Scotia (CETAP 1982).

An abundance estimated of $20,400(\mathrm{CV}=0.63)$ white-sided dolphins was derived from two shipboard line transect surveys conducted during July to September 1991 and 1992 in the northern Gulf of Maine-lower Bay of Fundy region (Palka et al. 1997). This population size is a weighted-average of the 1991 and 1992 estimates, where each annual estimate was weighted by the inverse of its variance.

An abundance estimate of $729(\mathrm{CV}=0.47)$ white-sided dolphins was obtained from a June and July 1993 shipboard line transect sighting survey conducted principally between the 200 and $2,000 \mathrm{~m}$ isobaths from the southern edge of Georges Bank, across the Northeast Channel, to the southeastern edge of the Scotian Shelf (NMFS 1993).

An abundance estimate of $27,200(\mathrm{CV}=0.43)$ white-sided dolphins was calculated from a July to September 1995 sighting survey conducted by two ships and an airplane that covered waters from Virginia to the mouth of the Gulf of St. Lawrence (NMFS unpublished data). Total track line length was $32,600 \mathrm{~km}$. The ships covered waters between the 50 and 1000 fathom contours, the northern edge of the Gulf Stream, and the northern Gulf of Maine/Bay of Fundy region. The airplane surveyed waters in the mid-Atlantic from the coastline to the 50 fathom line, the southern Gulf of Maine, and shelf waters off Nova Scotia from the coastline to the 1000 fathom line. Data collection and analysis methods used were described in Palka (1996).

Kingsley and Reeves (1998) estimated that there were 11,740 (CV=0.47) white-sided dolphins in the Gulf of St. Lawrence during 1995 and $560(\mathrm{CV}=0.89)$ white-sided dolphins in the northern Gulf of St. Lawrence during 1996. It is assumed these estimates apply to the Gulf of St. Lawrence stock. During the August-September 1995 survey, $8,427 \mathrm{~km}$ of track lines were flown in an area encompassing $221,949 \mathrm{~km}^{2}$. During the July-August 1996 survey, $3,993 \mathrm{~km}$ of track lines were flown in an area encompassing $94,665 \mathrm{~km}^{2}$. These estimates were uncorrected for visibility biases such as $g(0)$, the probability of detecting a group on the track line.

An abundance estimate of $51,640(\mathrm{CV}=0.38)$ white-sided dolphins was obtained from a 28 July to 31 August 1999 line-transect sighting survey conducted from a ship and an airplane covering waters from Georges Bank to the mouth of the Gulf of St. Lawrence (Table 1; Palka 2006). Total track line length was $8,212 \mathrm{~km}$. Shipboard data were analyzed using the modified direct duplicate method (Palka 1995) which accounts for school size bias and for $g(0)$, the probability of detecting a group on the track line. Aerial data were not corrected for $g(0)$ (Palka 2000). The 1999 survey covered the upper Bay of Fundy and the northern edge of Georges Bank for the first time and white-sided dolphins were seen in both areas.

The best available current abundance estimate for white-sided dolphins in the Western North Atlantic stock is 51,640 animals $(\mathrm{CV}=0.38)$ as estimated from the July to August 1999 line transect survey because this survey is the most recent and provided the most complete coverage of the habitat of the species.

Table 1. Summary of recent abundance estimates for western North Atlantic white-sided dolphins. Month, year, and area covered during each abundance survey, and resulting abundance estimate $\left(\mathrm{N}_{\text {best }}\right)$ and coefficient of variation (CV).			
Month/Year	Area	$\mathrm{N}_{\text {best }}$	CV
Jul-Aug 1999	Georges Bank to mouth of Gulf of St. Lawrence	51,640	0.38

Minimum Population Estimate

The minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the lognormally distributed best abundance estimate. This is equivalent to the 20th percentile of the log-normal distribution as specified by Wade and Angliss (1997). The best estimate of abundance for the Western North Atlantic stock of white-sided dolphins is $51,640(\mathrm{CV}=0.38)$. The minimum population estimate for these white-sided dolphins is 37,904.

Current Population Trend

There are insufficient data to determine population trends for this species.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Current and maximum net productivity rates are unknown for this stock. Life history parameters that could be used to estimate net productivity include: calving interval is 2-3 years; lactation period is 18 months; gestation period is $10-12$ months and births occur from May to early August, mainly in June and July; length at birth is 110 cm ; length at sexual maturity is $230-240 \mathrm{~cm}$ for males, and 201-222 cm for females; age at sexual maturity is 8-9 years for males and 6-8 years for females; mean adult length is 250 cm for males and 224 cm for females (Evans 1987); and maximum reported age for males is 22 years and for females, 27 years (Sergeant et al. 1980).

For purposes of this assessment, the maximum net productivity rate was assumed to be 0.04 . This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive life history (Barlow et al. 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential Biological Removal (PBR) is the product of minimum population size, one-half the maximum productivity rate, and a "recovery" factor (MMPA Sec. 3. 16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size is 37,904 . The maximum productivity rate is 0.04 , the default value for cetaceans. The "recovery" factor, which accounts for endangered, depleted, threatened, or stocks of unknown status relative to optimum sustainable population (OSP) is assumed to be 0.5 because this stock is of unknown status. PBR for the western North Atlantic stock of white-sided dolphin is 379.

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

Fishery Information

Detailed fishery information is reported in Appendix III. Recently, within U.S. waters, white-sided dolphins have been observed caught in the Northeast sink gillnet, Northeast bottom trawl, Northeast mid-water trawl, midAtlantic bottom trawl, mid-Atlantic mid-water trawl, and the Gulf of Maine/Georges Bank herring trawl TALFF fisheries (Table 2).

Earlier Interactions

In the past, incidental takes of white-sided dolphins have been recorded in the Atlantic foreign mackerel and pelagic drift gillnet, and mid-Atlantic gillnet fisheries. Fisheries information is reported in Appendix III.

NMFS observers in the Atlantic foreign mackerel fishery reported 44 takes of Atlantic white-sided dolphins incidental to fishing activities in the continental shelf and continental slope waters between March 1977 and December 1991 (Waring et al. 1990; NMFS unpublished data). Of these animals, 96% were taken in the Atlantic mackerel fishery. This total includes 9 documented takes by U.S. vessels involved in joint-venture fishing operations in which U.S. captains transfer their catches to foreign processing vessels.

During 1991 to 1998, two white-sided dolphins were observed taken in the Atlantic pelagic drift gillnet fishery, both in 1993. Estimated annual fishery-related mortality and serious injury (CV in parentheses) was 4.4 (.71) in 1989, $6.8(.71)$ in 1990, $0.9(.71)$ in 1991, $0.8(.71)$ in 1992, $2.7(0.17)$ in 1993 and 0 in 1994 to 1998. There was no fishery during 1997.

One white-sided dolphin was observed taken in the mid-Atlantic gillnet fishery during 1997. None were observed taken in other years. The estimated annual mortality (CV in parentheses) attributed to this fishery was 0 for 1993 to 1996, $45(0.82)$ for 1997, 0 for 1998 to 2001, unknown in 2002 and 0 in 2003. During 2002, the overall observer coverage was lower than usual, 1% over the entire coast, where 65% of those trips were off of Virginia and most of the rest of the area was not sampled at all. Thus, the low coverage was mostly concentrated in one time and area. In conclusion, a bycatch estimate from the unsurveyed areas cannot be confidently estimated.

No incidental takes of white-sided dolphin were observed in the Atlantic mackerel JV fishery when it was observed in 1998.

U.S.

Northeast Sink Gillnet

This fishery occurs year round from in the Gulf of Maine, Georges Bank and in southern New England waters. Between 1990 and 2004 there were 49 white-sided dolphin mortalities observed in the Northeast sink gillnet fishery. Most were taken in waters south of Cape Ann during April to December. In recent years, the majority of the takes have been east and south of Cape Cod. During 2002, one of the takes was off Maine in the fall Mid-coast Closure Area in a pingered net. Estimated annual fishery-related mortalities (CV in parentheses) were 49 (0.46) in 1991, 154
(0.35) in 1992, 205 (0.31) in 1993, $240(0.51)$ in 1994, 80 (1.16) in 1995, 114 (0.61) in 1996 (Bisack 1997a), 140
(0.61) in 1997, $34(0.92)$ in 1998, $69(0.70)$ in 1999, $26(1.00)$ in 2000, $26(1.00)$ in 2001, $30(0.74)$ in 2002, 31
(0.93) in 2003, and $7(0.98)$ in 2004. Average annual estimated fishery-related mortality during 2000-2004 was 24 white-sided dolphins per year (0.43) (Table 2).

Northeast Bottom Trawl

The fishery is active in New England waters in all seasons. One moderately decomposed dolphin was brought up during a monkfish trawl in April 2001 east of Cape Cod. This moderately decomposed animal could not have been killed during this haul because the haul duration was only 4.6 hours. Thirty-two mortalities were documented between 1991 and 2004 in the Northeast bottom trawl fishery; 1 during 1992, 2 during 1994, 1 in 2002, 12 in 2003, and 16 in 2004. The 1 white-sided dolphin taken in 1992 was in a haul composed of cod, silver hake and pollock. One of the 1994 takes was in a haul composed of white hake, pollock and monkfish. The other 1994 take was in a haul which captured seven species none of which were dominant. In 2002, there was one take reported in a Northeast bottom trawl haul.

Northeast Atlantic (Gulf of Maine/Georges Bank) JV and TALFF Herring Fishery

A U.S. joint venture (JV) mid-water (pelagic) trawl fishery was conducted during 2001 on Georges Bank during August to December. No white-sided dolphins were incidentally captured. Two white-sided dolphins were incidentally captured in a single mid-water trawl during foreign fishing operations (TALFF) (Table 2). During TALFF fishing operations all nets fished by the foreign vessel are observed. Hence, the total mortality attributed to the Atlantic herring JV and TALFF mid-water trawl fisheries in 2001 was 2 animals (Table 2).

Northeast Mid-water Trawl Fishery (Including Pair Trawl)

The two most commonly targeted fish in this fishery are herring (94% of VTR records) and mackerel (0.4%). The observer coverage in this fishery was highest during 2003 and 2004, although a few trips in earlier years were observed (Table 2). A white-sided dolphin was observed taken in the single trawl fishery on the northern edge of Georges Bank during July 2003 in a haul targeting herring. A bycatch rate model fit to all observed mid-water trawl data (including paired and single, and Northeast and mid-Atlantic mid-water trawls, that targeted either herring or mackerel and were observed between 1999 and 2004 (NMFS unpublished data)) provided the following annual fishery-related mortality (CV in parentheses) estimates: 4.3 (0.74) in 1999, 4.5 (0.74) in 2000, 8.9 (0.74) in 2001, 14 (0.44) in 2002, 2.0 (0.74) in 2003, and 0.5 (0.5) in 2004 (Table 2; NMFS unpublished data). The average annual estimated fishery-related mortality during 2002-2004 was 6.0 (0.33).

Mid-Atlantic Mid-water Trawl Fishery (Including Pair Trawl)

The two most commonly targeted fish in this fishery are herring (54\% of VTR records) and mackerel (26\%). The observer coverage in this fishery was highest during 2000, 2003 and 2004, although a few trips in other years were observed (Table 2). A white-sided dolphin was observed taken in the pair trawl fishery near Hudson Canyon (off New Jersey) during February 2004 in a haul targeting mackerel (but landing nothing). A bycatch rate model fit to all observed mid-water trawl data (including paired and single, and Northeast and mid-Atlantic mid-water trawls, which targeted either herring or mackerel and were observed between 1999 and 2004 (NMFS unpublished data)) provided the following annual fishery-related mortality (CV in parentheses) estimates: $0(0.55)$ in 1999, $0(0.55)$ in 2000, 0 (0.55) in 2001, 9.4 (0.55) in 2002, 73 (0.55) in 2003, and 31 (0.55) in 2004 (Table 2; Palka in prep.). The average annual estimated fishery-related mortality during 2000-2004 was 23 (0.39).

Mid-Atlantic Bottom Trawl Fishery

One white-sided dolphin incidental take was observed in 1997. Recently observer coverage for this fishery has been about 1%, except for 2004 when it was 3% (Table 2).

Table 2. Summary of the incidental mortality of white-sided dolphins (Lagenorhynchus acutus) by commercial fishery including the years sampled (Years), the number of vessels active within the fishery (Vessels), the type of data used (Data Type), the annual observer coverage (Observer Coverage), the mortalities recorded by on-board observers (Observed Mortality), the estimated annual mortality (Estimated Mortality), the estimated CV of the annual mortality (Estimated CVs) and the mean annual mortality (CV in parentheses).

Fishery	Years	Vessels	Data Type ${ }^{\text {a }}$	Observer Coverage ${ }^{\text {b }}$	Observed Mortality	Estimated Mortality	Estimated CVs	Mean Annual Mortality
Northeast Sink Gillnet	00-04	$\begin{aligned} & 1993=349 \\ & 1998=301 \end{aligned}$	Obs. Data Weighout Trip Logbook		$\begin{gathered} 1^{\mathrm{d}}, \\ 1^{\mathrm{d}}, 1^{\mathrm{d}} \\ 1^{\mathrm{d}}, 1^{\mathrm{d}} \end{gathered}$	$\begin{gathered} 26^{\mathrm{d}} \\ 26^{\mathrm{d}}, 30^{\mathrm{d}} \\ 31^{\mathrm{d}}, 7^{\mathrm{d}} \end{gathered}$	$\begin{gathered} 1.00 \\ 1.00, .74, \\ .93, .98 \end{gathered}$	24 (0.43)
Northeast Bottom Trawl ${ }^{\text {c }}$	00-04	unk	Obs. Data Weighout	$.01, .01, .03, .04,$	$\begin{gathered} 0,0, \\ 1,12,16 \end{gathered}$	unk	unk	unk
GOM/GB Herring Trawl-TALFF	2001	$2^{\text {e }}$	Obs. Data	$1.00^{\text {e }}$	2	2	0	$\begin{gathered} 2 \\ (0) \end{gathered}$
Northeast Mid-water Trawl - Including Pair Trawl (Herring and Mackerel only) ${ }^{\text {c }}$	00-04	unk	Obs. Data Weighout Trip Logbook	$\begin{gathered} .005, .001,0 \\ .03, .14 \end{gathered}$	0,0,0,1,0	$\begin{gathered} 4.5,8.9,14,2.0 \\ 0.5 \end{gathered}$	$\begin{gathered} .74, .74, .44 \\ .74, .50 \end{gathered}$	$\begin{gathered} 6.0 \\ (0.33) \end{gathered}$
Mid-Atlantic Midwater Trawl Including Pair Trawl (Herring and Mackerel only) ${ }^{\text {c }}$	00-04	unk	Obs. Data Weighout Trip Logbook	$\begin{gathered} .08,0, .008, .04, \\ .12 \end{gathered}$	0,0,0,0,1	$\begin{gathered} 0,0,9.4 \\ 73,31 \end{gathered}$	$\begin{gathered} .55, .55, .55 \\ .55, .55 \end{gathered}$	$\begin{gathered} 23 \\ (0.39) \end{gathered}$
Mid-Atlantic Bottom Trawl ${ }^{\text {c }}$	00-04		Obs. Data Weighout Trip Logbook	$\begin{gathered} .01, .01, .01, .01, \\ .03 \end{gathered}$	$0,0,0,0,0$	unk	unk	unk
Total								unk
Observer data (Obs. Data), used to measure bycatch rates, are collected within the Northeast Fisheries Observer Program. NEFSC collects landings data (Weighout) that are used as a measure of total effort in the Northeast gillnet fishery. Mandatory Vessel Trip Report (VTR) (Trip Logbook) data are used to determine the spatial distribution of fishing effort in the sink gillnet fishery and in the two mid-water trawl fisheries. In addition, the Trip Logbooks are the primary source of the measure of total effort (soak duration) in the two mid-water trawl fisheries.								
Observer coverage for the Northeast sink gillnet is measured in metric tons of fish landed. Observer coverage of the trawl fisheries are measured in trips.								
A new method was used to develop preliminary estimates of mortality for the mid-Atlantic and Northeast bottom trawl fisheries during 20002004. They are a product of bycatch rates predicted by covariates in a model framework and effort reported by commercial fishermen on mandatory vessel logbooks. This method differs from the previous method used to estimate mortality in these fisheries prior to 2000 . Therefore, the estimates reported prior to 2000 can not be compared to estimates during 2000-2004. In addition, the fisheries listed in Table 2 reflect new definitions defined by the proposed List of Fisheries for 2005 (FR Vol. 69, No. 231, 2004). The 'North Atlantic bottom trawl' fishery is now referred to as the 'Northeast bottom trawl. The Illex, Loligo and Mackerel fisheries are now part of the mid-Atlantic and Northeast bottom trawl fisheries.								
After 1998, a weighted bycatch rate was applied to effort from both pingered and non-pingered hauls within the stratum where white-sided dolphins were observed taken. During the years $1997,1999,2001,2002$, and 2004 , respectively, there were $2,1,1,1$, and 1 observed whitesided dolphins taken on pingered trips. No takes were observed on pinger trips during 1995, 1996, 1998 and 2000.								
There were two foreign vessels that harvested Atlantic herring in the U.S. fishery under a TALFF quota. During TALFF fishing operations all nets fished by the foreign vessel are observed.								

CANADA

There is little information available that quantifies fishery interactions involving white-sided dolphins in Canadian waters. Two white-sided dolphins were reported caught in groundfish gillnet sets in the Bay of Fundy during 1985 to 1989, and 9 were reported taken in West Greenland between 1964 and 1966 in the now nonoperational salmon drift nets (Gaskin 1992). Several (number not specified) were also taken during the 1960s in the now non-operational Newfoundland and Labrador groundfish gillnets. A few (number not specified) were taken in an experimental drift gillnet fishery for salmon off West Greenland which took place from 1965 to 1982 (Read 1994).

Hooker et al. (1997) summarized bycatch data from a Canadian fisheries observer program that placed observers on all foreign fishing vessels operating in Canadian waters, on between $25-40 \%$ of large Canadian fishing vessels (greater than 100 feet long), and on approximately 5% of smaller Canadian fishing vessels. Bycaught marine mammals were noted as weight in kilos rather than by the numbers of animals caught. Thus the number of individuals was estimated by dividing the total weight per species per trip by the maximum recorded weight of each species. During 1991 through 1996, an estimated 6 white-sided dolphins were observed taken. One animal was from a longline trip south of the Grand Banks ($43^{\circ} 10^{\prime} \mathrm{N} 53^{\circ} 08^{\prime} \mathrm{W}$) in November 1996 and the other 5 were taken in the bottom trawl fishery off Nova Scotia in the Atlantic Ocean; 1 in July 1991, 1 in April 1992, 1 in May 1992, 1 in April 1993, 1 in June 1993 and 0 in 1994 to 1996.

Estimation of small cetacean bycatch is currently underway for Newfoundland fisheries using data collected during 2001 to 2003 (pers. comm. J. Lawson, DFO). White-sided dolphins were reported to have been caught in the Newfoundland nearshore gillnet fishery and offshore monkfish/skate gillnet fisheries.

Herring Weirs

During the last several years, one white-sided dolphin was released alive and unharmed from a herring weir in the Bay of Fundy (A. Westgate, pers. comm.). Due to the formation of a cooperative program between Canadian fishermen and biologists, it is expected that most dolphins and whales will be released alive. Fishery information is available in Appendix III.

OTHER MORTALITY

U.S.

Mass strandings involving up to a hundred or more animals at one time are common for this species. From 1968 to 1995, 349 Atlantic white-sided dolphins were known to have stranded on the New England coast (Hain and Waring 1994; Smithsonian stranding records 1996). The causes of these strandings are not known. Because such strandings have been known since antiquity, it could be presumed that recent strandings are a normal condition (Gaskin 1992). It is unknown whether human causes, such as fishery interactions and pollution, have increased the number of strandings. Stranding data probably underestimate the extent of fishery-related mortality and serious injury because all of the marine mammals that die or are seriously injured may not wash ashore, nor will all of those that do wash ashore necessarily show signs of entanglement or other fishery-interaction. Finally, the level of technical expertise among stranding network personnel varies widely as does the ability to recognize signs of fishery interaction.

White-sided dolphin stranding records from 1997 onwards that are part of the NMFS/NE Regional Office strandings and entanglement database have been reviewed and updated. The most recent five years to date are reported in Table 3. Cause of death was investigated and it was determined that the documented human interactions were as follows: 1 animal possibly killed by a boat collision off Maine during 2001; 2 animals with indications of fishery interactions found in March 2002 in Massachusetts; and 1 animal with indications of fishery interactions found in May 2002 in Virginia, 1 animal with indications of fishery interactions was found in Massachusetts during 2004, and one animal during 2004 was found with twine blocking its esophagus (thus, this is a human interaction, but not necessarily a fishery interaction) (Table 3).

Mass strandings in Massachusetts occur frequently (Table 3). There were 80 animals in a mass stranding near Wellfleet, Massachusetts, during the week of 29 January to 3 February 1998. Of these, 2 were released alive. Of the 4 found in Massachusetts during the November 1998 mass stranding, 1 was released alive. Fifty-three animals stranded in Wellfleet, Massachusetts during 19-24 March 1999. During 1999, of the 70 strandings, 38 were found alive, and 3 of these animals were released alive. During 2000, 5 were found alive (3 in April and 2 in August), and the 2 in August were released alive. During 2002, there were mass strandings in March and August, of which a few were released alive. During 2003 in Massachusetts 36 white-sided dolphins were involved in mass strandings in January, April and November, of which 25 were found alive. There were no mass strandings in 2004.

CANADA

Small numbers of white-sided dolphins have been taken off southwestern Greenland (Reeves et al. 1999). The Nova Scotia Stranding Network documented whales and dolphins stranded on the coast of Nova Scotia during 1991 to 1996 (Hooker et al. 1997). Researchers with Canadian Dept. of Fisheries and Oceans (DFO), documented strandings on the beaches of Sable Island during 1970 to 1998 (Lucas and Hooker 2000). Sable Island is approximately 170 km southeast of mainland Nova Scotia. White-sided dolphins strand at nearly all times of the year on the mainland and on Sable Island. On the mainland of Nova Scotia, a total of 34 stranded white-sided
dolphins was recorded between 1991 and 1996: 2 in 1991 (August and October), 26 in July 1992, 1 in Nov 1993, 2 in 1994 (February and November), 2 in 1995 (April and August) and 2 in 1996 (October and December). During July 1992, 26 white-sided dolphins stranded on the Atlantic side of Cape Breton. Of these, 11 were released alive and the rest were found dead. Among the rest of the Nova Scotia strandings, 1 was found in Minas Basin, 2 near Yarmouth, and the rest near Halifax. On Sable Island, 10 stranded white-sided dolphins were documented between 1991 and 1998; all were males, 7 were young males ($<200 \mathrm{~cm}$), 1 in January 1993, 5 in March 1993, 1 in August 1995, 1 in December 1996, 1 in April 1997 and 1 in February 1998.

Whales and dolphins stranded between 1997 and 2004 on the coast of Nova Scotia as recorded by the Marine Animal Response Society (MARS) and the Nova Scotia Stranding Network are as follows (Table 3): 0 white-sided dolphins stranded in 1997 to 2000, 3 in September 2001 (released alive), 5 in November 2002 (4 were released alive), 0 in 2003, and 19-24 in 2004 (15-20 in October (some (unspecified) were released alive) and 4 in November were released alive).

Table 3. Summary of number of stranded white-sided dolphins during January 1, 2000 to December 31, 2004, by year and area within U.S. and Canada.

Area	Year					Total
	2000	2001	2002	2003	2004	
Maine ${ }^{\text {b }}$		2	4	2	10	18
New Hampshire						
Massachusetts ${ }^{\text {a,b }}$	24	16	53	59	34	186
Rhode Island			2			2
Connecticut				1		1
New York			1	2	1	4
New Jersey			1	1	1	3
Delaware						
Maryland						
Virginia ${ }^{\text {b }}$			1		4	5
North Carolina				1	2	3
TOTAL US	24	18	62	66	52	222
Nova Scotia	0	3	6	0	2	11
TOTAL	24	21	68	66	54	233

a Records of mass strandings in Massachusetts are: March 1999-53 animals; April 2000-5 animals; August 2000-11 animals; April 2001-6 animals; March 2002-31 animals, of which 7 were released alive; August 2002-3 animals, of which 1 was released alive; January 2003-4 animals; April 2003-28 animals; November 2003-4 animals.
b Strandings that appear to involve a human interaction are: 1 animal from Maine in 2001 that was a possible boat collision; 1 animal from Virginia in May 2002 had signs of fishery interaction; 2 animals from Massachusetts in March 2002 had signs of fishery interactions; 1 animal from Massachusetts in 2004 was a fishery interaction; and 1 other animal from Massachusetts in 2004 was found with twine obstructing its esophagus

STATUS OF STOCK

The status of white-sided dolphins, relative to OSP, in the U.S. Atlantic EEZ is unknown. The species is not listed as threatened or endangered under the Endangered Species Act. There are insufficient data to determine population trends for this species. The U.S. fishery-related mortality and serious injury for this stock is not less than 10% of the calculated PBR and, therefore, cannot be considered to be insignificant and approaching zero mortality and serious injury rate. The status of the western North Atlantic stock is unknown.

REFERENCES CITED

Barlow, J., S.L. Swartz, T.C. Eagle, and P.R. Wade. 1995. U.S. Marine mammal stock assessments: Guidelines for preparation, background, and a summary of the 1995 assessments. U.S.Dep. Commer., NOAA Tech. Memo. NMFS-OPR-6, 73 pp.
Bisack, K.D. 1997a. Harbor porpoise bycatch estimates in the New England multispecies sink gillnet fishery: 1994 and 1995. Rep. int Whal. Comm 47:705-14.
Bisack, K.D. 1997b. Marine mammal bycatch estimates and their sampling distributions in the U.S. New England sink gillnet, pair trawl, Atlantic pelagic drift gillnet and North Atlantic bottom trawl fisheries - 1994 to 1996. NOAA, NMFS, NEFSC. Woods Hole, MA. Working paper SC/49/SM35 submitted to the IWC Scientific Committee meeting in Bournemouth, UK, Aug/Sept 1997.
CETAP. 1982. A characterization of marine mammals and turtles in the mid- and north Atlantic areas of the U.S. outer continental shelf. Cetacean and Turtle Assessment Program, University of Rhode Island. Final Report, Contract AA51-C78-48, Bureau of Land Management, Washington, DC, 538 pp.
Evans, P.G.H. 1987. The natural history of whales and dolphins. Facts on File Publications, New York, 343 pp.
Gaskin, D.E. 1992. Status of Atlantic white-sided dolphin, Lagenorhynchus acutus, in Canada. Can. Fld. Nat. 106:64-72.
Hain, J. H. W. and G. T. Waring. 1994. Status of and human effects upon marine mammals. Pages. 9-20 In: R. W. Langton, J. B. Pearce, and J.A. Gibson (eds). Selected living resources, habitat conditions, and human perturbations of the Gulf of Maine: Environmental and ecological considerations for fishery managements. NOAA Tech. Mem. NMFS-NE-106. [Available from: NMFS, Northeast Fisheries Science Center, 166 Water St., Woods Hole, MA 02543].
Hooker, S.K., R.W. Baird, and M.A. Showell. 1997. Cetacean strandings and bycatches in Nova Scotia, Eastern Canada, 1991-1996. Meeting document SC/49/O5 submitted to the 1997 International Whaling Commission meeting in Bournemouth, UK.
Katona, S.K., V. Rough, and D.T. Richardson. 1993. A field guide to whales, porpoises, and seals from Cape Cod to Newfoundland. Smithsonian Institution Press. Washington, DC. 316 pp.
Kenney, R.D., P.M. Payne, D.W. Heinemann, and H.E. Winn. 1996. Shifts in Northeast shelf cetacean distributions relative to trends in Gulf of Maine/Georges Bank finfish abundance. Pp. 169-196 in: K. Sherman, N.A. Jaworski and T. Smada (eds.). The northeast shelf ecosystem: assessment, sustainability, and management. Blackwell Science, Cambridge, MA 02142, USA.
Kingsley, M.C.S. and R.R. Reeves. 1998. Aerial surveys of cetaceans in the Gulf of St. Lawrence in 1995 and 1996. Can. J. Zool. 76:1529-1550.

Lucas, Z.N. and S.K. Hooker. 2000. Cetacean strandings on Sable Island, Nova Scotia, 1970-1998. Can. Fld. Nat. 114(1):46-61.
National Marine Fisheries Service [NMFS]. 1993. Cruise results, NOAA ship DELAWARE II, Cruise No. DEL 93-06, Marine Mammal Survey. 5 pp. [Available from: NMFS, Northeast Fisheries Science Center, 166 Water Street, Woods Hole, MA 02543.]
Northridge, S., M. Tasker, A. Webb, K. Camphuysen, and M. Leopold. 1997. White-beaked Lagenorhynchus albirostris and Atlantic white-sided dolphin L. acutus distributions in northwest European and U.S. North Atlantic waters. Rep. int. Whal. Commn 47:797-805.
Palka, D. 1995. Abundance estimate of the Gulf of Maine harbor porpoise. pp. 27-50 Rep. int Whal. Commn (Special Issue) 16:27-50.
Palka, D. 1996. Update on abundance of Gulf of Maine/Bay of Fundy harbor porpoises. NOAA/NMFS/NEFSC Ref. Doc. 96-04. 37 pp.
Palka, D., A. Read, and C. Potter. 1997. Summary of knowledge of white-sided dolphins (Lagenorhynchus acutus) from the U.S. and Canadian North Atlantic waters. Rep. int Whal. Commn 47:729-34.
Palka, D. 2000. Abundance of the Gulf of Maine/Bay of Fundy harbor porpoise based on shipboard and aerial surveys during 1999. U.S. Dep. Commer., Northeast Fish. Sci. Cent. Ref. Doc. 00-07. 29 pp.

Palka, D.L. 2006. Summer abundance estimates of cetaceans in US North Atlantic Navy Operating Areas. U.S. Dep. Commer., Northeast Fish. Sci. Cent. Ref. Doc. 06-03. 41 pp.
Payne, M. and D.W. Heinemann. 1990. A distributional assessment of cetaceans in the shelf and shelf edge waters of the northeastern United States based on aerial and shipboard surveys, 1978-1988. Report to NMFS. 108 pp. [Available from National Marine Fisheries Science Center, 166 Water St., Woods Hole, MA 02543.]
Read, A.J. 1994. Interactions between cetaceans and gillnet and trap fisheries in the northwest Atlantic. Rep. int Whal. Commn (Special Issue) 15:133-147.
Reeves, R.R., C. Smeenk, R.L. Brownell, Jr., and C.C. Kinze. 1999. Atlantic white-sided dolphin Lagenorhynchus acutus (Gray, 1828). Pp. 31-56 In S. H. Ridgway and Sir R. Harrison (eds.) Handbook of Marine Mammals. Volume 6: The Second Book of Dolphins and the Porpoises. Academic Press, Boston.
Sergeant, D.E., D.J. St. Aubin, and J.R. Geraci. 1980. Life history and northwest Atlantic status of the Atlantic white-sided dolphin, Lagenorhynchus acutus. Cetology 37:1-12.
Wade, P.R. and R.P. Angliss. 1997. Guidelines for assessing marine mammal stocks: Report of the GAMMS workshop April 3-5, 1996, Seattle, Washington. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR12, 93 pp .
Waring, G.T., P. Gerrior, P.M. Payne, B.L. Parry, and J.R. Nicolas. 1990. Incidental take of marine mammals in foreign fishery activities off the northeast United States, 1977-1988. Fish. Bull., U.S. 88(2): 347-360.

WHITE-BEAKED DOLPHIN (Lagenorhynchus albirostris): Western North Atlantic Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

White-beaked dolphins are the more northerly of the two species of Lagenorhynchus in the northwest Atlantic (Leatherwood et al.1976). The species is found in waters from southern New England to southern Greenland and Davis Straits (Leatherwood et al.1976; CETAP 1982), across the Atlantic to the Barents Sea and south to at least Portugal (Reeves et al.1999). Differences in skull features indicate that there are at least two separate stocks, one in the eastern and one in the western North Atlantic (Mikkelsen and Lund 1994). No genetic analyses have been conducted to corroborate this stock structure.

In waters off the northeastern U.S. coast, white-beaked dolphin sightings are concentrated in the western Gulf of Maine and around Cape Cod (CETAP 1982). The limited distribution of this species in U.S. waters has been attributed to opportunistic feeding (CETAP 1982). Prior to the 1970s, white-sided dolphins (L. acutus) in U.S. waters were found primarily offshore on the continental slope, while white-beaked dolphins were found on the continental shelf. During the 1970 s, there was an apparent switch in habitat use between these two species. This shift may have been a result of the increase in sand lance in the continental shelf waters (Katona et al.1993; Kenney et al.1996).

In late March 2001, one group of 18 animals was seen about 60 nautical miles east of Provincetown, MA during a NMFS aerial marine mammal survey (NMFS unpublished data). In addition, during spring 2001 and 2002, whitebeaked dolphins stranded on beaches in New York and Massachusetts (see Other Mortality section below).

POPULATION SIZE

The total number of white-beaked dolphins in U.S. and Canadian waters is unknown, although one old abundance estimate is available for part of the known habitat in U.S. waters, and two other estimates are available from Canadian waters.

A population size of 573 white-beaked dolphins $(C V=0.69)$ was estimated from an aerial survey program conducted from 1978 to 1982 on the continental shelf and shelf edge waters between Cape Hatteras, North Carolina and Nova Scotia (CETAP 1982). The estimate is based on spring data because the greatest proportion of the population off the northeast U.S. coast appeared in the study area during this season, according to the CETAP data. This estimate does not include a correction for dive-time, or for $\mathrm{g}(0)$, the probability of detecting an animal group on the track line. This estimate may not reflect the current true population size because of its high degree of uncertainty (e.g., large CV), and its dated nature.

A population size of 5,500 white-beaked dolphins was estimated based on an aerial survey off eastern Newfoundland and southeastern Labrador (Alling and Whitehead 1987).

A population size of 3,486 white-beaked dolphins $(95 \%$ confidence interval $(\mathrm{CI})=2,001-4,971)$ was estimated from a ship-based survey of a small segment of the Labrador Shelf in August 1982 (Alling and Whitehead 1987). A CV was not given, but assuming a symmetric CI, it would be 0.22 .

There are no recent abundance estimates for this species in waters between the Gulf of Maine and the Newfoundland/Labrador region.

Minimum Population Estimate

Present data are insufficient to calculate a minimum population estimate in U.S. Exclusive Economic Zone (EEZ) waters.

Current Population Trend

There are insufficient data to determine population trends for this species.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Current and maximum net productivity rates are unknown for this stock. For purposes of this assessment, the maximum net productivity rate was assumed to be 0.04 . This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive life history (Barlow et al.1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential Biological Removal (PBR) is the product of minimum population size, one-half the maximum productivity rate, and a "recovery" factor (Wade and Angliss 1997). The minimum population size of white-beaked dolphins is unknown. The maximum productivity rate is 0.04 , the default value for cetaceans. The "recovery" factor, which accounts for endangered, depleted, threatened stocks, or stocks of unknown status relative to optimum sustainable population (OSP) is assumed to be 0.5 because this stock is of unknown status. PBR for the western North Atlantic white-beaked dolphin is unknown.

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

White-beaked dolphins have been incidentally captured in cod traps and in the Canadian groundfish gillnet fisheries off Newfoundland and Labrador and in the Gulf of St. Lawrence (Alling and Whitehead 1987; Read 1994; Hai et al.1996). However, the total number of animals taken is not known. Of three bycaught white-beaked dolphins reported off Newfoundland during 1987-1988, 1 died in a groundfish gillnet, 1 in a herring gillnet, and 1 in a cod trap (Reeves et al.1999).

There are no documented reports of fishery-related mortality or serious injury to this stock in the U.S. EEZ. A white-beaked dolphin was captured by a Northeast bottom trawl in March 2003. However, since the animal was moderately decomposed and the trawl duration was short, the animal could not have died in this trawl.

Fishery Information

Because of the absence of observed fishery-related mortality and serious injury to this stock in the U.S. and Canadian waters, no fishery information is provided.

Other Mortality

White-beaked dolphins were hunted for food by residents in Newfoundland and Labrador (Alling and Whitehead 1987). These authors, based on interview data, estimated that 366 white-beaked dolphins were taken each year. The same authors reported that $25-50 \%$ of the killed dolphins were lost. Hunting that now occurs in Canadian waters is believed to be opportunistic and in remote regions of Labrador where enforcement of regulations is minimal (Lien et al.2001).

White-beaked dolphins regularly become caught in ice off the coast of Newfoundland during years of heavy pack ice. A total of 21 ice entrapments involving approximately 350 animals were reported in Newfoundland from 1979 to 1990; known mortality as a result of entrapment was about 55% (Lien et al.2001).

Mass strandings of white-beaked dolphins are less common than for white-sided dolphins. White-beaked dolphins more commonly strand as individuals or in small groups (Reeves et al.1999). In Newfoundland, 5 strandings of white-beaked dolphins occurred between 1979 and 1990, involving groups of 2 to 7 animals. On three occasions live dolphins came ashore, including groups of 3 and 4 (Reeves et al.1999).

White-beaked dolphin stranding records from 1997 onwards that are part of the US NE Regional Office/NMFS strandings and entanglement database include five records that clearly identify the species to be the white-beaked dolphin (Table 2). Three of these strandings took place on Cape Cod, Massachusetts beaches, where 1 animal stranded during May 1997, and 2 animals stranded during March 2001. A white-beaked dolphin also stranded in New York in February 2002. No white-beaked dolphins stranded during 2003. One white-beaked dolphin stranded in Maine during May 2004. It was not possible to determine the cause of death for any of the stranded animals.

Whales and dolphins stranded between 1997 and 2004 on the coast of Nova Scotia as recorded by the Marine Animal Response Society (MARS) and the Nova Scotia Stranding Network are as follows: 1 white-beaked dolphin stranded in May 1997, 0 documented strandings in 1998 to 2001, 2 in 2002 (1 in July (released alive) and 1 in August), and 0 in 2003 and 2004 (Table 1).

Table 1. Summary of number of stranded white-beaked dolphins during January 1, 2000 to December 31, 2004, by year and area within U.S. and Canada.

Area	Year					Total
	2000	2001	2002	2003	2004	
Maine					1	1
Massachusetts		2				2
New York			1			1
TOTAL US	0	2	1	0	1	4
Nova Scotia ${ }^{\text {a }}$	0	0	2	0	0	2
GRAND TOTAL	0	2	3	0	1	6
a. One animal that stranded in July 2002 was released alive.						

STATUS OF STOCK

The status of white-beaked dolphins, relative to OSP, in U.S. Atlantic coast waters is unknown. The species is not listed as threatened or endangered under the Endangered Species Act. There are insufficient data to determine population trends for this species. Because there are insufficient data to calculate PBR, it is not possible to determine if the Western North Atlantic stock is strategic or if U.S. fishery-related mortality and serious injury for this stock is insignificant and approaching zero mortality and serious injury rate. However, because the stock has a marginal occurrence in U.S. waters and there are no documented takes in U.S. fisheries, this stock has not been designated as strategic.

REFERENCES CITED

Alling, A.K. and H.P. Whitehead. 1987. A preliminary study of the status of white-beaked dolphins, Lagenorhynchus albirostris, and other small cetaceans off the coast of Labrador. Can. Field Nat. 101(2): 131-135.
Barlow, J., S.L. Swartz, T.C. Eagle, and P.R. Wade. 1995. U.S. Marine mammal stock assessments: Guidelines for preparation, background, and a summary of the 1995 assessments. U.S.Dept. Commer., NOAA Tech. Memo. NMFS-OPR-6, 73 pp .
CETAP. 1982. A characterization of marine mammals and turtles in the mid- and north Atlantic areas of the U.S. outer continental shelf. Cetacean and Turtle Assessment Program, University of Rhode Island. Final Report \#AA551-CT8-48 to the Bureau of Land Management, Washington, DC, 538 pp .
Hai, D.J., J. Lien, D. Nelson, and K. Curren. 1996. A contribution to the biology of the white-sided dolphin, Lagenorhnchus albirostris, in waters off Newfoundland. Can. Field Nat. 110(1):278-287.
Katona, S.K., V. Rough, and D.T. Richardson. 1993. A field guide to whales, porpoises, and seals from Cape Cod to Newfoundland. Washington, D. C. Smithsonian Institution Press. 316 pp.
Kenney, R.D., P.M. Payne, D.W. Heineman, and H.E. Winn. 1996. Shifts in Northeast shelf cetacean distributions relative to trends in Gulf of Maine/Georges Bank finfish abundance. Pp. 169-196. In: K. Sherman, N.A. Jaworski and T. Smada (eds.) The Northeast Shelf Ecosystem: Assessment, Sustainability, and Management. Blackwell Science, Cambridge, MA 02142, USA.
Leatherwood, S., D.K. Caldwell, and H.E. Winn. 1976. Whales, dolphins, and porpoises of the western North Atlantic. A guide to their identification. U.S. Dept. of Commerce, NOAA Tech. Rep. NMFS Circ. 396, 176 pp.
Lien, J., D. Nelson, and D.J. Hai. 2001. Status of the White-beaked Dolphin, Lagenorhynchus albirostris, in Canada. Can. Field Nat. 115(1):118-126.

Mikkelsen, A.M.H. and A. Lund. 1994. Intraspecific variation in the dolphins Lagenorhnchus albirostris and L. acutus (Mammalia: Cetacea) in metrical and non-metrical skull characters, with remarks on occurrence. J. Zool., Lond. 234:289-299.
Mikkelsen, A.M.H. and A. Lund. 1994. Intraspecific variation in the dolphins Lagenorhnchus albirostris and L. acutus (Mammalia: Cetacea) in metrical and non-metrical skull characters, with remarks on occurrence. J. Zool., Lond. 234:289-299.
Read, A.J. 1994. Interactions between cetaceans and gillnet and trap fisheries in the northwest Atlantic. Rep. int. Whal. Commn (Special Issue) 15:133-147.
Reeves, R.R., C. Smeenk, C.C. Kinze, R. L. Brownell Jr., and J. Lien. 1999. White-beaked dolphin (Lagenorhnchus albirostris (Gray 1846). Pp. 1-30. In: S.H. Ridgway and R. Harrison (eds.) Handbook of marine mammals, Vol 6. Academic Press, San Diego, CA.
Wade, P.R. and R.P. Angliss. 1997. Guidelines for assessing marine mammal stocks: Report of the GAMMS workshop April 3-5, 1996, Seattle, Washington. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR12, 93 pp .

COMMON DOLPHIN (Delphinus delphis): Western North Atlantic Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

The common dolphin may be one of the most widely distributed cetacean species, as it is found worldwide in temperate, tropical, and subtropical seas. In the North Atlantic, common dolphins occur over the continental shelf along the $200-2000 \mathrm{~m}$ isobaths and over prominent underwater topography from $50^{\circ} \mathrm{N}$ to $40^{\circ} \mathrm{S}$ latitude (Evans 1994). The species is less common south of Cape Hatteras, although schools have been reported as far south as eastern Florida (Gaskin 1992). NMFS is currently funding genetic and skull morphometric studies, which will provide information on common dolphin stock structure in the western North Atlantic. Preliminary work indicated a high variance in skull morphometric measurements suggesting the existence of more than a single stock. In waters off the northeastern USA coast, common dolphins are distributed along the continental slope (100 to 2,000 meters) and are associated with Gulf Stream (CETAP 1982; Selzer and Payne 1988; Waring et al. 1992). They occur from Cape Hatteras northeast to Georges Bank (35° to $42^{\circ} \mathrm{N}$) during mid-January to May (Hain et al. 1981; CETAP 1982; Payne et al. 1984). Common dolphins move onto Georges Bank and the Scotian Shelf from mid-summer to autumn (Figure 1). Selzer and Payne (1988) reported very large aggregations (greater than 3,000 animals) on Georges Bank in autumn. Common dolphins are occasionally found in the Gulf of Maine (Selzer and Payne 1988). Migration onto the Scotian Shelf and continental shelf off Newfoundland occurs during
summer and autumn when water temperatures exceed $11^{\circ} \mathrm{C}$ (Sergeant et al. 1970; Gowans and Whitehead 1995).

POPULATION SIZE

The total number of common dolphins off the U.S. or Canadian

Figure 1. Distribution of common dolphin sightings from NEFSC and SEFSC shipboard and aerial surveys during the summers of 1998, 1999, and 2004. Isobaths are the $100 \mathrm{~m}, 1000$ m and 4000 m depth contours. Atlantic coast is unknown, although several abundance estimates are available from selected regions for selected time periods. Sightings have been almost exclusively in the continental shelf edge and continental slope areas (Figure 1). An abundance of 29,610 common dolphins (CV=0.39) was estimated from an aerial survey program conducted from 1978 to 1982 on the continental shelf and shelf edge waters between Cape Hatteras, North Carolina and Nova Scotia (CETAP 1982). An abundance of 22,215 ($\mathrm{CV}=0.40$) common dolphins was estimated from a June and July 1991 shipboard line-transect sighting survey conducted primarily between the 200 and $2,000 \mathrm{~m}$ isobaths from Cape Hatteras to Georges Bank (Waring et al. 1992; Waring 1998). As recommended in the GAMMS Workshop Report (Wade and Angliss 1997), estimates older than eight years are deemed unreliable, and should not be used for PBR determinations. Further, due to changes in survey methodology the earlier data should not be used to make comparisons with more current estimates.

An abundance estimate of $1,645(\mathrm{CV}=0.47)$ common dolphins was obtained from a June and July 1993 shipboard line-transect sighting survey conducted principally between the 200 and $2,000 \mathrm{~m}$ isobaths from the southern edge of Georges Bank, across the Northeast Channel, to the southeastern edge of the Scotian Shelf (NMFS 1993). Data were collected by two alternating teams that searched with 25×150 binoculars and were analyzed using DISTANCE (Buckland et al. 1993; Laake et al. 1993). Estimates include school size-bias, if applicable, but do not include corrections for $g(0)$ or dive-time. Variability was estimated using bootstrap resampling techniques.

An abundance estimate of $6,741(\mathrm{CV}=0.69)$ common dolphins was obtained from a July to September 1995 sighting survey conducted by two ships and an airplane that covered waters from Virginia to the mouth of the Gulf of St. Lawrence (Table 1; NMFS unpublished data). Total track line length was $32,600 \mathrm{~km}$. The ships covered waters between the 50-1000 fathom depth contour lines, the northern edge of the Gulf Stream, and the northern Gulf of Maine/Bay of Fundy region. The airplane covered waters in the Mid-Atlantic from the coastline to the 50 fathom depth contour, the southern Gulf of Maine, and shelf waters off Nova Scotia from the coastline to the 1000 fathom isobath. Data collection and analysis methods used were described in Palka (1996).

An abundance estimate of $30,768(\mathrm{CV}=0.32)$ common dolphins was derived from a line transect sighting survey conducted during 6 July to 6 September 1998 by a ship and plane that surveyed $15,900 \mathrm{~km}$ of track line in waters north of Maryland ($38^{\circ} \mathrm{N}$) (Table 1; NMFS unpublished data; Palka 2006). Shipboard data were analyzed using the modified direct duplicate method (Palka 1995) which accounts for school size bias and for $g(0)$, the probability of detecting a group on the track line. Aerial data were not corrected for $g(0)$.

No common dolphins were encountered during the southern component of the shipboard line transect sighting survey which was conducted between 8 July and 17 August 1998 and surveyed $4,163 \mathrm{~km}$ of track line in waters south of Maryland ($38^{\circ} \mathrm{N}$) (Mullin and Fulling 2003).

The 1998 data (as well as the data from earlier surveys) suggest that, seasonally, at least several thousand common dolphins occur in continental shelf edge waters, with perhaps the highest abundance in the Georges Bank region.

An abundance estimate of $90,547(\mathrm{CV}=0.244)$ common dolphins was obtained from a line transect sighting survey conducted during 12 June to 4 August 2004 by a ship and plane that surveyed $10,761 \mathrm{~km}$ of track line in waters north of Maryland ($38^{\circ} \mathrm{N}$) (Table 1; Palka 2006). Shipboard data were collected using the two independent team line transect method and analyzed using the modified direct duplicate method (Palka 1995) accounting for biases due to school size and other potential covariates, reactive movements (Palka and Hammond 2001), and $g(0)$, the probability of detecting a group on the track line. Aerial data were collected using the Hiby circle-back line transect method (Hiby 1999) and analyzed accounting for $g(0)$ and biases due to school size and other potential covariates (Table 1; Palka 2005).

An abundance estimate of $30,196(\mathrm{CV}=0.537)$ common dolphins was derived from a shipboard survey of the U.S. Atlantic outer continental shelf and continental slope (water depths $>50 \mathrm{~m}$) between Florida and Maryland (27.5 and $38^{\circ} \mathrm{N}$ latitude) conducted during June-August, 2004. The survey employed two independent visual teams searching with 50 x bigeye binoculuars. Survey effort was stratified to include increased effort along the continental shelf break and Gulf Stream front in the Mid-Atlantic. The survey included $5,659 \mathrm{~km}$ of track line, and accomplished a total of 473 cetacean sightings. Sightings were most frequent in waters north of Cape Hatteras, North Carolina along the shelf break. Data were corrected for visibility bias $(g(0))$ and group-size bias and analyzed using line-transect distance analysis (Palka, 1995; Buckland et al., 2001). The resulting abundance estimate for common dolphins between Florida and Maryland was 30,196 animals ($\mathrm{CV}=0.537$).

The best abundance estimate for common dolphins is the sum of the estimates from the two 2004 U.S. Atlantic surveys. This joint estimate $(90,574+30,196=120,743)$ is considered best because the two surveys together have the most complete coverage of the species' habitat.

Table 1. Summary of abundance estimates for western North Atlantic stock of common dolphin. Month, year, and area covered during each abundance survey, and resulting abundance estimate ($\mathrm{N}_{\text {best }}$) and coefficient of variation (CV).						
Month/Year	Area	$\mathrm{N}_{\text {best }}$	CV			
Jul-Sep 1998	Maryland to Gulf of St. Lawrence	30,768	0.32			
Jun-Aug 2004	Maryland to Bay of Fundy	90,547	0.24			
Jun-Aug 2004	Florida to Maryland	30,196	0.54			
Jun-Aug 2004	Florida to Bay of Fundy (COMBINED)	120,743	0.23			

Minimum Population Estimate

The minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the lognormally distributed best abundance estimate. This is equivalent to the 20th percentile of the log-normal distribution as specified by Wade and Angliss (1997). The best estimate of abundance for common dolphins is 120,743 animals $(\mathrm{CV}=0.23)$ derived from the 2004 surveys. The minimum population estimate for the western North Atlantic common dolphin is 99,975 .

Current Population Trend

There are insufficient data to determine population trends for this species.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Current and maximum net productivity rates are unknown for this stock. For purposes of this assessment, the maximum net productivity rate was assumed to be 0.04 . This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive life history (Barlow et al. 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential Biological Removal (PBR) is the product of minimum population size, one-half the maximum productivity rate, and a "recovery" factor (MMPA Sec. 3. 16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size is 99,975 animals. The maximum productivity rate is 0.04 , the default value for cetaceans. The "recovery" factor, which accounts for endangered, depleted, threatened, or stocks of unknown status, relative to optimum sustainable population (OSP) is assumed to be 0.5 because this stock is of unknown status. PBR for the western North Atlantic stock of common dolphin is 1,000 .

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

Fishery information

Detailed fishery information is reported in Appendix III.

Earlier Interactions

Prior to 1977, there was no documentation of marine mammal bycatch in distant-water fleet (DWF) activities off the northeast coast of the U.S. With implementation of the Magnuson-Stevens Fisheries Conservation and Management Act (MSFCMA), an observer program was established which recorded fishery data and information on incidental bycatch of marine mammals. During the period 1977-1986, observers recorded 123 mortalities in foreign Loligo squid-fishing activities (Waring et al. 1990). In 1985 and 1986, Italian vessels took 56 and 54 animals, respectively, which accounts for $89 \%(\mathrm{n}=110)$ of the total takes in foreign Loligo squid-fishing operations. No mortalities were reported in foreign Illex squid fishing operations. Because of spatial/temporal fishing restrictions, most of the bycatch occurred along the continental shelf edge (100m) isobath during winter (December to February).

From 1977 to 1991, observers recorded 110 mortalities in foreign mackerel-fishing operations (Waring et al. 1990; NMFS unpublished data). This total includes one documented take by a U.S. vessel involved in joint-venture fishing operations in which U.S. captains transfer their catches to foreign processing vessels. The bycatch occurred during winter/spring (December to May).

Most of the estimated marine mammal bycatch in the pelagic longline fishery was from U.S. Atlantic EEZ waters between South Carolina and Cape Cod (Johnson et al. 1999). Between 1990 and 2000, sixteen common dolphins were hooked and released alive (Yeung et al. 2000; Yeung 2001).

Eight hundred and sixty-one common dolphin mortalities were observed between 1989 and 1998 in the pelagic drift gillnet fishery. Mortalities were observed in all seasons and areas. Seven animals were released alive, but 6 were injured. Estimated annual mortality and serious injury attributable to this fishery (CV in parentheses) was 540 in 1989 (0.19), 893 in 1990 (0.18), 223 in 1991 (0.12), 227 in 1992 (0.09), 238 in 1993 (0.08), 163 in 1994 (0.02), 83 in 1995 (0), 106 in 1996 (0.07) and 255 in 1998 (0). Since this fishery no longer exists, it has been excluded from Table 2.

Twelve mortalities were observed in the pelagic pair trawl between 1991 and 1995. The estimated annual fishery-related mortality and serious injury attributable to this fishery (CV in parentheses) was 5.6 in 1991 (0.53), 32 in $1992(0.48)$, 35 in $1993(0.43), 0$ in 1994 and 5.6 in $1995(0.35)$. Since this fishery is no longer in operation it has been deleted from Table 2.

The estimated fishery-related mortality of common dolphins attributable to the Loligo squid portion of the Southern New England/Mid-Atlantic Squid, Mackerel, Butterfish Trawl fisheries was 0 between 1997-1998 and 49 in 1999 ($\mathrm{CV}=0.97$). However, these estimates should be viewed with caution due to the extremely low ($<1 \%$) observer coverage. After 1999 this fishery is included as a component of the mid-Atlantic bottom trawl fishery.

In the Atlantic mackerel portion of the Southern New England/Mid-Atlantic Squid, Mackerel, Butterfish Trawl fisheries, the estimated fishery-related mortality was 161 ($\mathrm{CV}=0.49$) animals in 1997 and 0 in 1998 and 1999. However, these estimates should be viewed with caution due to the extremely low ($<1 \%$) observer coverage. After 1999 this fishery is included as a component of the mid-Atlantic bottom trawl and mid-Atlantic mid-water trawl fisheries.

A U.S. joint venture (JV) mackerel fishery was conducted in the mid-Atlantic region from February-May 1998. Seventeen incidental takes of common dolphin were observed in the 1998 JV mackerel fishery.

There was one observed take in the Southern New England/mid-Atlantic Bottom Trawl fishery reported in 1997. The estimated fishery-related mortality for common dolphins attributable to this fishery was 93 (CV=1.06) in 1997 and 0 in 1998 and 1999. After 1999 this fishery is included as a component of the mid-Atlantic bottom trawl fishery.

The estimated annual fishery-related mortality and serious injury attributable to the northeast sink gillnet fishery (CV in parentheses) was 0 in 1995, 63 in 1996 (1.39), 0 in 1997, 0 in 1998, 146 in 1999 (0.97) and 0 in 2000-2004.

No common dolphins were taken in observed Mid-Atlantic gillnet fishery trips during 1993 and 1994. Two common dolphins were observed taken in 1995, 1996 and 1997, and no takes were observed from 1998 to 2004. The estimated annual mortality (CV in parentheses) attributed to this fishery was 7.4 in 1995 (0.69), 43 in 1996 (0.79), 16 in 1997 (0.53), and 0 in 1998-2004.

Northeast Bottom Trawl

This fishery is active in New England waters in all seasons. One common dolphin was observed taken in 2002 and three in 2004 (Table 2).

Mid-Atlantic Bottom Trawl

Three common dolphins were observed taken in the mid-Atlantic bottom trawl fishery in 2000, two in 2001 and nine in 2004 (Table 2).

Table 2. Summary of the incidental mortality of common dolphins (Delphinus delphis) by commercial fishery including the years sampled (Years), the number of vessels active within the fishery (Vessels), the type of data used (Data Type), the annual observer coverage (Observer Coverage), the mortalities recorded by on-board observers (Observed Mortality), the estimated annual mortality (Estimated Mortality), the estimated CV of the annual mortality (Estimated CVs) and the mean annual mortality (CV in parentheses).											
Fishery ${ }^{\text {a }}$	Years	Vessels	$\begin{gathered} \text { Data } \\ \text { Type }{ }_{b} \\ \hline \end{gathered}$	Observer Coverage ${ }^{\text {c }}$	Observed Serious Injury	Observed Mortality	Estimated Serious Injury	Estimated Mortality ${ }^{\text {d }}$	Estimated Combined Mortality	$\begin{gathered} \text { Estimated } \\ \text { CVs } \\ \hline \end{gathered}$	Mean Annual Mortality
Northeast Bottom Trawl	00-04	unk	Obs. Data, Dealer, VTR Data	$.01, .01$, $.03, .04$, .05	0,0, 0,0, 0	0,0, $1,0,3$	0,0, 0,0, 0	unk	unk	unk	unk
Mid- Atlantic Bottom Trawl	00-04	unk	Obs. Data, Dealer	$.01, .01$, $.01, .01$, .03	0,0, 0,0, 0	$3,2,0,0$, 9	0,0, 0,0, 0	unk	unk	unk	unk
TOTAL											unk
a. The fisheries listed in Table 2. reflect new definitions defined by the proposed List of Fisheries for 2005 (FR Vol. 69, No. 231, 2004). The 'North Atlantic bottom trawl' fishery is now referred to as the 'Northeast bottom trawl. The Illex, Loligo and Mackerel fisheries are now part of the 'mid-Atlantic bottom trawl' and 'mid-Atlantic midwater trawl' fisheries. b. Observer data (Obs. Data), used to measure bycatch rates, are collected within the Northeast Fisheries Observer Program. NEFSC collects landings data (Dealer reported data) which are used as a measure of total landings and mandatory Vessel Trip Reports (VTR) (Trip Logbook) that are used to determine the spatial distribution of landings and fishing effort. c. Observer coverage for trawl fisheries is measured in trips. d. The data used to predict bycatch rates to estimate annual mortality were pooled over the years 2000-2004. The data are treated as one data set and assumed to represent average fishing practices during the time period. Regression techniques within a model framework were applied to the pooled data set. Therefore, if there was no observed bycatch reported for any one given year, this does not imply that there was no bycatch during that year. The exception would be if year was selected by the model as an important factor associated with observing bycatch.											

CANADA

Between January 1993 and December 1994, 36 Spanish deep water trawlers, covering 74 fishing trips (4,726 fishing days and 14,211 sets), were observed in NAFO Fishing Area 3 (off the Grand Banks) (Lens 1997). A total of 47 incidental catches were recorded, which included 1 common dolphin. The incidental mortality rate for common dolphins was $0.007 /$ set.

Other Mortality

From 2000 to 2004, 466 common dolphins were reported stranded between Maine and Florida (Table 3). The total includes mass stranded common dolphins in Massachusetts during 2002 (9 animals); and in North Carolina in 2001 (7 animals). Three common dolphins stranded alive in Massachusetts in 2000 were released. In 2001, the causes of death of one stranding mortality in Virginia and another animal in North Carolina were designated as human interactions/fishing interactions. Similarly in 2002, one stranding in New York and another animal in Virginia were designated as human interactions/fishery interactions.

Common dolphins were involved in two Unusual Mortality Events (UMEs) in 2004. The first occurred along the coast of Virginia from May to July 2004, when 66 small cetaceans, including four common dolphins, stranded mostly along the outer (eastern) coast of Virginia's barrier islands. Human interaction was implicated in one of the common dolphins. The second UME was declared when 36 small cetaceans, including 3 common dolphins, stranded from Maryland to Georgia between 3 July and 2 December 2004.

Four common dolphin strandings (6 individuals) were reported on Sable Island, Nova Scotia from 1996 to 1998 (Lucas and Hooker 1997; Lucas and Hooker 2000).

Table 3. Common dolphin (Delphinus delphis) reported strandings along the U.S. Atlantic coast, 2000-2004.						
STATE	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	$\mathbf{2 0 0 3}$	$\mathbf{2 0 0 4}$	TOTAL
Maine	0	1	0	0	0	1
Massachusetts a	10	8	34	21	26	99
Rhode Island	5	0	1	2	1	9
Connecticut	1	0	0	0	0	9
New York	4	6	5	11	3	1
New Jersey	5	5	1	6	8	29
Delaware	1	1	1	1	2	35
Maryland	3	2	0	0	4	6
Virginia						

Stranding data probably underestimate the extent of fishery-related mortality and serious injury because all of the marine mammals that die or are seriously injured may not wash ashore, nor will all of those that do wash ashore
necessarily show signs of entanglement or other fishery-interaction. Finally, the level of technical expertise among stranding network personnel varies widely as does the ability to recognize signs of fishery interaction.

STATUS OF STOCK

The status of common dolphins, relative to OSP, in the U.S. Atlantic EEZ is unknown. The species is not listed as threatened or endangered under the Endangered Species Act. There are insufficient data to determine the population trends for this species. The total U.S. fishery-related mortality and serious injury for this stock is not less than 10% of the calculated PBR and, therefore, cannot be considered to be insignificant and approaching zero mortality and serious injury rate. The status of the stock is unknown.

REFERENCES CITED

Barlow, J., S.L. Swartz, T.C. Eagle, and P.R. Wade. 1995. U.S. Marine Mammal Stock Assessments: Guidelines for Preparation, Background, and a Summary of the 1995 Assessments. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-6, 73 pp.
Buckland, S.T., D.R. Andersen, K.P. Burnham and J.L. Laake. 1993. Distance sampling: Estimating abundance of biological populations. Chapman and Hall, New York, 446 pp.
Buckland, S.T., D.R. Andersen, K.P Burnham, J.L. Laake, D.L. Borchers, and L. Thomas. 2001. Introduction to Distance Sampling estimating abundance of biological populations. Oxford University Press, New York, 432 pp.
CETAP. 1982. A characterization of marine mammals and turtles in the mid- and north Atlantic areas of the U.S. outer continental shelf. Cetacean and Turtle Assessment Program, University of Rhode Island. Final Report, Contract AA51-C78-48, Bureau of Land Management, Washington, DC, 538 pp .
Evans, W.E. 1994. Common dolphin, white-bellied porpoise. Pp 191-224. In: S. H. Ridgway and R. Harrison (eds.). Handbook of marine mammals, Volume 5: The first book of dolphins. Academic Press, San Diego, CA.
Gaskin, D.E. 1992. Status of common dolphin, Delphinus delphis, in Canada. Can. Field Nat. 106:55-63.
Gowans, S. and H. Whitehead. 1995. Distribution and habitat partitioning by small odontocetes in the Gully, a submarine canyon on the Scotian Shelf. Can. J. Zool. 73:1599-1608.
Hain, J.H.W., R.K. Edel, H.E. Hays, S.K. Katona, and J.D. Roanowicz. 1981. General distribution of cetaceans in the continental shelf waters of the northeastern U.S. Pages II1-II277. In: CETAP (Cetacean and Turtle Assessment program), A characterization of marine mammals and turtles in the mid- and north Atlantic areas of the U.S. outer continental shelf, Annual Report for 1979. Contract No. AA551-CT8-48, U.S. Dept. of Interior, Bureau of Land Management, Washington, DC.

Hiby, L. 1999. The objective identification of duplicate sightings in aerial survey for porpoise. Pages 179189 in: G.W. Garner, S.C. Amstrup, J.L. Laake, B.F.J. Manly, L.L. McDonald, and D.G. Robertson. (eds). Marine Mammal Survey and Assessment Methods. Balkema, Rotterdam.
Johnson, D.R., C.A. Brown, and C. Yeung. 1999. Estimates of marine mammal and marine turtle catch by the U.S. Atlantic pelagic longline fleet in 1992-1997. NOAA Technical Memorandum NMFS-SEFSC-418. 70 pp. Available from: NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.
Laake, J.L., S.T. Buckland, D.R. Anderson, and K.P. Burnham. 1993. DISTANCE user's guide, V2.0. Colorado Cooperative Fish \& Wildlife Research Unit, Colorado State University, Ft. Collins, CO. 72 pp .
Lens, S. 1997. Interactions between marine mammals and deep water trawlers in the NAFO regulatory area. ICES CM 1997/Q:8. 10 pp.
Lucas, Z.N. and S.K. Hooker. 1997. Cetacean strandings on Sable Island, Nova Scotia, 1990-1996. Paper SC/49/06 presented to the IWC Scientific Committee, September 1997. 10 pp.
Lucas, Z.N. and S.K. Hooker. 2000. Cetacean strandings on Sable Island, Nova Scotia, 1970-1998. Can. Field- Nat. 114:45-61.
Mullin, K.D. and G.L. Fulling. 2003. Abundance of cetaceans in the southern U.S. North Atlantic Ocean during summer 1998. Fish. Bull., U.S. 101:603-613.
NMFS [National Marine Fisheries Service]. 1993. Cruise results, NOAA ship DELAWARE II, Cruise No. DEL 93-06, Marine mammal Survey. 5 pp. Available from: National Marine Fisheries Service, 166 Water Street, Woods Hole, MA 02543-1026.

Palka, D. 1995. Abundance estimate of the Gulf of Maine harbor porpoise. Rep. int Whal. Commn (Special Issue) 16:27-50.
Palka, D. 1996. Update on abundance of Gulf of Maine/Bay of Fundy harbor porpoises. NOAA/NMFS/NEFSC. Ref. Doc. 96-04, 37 pp.
Palka, D. and P.S. Hammond. 2001. Accounting for responsive movement in line transect estimates of abundance. Can. J. Fish. Aquat. Sci. 58:777-787.
Palka, D. 2005. Aerial surveys in the northwest Atlantic: estimation of $g(0)$. In Proceedings of the workshop on Estimation of $g(0)$ in line-transect surveys of cetaceans, ed. F. Thomsen, F. Ugarte, and P.G.H. Evans. ECS Newletter No. 44 - Special Issue. April 2005. Pgs 12-7.
Palka, D.L. 2006. Summer abundance estimates of cetaceans in US North Atlantic Navy Operating Areas. U.S. Dep. Commer., Northeast Fish. Sci. Cent. Ref. Doc. 06-03, 41 pp.

Payne, P.M., L.A. Selzer, and A.R. Knowlton. 1984. Distribution and density of cetaceans, marine turtles, and seabirds in the shelf waters of the northeastern United States, June 1980-December 1983, based on shipboard observations. NOAA/NMFS Contract No. NA-81-FA-C-00023. 245 pp.
Selzer, L.A. and P.M. Payne. 1988. The distribution of white-sided (Lagenorhynchus acutus) and common dolphins (Delphinus delphis) vs. environmental features of the continental shelf of the northeastern United States. Mar. Mammal. Sci. 4(2):141-153.
Sergeant, D. E., A. W. Mansfield, and B. Beck. 1970. Inshore records of cetacea for eastern Canada, 1949-68. J. Fish. Res. Bd. Can. 27:1903-1915.
Wade, P.R. and R.P. Angliss. 1997. Guidelines for assessing marine mammal stocks: Report of the GAMMS Workshop April 3-5, 1996, Seattle, Washington. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-12, 93 pp.
Waring, G.T. 1998. Results of the summer 1991 R/V Chapman marine mammal sighting survey. NOAA NMFS NEFSC, Lab. Ref. Doc. No. 98-09, 21 pp. Available from: NMFS, Northeast Fisheries Science Center, 166 Water Street, Woods Hole, MA 02543,
Waring, G.T., P. Gerrior, P.M. Payne, B.L. Parry, and J.R. Nicolas. 1990. Incidental take of marine mammals in foreign fishery activities off the northeast United States, 1977-1988. Fish. Bull., U.S. 88(2): 347-360.
Waring, G.T., C.P. Fairfield, C.M. Ruhsam, and M. Sano. 1992. Cetaceans associated with Gulf Stream features off the northeastern USA shelf. ICES Marine Mammals Comm. CM 1992/N:12, 29 pp.
Yeung, C. 1999a. Estimates of marine mammal and marine turtle bycatch by the U.S. Atlantic pelagic longline fleet in 1998. NOAA Tech. Memo. NMFS-SEFSC-430, 26 pp.
Yeung, C. 1999b. Revised Mortality Estimates of Marine Mammal Bycatch in 1992-1997 based on Serious Injury Guidelines. NOAA Tech. Memo. NMFS-SEFSC-429, 23 pp. Available from: NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.
Yeung, C., S. Epperly, and C.A. Brown. 2000. Preliminary revised estimates of marine mammal and marine turtle bycatch by the U.S. Atlantic pelagic longline fleet, 1992-1999. NMFS, Miami Lab. PRD Contribution Number 99/00-13. 58 pp. Available from: NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.
Yeung, C. 2001. Estimates of marine mammal and marine turtle bycatch by the U.S. Atlantic pelagic longline fleet in 1999-2000. NOAA Tech. Memo. NMFS-SEFSC-467, 43 pp . Available from: NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.

BOTTLENOSE DOLPHIN (Tursiops truncatus): Western North Atlantic Coastal Morphotype Stocks

STOCK DEFINITION AND GEOGRAPHIC RANGE

Stock Structure of the Coastal Morphotype

A. Latitudinal distribution and structure along the coast

The coastal morphotype of bottlenose dolphin is continuously distributed along the Atlantic coast south of Long Island, around the Florida peninsula and along the Gulf of Mexico coast. On the basis of differences in mitochondrial DNA haplotype frequencies, nearshore animals in the northern Gulf of Mexico and the western North Atlantic represent separate stocks (Curry 1997; Duffield and Wells 2002).

Scott et al. (1988) hypothesized a single coastal migratory stock ranging seasonally from as far north as Long Island, NY, to as far south as central Florida, citing stranding patterns during a high mortality event in 1987-88 and observed density patterns along the US Atlantic coast. More recent studies indicate that the single coastal migratory stock hypothesis is incorrect, and there is a complex mosaic of stocks (NMFS 2001; McLellan et al. 2003).

Recent genetic analyses of samples from northern Florida, Georgia, central South Carolina (primarily the estuaries around Charleston), southern North Carolina, and coastal Virginia, using both mitochondrial DNA and nuclear microsatellite markers, indicate that a significant amount of the overall genetic variation can be explained by differences between these areas (NMFS 2001). These results indicate a minimum of five stocks of coastal bottlenose dolphins along the US Atlantic coast and reject the null hypothesis of one homogeneous population.

Photo-identification studies also support the existence of multiple stocks (NMFS 2001). A coastwide photographic catalogue has been established using contributions from 15 sites from Cape May, NJ, to Cape Canaveral, FL (Urian et al. 1999). No matches have been found between the northernmost and southernmost sites. However, there appears to be a high rate of exchange among northern field sites, where dolphins occur only seasonally, and central North Carolina. Other areas of frequent exchange include Beaufort and Wilmington, NC. In contrast to the patterns found in the northern end of the range, there appears to be less movement between southern field sites.

Satellite-linked radio transmitters have been deployed on dolphins in Virginia Beach, VA, Beaufort, NC, Charleston, SC and New Jersey. The movement patterns of animals with satellite tags provide additional information complementary to other stock identification approaches. The results, along with photo-identification of freeze-branded animals, indicate that a significant number of dolphins reside in North Carolina in summer and do not migrate. A dolphin tagged in Virginia Beach, VA, spent the winter between Cape Hatteras and Cape Lookout, NC., indicating seasonal migration between North Carolina and areas further north (NMFS 2001).

Another potential stock has been identified from stable isotope ratios of oxygen (NMFS 2001). Animals sampled along the beaches of North Carolina between Cape Hatteras and Bogue Inlet during February and March show very low stable isotope ratios of ${ }^{18} \mathrm{O}$ relative to ${ }^{16} \mathrm{O}$ (referred to as depleted ${ }^{18} \mathrm{O}$ or depleted oxygen, Cortese 2000). One possible explanation for the depleted oxygen signature is a resident group of dolphins in Pamlico Sound that move into nearby nearshore areas in the winter. The possibility of a resident group of bottlenose dolphins in Pamlico Sound is supported by results from satellite telemetry and photo-identification results. Alternatively, these animals may represent a component of the migratory animals that spend their summers at the northernmost end of the range of bottlenose dolphins and winter in North Carolina. Either possibility suggests that they represent a separate stock.

There are additional resident estuarine stocks that are likely demographically distinct from coastal stocks, but they are currently included in the coastal management unit definitions. For example, year-round resident populations have been reported at a variety of sites from Charleston, SC (Zolman 2002) to central Florida (Odell and Asper 1990). Seasonal residents and migratory or transient animals also occur in these areas (summarized in Hohn 1997). In the northern part of the range, the patterns reported include seasonal residency, year-round residency with large home ranges, and migratory or transient movements (Barco and Swingle 1996 et al.). Communities of dolphins have been recognized in embayments and coastal areas of the Gulf of Mexico (Wells et al. 1987, Wells et al. 1996; Scott et al. 1990; Weller 1998), and it is not surprising to find similar situations along the Atlantic coast.

In summary, integration of the results from genetic, photo-identification, satellite telemetry, and stable isotope studies confirms a complex mosaic of coastal bottlenose dolphin stocks. Therefore, seven management units within the range of the coastal morphotype of western North Atlantic bottlenose dolphin have been defined (Figure 1). The
true population structure is likely more complex than the seven units identified in this report, and research efforts continue to identify that structure.

Figure 1. Management units of the coastal morphotype of bottlenose dolphin along the Atlantic coast of the US as defined from genetic, stable isotope ratio, photo-identification, and telemetry studies (NMFS 2001).

B. Longitudinal distribution

Aerial surveys conducted between 1978 and1982 (CETAP 1982) north of Cape Hatteras, North Carolina identified two concentrations of bottlenose dolphins, one inshore of the 25 m isobath and the other offshore of the 50 m isobath. The lowest density of bottlenose dolphins was observed over the continental shelf, with higher densities along the coast and near the continental shelf edge. It was suggested, therefore, that the coastal morphotype is restricted to waters $<25 \mathrm{~m}$ deep north of Cape Hatteras (Kenney 1990). Similar patterns were observed during summer months north of Cape Lookout, NC in more recent aerial surveys (Garrison and Yeung 2001; Garrison et al. 2003). However, south of Cape Lookout during both winter and summer months, there was no clear longitudinal discontinuity in bottlenose dolphin sightings (Garrison and Yeung 2001; Garrison et al. 2003).

Dolphin groups observed during aerial surveys cannot be attributed to a specific morphotype based on sighting information alone. Genetic analysis of tissue samples can be used to identify animals to a specific morphotype (Hoelzel et al. 1998, P. Rosel SEFSC unpublished results). An analysis of tissue samples from large vessel surveys during the summers of 1998 and 1999 indicated that bottlenose dolphins within 7.5 km from shore were most likely of the coastal morphotype, and there was an extensive region of overlap between the coastal and offshore morphotypes between 7.5 and 34 km from shore south of Cape Hatteras, NC (Torres et al. 2003). However, relatively few samples were available from the region of overlap, and therefore the longitudinal boundaries based on these initial analyses are uncertain (Torres et al. 2003). Extensive systematic biopsy sampling efforts were conducted in the summers of 2001 and 2002 to supplement collections from large vessel surveys. During the winters of 2002 and 2003, additional biopsy collection efforts were conducted in nearshore continental shelf waters of North Carolina and Georgia. A small number of additional biopsy samples were collected in deeper continental shelf waters south of Cape Hatteras during winter 2002. Genetic analyses of these biopsies identified individual animals to the coastal or offshore morphotype. Based upon the genetic results from all surveys combined, a logistic regression approach was used to model the probability that a particular bottlenose dolphin group is of the coastal morphotype as a function of environmental variables including depth, sea surface temperature, and distance from shore. These models were used to partition the bottlenose dolphin groups observed during aerial surveys between the two overlapping morphotypes (Garrison et al. 2003).

The genetic results and spatial patterns observed in aerial surveys indicate both regional and seasonal differences in the longitudinal distribution of the two morphotypes in coastal Atlantic waters. North of Cape Lookout, NC (i.e., northern migratory and northern North Carolina management units) during summer months, the previously observed pattern of strong nearshore aggregation of bottlenose dolphins was again observed. All biopsy samples collected from nearshore waters ($<20 \mathrm{~m}$ deep) were of the coastal morphotype and all samples collected in deeper waters ($>40 \mathrm{~m}$ deep) were of the offshore morphotype. The genetic results confirm separation of the two populations in this region during summer months. South of Cape Lookout, NC, the probability of an observed bottlenose dolphin group being of the coastal morphotype declined with increasing depth; however, there was significant spatial overlap between the two morphotypes. Offshore morphotype bottlenose dolphins were observed at depths as shallow as 13 m , and coastal morphotype dolphins were observed at depths of 31 m and 75 km from shore (Garrison et al. 2003). These results indicate significant overlap between the two morphotypes in the southern management units during summer months.

Winter samples were collected primarily from nearshore waters in North Carolina and Georgia. The vast majority of samples collected in nearshore waters of North Carolina during winter were of the coastal morphotype; however, one offshore morphotype group was sampled during November just south of Cape Lookout, North Carolina only 7.3 km from shore. Coastal morphotype samples were also collected further away from shore at 33 m depth and 39 km from shore. The logistic regression model for this region indicated a decline in the probability of a coastal morphotype group with increasing distance from shore; however, the model predictions are highly uncertain due to limited sample sizes and high overlap between the two morphotypes. Samples collected in Georgia waters also indicated significant overlap between the two morphotypes with a declining probability of the coastal morphotype with increasing depth. A coastal morphotype sample was collected well offshore at a distance of 112 km from shore and a depth of 38 m . An offshore sample was collected in 22 m depth at 40 km from shore. As with the North Carolina model, the Georgia logistic regression predictions are uncertain due to limited sample size and high overlap between the two morphotypes (Garrison et al. 2003). The logistic regression models were used to predict the probability that an observed bottlenose group is of the coastal morphotype as a function of habitat variables and spatial location. There remain significant sampling gaps in the biopsy collections, particularly during winter months, that increase the uncertainty of model predictions. Both the predicted probability of a coastal morphotype occurring and the associated uncertainty in that prediction are incorporated into the abundance estimates for coastal morphotype bottlenose dolphin management units.

POPULATION SIZE

Previous abundance estimates for the coastal morphotype of WNA bottlenose dolphin were based primarily upon aerial surveys conducted during the summer and winter of 1995. The surveys were designed based upon the previous assumption of a single coastal migratory stock, and therefore they did not provide complete seasonal and spatial coverage for the more recently defined management units. Previous abundance estimates were also not corrected for visibility bias (Garrison and Yeung 2001). Aerial surveys to update the abundance estimates were conducted during winter (January-February) and summer (July-August) of 2002. Survey tracklines were set perpendicular to the shoreline and included coastal waters to depths of 40 m . The surveys employed a stratified design so that most effort was expended in waters shallower than 20 m deep where a high proportion of observed bottlenose dolphins were expected to be of the coastal morphotype. Survey effort was also stratified to optimize coverage in seasonal management units. The surveys employed two observer teams operating independently on the same aircraft to estimate visibility bias.

The winter survey included the region from the Georgia/Florida state line to the southern edge of Delaware Bay. A total of $6,411 \mathrm{~km}$ of trackline was completed during the survey, and 185 bottlenose dolphin groups were sighted including 2,114 individual animals. No bottlenose dolphins were sighted north of Chesapeake Bay corresponding to water temperatures $<9.5 \mathrm{EC}$. During the summer survey, $6,734 \mathrm{~km}$ of trackline were completed between Sandy Hook, NJ and Ft. Pierce, FL. All tracklines in the $0-20 \mathrm{~m}$ stratum were completed throughout the survey range while offshore lines were completed only as far south as the Georgia-Florida state line. A total of 185 bottlenose dolphin groups was sighted during summer including 2,544 individual animals.

Abundance estimates for bottlenose dolphins in each management unit were calculated using line transect methods and distance analysis (Buckland et al. 2001). The independent and joint estimates from the two survey teams were used to quantify the probability that animals available to the survey on the trackline were missed by the observer teams, or perception bias, using the direct duplicate estimator (Palka, 1995). These estimates were further partitioned between the coastal and offshore morphotypes based upon the results of the logistic regression models and spatial analyses described above. A parametric bootstrap approach was used to incorporate the uncertainty in
the logistic regression models into the overall uncertainty in the abundance estimates for each management unit (Garrison et al. 2003).

The aerial surveys included only animals in coastal waters, and the resulting abundance estimates therefore do not include animals inside estuaries that are currently included in the defined management units. An abundance estimate was generated for bottlenose dolphins in estuaries from the North Carolina-South Carolina border to northern Pamlico Sound using mark-recapture methodology (Read et al. 2003), and these estimates were poststratified to be consistent with management unit definitions (Palka et al. 2001a; Table 1). Since abundance estimates do not exist for all estuarine waters, the population estimates and PBRs for these management units are negatively biased.

Bottlenose dolphins in the northern migratory stock migrate south during winter months and overlap with those from the northern North Carolina and southern North Carolina management units. It is not possible at this time to apportion the incidental mortality occurring during winter months in North Carolina waters among animals from these three management units. Therefore, a half-year PBR value is applied for each management unit in the summer based upon abundance estimates from summer aerial surveys. During winter months, these three stocks overlap spatially and a half-year PBR is applied to the North Carolina mixed management unit based upon winter aerial survey abundance estimates. For the South Carolina and Georgia management units, the abundance estimates, minimum population size values, and the resulting PBR values are derived using a weighted average of abundance estimates from the winter and summer 2002 aerial surveys. The northern Florida management unit was only surveyed during the summer of 2002 and the winter of 1995 . The resulting abundance estimate is therefore a weighted average of the seasonal estimates from the available surveys. Finally, the central Florida management unit was only covered during the 1995 surveys. Due to the age of the available abundance estimates, the PBR of the northern and central Florida management units were set to "undefined".

Table 1. Estimates of abundance and the associated CV, $\mathrm{N}_{\text {min }}$, and PBR for each stock of WNA coastal bottlenose dolphins (Garrison et al. 2003). The PBR for the Northern Migratory, Northern NC, and Southern NC management units are applied semi-annually. South of NC, the PBR is applied annually. Except where noted, abundance estimates and PBR values do not include estuarine animals. The recovery factor (Fr) used to calculate PBR for each stock is based upon the CV of the abundance estimate based on the guidelines in Wade and Angliss (1997).						
Unit	Best Abundance		$\mathrm{N}_{\text {min }}$	Recovery Factor (Fr)	PBR	
	Estimate	CV			Annual	1/2 Yr
SUMMER (May - October)						
Northern migratory	17,466	0.19	14,621	0.50	(146.2)	73.1
Northern NC						
oceanic	6,160	0.52	3,255	0.48	(31.2)	15.6
Estuary ${ }^{\text {d }}$	919	0.13	828	0.50	(8.2)	4.2
BOTH	7,079	0.45	4,083	0.48	(39.2)	19.6
Southern NC						
oceanic	3,645	1.11	1,863	0.40	(14.9)	7.5
Estuary ${ }^{\text {d }}$	141	0.15	124	0.50	(1.2)	0.6
BOTH	3,786	1.07	1,987	0.40	(15.9)	7.9
WINTER (November - April)						
NC mixed ${ }^{\text {a }}$	16,913	0.23	13,558	0.50	(135.6)	67.8
ALL YEAR						
South Carolina	2,325	0.20	1,963	0.50	19.6	unk
Georgia	2,195	0.30	1,716	0.50	17.2	unk
Northern Florida ${ }^{\text {b,c }}$	448	0.38	unk	unk	unk	unk
Central Florida ${ }^{\text {c }}$	10,652	0.46	unk	unk	unk	unk
a. \quad NC mixed $=$ northern migratory, Northern NC, and Southern NC b. Northern Florida estimates are a weighted mean of abundance estimates from the winter 1995 survey and the summer 2002 survey. Due to the age of the winter abundance estimate, PBR cannot be calculated for this stock. c. Northern and Central Florida estimates include data from the winter 1995 survey and cannot be used to determine PBR due to their age. d. Read et al. 2003						

Minimum Population Estimate

The minimum population size (Nmin) for each stock was calculated as the lower bound of the 60% confidence interval for a lognormally distributed mean (Wade and Angliss 1997). For the estimates derived from bootstrap resampling, the appropriate Nmin was taken directly from the bootstrap distribution of abundance estimates. These estimates may be negatively biased because they do not include estuarine animals and do not fully account for visibility bias. Minimum population sizes for each stock are shown in Table 1.

Current Population Trend

There are insufficient data to determine the population trend for these stocks .

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Current and maximum net productivity rates are not known for the WNA coastal morphotype. The maximum net productivity rate was assumed to be 0.04 . This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive life history (Barlow et al. 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential Biological Removal (PBR) is the product of the minimum population size, one-half the maximum productivity rate, and a recovery factor (Wade and Angliss 1997). This complex of management units incorporates the range of the former WNA coastal migratory stock that was defined as depleted under MMPA guidelines. At least some of these management units are likely depleted relative to their optimum sustainable population (OSP) size due both to mortality during the 1987-1988 die-off and high incidental mortality in fisheries relative to PBR. Given the known population structure within the coastal morphotype bottlenose dolphins, it is appropriate to apply PBR separately to each management unit so as to achieve the goals of the MMPA (Wade and Angliss 1997).

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

Total estimated average annual fishery related mortality during 1996-2000 was 233 bottlenose dolphins $(\mathrm{CV}=0.16)$ in the mid-Atlantic coastal gillnet fishery. The management units affected by this fishery are the northern migratory, northern North Carolina, and southern North Carolina management units. An estimated 6 (CV= 0.89) mortalities occurred annually in the shark drift gillnet fishery off the coast of Florida during 1999-2002, affecting the Central Florida management unit. No observer data are available for other fisheries that may interact with WNA coastal bottlenose dolphins. Therefore, the total average annual mortality estimate is considered to be a lower bound of the actual annual human-caused mortality for each stock.

Fishery Information

Bottlenose dolphins interact with commercial fisheries and occasionally are taken in fishing gear including gillnets, seines, long-lines, shrimp trawls, and crab pots (Read 1994; Wang et al. 1994) in near-shore areas where dolphin density and fishery effort are greatest. There are nine Category II commercial fisheries that interact with WNA coastal bottlenose dolphins in the 2003 MMPA List Of Fisheries (LOF), six of which occur in North Carolina waters. Category II fisheries include the mid-Atlantic coastal gillnet, NC inshore gillnet, mid-Atlantic haul/beach seine, NC long haul seine, NC stop net, Atlantic blue crab trap/pot, Southeast Atlantic gillnet, Southeastern U.S. Atlantic shark gillnet and the Virginia pound net (see 2003 List of Fisheries, 68 FR 41725, July 15 2003). The midAtlantic haul/beach seine fishery also includes the haul seine and swipe net fisheries. The term mid-Atlantic refers to the geographic area south of Long Island, landward to $72^{\circ} 30^{\prime} \mathrm{W}$ longitude, and north of the line extending due east from the North Carolina/South Carolina border (66 FR 6545, January 22 2001).

There are five Category III fisheries that may interact with WNA coastal bottlenose dolphins. Three of these are inshore gillnet fisheries: the Delaware Bay inshore gillnet, the Long Island Sound inshore gillnet, and the Rhode Island, southern Massachusetts, and New York Bight inshore gillnet. The remaining two are the shrimp trawl and mid-Atlantic menhaden purse seine fisheries. There have been no takes observed in these fisheries in recent years and no systematic observer coverage.

Mid-Atlantic Gillnet

This fishery has the highest documented level of mortality of WNA coastal morphotype bottlenose dolphins, and the North Carolina sink gillnet fishery is its largest component in terms of fishing effort and observed takes. Of 12 observed mortalities between 1995 and 2000, 5 occurred in sets targeting spiny or smooth dogfish and another in a set targeting "shark" species, 2 occurred in striped bass sets, 2 occurred in Spanish mackerel sets, and the
remainder were in sets targeting kingfish, weakfish, or finfish generically (Rossman and Palka 2001). Only two bottlenose dolphin mortalities were observed in 2001-2002, both occurring in the winter mixed North Carolina unit. The overall estimated level of mortality has declined during the past two years associated with reductions in fishery effortand reduced observed bycatch (Rossman and Palka in review). Due to these significant changes in the behavior of the fishery, bycatch estimates for these fisheries are separated into two periods: 1996 to 2000 and 2001to 2002 (Table 2). The mortality estimates for the coastal gillnet fishery have not been updated for 2003 and 2004. These will be updated for the 2007 stock assessment report.

Table 2. Summary of the 1996-2002 incidental mortality of bottlenose dolphins (Tursiops truncatus) by management unit in the commercial mid-Atlantic coastal gillnet fisheries. Data include the years sampled (Years), the number of vessels active within the fishery (Vessels), type of data used (Data Type), observer coverage (Observer Coverage), mortalities recorded by on-board observers (Observed Mortality), estimated annual mortality (Estimated Mortality), estimated CV of the annual mortality (Estimated CVs), and mean annual mortality (CV in parentheses).											
Seasonal Management Unit	Years	Vessels	Data Type ${ }^{\text {a }}$	Observer Coverage ${ }^{\text {b }}$	Observed Serious Injury	Observed Mortality	Estimated Mortality ${ }^{\text {d }}$	$\begin{aligned} & \text { Estimated } \\ & \mathrm{CVs}^{\mathrm{c}} \end{aligned}$	Mean Annual Mortality		
Summer Northern Migratory	1996-2000	unk	Obs. Data, NER Dealer Data	$\begin{gathered} .05, .03, .02 \\ .03, .03 \end{gathered}$	$\begin{gathered} 0,0,0 \\ 0,0 \end{gathered}$	$\begin{gathered} 0,0,1, \\ 1,1, \end{gathered}$	$\begin{gathered} 33,30,37, \\ 19,30 \end{gathered}$	$\begin{gathered} 0.48,0.48, \\ 0.48,0.48, \\ 0.48 \end{gathered}$	$\begin{gathered} 30 \\ (0.22) \end{gathered}$		
	2001-2002			.02, . 01	0, 0	0, 0	11,11	$\begin{aligned} & \hline 0.35, \\ & 0.35 \end{aligned}$	11 (0.25)		
Summer Northern NC	1996-2000	unk	Obs. Data, NCDMF Dealer Data	$\begin{gathered} .01, .00,<.01 \\ .01, .03 \end{gathered}$	$\begin{gathered} 0,0,0 \\ 0,0 \end{gathered}$	$\begin{gathered} 1,0,0 \\ 0,0 \end{gathered}$	$\begin{gathered} 27,33,17, \\ 13,26 \end{gathered}$	$\begin{gathered} 0.61,0.61, \\ 0.61,0.61, \\ 0.61 \end{gathered}$	$\begin{gathered} 23 \\ (0.29) \end{gathered}$		
	2001-2002			. $01,<.01$	0, 0	0, 0	8, 8	1.06, 1.06	8 (0.75)		
Summer Southern NC	1996-2000	unk	Obs. Data, NCDMF Dealer Data	$\begin{gathered} .00, .00, .01 \\ .03, .03 \end{gathered}$	$\begin{gathered} 0,0,0 \\ 0,0 \end{gathered}$	$\begin{gathered} 0,0,0 \\ 0,0 \end{gathered}$	$\begin{gathered} 0,0,0 \\ 0,0 \end{gathered}$	NA	$\begin{gathered} 0 \\ (\mathrm{NA}) \end{gathered}$		
	2001-2002			. 02, , $<.01$	0, 0	0, 0	0, 0	NA	0 (NA)		
Winter NC mixed	1996-2000	unk	Obs. Data, NCDMF Dealer Data	$\begin{gathered} .01, .01, .02 \\ .02, .02 \end{gathered}$	$\begin{gathered} 0,0,0 \\ 0,0 \end{gathered}$	$\begin{gathered} 1,0,1, \\ 2,2, \end{gathered}$	$\begin{gathered} 173,211,175 \\ 196,146, \end{gathered}$	$\begin{gathered} \hline 0.46,0.46 \\ 0.46,0.46 \\ 0.46 \end{gathered}$	180 (0.21)		
	2001-2002			. $01, .01$	0, 0	0, 2	67, 50	$\begin{aligned} & \hline 0.45, \\ & 0.45 \end{aligned}$	58 (0.32)		
Total	2001-2002 Only								77 (0.26)		
NA=Not Available a Observer data (Obs. data) are used to measure bycatch rates; the data are collected within the Northeast Fisheries Science Center (NEFSC) Sea Sampling Program. The NEFSC collects weighout landings data that are used as a measure of total effort for the sink gillnet fisheries. b The observer coverage for the mid-Atlantic coastal sink gillnet fishery is measured as a proportion of the tons of fish landed. c. The annual estimates of mortality from 1998-2000 were generated by applying one bycatch rate per management unit as estimated by a generalized linear model (Palka and Rossman 2001). The CV does not account for variability that may exist in the unit of total landings (mt) from each year that are used to expand the bycatch rate. Therefore, the CV is the same for all five annual estimates. d. The annual estimates of mortality from 2001-2002 were generated by applying the same method used in Palka and Rossman (2001). An new factor variable was added to the model to separate the time series of historical data (1996-2000) from data collected during the recent time period (2001-2002) (Rossman and Palka in review).											

South Atlantic Shark Drift Gillnet

Observed takes of bottlenose dolphins occurred primarily during winter months when the fishery operates in waters off of southern Florida. Fishery observer coverage outside of this time and area has increased significantly in the last 2 years, and there was one observed mortality during summer months in fishing operations off Cape Canaveral, FL. All observed fishery takes are restricted to the Central Florida management unit of coastal bottlenose dolphin. Total bycatch mortality has been estimated for 2000-2004 following methods described in (Garrison 2003, Table 3).

Table 3. Summary of the 2000-2004 incidental mortality of bottlenose dolphins (Tursiops truncatus) by management unit in the driftnet fishery in federal waters off the coast of Florida. Data include years sampled (Years), number of vessels active within the fishery (Vessels), type of data used (Data Type), annual observer coverage (Observer Coverage), mortalities recorded by on-board observers (Observed Mortality), estimated annual mortality (Estimated Mortality), estimated CV of the annual mortality (Estimated CVs), and mean annual mortality (CV in parentheses).

| Seasonal
 Management
 Unit | Years | Vessels | Data
 Type $^{\text {a }}$ | Observer
 Coverage $^{\mathrm{b}}$ | Observed
 Serious
 Injury | Observed
 Mortality | Estimated
 Mortality | Estimated
 CVs | Mean Annual
 Mortality |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Northern Florida | $2000-$ | | | | | | | | |
| 2004 | 6 | Obs.
 Data,
 SEFSC
 FVL | $0.23,0.07$,
 $0.20,0.05$,
 0.10 | $0,0,0,0,0$ | $0,0,0,0,0$ | $0,0,0,0,0$ | NA | 0 | |
| Central Florida | $2000-$ | 6 | Obs.
 Data,
 SEFSC
 FVL | $0.15,0.42$,
 $0.25,0.09$,
 0.19 | $0,0,0,0,0$ | $1,4,1,2,0$ | $2,4,7,13,0$ | $1,0,1, .81$,
 NA | 5 (0.49) |

a. Observer data are used to estimate bycatch rates. The SEFSC Fishing Vessel Logbook (FVL) is used to estimate effort as total number of vessel trips per bottlenose dolphin management unit.
b. Observer coverage in the central Florida management unit approaches 100% during the period between January - March south of $27^{\circ} 51^{\prime} \mathrm{N}$ latitude.

Beach Haul Seine

Two coastal bottlenose dolphin takes were observed in the mid-Atlantic beach haul seine fishery: 1 in May 1998 and 1 in December 2000.

Crab Pots

Between 1994 and 1998, 22 bottlenose dolphin carcasses (4.4 dolphins per year on average) recovered by the Stranding Network between North Carolina and Florida's Atlantic coast displayed evidence of possible interaction with a trap/pot fishery (i.e., rope and/or pots attached, or rope marks). Additionally, at least 5 dolphins were reported to be released alive (condition unknown) from blue crab traps/pots during this time period. During 2003, two bottlenose dolphins were observed entangled in crab pot lines in South Carolina.

Virginia Pound Nets

Stranding data for 1993-1997 document interactions between WNA coastal bottlenose dolphins and pound nets in Virginia. Two bottlenose dolphin carcasses were found entangled in the leads of pound nets in Virginia during 1993-1997, an average of 0.4 bottlenose dolphin strandings per year. A third record of an entangled bottlenose dolphin in Virginia in 1997 may have been associated with this fishery. This entanglement involved a bottlenose dolphin carcass found near a pound net with twisted line marks consistent with the twine in the nearby pound net lead rather than with monofilament gillnet gear.

Shrimp Trawl

One bottlenose dolphin was recovered dead from a shrimp trawl in Georgia in 1995 (Southeast USA Marine Mammal Stranding Network unpublished data), and another was taken in 1996 near the mouth of Winyah Bay, SC, during a research survey. No other bottlenose dolphin mortality or serious injury has been reported to NMFS. There has been very little systematic observer coverage of this fishery during the last decade.

Menhaden Purse Seine

The Atlantic menhaden purse seine fishery historically reported an annual incidental take of 1 to 5 bottlenose dolphins (NMFS 1991, pp. 5-73). However, no observer data are available, and this information has not been updated for some time.

Other Mortality

From 1997 to 2001, 1,654 bottlenose dolphins were reported stranded along the Atlantic coast from New York to Florida (Hohn and Martone 2001; Hohn et al. 2001; Palka et al. 2001b, Northeast Regional Stranding Program, Southeast Regional Stranding Program). Between 2002 and 2004, 963 bottlenose dolphins stranded along the Atlantic coast from New York to Florida (Table 4). Of these, it was possible to determine whether or not a human
interaction had occurred for 487 (51%); for the remainder it was not possible to make that determination. Of those cases where a cause could be determined, 32% of the carcasses were determined to have been involved in a fisheries interaction. However, this proportion ranged widely and was highest for Virginia (60%) and North Carolina (40\%). Stranded carcasses are not routinely identified to either the offshore or coastal morphotype of bottlenose dolphin, therefore it is possible that some of the reported strandings were of the offshore form.

The nearshore habitat occupied by the coastal morphotype is adjacent to areas of high human population and in the northern portion of its range is highly industrialized. The blubber of stranded dolphins examined during the 1987-88 mortality event contained anthropogenic contaminants in levels among the highest recorded for a cetacean (Geraci 1989). There are no estimates of indirect human-caused mortality resulting from pollution or habitat degradation.

Table 4. Summary of bottlenose dolphins stranded along the Atlantic Coast of the US. Total Stranded is further stratified into carcasses with signs of human interaction, those without any signs, and those where human interaction could not be determined (CBD). Human Interaction is stratified into stranded animals with line or nets marks or gear attached (Fishery Interaction), and other indications of human interactions such as propellor wounds, mutilation, or gunshot wounds. Florida strandings include only the Atlantic coast of Florida extending to Key West.

STATE			
New York Total Stranded	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{0}$
Human Interaction			
---- Fishery Interaction	0	0	0
--- Other	0	0	0
No Human Interaction	0	1	0
CBD	1	1	0
New Jersey Total Stranded	$\mathbf{1 1}$	$\mathbf{7}$	$\mathbf{1 5}$
Human Interaction			
---- Fishery Interaction	1	1	1
--- Other	1	0	1
No Human Interaction	4	5	11
CBD	5	1	2
Delaware Total Stranded	$\mathbf{1 3}$	$\mathbf{1 8}$	16
Human Interaction			
---- Fishery Interaction	1	1	1
--- Other	0	0	0
No Human Interaction	8	13	11
CBD	4	4	4
Maryland Total Stranded	$\mathbf{5}$	$\mathbf{1 0}$	$\mathbf{1 0}$
Human Interaction			
---- Fishery Interaction	0	1	1
--- Other	0	0	0
No Human Interaction	2	8	6
CBD	3	1	3
Virginia Total Stranded	$\mathbf{6 8}$	$\mathbf{6 0}$	$\mathbf{7 5}$
Human Interaction			
---- Fishery Interaction	15	25	22
--- Other	6	0	2
No Human Interaction	7	12	13
CBD	39	23	38

STATE	$\mathbf{2 0 0 2}$	$\mathbf{2 0 0 3}$	$\mathbf{2 0 0 4}$
N. Carolina Total Stranded	$\mathbf{9 4}$	$\mathbf{6 9}$	$\mathbf{8 8}$
Human Interaction			
---- Fishery Interaction	13	11	15
--- Other	2	0	1
No Human Interaction	15	16	22
CBD	62	42	50
S. Carolina Total Stranded	$\mathbf{2 8}$	$\mathbf{3 5}$	$\mathbf{4 6}$
Human Interaction			
---- Fishery Interaction	4	3	3
--- Other	0	0	3
No Human Interaction	13	17	22
CBD	11	15	18
Georgia Total Stranded	$\mathbf{1 1}$	$\mathbf{1 7}$	$\mathbf{2 7}$
Human Interaction			
---- Fishery Interaction	0	0	3
---- Other	0	0	1
No Human Interaction	0	2	9
CBD	11	15	14
Florida Total Stranded	$\mathbf{8 2}$	$\mathbf{7 4}$	$\mathbf{8 1}$
Human Interaction			
---- Fishery Interaction	8	11	7
--- Other	2	0	2
No Human Interaction	50	21	27
CBD	22	42	45
Total	$\mathbf{3 1 3}$	$\mathbf{2 9 2}$	$\mathbf{3 5 8}$

STATUS OF STOCKS

The coastal migratory stock was designated as depleted under the MMPA. From 1995 to 2001, NMFS recognized only a single migratory stock of coastal bottlenose dolphins in the WNA, and the entire stock was listed as depleted. The management units in this report now replace the single coastal migratory stock. A re-analysis of the depletion designation on a management unit basis needs to be undertaken. In the interim, because one or more
of the management units may be depleted, all management units retain the depleted designation. In addition, mortality exceeded PBR in the North Carolina winter mixed stocks during the period from 1996 to 2000 (Table 1). The total U.S. fishery-related mortality and serious injury for most stocks is not less than 10% of the calculated PBR and, therefore, cannot be considered to be insignificant and approaching zero mortality and serious injury rate. The species is not listed as threatened or endangered under the Endangered Species Act, but the management units are strategic stocks due to the depleted listing under the MMPA.

REFERENCES CITED

Barco, S.G. and W.M. Swingle. 1996. Sighting patterns of coastal migratory bottlenose dolphins (Tursiops truncatus) in the nearshore waters of Virginia and North Carolina. Final Report to the Virginia Dept. of Environmental Quality, Coastal Resources Management Program through Grant \#NA47OZ0287-01 from NOAA, Office of Ocean and Coastal Resource Management. 32 pp.
Barlow, J., S.L. Swartz, T.C. Eagle, and P.R. Wade. 1995. U.S. Marine Mammal Stock Assessments: Guidelines for Preparation, Background and a Summary of the 1995 Assessments. NOAA Technical Memorandum NMFS-OPR-6, 73 pp .
Bellman, S.A., J.A. Music, R.C. Klinger, R.A. Byles, J.A. Keinath, and D.E. Barnard. 1997. Ecology of Sea Turtles in Virginia. Final Report to National Marine Fisheries Service Northeast Region. Contract number NA80FAC-00004. Virginia Institute of Marine Science, Gloucester Point, Virginia.
Buckland, S.T., D.R. Andersen, K.P Burnham, J.L. Laake, D.L. Borchers, and L. Thomas. 2001. Introduction to Distance Sampling estimating abundance of biological populations. Oxford University Press, New York, 432 pp .
Carlson, J.K. and D. Lee. 2000. The directed shark drift gillnet fishery: Catch and bycatch 1998-1999. NMFS/SEFSC/Sustainable Fisheries Division \#SFD-99/00-87.
Cortese, N.A. 2000. Delineation of bottlenose dolphin populations in the western Atlantic Ocean using stable isotopes. Master's thesis, University of Virginia, 118 pp.
Curry, B. E. 1997. Phylogenetic relationships among bottlenose dolphins (genus Tursiops) in a world-wide context. Ph.D. dissertation, Texas A\&M University, Texas, USA. 138 pp.
CETAP (Cetacean and Turtle Assessment Program). 1982. A Characterization of Marine Mammals and Turtles in the Mid- and North Atlantic Areas of the U.S. Outer Continental Shelf, Final Report, Contract AA551-CT8- 48, U.S. NTIS PB83-215855, Bureau of Land Mgmt, Wash., DC, 576 pp.
Duffield, D.A. and R.S. Wells. 2002. The molecular profile of a resident community of bottlenose dolphins, Tursiops truncatus. Pages 3-11 in C.J. Pfeiffer (ed.), Molecular and Cell Biology of Marine Mammals. Krieger Publishing Co., Melbourne, FL.
Garrison, L.P. 2003. Protected species interactions with the directed shark gillnet fishery off Florida and Georgia from 1999-2002. NMFS/SEFSC Internal report. Available from: Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.
Garrison, L.P., P.E. Rosel, A.A. Hohn, R. Baird, and W. Hoggard. 2003. Abundance of the coastal morphotype of bottlenose dolphin Tursiops truncatus, in U.S. continental shelf waters between New Jersey and Florida during winter and summer 2002. NMFS/SEFSC report prepared and reviewed for the Bottlenose Dolphin Take Reduction Team. Available from: Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.
Garrison, L.P. and C. Yeung. 2001. Abundance Estimates for Atlantic Bottlenose Dolphin Stocks During Summer and Winter, 1995. NMFS/SEFSC report prepared and reviewed for the Bottlenose Dolphin Take Reduction Team. Available from: Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.

Geraci, J.R. 1989. Clinical investigation of the 1987-88 mass mortality of bottlenose dolphins along the U.S. central and south Atlantic coast. Final Report to National Marine Fisheries Service, U.S. Navy, Office of Naval Research, and Marine Mammal Commission, 63 pp.
Hoelzel, A.R., Potter, C.W., and Best, P.B. 1998. Genetic differentiation between parapatric nearshore and offshore populations of the bottlenose dolphin. Proceedings of the Royal Society of London 265: 1177-1183.
Hohn, A.A. 1997. Design for a multiple-method approach to determine stock structure of bottlenose dolphins in the mid-Atlantic. NOAA Technical Memorandum NMFS-SEFSC-401, 22 pp. NFS, Southeast Fisheries Science Center, Miami, FL.
Hohn, A.A. and P. Martone. 2001. Characterization of bottlenose dolphin strandings in North Carolina, 1997-2000. NMFS/SEFSC report prepared and reviewed for the Bottlenose Dolphin Take Reduction Team. Available from: Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.

Hohn, A.A., B. Mase, J. Litz, W. McFee, and B. Zoodsma. 2001. Characterization of human-caused strandings of bottlenose dolphins along the Atlantic coast from South Carolina to Southern Florida, 1997-2000. NMFS/SEFSC report prepared and reviewed for the Bottlenose Dolphin Take Reduction Team. Available from: Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.
Kenney, R.D. 1990. Bottlenose dolphins off the northeastern United States. Pages 369-386 in S. Leatherwood and R. R. Reeves (eds), The bottlenose dolphin, Academic Press, San Diego, 653 pp.

McFee, W.E., D.L. Wolf, D.E. Parshley, and P.A. Fair. 1996. Investigation of marine mammal entanglement associated with a seasonal coastal net fishery. NOAA Technical Memo. NMFS-SEFSC-38, 22 pp. +8 Tables, 5 Figures, 6 Appendices. NMFS, Southeast Fisheries Science Center, Miami, FL.
McFee, W.E. and W. Brooks, Jr. 1998. Fact finding meeting of marine mammal entanglement in the crab pot fishery: a summary. U.S. Fish and Wildlife Service. Unpublished Report. Available from: NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.
McLellan, W.M., A.S. Friedlaender, J.G. Mead, C.W. Potter, and D.A. Pabst. 2003. Analysing 25 years of bottlenose dolphin (Tursiops truncatus) strandings along the Atlantic coast of the USA: do historic records support the coastal migratory stock hypothesis? J. Cetacean Res. Manage. 4:297-304.
NMFS. 1991. Proposed regime to govern the interactions between marine mammals and commercial fishing operations after October 1, 1993. Draft Environmental Impact Statement, June 1991.
NMFS. 2001. Stock structure of coastal bottlenose dolphins along the Atlantic coast of the US. NMFS/SEFSC Report prepared for the Bottlenose Dolphin Take Reduction Team. Available from: Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.
Odell, D.K. and E.D. Asper. 1990. Distribution and movements of freeze-branded bottlenose dolphins in the Indian and Banana Rivers, Florida. Pp. 515-540 in: S. Leatherwood and R.R. Reeves (eds), The bottlenose dolphin, Academic Press, San Diego, 653 pp.
Palka, D., L. Garrison, A.A. Hohn, and C. Yeung. 2001a. Summary of abundance estimates and PBR for coastal Tursiops for waters between New York and Florida during 1995 to 2000. NMFS/NEFSC Report prepared for the Bottlenose Dolphin Take Reduction Team. Available from: NMFS-Northeast Fisheries Science Center, 166 Water St., Woods Hole, MA 02543.
Palka, D., F. Wenzel, D. Hartley, and M. Rossman. 2001b. Summary of bottlenose dolphin strandings from New York to Virginia. NMFS/NEFSC Report prepared for the Bottlenose Dolphin Take Reduction Team. Available from: NMFS-Northeast Fisheries Science Center, 166 Water St., Woods Hole, MA 02543.
Read, A.J. 1994. Interactions between cetaceans and gillnet and trap fisheries in the northwest Atlantic. Rep. int. Whal. Commn (Special Issue) 15:133-147.
Read, A.J., B. Foster, K. Urian, B. Wilson, and D. Waples. 2003. Abundance of bottlenose dolphins in the bays, sounds, and estuaries of North Carolina. Mar. Mammal Sci. 19:59-73.
Rossman, M.C. and D.L. Palka. 2001. Bycatch estimates of coastal bottlenose dolphin (Tursiops truncatus) in the U.S. mid-Atlantic gillnet fisheries for 1996 to 2000. Northeast Fisheries Science Center Reference Document 01-15. 77 pp.
Scott, G.P., D.M. Burn, and L.J. Hansen. 1988. The dolphin die off: long term effects and recovery of the population. Proceedings: Oceans '88, IEEE Cat. No. 88-CH2585-8,Vol. 3:819-823.
Scott, M.D., R.S. Wells and A.B. Irvine. 1990. A long-term study of bottlenose dolphins on the west coast of Florida. Pp. 235-244 In: S. Leatherwood and R.R. Reeves. The Bottlenose Dolphin. Academic Press, San Diego. 653 pp.
Smith, J.W. 1999. Distribution of Atlantic menhaden, Brevoortia tyrannus, purse-seine sets and catches from southern New England to North Carolina, 1985-96. U.S. Dept. of Commerce, NOAA Technical Memorandum, NMFS 144. 22 pp.
Steve, C., J. Gearhart, D. Borggaard, L. Sabo and A.A. Hohn. 2001. Characterization of North Carolina Commercial Fisheries with Occasional Interactions with Marine Mammals. NOAA Technical Memorandum NMFS-SEFSC-458. 60 pp .
Torres, L.G., P.E. Rosel, C. D'Agrosa, and A.J. Read. 2003. Improving management of overlapping bottlenose dolphin ecotypes through spatial analysis and genetics. Mar. Mammal Sci. 19:502-514.
Trent, L., D.E. Parshley, and J.K. Carlson. 1997. Catch and bycatch in the shark drift gillnet fishery off Georgia and East Florida. Marine Fisheries Review 59(1):19-28.
Urian, K., A.A. Hohn, and L.J. Hansen. 1999. Status of the photo-identification catalogue of coastal bottlenose dolphins of the western north Atlantic: report of a workshop of catalogue contributors. NOAA Tech. Memo. NMFS-SEFSC-425.

Vaughan, D.S., J.W. Smith, E.H. Williams, and M.H. Prager. 2001. Analyses on the status of the Atlantic menhaden stock. Report prepared for the Atlantic States Marine Fisheries Commission. 57 pp
Wade, P.R. and R.P. Angliss. 1997. Guidelines for assessing marine mammal stocks: Report of the GAMMS Workshop April 3-5, Seattle, Washington. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-12, 93 pp.
Wang, K.R., P.M. Payne and V.G. Thayer. 1994. Coastal stock(s) of Atlantic bottlenose dolphin: status review and management: Proceedings and recommendations from a workshop held in Beaufort, North Carolina, 13-14 September 1993. NOAA Technical Memorandum NMFS-OPR-4, 120 pp.
Weller, D.W. 1998. Global and regional variation in the biology and behavior of bottlenose dolphins. Ph.D. dissertation, Texas A\&M University, Galveston, TX. 142 pp.
Wells, R.S., M.D. Scott, and A.B. Irvine. 1987. The social structure of free ranging bottlenose dolphins. Pages 247-305 in Genoways, H. (ed.) Current Mammology, Vol. 1. Plenum Press, New York.
Wells, R.S., K.W. Urian, A.J. Read, M.K. Bassos, W.J. Carr, and M.D. Scott. 1996. Low-level monitoring of bottlenose dolphins (Tursiops truncatus), in Tampa Bay, Florida: 1988-1993. NOAA Technical Memorandum NMFS- SEFSC-385, 25 pp. +6 Tables, 8 Figures, and 4 Appendices.
Zolman, E. S. 2002. Residence patterns of bottlenose dolphins (Tursiops truncatus) in the Stono River Estuary, Charleston County, South Carolina. Mar. Mammal Sci. 18: 879-892.

HARBOR PORPOISE (Phocoena phocoena): Gulf of Maine/Bay of Fundy Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

This stock is found in U.S. and Canadian Atlantic waters. The distribution of harbor porpoises has been documented by sighting surveys, strandings and takes reported by NMFS observers in the Sea Sampling Program. During summer (July to September), harbor porpoises are concentrated in the northern Gulf of Maine and southern Bay of Fundy region, generally in waters less than 150 m deep (Gaskin 1977; Kraus et al. 1983; Palka 1995a, b), with a few sightings in the upper Bay of Fundy and on the northern edge of Georges Bank (Palka 2000). During fall (October-December) and spring (April-June), harbor porpoises are widely dispersed from New Jersey to Maine, with lower densities farther north and south. They are seen from the coastline to deep waters ($>1800 \mathrm{~m}$; Westgate et al. 1998), although the majority of the population is found over the continental shelf. During winter (January to March), intermediate densities of harbor porpoises can be found in waters off New Jersey to North Carolina, and lower densities are found in waters off New York to New Brunswick, Canada. There does not appear to be a temporally coordinated migration or a specific migratory route to and from the Bay of Fundy region. However, during the fall, several satellite tagged harbor porpoises did favor the waters around the 92 m isobath, which is consistent with observations of high rates of incidental catches in this depth range (Read and Westgate 1997). There were two stranding records from Florida during the 1980s (Smithsonian strandings database) and one during 2003 (NE Regional Office/NMFS strandings and entanglement database).

Gaskin $(1984,1992)$ proposed that there were four separate

Figure 1. Distribution of harbor porpoises from NEFSC and SEFSC shipboard and aerial surveys during the summers of 1998, 1999, and 2004.
Isobaths are the $100 \mathrm{~m}, 1000 \mathrm{~m}$, and 4000 m depth contours. populations in the western North Atlantic: the Gulf of Maine/Bay of Fundy, Gulf of St. Lawrence, Newfoundland and Greenland populations. Recent analyses involving mtDNA (Wang et al. 1996; Rosel et al. 1999a, 1999b), organochlorine contaminants (Westgate et al.1997; Westgate and Tolley 1999), heavy metals (Johnston 1995), and life history parameters (Read and Hohn 1995) support Gaskin's proposal. Genetic studies using mitochondrial DNA (Rosel et al. 1999a) and contaminant studies using total PCBs (Westgate and Tolley 1999) indicate that the Gulf of Maine/Bay of Fundy females were distinct from females from the other populations in the Northwest Atlantic. Gulf of Maine/Bay of Fundy males were distinct from Newfoundland and Greenland males, but not from Gulf of St. Lawrence males according to studies comparing mtDNA (Rosel et al. 1999a; Palka et al. 1996) and CHLORs, DDTs, PCBs and CHBs (Westgate and Tolley 1999). Analyses of stranded animals from the mid-Atlantic states suggest that this aggregation of harbor porpoises consists of animals from more than just the Gulf of Maine/Bay of Fundy stock (Rosel et al. 1999a). However, the majority of the samples used in the Rosel et al. (1999a) study were from stranded juvenile animals. Further work is needed to examine adult animals from this region. Nuclear microsatellite markers have also been applied to samples from these four populations, but this analysis failed to detect significant population sub-division in either sex (Rosel et al. 1999a). These patterns may be indicative of female philopatry coupled with dispersal of males. This report follows Gaskin's hypothesis on harbor porpoise stock structure in the western North Atlantic, where the Gulf of Maine and Bay of Fundy harbor porpoises are recognized as a single management stock separate from harbor porpoise populations in the Gulf of St. Lawrence, Newfoundland and Greenland.

POPULATION SIZE

To estimate the population size of harbor porpoises in the Gulf of Maine/Bay of Fundy region, four line-transect sighting surveys were conducted during the summers of 1991, 1992, 1995 and 1999 (Table 1; Figure 1). The estimates were 37,500 harbor porpoises in 1991 (CV=0.29, 95% confidence interval (CI) $=26,700-86,400$) (Palka 1995a), 67,500 harbor porpoises in $1992(\mathrm{CV}=0.23,95 \% \mathrm{CI}=32,900-104,600), 74,000$ harbor porpoises in 1995 ($\mathrm{CV}=0.20,95 \% \mathrm{CI}=40,900-109,100$) (Palka 1996) and 89,700 in 1999 (CV=0.22, 95\% CI=53,400-150,900) (Palka 2000). The inverse variance weighted-average abundance estimate (Smith et al. 1993) of the 1991 to 1995 estimates was 54,300 harbor porpoises $(C V=0.14,95 \% C I=41,300-71,400)$. Possible reasons for inter-annual differences in abundance and distribution include experimental error, inter-annual changes in water temperature and availability of primary prey species (Palka 1995b), and movement among population units (e.g., between the Gulf of Maine and Gulf of St. Lawrence). One of the reasons the 1999 estimate is larger than previous estimates is that, for the first time, the upper Bay of Fundy and northern Georges Bank were surveyed and harbor porpoises were seen in both areas. This indicates the harbor porpoise summer habitat is larger than previously thought (Palka 2000).

The shipboard sighting survey procedure used in all four surveys involved two independent teams on one ship that searched using the naked eye in non-closing mode. Abundance, corrected for $g(0)$, the probability of detecting an animal group on the track line, was estimated using the direct-duplicate method (Palka 1995a) and variability was estimated using bootstrap re-sampling methods. Potential biases not explicitly accounted for include ship avoidance and submergence time. The effects of these two potential biases are unknown. During 1995 and 1999 a section of the region was surveyed by airplane while the rest of the region was surveyed by ship, as in previous years (Palka 1996; 2000). During 1995, in addition to the Gulf of Maine/Bay of Fundy area, waters from Virginia to the mouth of the Gulf of St. Lawrence were surveyed and harbor porpoises were seen only in the vicinity of the Gulf of Maine/Bay of Fundy. During 1999, waters from south of Cape Cod to the mouth of the Gulf of St. Lawrence were surveyed (Palka 2000).

The best current abundance estimate of the Gulf of Maine/Bay of Fundy harbor porpoise stock is 89,700 animals ($\mathrm{CV}=0.22$), based on the 1999 survey results not averaged with other years (Table 1). This is because the 1999 estimate is the most current, and this survey discovered portions of the harbor porpoise range not covered previously.

Kingsley and Reeves (1998) estimated there were $12,100(\mathrm{CV}=0.26)$ harbor porpoises in the entire Gulf of St. Lawrence during 1995, and 21,700 (CV=0.38) in the northern Gulf of St. Lawrence during 1996. These estimates are presumed to be of the Gulf of St. Lawrence stock of harbor porpoises. The highest densities were north of Anticosti Island, with lower densities in the central and southern Gulf. During the 1995 survey, $8,427 \mathrm{~km}$ of track lines were flown in an area of $221,949 \mathrm{~km}^{2}$ during August and September. During the 1996 survey, $3,993 \mathrm{~km}$ of track lines were flown in an area of $94,665 \mathrm{~km}^{2}$ during July and August. Data were analyzed using Quenouille's jackknife bias reduction procedure on line transect methods that modeled the left truncated sighting curve. These estimates were not corrected for visibility biases such as $g(0)$.

| Table 1. Summary of recent abundance estimates for the Gulf of Maine/Bay of Fundy harbor |
| :---: | :---: | :---: | :---: |
| porpoise. Month, year, and area covered during each abundance survey and the |
| resulting abundance estimate $\left(\mathrm{N}_{\text {best }}\right)$ and coefficient of variation (CV). |

Minimum Population Estimate

The minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the lognormally distributed best abundance estimate. This is equivalent to the 20th percentile of the log-normal distribution as specified by Wade and Angliss (1997). The best estimate of abundance for harbor porpoises is 89,700 $(\mathrm{CV}=0.22)$. The minimum population estimate for the Gulf of Maine/Bay of Fundy harbor porpoise is 74,695 .

Current Population Trend

Previous abundance estimates for harbor porpoises in the Gulf of Maine/Bay of Fundy are available from earlier studies, (e.g., 4,000 animals (Gaskin 1977), and 15,800 animals (Kraus et al. 1983)). These estimates cannot be used in a trends analysis because they were for selected small regions within the entire known summer range and, in some cases, did not incorporate an estimate of $g(0)$ (NEFSC 1992).

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Although current population growth rates of Gulf of Maine/Bay of Fundy harbor porpoises have not been estimated due to lack of data, several attempts have been made to estimate potential population growth rates. Barlow and Boveng (1991), who used a re-scaled human life table, estimated the upper bound of the annual potential growth rate to be 9.4%. Woodley and Read (1991) used a re-scaled Himalayan tahr life table to estimate a likely annual growth rate of 4%. In an attempt to estimate a potential population growth rate that incorporates many of the uncertainties in survivorship and reproduction, Caswell et al. (1998) used a Monte Carlo method to calculate a probability distribution of growth rates. The median potential annual rate of increase was approximately 10%, with a 90% confidence interval of $3-15 \%$. This analysis underscored the considerable uncertainty that exists regarding the potential rate of increase in this population. Consequently, for the purposes of this assessment, the maximum net productivity rate was assumed to be 4%, consistent with values used for other cetaceans for which direct observations of maximum rate of increase are not available, and following a recommendation from the Atlantic Scientific Review Group. The 4% value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive life history (Barlow et al. 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential Biological Removal (PBR) is the product of minimum population size, one-half the maximum productivity rate, and a "recovery" factor (MMPA Sec. 3. 16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size is 74,695 . The maximum productivity rate is 0.04 , the default value for cetaceans. The "recovery" factor, which accounts for endangered, depleted, threatened stocks, or stocks of unknown status relative to optimum sustainable population (OSP) is assumed to be 0.5 because this stock is of unknown status. PBR for the Gulf of Maine/Bay of Fundy harbor porpoise is 747.

ANNUAL HUMAN-CAUSED MORTALITY

Data to estimate the mortality and serious injury of harbor porpoise come from U.S. and Canadian Sea Sampling Programs, from records of strandings in U.S. and Canadian waters, and from records in the Marine Mammal Authorization Program (MMAP). See Appendix III for details on U.S. fisheries and data sources. Estimates using Sea Sampling Program and MMAP data are discussed by fishery under the Fishery Information section (Table 2). Strandings records are discussed under the Unknown Fishery in the Fishery Information section (Table 3) and under the Other Mortality section (Tables 4 to 5).

The total annual estimated average human-caused mortality is $575(\mathrm{CV}=0.17)$ harbor porpoises per year. This is derived from four components: 515 harbor porpoise per year ($\mathrm{CV}=0.17$) from U.S. fisheries using observer and MMAP data, 55 per year (unknown CV) from Canadian fisheries using observer data, 4.2 per year from U.S. unknown fisheries using strandings data, and 1.2 per year from unknown human-caused mortality (mutilated stranded harbor porpoises).

Fishery Information

Recently, Gulf of Maine/Bay of Fundy harbor porpoise takes have been documented in the U.S. Northeast sink gillnet, mid-Atlantic gillnet, and in the Canadian Bay of Fundy groundfish sink gillnet and herring weir fisheries (Table 2). Detailed U.S. fishery information are reported in Appendix III.

Earlier Interactions

One harbor porpoise was observed taken from the Atlantic pelagic drift gillnet fishery during 1991-1998; the fishery ended in 1998. This observed bycatch was notable because it occurred in continental shelf edge waters adjacent to Cape Hatteras (Read et al. 1996). Estimated annual fishery-related mortality (CV in parentheses) attributable to this fishery was 0.7 in 1989 (7.00), 1.7 in 1990 (2.65), 0.7 in 1991 (1.00), 0.4 in 1992 (1.00), 1.5 in 1993 (0.34), 0 during 1994-1996 and 0 in 1998. The fishery was closed during 1997.

U.S.

Northeast Sink Gillnet

In 1984 the Northeast sink gillnet fishery was investigated by a sampling program that collected information concerning marine mammal bycatch. Approximately 10% of the vessels fishing in Maine, New Hampshire, and Massachusetts were sampled. Among the 11 gillnetters who received permits and logbooks, 30 harbor porpoises
were reported caught. It was estimated, using rough estimates of fishing effort, that a maximum of 600 harbor porpoises were killed annually in this fishery (Gilbert and Wynne 1985, 1987).

In 1990, an observer program was started by NMFS to investigate marine mammal takes in the Northeast sink gillnet fishery (Appendix III). There have been 501 harbor porpoise mortalities related to this fishery observed between 1990 and 2004 and one was released alive and uninjured. Bycatch in the northern Gulf of Maine occurs primarily from June to September, while in the southern Gulf of Maine, bycatch occurs from January to May and September to December. Estimated annual bycatch (CV in parentheses) from this fishery during 1990-2004 was 2,900 in 1990 (0.32), 2,000 in 1991 (0.35), 1,200 in 1992 (0.21), 1,400 in 1993 (0.18) (Bravington and Bisack 1996; CUD 1994), 2,100 in 1994 (0.18), 1,400 in 1995 (0.27) (Bisack 1997), 1,200 in 1996 (0.25), 782 in 1997 (0.22), 332 in 1998 (0.46), 270 in 1999 (0.28) (Rossman and Merrick 1999), 507 in 2000 (0.37), 53 (0.97) in 2001, 444 (0.37) in 2002, $592(0.33)$ in 2003, and $654(0.36)$ in 2004. The increase in the CV in recent years is mainly due to the small number of observed takes.

In November 2001, there were two takes reported through the Marine Mammal Authorization Program (MMAP) that were taken in one sink gillnet haul located near Jefferys Ledge. These two takes were then added to the 2 observed takes and 51 estimated total take that was derived from the observer data because the MMAP takes were in a time and area not included in any of the above observer-based bycatch estimates. This then results in 4 observed takes and 53 (0.97) total takes in 2001 from this fishery (Table 2).

There appeared to be no evidence of differential mortality in U.S. or Canadian gillnet fisheries by age or sex in animals collected before 1994, although there was substantial inter-annual variation in the age and sex composition of the bycatch (Read and Hohn 1995). Using observer data collected during 1990-1998 and a logit regression model, females were 11 times more likely to be caught in the offshore southern Gulf of Maine region, males were more likely to be caught in the south Cape Cod region, and the overall proportion of males and females caught in a gillnet and brought back to land were not significantly different from 1:1 (Lamb 2000).

Two preliminary experiments, using acoustic alarms (pingers) attached to gillnets, were conducted in the Gulf of Maine during 1992 and 1993 and took 10 and 33 harbor porpoises, respectively. During fall 1994, another controlled scientific experiment was conducted in the southern Gulf of Maine, where 25 harbor porpoises were taken in 423 strings with non-active pingers (controls) and 2 harbor porpoises were taken in 421 strings with active pingers (Kraus et al. 1997). In addition, 17 other harbor porpoises were taken in nets that did not follow the experimental protocol (Table 2). After 1994, experimental fisheries were conducted where all nets in a designated area were required to use pingers and only a sample of the nets were observed. During November-December 1995, an experimental fishery was conducted in the southern Gulf of Maine (Jeffreys Ledge) region, where no harbor porpoises were observed taken in 225 pingered nets. During 1995, all takes from pingered nets were added directly to the estimated total bycatch for that year. During April 1996, 3 other experimental fisheries occurred. In the Jeffreys Ledge area, in 88 observed hauls using pingered nets, 9 harbor porpoises were taken. In the Massachusetts Bay region, in 171 observed hauls using pingered nets, 2 harbor porpoises were taken. And, in a region just south of Cape Cod, in 53 observed hauls using pingered nets, no harbor porpoises were taken. During 1997, experimental fisheries were allowed in the mid-coast region during March 25 to April 25 and November 1 to December 31. During the 1997 spring experimental fishery, 180 hauls were observed with active pingers and 220 hauls were controls (silent). All observed harbor porpoise takes were in silent nets: 8 in nets with control (silent) pingers and 3 in nets without pingers. Thus, there was a statistical difference between the catch rate in nets with pingers and silent nets (Kraus and Brault 1997). During the 1997 fall experimental fishery, out of 125 observed hauls using pingered nets no harbor porpoises were taken.

From 95 stomachs of harbor porpoises collected in groundfish gillnets in the Gulf of Maine between September and December 1989-1994, Atlantic herring (Clupea harengus) was the most important prey. Pearlsides (Maurolicus weitzmani), silver hake (Merluccius bilinearis) and red and white hake (Urophycis spp.) were the next most common prey species (Gannon et al. 1998).

Average estimated harbor porpoise mortality and serious injury in the Northeast sink gillnet fishery during 1994-1998, before the Take Reduction Plan, was 1,163 (0.11). The average annual harbor porpoise mortality and serious injury in the Northeast sink gillnet fishery from 2000 to 2004 was 450 (0.18) (Table 2).

Mid-Atlantic Gillnet

Before an observer program was in place for this fishery, Polacheck et al. (1995) reported one harbor porpoise incidentally taken in shad nets in the York River, Virginia. In July 1993 an observer program was initiated in the mid-Atlantic coastal gillnet fishery by the NEFSC Sea Sampling program (Appendix III). Documented bycatch after 1995 were from December to May. Bycatch estimates were calculated using methods similar to that used for bycatch estimates in the Northeast sink gillnet fishery (Bravington and Bisack 1996; Bisack 1997). After 1998, a
separate bycatch estimate was made for the drift gillnet and set gillnet sub-fisheries. The number presented here is the sum of these two sub-fisheries. The estimated annual mortality (CV in parentheses) attributed to this fishery was $103(0.57)$ for $1995,311(0.31)$ for $1996,572(0.35)$ for 1997, $446(0.36)$ for $1998,53(0.49)$ for 1999, $21(0.76)$ for 2000, 26 (0.95) for 2001, unknown in 2002, 76 (1.13) in 2003, and $137(0.91)$ in 2004. During 2002, the overall observer coverage was lower than usual, 1%, where 65% of that coverage was off of Virginia, and most of the rest of the area was not sampled at all. Thus, due to this non-representative and low observer coverage, a bycatch estimate for harbor porpoises cannot be confidently estimated. Annual average estimated harbor porpoise mortality and serious injury from the mid-Atlantic coastal gillnet fishery during 1995 to 1998, before the Take Reduction Plan, was $358(\mathrm{CV}=0.20)$. The average annual harbor porpoise mortality and serious injury in the mid-Atlantic coastal gillnet fishery from 2000 to 2004 was 65 (0.49), which is the 4 -year average estimate from 2000, 2001, 2003, and 2004.

Unknown Fishery

The strandings and entanglement database, maintained by the New England Aquarium and the Northeast Regional Office/NMFS, reported 228, 27, 113, 79, 122, and 118 stranded harbor porpoises on U.S. beaches during 1999 to 2004, respectively (see Other Mortality section for more details). Of these, it was determined that the cause of death of $19,1,3,2,9$, and 6 stranded harbor porpoises in 1999 to 2004, respectively, were due to unknown fisheries (Table 5) and these animals were in areas and times that were not included in the above mortality estimate derived from observer program data. The average harbor porpoise mortality and serious injury in this unknown fishery category from 2000 to 2004 is 4.2 (CV is unknown).

Northeast Bottom Trawl

This fishery is active in New England waters in all seasons. Two harbor porpoise mortalities were observed in the North Atlantic bottom trawl fishery between 1989 and 2004. The first take occurred in February 1992 east of Barnegat Inlet, New Jersey at the continental shelf break. The animal was clearly dead prior to being taken by the trawl, because it was severely decomposed and the tow duration of 3.3 hours was insufficient to allow extensive decomposition. The second take occurred in January 2001 off New Hampshire in a haul trawling for flounder. This animal was clearly dead prior to being taken by the trawl, because it was severely decomposed (the skull broke off while the net was emptying) and the tow duration was 3.1 hours. This take was observed in the same time and area stratum that had documented gillnet takes. In conclusion, the estimated bycatch of harbor porpoises due to this fishery is 0 .

CANADA

Hooker et al. (1997) summarized bycatch data from a Canadian fisheries observer program that placed observers on all foreign fishing vessels operating in Canadian waters, on $25-40 \%$ of large Canadian fishing vessels (greater than 100 feet long), and on approximately 5% of smaller Canadian fishing vessels. No harbor porpoises were observed taken.

Bay of Fundy Sink Gillnet

During the early 1980s, Canadian harbor porpoise bycatch in the Bay of Fundy sink gillnet fishery, based on casual observations and discussions with fishermen, was thought to be low. The estimated harbor porpoise bycatch in 1986 was $94-116$ and in 1989 it was 130 (Trippel et al. 1996). The Canadian gillnet fishery occurs mostly in the western portion of the Bay of Fundy during the summer and early autumn months, when the density of harbor porpoises is highest. Polacheck (1989) reported there were 19 gillnetters active in 1986, 28 active in 1987, and 21 in 1988.

More recently, an observer program implemented in the summer of 1993 provided a total bycatch estimate of 424 harbor porpoises ($\pm 1 \mathrm{SE}: 200-648$) from 62 observed trips, (approximately 11.3% coverage of the Bay of Fundy trips) (Trippel et al. 1996). During 1994, the observer program was expanded to cover 49% of the gillnet trips (171 observed trips). The bycatch was estimated to be 101 harbor porpoises (95% confidence limit: 80-122), and the fishing fleet consisted of 28 vessels (Trippel et al. 1996). During 1995, due to groundfish quotas being exceeded, the gillnet fishery was closed from July 21 to August 31. During the open fishing period of 1995, 89% of the trips were observed, all in the Swallowtail region. Approximately 30% of these observed trips used pingered nets. The estimated bycatch was 87 harbor porpoises (Trippel et al. 1996). No confidence interval was computed due to lack of coverage in the Wolves fishing grounds. During 1996, the Canadian gillnet fishery was closed during July 20-31 and August 16-31 due to groundfish quotas. From the 107 monitored trips, the bycatch in 1996 was estimated to be 20 harbor porpoises (Trippel et al. 1999; DFO 1998). Trippel et al. (1999) estimated that during

1996, gillnets equipped with acoustic alarms reduced harbor porpoise bycatch rates by 68% over nets without alarms in the Swallowtail area of the lower Bay of Fundy. During 1997, the fishery was closed to the majority of the gillnet fleet during July 18-31 and August 16-31, due to groundfish quotas. In addition a time-area closure to reduce porpoise bycatch in the Swallowtail area occurred during September 1-7. From the 75 monitored trips, 19 harbor porpoises were observed taken. After accounting for total fishing effort, the estimated bycatch in 1997 was 43 animals (DFO 1998). Trippel et al. (1999) estimated that during 1997, gillnets equipped with acoustic alarms reduced harbor porpoise bycatch rates by 85% over nets without alarms in the Swallowtail area of the lower Bay of Fundy. The number of monitored trips (and observed harbor porpoise mortalities were 111 (5) for 1998, 93 (3) for 1999, 194 (5) for 2000, and 285 (39) for 2001. The estimated annual mortality estimates were 38 for 1998, 32 for 1999, 28 for 2000, and 73 for 2001 (Trippel and Shepard, 2001). Estimates of variance are not available.

There was no observer program during the summers of 2002 to 2004 in the Bay of Fundy region, but the fishery was active. Thus, it is not known what the bycatch for these years is. The two-year average estimated harbor porpoise mortality in the Canadian groundfish sink gillnet fishery during 2000-2001 was 51 (Table 2). An estimate of variance is not possible.

Herring Weirs

Harbor porpoises are taken in Canadian herring weirs, but there have been no recent efforts to observe takes in the U.S. component of this fishery. Smith et al. (1983) estimated that in the 1980s approximately 70 harbor porpoises became trapped annually and, on average, 27 died annually. In 1990, at least 43 harbor porpoises were trapped in Bay of Fundy weirs (Read 1994). In 1993, after a cooperative program between fishermen and Canadian biologists was initiated, over 100 harbor porpoises were released alive (Read 1994). Between 1992 and 1994, this cooperative program resulted in the live release of 206 of 263 harbor porpoises caught in herring weirs. Mortalities (and releases) were 11 (and 50) in 1992, 33 (and 113) in 1993, and 13 (and 43) in 1994 (Neimanis et al. 1995). Since that time, an additional 623 harbor porpoises have been documented in Canadian herring weirs, of which 637 were released or escaped, 36 died, and 9 had an unknown status. Mortalities (and releases and unknowns) were 5 (and 60) in 1995; 2 (and 4) in 1996; 2 (and 24) in 1997; 2 (and 26) in 1998; 3 (and 89) in 1999; 0 (and 13) in 2000 (A. Read, pers. comm), 14 (and 296) in 2001, 3 (and 46 and 4) in 2002, 1 (and 26 and 3) in 2003, and 4 (and 53 and 2) (Neimanis et al. 2004; H. Koopman and A. Westgate, pers. comm.).

Clinical hematology values were obtained from 29 harbor porpoises released from Bay of Fundy herring weirs (Koopman et al. 1999). These data represent a baseline for free-ranging harbor porpoises that can be used as a reference for long-term monitoring of the health of this population, a mandate by the MMPA. Blood for both hematology and serum chemistry, including stress and reproductive hormones, is currently being collected; with 57 samples from 2001, 15 from 2002, 7 from 2003, and 24 from 2004 (A. Westgate and H. Koopman, pers. comm).

Average estimated harbor porpoise mortality in the Canadian herring weir fishery during 2000-2004 was 4.4 (Table 2). An estimate of variance is not possible.

Gulf of St. Lawrence gillnet

This fishery interacts with the Gulf of St. Lawrence harbor porpoise stock, not the Gulf of Maine/Bay of Fundy harbor porpoise stock. Using questionnaires to fishermen, Lesage et al. (2003) determined a total of $2180(95 \%$ CI 1012-3802) and 2478 (95% CI 1591-3464) harbor porpoises were taken in 2000 and 2001, respectively. The largest takes were in July and August around Miscou and the North Shore of the Gulf of St. Lawrence. According to the returned questionnaires, the fish species most usually associated with incidental takes of harbor porpoises include Atlantic cod, herring and mackerel. An at-sea observer program was also conducted during 2001 and 2002. However, due to low observer coverage that was not representative of the fishing effort, Lesage et al. (2003) concluded that resulting bycatch estimates were unreliable.

Newfoundland gillnet

This fishery interacts with the Newfoundland harbor porpoise stock, not the Gulf of Maine/Bay of Fundy harbor porpoise stock. Estimates of incidental catch of harbor porpoises are currently being calculated for 2001-2003 for the Newfoundland nearshore cod and Greenland halibut fisheries, and the Newfoundland offshore fisheries in lumpfish, herring, white hake, monkfish and skate (pers. comm. J. Lawson, DFO).

Table 2. From observer program data, summary of the incidental mortality of harbor porpoise (Phocoena phocoena) by commercial fishery including the years sampled (Years), the number of vessels active within the fishery (Vessels), the type of data used (Data Type), the annual observer coverage (Observer Coverage), the mortalities recorded by on-board observers (Observed Mortality), the estimated annual mortality (Estimated Mortality), the estimated CV of the annual mortality (Estimated CVs) and the mean annual mortality (CV in parentheses).

Fishery	Years	Vessels	Data Type ${ }^{\text {a }}$	Observer Coverage ${ }^{\text {b }}$	Observed Mortality	Estimated Mortality	Estimated CVs	
U.S.								
Northeast Sink Gillnet	00-04	NA	Obs. Data, Weighout, Trip Logbook	$\begin{gathered} 06, \\ .04, .02 \\ .03, .06 \end{gathered}$	$\begin{aligned} & 15^{\mathrm{c}}, \\ & 4^{\mathrm{c}, \mathrm{f},}, 10^{\mathrm{c}}, \\ & 12^{\mathrm{c}}, 27^{\mathrm{c}} \end{aligned}$	$\begin{gathered} 507^{\mathrm{c}}, \\ 53^{\mathrm{c}, \mathrm{f}}, 444^{\mathrm{c}}, \\ 592,654^{\mathrm{c}} \end{gathered}$	$\begin{gathered} .37, \\ .97, .37, \\ .33, .36 \end{gathered}$	$\begin{gathered} 450 \\ (0.18) \end{gathered}$
Mid-Atlantic Gillnet	00-04	NA	Obs. Data Weighout	$\begin{aligned} & .02, \\ & .02, .01, \\ & .01, .02 \end{aligned}$	$\begin{gathered} 1, \\ 1, \mathrm{unk}^{\mathrm{g}}, \\ 1,2 \end{gathered}$	$\begin{gathered} 21, \\ 26, \text { unk }^{\mathrm{g}}, \\ 76,137 \end{gathered}$	$\begin{array}{\|c} .76, \\ .95, \text { unk }^{\mathrm{g}}, \\ 1.13, .91 \end{array}$	$\begin{gathered} 65^{\mathrm{g}} \\ (0.49) \end{gathered}$
U.S. TOTAL	2000-2004							$\begin{gathered} 515 \\ (0.17) \end{gathered}$
CANADA								
Groundfish Sink Gillnet	00-04	NA	Can. Trips	$\begin{gathered} .41, .56, \\ 0^{\mathrm{h}}, 0^{\mathrm{h}}, \\ 0^{\mathrm{h}}, \end{gathered}$	5,39, unk $^{\mathrm{h}}$, unk $^{\mathrm{h}}$ unk $^{\mathrm{h}}$,	$\begin{aligned} & \text { 28, 73, unk } \\ & \text { unk }^{\mathrm{h}}, \text { unk }^{\mathrm{h}} \end{aligned}$	NA	$\begin{gathered} 51 \\ \text { (NA) } \end{gathered}$
Herring Weir	00-04	$\begin{aligned} & 1998=255 \\ & \text { licenses }{ }^{\mathrm{d}} \\ & 2002=22^{\text {e }} \end{aligned}$	Coop. Data	NA	$\underset{4}{0,14,3,1,}$	0, 14, 3, 1, 4	NA	$\begin{gathered} 4.4 \\ \text { (NA) } \end{gathered}$
CANADIAN TOTAL	2000-2004							$\begin{gathered} 55 \\ \text { (NA) } \end{gathered}$
GRAND TOTAL								$\begin{gathered} 570 \\ \text { (NA) } \end{gathered}$

NA = Not available.
a. Observer data (Obs. Data) are used to measure bycatch rates; the U.S. data are collected by the Northeast Fisheries Science Center (NEFSC) Sea Sampling Program, the Canadian data are collected by DFO. NEFSC collects Weighout (Weighout) landings data that are used as a measure of total effort for the U.S. gillnet fisheries. The Canadian DFO catch and effort statistical system collected the total number of trips fished by the Canadians (Can. Trips), which was the measure of total effort for the Canadian groundfish gillnet fishery. Mandatory vessel trip report (VTR) (Trip Logbook) data are used to determine the spatial distribution of fishing effort in the Northeast sink gillnet fishery. Observed mortalities from herring weirs are collected by a cooperative program between fishermen and Canadian biologists (Coop. Data).
b. The observer coverages for the U.S. and Canadian sink gillnet fisheries are measured in trips, and for the midAtlantic coastal gillnet fishery, the unit of effort is tons of fish landed.
c. During 2000 , a harbor porpoise was taken on a non-pingered string within a stratum that did not require pingers but that stratum had other trips where strings with pingers were observed; and during 1999-2004, harbor porpoises were taken on pingered strings within strata that required pingers but that stratum also had observed
strings without pingers. For estimates made during 1998 and after, a weighted bycatch rate was applied to effort from both pingered and non-pingered hauls within a stratum. The weighted bycatch rate was:

$$
\sum_{i} \frac{\# \text { porpoise }_{i}}{\text { sslandings }_{i}} \cdot \frac{\# \text { hauls }_{i}}{\text { total\# hauls }}
$$

There were $10,33,44,0,11,0,2,8,6,2,26,2$, and 4 observed harbor porpoise takes on pinger trips from 1992 to 2004 , respectively, that were included in the observed mortality column. In addition, there were $9,0,2,1,1$, $4,0,1,7$, and 21 observed harbor porpoise takes in 1995 to 2004, respectively, on trips dedicated to fish sampling versus dedicated to watching for marine mammals; these were also included in the observed mortality column (Bisack 1997).
d. There were 255 licenses for herring weirs in the Canadian Bay of Fundy region.
e. There were 22 active weirs around Grand Manan. The number of weirs elsewhere is unknown.
f. During 2001 in the U.S. Northeast sink gillnet fishery, there were 2 takes observed in the NEFSC observer program, this resulted in an estimate of 51 total bycaught harbor porpoises. In November 2001, there were two takes reported through the Marine Mammal Authorization Program that were from one sink gillnet haul that was located near Jeffery's Ledge. These two takes were then added to the 2 observed takes and 51 estimated total take derived from the observer data, resulting in 4 observed takes and 53 total takes for the fishery during 2001.
g. Sixty-five percent of sampling by the NEFSC fisheries observer program was concentrated in one area off the coast of Virginia. Coverage in other areas of the mid-Atlantic was $<1 \%$. Because of the low level of sampling that was not distributed proportionally throughout the mid-Atlantic region, the observed mortality is considered unknown in 2002. The four-year average (2000-2001 and 2003-2004) estimated mortality was applied as the best representative estimate.
h. The Canadian gillnet fishery was not observed during 2002 to 2004, but the fishery was active; thus, the bycatch estimate is unknown. The average bycatch for this fishery is from the two preceding years, 2000 to 2001.

Table 3. From strandings and entanglement data, summary of confirmed incidental mortality of harbor porpoises (Phocoena phocoena) by fishery: includes years sampled (Years), number of vessels active within the fishery (Vessels), type of data used (Data Type), mortalities assigned to this fishery (Assigned Mortality), and mean annual mortality.

Fishery	Years	Vessels	Data Type $^{\text {a }}$	Assigned Mortality	Mean Annual Mortality
Unknown gillnet fishery	$00-04$	NA	Entanglement $\&$ Strandings	$1,3,2,9,6$	4.2
TOTAL	4				

NA=Not Available.
a. Data from records in the entanglement and strandings data base maintained by the New England Aquarium and the Northeast Regional Office/NMFS (Entanglement and Strandings).

Other Mortality

U.S.

There is evidence that harbor porpoises were harvested by natives in Maine and Canada before the 1960s, and the meat was used for human consumption, oil, and fish bait (NEFSC 1992). The extent of these past harvests is unknown, though it is believed to have been small. Up until the early 1980s, small kills by native hunters (Passamaquoddy Indians) were reported. In recent years it was believed to have nearly stopped (Polacheck 1989) until media reports in September 1997 depicted a Passamaquoddy tribe member dressing out a harbor porpoise. Further articles describing use of porpoise products for food and other purposes were timed to coincide with ongoing legal action in state court.

During 1993, 73 harbor porpoises were reported stranded on beaches from Maine to North Carolina (Smithsonian Marine Mammal Database). Sixty-three of those harbor porpoises were reported stranded in the U.S. mid-Atlantic region from New York to North Carolina between February and May. Many of the mid-Atlantic carcasses recovered in this area during this time period had cuts and body damage suggestive of net marking (Haley and Read 1993). Five out of 8 carcasses and 15 heads from the strandings that were examined showed signs of
human interactions (net markings on skin and missing flippers or flukes). Decomposition of the remaining animals prevented determination of the cause of death. Earlier reports of harbor porpoise entangled in gillnets in Chesapeake Bay and along the New Jersey coast and reports of apparent mutilation of harbor porpoise carcasses raised concern that the 1993 strandings were related to a coastal net fishery, such as the American shad coastal gillnet fishery (Haley and Read 1993). Between 1994 and 1996, 107 harbor porpoise carcasses were recovered from beaches in Maryland, Virginia, and North Carolina and investigated by scientists. Only juvenile harbor porpoises were present in this sample. Of the 40 harbor porpoises for which cause of death could be established, 25 displayed definitive evidence of entanglement in fishing gear. In 4 cases it was possible to determine that the animal was entangled in monofilament nets (Cox et al. 1998).

Records of harbor porpoise strandings prior to 1997 are stored in the Smithsonian's Marine Mammal Database and records from 1997 to present are stored in the NE Regional Office/NMFS strandings and entanglement database. According to these records, the numbers of harbor porpoises that stranded on U.S. beaches from North Carolina to Maine during 1994 to 2004 were $106,86,94,118,59,228,27,113,79,122$, and 118 , respectively (Table 4). Of these, 3 stranded alive on a Massachusetts beach in 1996, were tagged, and subsequently released. In 1998, 2 porpoises that stranded on a New Jersey beach had tags on them indicating they were originally taken on an observed mid-Atlantic coastal gillnet vessel. During 1999, 6 animals stranded alive and were either tagged and released or brought to Mystic Aquarium for rehabilitation (Table 4).

During 1999, over half of the strandings occurred on beaches of Massachusetts and North Carolina. The states with the next largest numbers were Virginia, New Jersey and Maryland, in that order. The cause of death was investigated for all the 1999 strandings. Of these, it was possible to determine that the cause of death of 38 animals was fishery interactions. Of these 38,19 animals were in an area and time that were not part of a bycatch estimate derived using observer data. Thus, these 19 mortalities are attributed to an unknown gillnet fishery. One additional animal was found mutilated (right flipper and fluke was cut off) and cause of death was attributed to an unknown human-caused mortality.

During 2000, only 27 harbor porpoises stranded on beaches from Maine to North Carolina (Table 4). Of these, most came from Massachusetts (8) or North Carolina (6). The cause of death for 1 animal was in an area and time that was not part of a bycatch estimate derived from observer data, and thus was attributed to an unknown gillnet fishery (Tables 3 and 5). This animal was found on a beach in Virginia during May with mono-filament line wrapped around it. In addition, 1 animal was found mutilated and so cause of death was attributed to an unknown human-caused mortality (Table 5).

During 2001, 113 harbor porpoises were reported stranded on an Atlantic US beach, of these most came from Massachusetts (39), Virginia (28), and North Carolina (21) (Table 4). Thirteen of these strandings displayed signs of fishery interactions, and of these, 3 animals were in an area and time that were not part of a bycatch estimate derived from the observer data (Tables 3 and 5).

During 2002, 79 harbor porpoises were reported stranded on an Atlantic US beach, of which over half come from Massachusetts (42) (Table 4). Eleven animals displayed signs of emaciation and two signs of fishery interactions (Table 4). Both of the strandings with fishery interactions were in the mid-Atlantic (Maryland and Virginia) during March and were not in a time and area that was part of a bycatch estimate derived from observer data (Tables 3 and 5).

During 2003, 122 harbor porpoises were reported stranded, of which approximately $1 / 3$ came from Massachusetts (35) and an additional $1 / 3$ came from North Carolina (39) (Table 4). The number of reported fishery interactions by state are: 1 in Massachusetts (October), 1 in Maryland (March), 6 in Virginia (3 in March, 2 in April, and 1 in May), and 1 in North Carolina (February). Three harbor porpoises were reported mutilated in North Carolina. All of these strandings reported with fishery interactions were in areas and times that were not part of a bycatch estimate derived from the observer data (Tables 3 and 5).

During 2004, 118 harbor porpoises were reported stranded on an Atlantic US beach, of which about 40% came from Massachusetts (49) (Table 4). There were 16 strandings in Maine, the highest number for Maine on recent record. There were 8 reported fishery interactions by state are: 1 in Massachusetts (May), 1 in New York (May), and 3 in Virginia (February, March, and April), and 3 in North Carolina (April). In addition, there was 1 mutilation in Delaware during March. Of these 8 fishery interactions, six were in areas and times that were not part of a bycatch estimated derived from the observer data (Tables 3 and 5).

Averaging 2000 to 2004, there were 1.2 animals per year that were stranded and mutilated and so cause of death was attributed to an unknown human-caused mortality (Table 5).

Stranding data probably underestimate the extent of fishery-related mortality and serious injury because all of the marine mammals that die or are seriously injured may not wash ashore, nor will all of those that do wash ashore
necessarily show signs of entanglement or other fishery-interaction. Finally, the level of technical expertise among stranding network personnel varies widely as does the ability to recognize signs of fishery interaction.

Table 4. Summary of number of stranded harbor porpoises in the U.S. and Nova Scotia during January 1, 2000 to December 31, 2004, by year and area.

Area	Year					Total
	2000	2001	2002	2003	2004	
Maine ${ }^{\text {a }}$	2	4	8	5	16	35
New Hampshire	0	0	2	2	2	6
Massachusetts ${ }^{\text {b }}$	8	39	42	35	49	173
Rhode Island	0	1	1	2	3	7
Connecticut	0	0	1	0	0	1
New York ${ }^{\text {c }}$	2	7	6	8	8	31
New Jersey	2	6	6	5	14	33
Delaware	1	3	3	1	1	9
Maryland	3	4	1	5	2	15
Virginia	3	28	6	19	8	64
North Carolina	6	21	3	39	15	84
Florida	0	0	0	1	0	1
TOTAL U.S.	27	113	79	122	118	459
Nova Scotia	3	2	5	3	4	17
GRAND TOTAL	30	115	84	125	122	476

a In Maine, one animal stranded alive in March 2002, brought to Mystic Aquarium but died 2 days later.
b In Massachusetts, during 1999, five animals stranded alive and were tagged and released. During 2002, three animals stranded alive and were rehabilitated at Mystic Aquarium (1 in February, March and May).
c In New York, one animal stranded alive in 1999, rehabilitated at Mystic Aquarium and died at the aquarium in April 2000.

Table 5. Cause of mortality of U.S. stranded harbor porpoises during January 1, 2000 to December 31, 2004. "Unique FI " is a fishery interaction that is in a time and area that could not be part of the mortality estimate derived from the observer program. "Not unique FI" is a fishery interaction that was in a time and area that may be part of the observer program derived mortality estimate. "No FI" is the cause of death was determined not to be related to a fishery interaction. "Alive" is stranded animal not dead. "CBD/Unk" is cause of death could not be determined or was unknown.

Year	Unique FI $^{\mathrm{a}}$	Mutilation $^{\mathrm{b}}$	Not unique FI	No FI	Emaciated	CBD/Unk	Alive	Total
2000	1	1	0	2	0	22	0	26
2001	3	1	10	32	0	64	3	113
2002	2	0	0	2	11	60	4	79
2003	9	3	0	61	3	44	2	122
2004	6	1	2	38	4	59	8	118
Avg $00-$ 04	4.2	1.2	2.4	27.0	3.6	49.8	3.4	91.6

a. Attributed to an unknown fishery.
b. Attributed to an unknown human-caused mortality.

CANADA

The Nova Scotia Stranding Network documented whales and dolphins stranded between 1991 and 1996 on the coast of Nova Scotia (Hooker et al. 1997). Researchers with the Dept. of Fisheries and Oceans, Canada documented strandings on the beaches of Sable Island during 1970 to 1998 (Lucas and Hooker 2000). Sable Island is approximately 170 km southeast of mainland Nova Scotia. On the mainland of Nova Scotia, a total of 8 stranded harbor porpoises were recorded between 1991 and 1996: 1 in May 1991, 2 in 1993 (July and September), 1 in August 1994 (released alive), 1 in August 1994, and 3 in 1996 (March, April, and July (released alive)). On Sable Island, 8 stranded dead harbor porpoises were documented, most in January and February; 1 in May 1991, 1 in January 1992, 1 in January 1993, 3 in February 1997, 1 in May 1997, and 1 in June 1997. Two strandings during May-June 1997 were neonates ($>80 \mathrm{~cm}$). The harbor porpoises that stranded in the winter (January-February) were on Sable Island, those in the spring (March to June) were in the Bay of Fundy (2 in Minas Basin and 1 near Yarmouth) and on Sable Island (2), and those in the summer (July to September) were scattered along the coast from the Bay of Fundy to Halifax.

Whales and dolphins stranded between 1997 and 2004 on the coast of Nova Scotia as recorded by the Marine Animal Response Society (MARS) and the Nova Scotia Stranding Network are as follows (Table 4): 3 harbor porpoises stranded in 1997 (1 in April, 1 in June and 1 in July), 2 stranded in June 1998, 1 in March 1999, 3 in 2000 (1 in February, 1 in June, and 1 in August); 2 in 2001 (1 in July and 1 in December), 5 in 2002 (3 in July (1 released alive), 1 in August, and 1 in September (released alive)), 3 in 2003 (2 in May (1 was released alive) and 1 in June (disentangled and released alive)) and 4 in 2004 (1 in April, 1 in May, 1 in July (released alive) and 1 in November).

STATUS OF STOCK

The status of harbor porpoises, relative to OSP, in the U.S. Atlantic EEZ is unknown. There are insufficient data to determine population trends for this species. The total U.S. fishery-related mortality and serious injury for this stock is not less than 10% of the calculated PBR and, therefore, cannot be considered to be insignificant and approaching zero mortality and serious injury rate. This is not a strategic stock because average annual humanrelated mortality and serious injury does not exceed PBR, though the fishery-related bycatch has been increasing over the last three years (2002-2004).

REFERENCES CITED

Barlow, J. and P. Boveng. 1991. Modeling age-specific mortality for marine mammal populations. Mar. Mammal Sci. 7:50-65.
Barlow, J., S.L. Swartz, T.C. Eagle, and P.R. Wade. 1995. U.S. Marine mammal stock assessments: Guidelines for preparation, background, and a summary of the 1995 assessments. U.S.Dep. Commer., NOAA Tech. Memo. NMFS-OPR-6, 73 pp.
Bisack, K.D. 1997. Harbor porpoise bycatch estimates in the New England multispecies sink gillnet fishery: 1994 and 1995. Rep. int Whal. Comm 47:705-14.
Bravington, M.V. and K.D. Bisack. 1996. Estimates of harbor porpoise bycatch in the Gulf of Maine sink gillnet fishery, 1990-1993. Rep. int Whal. Comm 46:567-74.
Caswell, H., S. Brault, A. Read, and T. Smith. 1998. Harbor porpoise and fisheries: an uncertainty analysis of incidental mortality. Ecological Applications 84(4):1226-1238.
Cox, T.M., A.J. Read, S. Barco, J. Evans, D. P. Gannon, H.N. Koopman, W.A. McLellan, K. Murray, J. Nicolas, D. A. Pabst, C.W. Potter, W.M. Swingle, V.G. Thayer, K.M. Touhey, and A.J. Westgate. 1998. Documenting the bycatch of harbor porpoises, Phocoena phocoena, in coastal gill net fisheries from stranded carcasses. Fish. Bull. U.S. 96(4):727-734.
CUD [Conservation and Utilization Division]. 1994. Estimating harbor porpoise bycatch in the Gulf of Maine sink gillnet fishery. NOAA, NMFS, NEFSC Ref. Doc. 94-24. [Available from: NMFS, Northeast Fisheries Science Center, 166 Water St., Woods Hole, MA 02543.]
DFO [Department of Fisheries and Oceans]. 1998. Harbour porpoise bycatch in the lower Bay of Fundy gillnet fishery. DFO Maritimes Regional Fisheries Status Report 98/7E. [Available from Department of Fisheries and Oceans, Resource management Branch, P.O. Box 550, Halifax, NS B3J 2S7, Canada.]
Gannon, D.P., J.E. Craddock, and A. J. Read. 1998. Autumn food habits of harbor porpoises, Phocoena phocoena, in the Gulf of Maine. Fish. Bull. U.S. 96(3):428-437.
Gaskin, D.E. 1977. Harbour porpoise, Phocoena phocoena (L.), in the western approaches to the Bay of Fundy 1969-75. Rep. int Whal. Comm 27:487-492.
Gaskin, D.E. 1984. The harbor porpoise Phocoena phocoena (L.): Regional populations, status, and information on direct and indirect catches. Rep. int Whal. Comm 34:569-586.
Gaskin, D.E. 1992. The status of the harbour porpoise. Can. Field Nat. 106:36-54.
Gilbert, J.R. and K. M. Wynne. 1985. Harbor seal populations and fisheries interactions with marine mammals in New England, 1984. Fourth Annual Report, Contract NA-80-FA-C-00029, to NMFS, Northeast Fisheries Center, 166 Water St., Woods Hole, MA. 15 pp.
Gilbert, J.R. and K.M. Wynne. 1987. Harbor seal populations and fisheries interactions with marine mammals in New England. Final Report, Contract NA-EA-C-0070, to NMFS, Northeast Fisheries Science Center, 166 Water St., Woods Hole, MA. 15 pp.
Haley, N.J. and A.J. Read. 1993. Summary of the workshop on harbor porpoise mortalities and human interaction. NOAA Tech. Mem. NMFS-F/NER 5.
Hooker, S.K., R.W. Baird, and M.A. Showell. 1997. Cetacean strandings and bycatches in Nova Scotia, Eastern Canada, 1991-1996. Meeting document SC/49/O5 submitted to the 1997 International Whaling Commission Scientific Committee meeting in Bournemouth, UK.
Johnston, D.W. 1995. Spatial and temporal differences in heavy metal concentrations in the tissues of harbour porpoises (Phocoena phocoena L.) from the western North Atlantic. M.S. Thesis, University of Guelph, Guelph, Ontario, Canada. 152 pp.
Kingsley, M. C.S. and R.R. Reeves. 1998. Aerial surveys of cetaceans in the Gulf of St. Lawrence in 1995 and 1996. Can. J. Zool. 76:1529-1550.

Koopman, H.N., A.J. Westgate, and A.J. Read. 1999. Hematology values of wild harbor porpoise (Phocoena phocoena) from the Bay of Fundy Canada. Mar. Mammal Sci. 15(1):52-64.
Kraus, S.D. and S. Brault. 1997. A springtime field test of the use of pingers to reduce incidental mortality of harbor porpoises in gillnets. Meeting document SC/49/SM42 submitted to the 1997 International Whaling Commission Scientific Committee meeting in Bournemouth, UK.
Kraus, S.D., A. Read, E. Anderson, K. Baldwin, A. Solow, T. Sprawling, and J. Williamson. 1997. Acoustic alarms reduce porpoise mortality. Nature 388:525.
Kraus, S.D., J.H. Prescott, and G.S. Stone. 1983. Harbour porpoise, Phocoena phocoena, in the U.S. coastal waters of the Gulf of Maine: A survey to determine seasonal distribution and abundance. Report to the Director, National Marine Fisheries Service, 166 Water St., Woods Hole, MA. 15 pp.

Lamb, A. 2000. Patterns of harbor porpoise mortality in two US Atlantic sink gillnet fisheries and changes in life history parameters. Masters Thesis from Boston University.
Lesage, V., J. Keays, S. Turgeon, and S. Hurtubise. 2003. Incidental mortality of harbour porpoises in the gillnet fishery of the Estuary and Gulf of St. Lawrence in 2000-2002. Canadian Science Advisory Secretariat. Research Document 2003/069. Available at http://www.dfo-mpo.gc.ca/csas/
Lucas, Z.N. and S.K. Hooker. 2000. Cetacean strandings on Sable Island, Nova Scotia, 1970-1998. Can. Field Nat. 114(1):46-61.
Neimanis, A.S., A.J. Read, A.J. Westgate, H.N. Koopman, J. Y. Wang, L. D. Murison and D. E. Gaskin. 1995. Entrapment of harbour porpoises (Phocoena phocoena) in herring weirs in the Bay of Fundy, Canada. Working paper SC/47/SM18 for the International Whaling Commission, Dublin, Ireland.
Neimanis, A.S., H.N. Koopman, A.J. Westgate, L.D. Murison and A.J. Read. 2004. Entrapment of harbour porpoises (Phocoena phocoena) in herring weirs in the Bay of Fundy, Canada. J.Cet. Res. Manag. 6(1):717.

NEFSC [Northeast Fisheries Science Center]. 1992. Harbor porpoise in eastern North America: Status and research needs. Results of a scientific workshop held May 5-8, 1992 at the Northeast Fisheries Science Center, Woods Hole, MA. NOAA, NMFS, NEFSC Ref. Doc. 92-06.
NMFS [National Marine Fisheries Service]. 2001. Status review of the Gulf of Maine/Bay of Fundy population of harbor porpoise under the Endangered Species Act (ESA). Federal Register 66(203): 53195-53197, October 19, 2001.
NMFS [National Marine Fisheries Service]. 1999. Listing of Gulf of Maine/Bay of Fundy population of harbor porpoise as threatened under the Endangered Species Act. Federal Register 64 (2):465-471, January 05, 1999.

NMFS [National Marine Fisheries Service]. 1993. Proposed listing of Gulf of Maine population of harbor porpoises as threatened under the Endangered Species Act. Federal Register 58:3108-3120, January 07, 1993.

Palka, D. 1995a. Abundance estimate of the Gulf of Maine harbor porpoise. Rep. int. Whal. Commn (Special Issue) 16:27-50
Palka, D. 1995b. Influences on spatial patterns of Gulf of Maine harbor porpoises. pp. 69-75 In: A.S. Blix, L. Wallpe and θ. Ulltang (eds.) Whales, seals, fish and man. Elsevier Science B.V. The Netherlands.
Palka, D. 1996. Update on abundance of Gulf of Maine/Bay of Fundy harbor porpoises. NOAA-NMFS-NEFSC Ref. Doc. 96-04; 37 pp.
Palka, D.L., A.J. Read, A.J. Westgate, and D.W. Johnston. 1996. Summary of current knowledge of harbour porpoises in U.S. and Canadian Atlantic waters. Rep. int. Whal. Commn 46:559-565.
Palka, D. 2000. Abundance of the Gulf of Maine/Bay of Fundy harbor porpoise based on shipboard and aerial surveys during 1999. NOAA-NMFS-NEFSC Ref. Doc. 00-07. 29 pp.
Polacheck, T. 1989. Harbor porpoises and the gillnet fishery. Oceanus 32(1):63-70.
Polacheck, T., F.W. Wenzel. and G. Early. 1995. What do stranding data say about harbor porpoises (Phocoena phocoena). Rep. int. Whal. Commn (Special Issue) 16:169-180.
Read, A.J. 1994. Interactions between cetaceans and gillnet and trap fisheries in the northwest Atlantic. Rep. int. Whal. Commn (Special Issue) 15:133-147.
Read, A.J. and A.J. Westgate. 1997. Monitoring the movements of harbour porpoises (Phocoena phocoena) with satellite telemetry. Marine Biology 130:315-22.
Read, A.J., J.R. Nicolas, and J.E. Craddock. 1996. Winter capture of a harbor porpoise in a pelagic drift net off North Carolina. Fish. Bull. U.S. 94:381-83.
Read, A.J. and A.A. Hohn. 1995. Life in the fast lane: The life history of harbour porpoises from the Gulf of Maine. Mar. Mammal Sci. 11(4):423-440.
Rosel, P. E., S. C. France, J. Y. Wang, and T. D. Kocher. 1999a. Genetic structure of harbour porpoise Phocoena phocoena populations in the northwest Atlantic based on mitochondrial and nuclear markers. Mol. Ecol. 8: S41-S54.
Rosel, P. E., R. Tiedemann, and M. Walton. 1999b. Genetic evidence for limited trans-Atlantic movements of the harbor porpoise Phocoena phocoena. Marine Biology 133: 583-591.
Rossman, M.C. and R.L. Merrick. 1999. Harbor porpoise bycatch in the Northeast multispecies sink gillnet fishery and the mid-Atlantic coastal gillnet fishery in 1998 and during January-May 1999. NOAA-NMFS-NEFSC Ref. Doc. 99-17, 36 p.
Smith, G. J. D., A. J. Read, and D. E. Gaskin. 1983. Incidental catch of harbor porpoises, Phocoena phocoena (L.), in herring weirs in Charlotte County, New Brunswick, Canada. Fish. Bull., U.S. 81(3):660-2.

Smith, T., D. Palka and K. Bisack. 1993. Biological significance of bycatch of harbor porpoise in the Gulf of Maine demersal gillnet fishery. NOAA, NMFS, NEFSC [Northeast Fisheries Science Center] Ref. Doc. 93-23, Woods Hole, Massachusetts.
Trippel, E.A., and Shepherd, T.D. 2004. By-Catch of Harbour Porpoise (Phocoena phocoena) in the Lower Bay of Fundy Gillnet Fishery from 1998-2001. DFO Res. Doc. 2004/2521.
Trippel, E. A., J. Y. Wang, M. B. Strong, L. S. Carter, and J. D. Conway. 1996. Incidental mortality of harbour porpoise (Phocoena phocoena) by the gillnet fishery in the lower Bay of Fundy. Can. J. Fish. Aquat. Sci. 53:1294-1300.
Trippel, E. A., M. B. Strong, J. M. Terhune, and J. D. Conway. 1999. Mitigation of harbour porpoise (Phocoena phocoena) bycatch in the gillnet fishery in the lower Bay of Fundy. Can. J. Fish. Aquat. Sci. 56:113-123.
Wade, P. R. and R. P. Angliss. 1997. Guidelines for assessing marine mammal stocks: Report of the GAMMS workshop April 3-5, 1996, Seattle, Washington. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR12, 93 pp .
Wang, J. Y., D. E. Gaskin, and B. N. White. 1996. Mitochondrial DNA analysis of harbour porpoise, Phocoena phocoena, subpopulations in North American waters. Can. J. Fish. Aquat. Sci. 53:1632-45.
Westgate, A. J. and K. A. Tolley. 1999. Geographical differences in organochlorine contaminants in harbour porpoises Phocoena phocoena from the western North Atlantic. Mar. Ecol. Prog, Series 177:255-268.
Westgate, A. J., A. J. Read, T. M. Cox, T. D. Schofield, B. R. Whitaker, and K. E. Anderson. 1998. Monitoring a rehabilitated harbor porpoise using satellite telemetry. Mar. Mammal Sci. 14(3):599-604.
Westgate, A. J., D. C. G. Muir, D. E. Gaskin, and M. C. S. Kingsley. 1997. Concentrations and accumulation patterns of organochlorine contaminants in the blubber of harbour porpoises, Phocoena phocoena, from the coast of Newfoundland, the Gulf of St. Lawrence and the Bay of Fundy/Gulf of Maine. Envir. Pollut 95: 105-119.
Woodley, T. H. and A. J. Read. 1991. Potential rates of increase of a harbor porpoise (Phocoena phocoena) population subjected to incidental mortality in commercial fisheries. Can. J. Fish. Aquat. 48:2429-35.

HARBOR SEAL (Phoca vitulina): Western North Atlantic Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

The harbor seal is found in all nearshore waters of the Atlantic Ocean and adjoining seas above about 30 N (Katona et al. 1993). In the western North Atlantic, they are distributed from the eastern Canadian Arctic and Greenland south to southern New England and New York, and occasionally to the Carolinas (Mansfield 1967; Boulva and McLaren 1979; Katona et al. 1993; Gilbert and Guldager 1998; Baird 2001). Stanley et al. (1996) examined worldwide patterns in harbor seal mitochondrial DNA, which indicate that western and eastern North Atlantic harbor seal populations are highly differentiated. Further, they suggested that harbor seal females are only regionally philopatric, thus population or management units are on the scale of a few hundred kilometers. Although the stock structure of the western North Atlantic population is unknown, it is thought that harbor seals found along the eastern U.S. and Canadian coasts represent one population (Temte et al. 1991). In U.S. waters, breeding and pupping normally occur in waters north of the New Hampshire/Maine border, although breeding occurred as far south as Cape Cod in the early part of the twentieth century (Temte et al. 1991; Katona et al. 1993).

Harbor seals are year-round inhabitants of the coastal waters of eastern Canada and Maine (Katona et al. 1993), and occur seasonally along the southern New England and New York coasts from September through late May (Schneider and Payne 1983). In recent years, their seasonal interval along the southern New England to New Jersey coasts has increased (Barlas 1999; Hoover et al. 1999; Slocum et al. 1999; Schroeder 2000; deHart 2002). Scattered sightings and strandings have been recorded as far south as Florida (NMFS unpublished data). A general southward movement from the Bay of Fundy to southern New England waters occurs in autumn and early winter (Rosenfeld et al. 1988; Whitman and Payne 1990; Barlas 1999; Jacobs and Terhune 2000). A northward movement from southern New England to Maine and eastern Canada occurs prior to the pupping season, which takes place from mid-May through June along the Maine Coast (Richardson 1976; Wilson 1978; Whitman and Payne 1990; Kenney 1994; deHart 2002). No pupping areas have been identified in southern New England (Payne and Schneider 1984; Barlas 1999). More recent information suggests that pupping is occurring at high-use haulout sites off Manomet, Massachusetts (B. Rubinstein, pers. comm., New England Aquarium). The overall geographic range throughout coastal New England has not changed significantly during the last century (Payne and Selzer 1989).

Prior to spring 2001 live capture and radio tagging of adult harbor seals, it was believed that the majority of seals moving into southern New England and mid-Atlantic waters were subadults and juveniles (Whitman and Payne 1990; Katona et al. 1993; Slocum et al. 1999). The 2001 study established that adult animals also made this migration. Seventy-five percent (9/12) of the tagged seals were detected at least once during the May/June 2001 abundance survey along the Maine coast (Gilbert et al. 2005; Waring et al. in press).

POPULATION SIZE

Since passage of the MMPA in 1972, the observed count of seals along the New England coast has been increasing. Coast-wide aerial surveys along the Maine coast were conducted in May/June 1981, 1986, 1993, 1997, and 2001during pupping. (Gilbert and Stein 1981; Gilbert and Wynne 1983, 1984; Kenney 1994; Gilbert and Guldager 1998; Gilbert et al. 2005). However, estimates older than eight years are deemed unreliable (Wade and Anglis 1997),, and therefore should not be used for PBR determinations. Therefore, only the 2001 estimate is useful for population assessment. The 2001 survey, conducted in May/June, included replicate surveys and radio tagged seals to obtain a correction factor for animals not hauled out. The corrected estimate for 2001 is $99,340(23,722)$. The 2001 observed count of 38,014 is 28.7% greater than the 1997 count. Increased abundance of seals in the northeast region has also been documented during aerial and boat surveys of overwintering haul-out sites from the Maine/New Hampshire border to eastern Long Island and New Jersey (Payne and Selzer 1989; Rough 1995; Barlas 1999; Hoover et al. 1999; Slocum et al. 1999; deHart 2002).

Canadian scientists counted 3,500 harbor seals during an August 1992 aerial survey in the Bay of Fundy (Stobo and Fowler 1994), but noted that the survey was not designed to obtain a population estimate. The Sable Island population was the largest in eastern Canada in the late 1980s, however recently the number has drastically declined (Baird 2001). Similarly, pup production declined on Sable Island from 600 in 1989 to 30 in 1997 (Baird 2001).

Possible reasons for this decline may be increased use of the island by gray seals and increased predation by sharks (Stobo and Lucas 2000).

Table 1. Summary of abundance estimates for the western Atlantic harbor seal. Month, year, and area covered during each abundance survey, resulting abundance estimate $\left(\mathrm{N}_{\text {best }}\right)$ and coefficient of variation (CV).			
Month/Year	Area	$\mathbf{N}_{\text {best }}{ }^{\text {a }}$	$\mathbf{C V}$
May/June 2001	Maine coast	$99,340(23,722)^{\text {b }}$	CV $=.097$
a Pup counts are in brackets b Corrected estimate based on uncorrected count of $38,011(9,278)$			

Minimum Population Estimate

The minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the lognormally distributed best abundance estimate. This is equivalent to the 20th percentile of the log-normal distribution as specified by Wade and Angliss (1997). The best estimate of abundance for harbor seals is 99,340 (CV=.097). The minimum population estimate is 91,546 based on corrected total counts along the Maine coast in 2001.

Current Population Trend

Between 1981 and 2001, the uncorrected counts of seals increased from 10,543 to 38,014 , an annual rate of 6.6 percent (Gilbert et al. 2005).

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

A reliable estimate of the maximum net productivity rate is currently unavailable for this population. Based on uncorrected haulout counts over the 1981 to 2001 survey period, the harbor seal population is growing at approximately 6.6% (Gilbert et al. 2005). However, a population grows at the maximum growth rate ($\mathrm{R}_{\mathrm{MAX}}$) only when it is at a very low level; thus the 6.6% growth rate is not considered to be a reliable estimate of ($\mathrm{R}_{\text {MAX }}$). For purposes of this assessment, the maximum net productivity rate was assumed to be 0.12 . This value is based on theoretical modeling showing that pinniped populations may not grow at rates much greater than 12% given the constraints of their reproductive life history (Barlow et al. 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential Biological Removal (PBR) is the product of minimum population size, one-half the maximum productivity rate ($1 / 2$ of 12%), and a "recovery" factor (MMPA Sec. 3. 16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size is 91,546 . The recovery factor $\left(F_{R}\right)$ for this stock is 1.0 , the value for stocks of unknown status, but known to be increasing. PBR for U.S. waters is 5,493.

ANNUAL HUMAN-CAUSED MORTALITY

For the period 2000-2004 the total human caused mortality and serious injury to harbor seals is estimated to be 925 per year. The average is derived from two components: 1) $906(\mathrm{CV}=0.18$; Table 2) from the 2000-2004 observed fishery; and 2) 19 from average 2000-2004 stranding mortalities resulting from boat strikes, power plant entrainments, shooting, and other sources (NMFS unpublished data).

Researchers and fishery observers have documented incidental mortality in several fisheries, particularly within the Gulf of Maine (see below). An unknown level of mortality also occurred in the mariculture industry (i.e., salmon farming), and by deliberate shooting (NMFS unpublished data). However, no data are available to determine whether shooting still takes place.

Fishery Information

Detailed Fishery information is given in Appendix III.

U.S.

Northeast Sink Gillnet:

Annual estimates of harbor seal bycatch in the Northeast sink gillnet fishery reflect seasonal distribution of the species and of fishing effort. The fishery has been observed in the Gulf of Maine and in southern New England (Williams 1999; NMFS unpublished data). There were 136 harbor seal mortalities observed in the Northeast sink gillnet fishery between 2000 and 2004. Estimated annual mortalities (CV in parentheses) from this fishery during 2000-2004 were $917(0.43)$ in 2000, 1,471 (0.38) in 2001,787 (0.32) in 2002, $542(0.28)$ in 2003 and $792(0.34)$ in 2004 (Table 2). There were $5,8,2,2$, and 9 unidentified seals observed during 2000-2004, respectively. Since 1997, unidentified seals have not been prorated to a species. This is consistent with the treatment of other unidentified mammals that do not get prorated to a specific species. Average annual estimated fishery-related mortality and serious injury to this stock attributable to this fishery during 2000-2004 was 902 harbor seals $(\mathrm{CV}=0.18)($ Table 2). The stratification design used is the same as that for harbor porpoise (Bravington and Bisack 1996). The bycatch occurred in the Midcoast closure region (2) and east of Cape Cod (1) between January and April. Between May and August 6 animals were caught off Massachusetts and New Hampshire, and between September and December 4 were caught in the Midcoast closure area.

Mid-Atlantic Coastal Gillnet

Observed effort was distributed from New York to North Carolina year-round. One harbor seal was observed taken in 2004 off New Jersey. Using the observed takes, the estimated annual mortality (CV in parentheses) attributed to this fishery was 0 in 1995-1997 and 1999-2003 11 in 1998 (0.77), and 15 (0.86) in 2004. Average annual estimated fishery-related mortality attributable to this fishery during 2000-2004 was 4 ($\mathrm{CV}=0.86$) harbor seals. In $2002,65 \%$ of observer coverage was concentrated in one area and not distributed proportionally across the fishery. Therefore observed mortality is considered unknown in 2002.

Northeast Bottom Trawl

Vessels in the Northeast bottom trawl fishery, a Category III fishery under MMPA, were observed in order to meet fishery management needs, rather than marine mammal management needs. In the 2005 list of fisheries (LOF) this fishery has been elevated to Category II. Four mortalities were observed between 2000 and 2004 (Table 2). Observer coverage, expressed as number of trips, was < 1% from 1998 to 2001, and 2% in 2002 (Table 2). The estimated annual fishery-related mortality and serious injury attributable to this fishery are currently being determined.

Gulf of Maine Atlantic Herring Purse Seine Fishery

The Gulf of Maine Atlantic Herring Purse Seine Fishery is a Category III fishery. This fishery was not observed until 2003. No mortalities have been observed, but 11 harbor seals were captured and released alive.

CANADA

Currently, scant data are available on bycatch in Atlantic Canada fisheries due to a lack of observer programs (Baird 2001). An unknown number of harbor seals have been taken in Newfoundland, Labrador, Gulf of St. Lawrence and Bay of Fundy groundfish gillnets, Atlantic Canada and Greenland salmon gillnets, Atlantic Canada cod traps, and in Bay of Fundy herring weirs (Read 1994). Furthermore, some of these mortalities (e.g., seals trapped in herring weirs) are the result of direct shooting.

Table 2. Summary of the incidental mortality of harbor seals (Phoca vitulina) by commercial fishery including the years sampled (Years), the number of vessels active within the fishery (Vessels), the type of data used (Data Type), the annual observer coverage (Observer Coverage), the mortalities recorded by on-board observers (Observed Mortality), the estimated annual mortality (Estimated Mortality), the estimated CV of the annual mortality (Estimated CVs) and the mean annual mortality (CV in parentheses).

Fishery	Years	Vessels	Data Type	Observer Coverage	Observed Mortality	Estimated Mortality	$\begin{gathered} \text { Estimated } \\ \text { CVs } \\ \hline \end{gathered}$	Mean Annual Mortality
Northeast ${ }^{\text {c }}$ Sink Gillnet	00-04	301	Obs. Data, Weighout, Logbooks	$\begin{gathered} .06, .04, \\ .02, .03, \\ .06 \end{gathered}$	$\begin{gathered} 26,32, \\ 12,21,45 \end{gathered}$	$\begin{gathered} 917, \\ \text { 1471, } \\ 787,542, \\ 792 \end{gathered}$	$\begin{gathered} .43, .38, \\ .32, .28 \\ .34 \end{gathered}$	$\begin{gathered} 902 \\ (0.18) \end{gathered}$
Mid-Atlantic Coastal Sink Gillnet	00-04	unk ${ }^{\text {d }}$	Obs. Data, Weighout	$\begin{gathered} .02, .02, \\ .01, .01, \\ .02 \end{gathered}$	$\begin{gathered} 0,0, \\ \text { unke }_{e}^{e}, 0,1 \end{gathered}$	$\begin{gathered} 0,0, \\ \text { unk, } 0, \\ 15 \end{gathered}$	$\begin{gathered} 0,0, \mathrm{unk}^{\mathrm{e}} \\ , 0, .86 \end{gathered}$	$4(0.86){ }^{\text {e }}$
Northeast Bottom Trawl	00-04	unk	Obs. Data, Weighout	$\begin{gathered} .01, .01, \\ .03, .03 \\ .05 \end{gathered}$	$\underset{0}{0,0,4,0,}$	$\begin{gathered} 0,0, \text { unk, } \\ 0,0 \end{gathered}$	$\begin{gathered} 0,0, \text { unk, } \\ 0,0 \end{gathered}$	unk
TOTAL								$\begin{gathered} 906 \\ (0.18) \end{gathered}$

${ }^{\text {a }}$ Observer data (Obs. Data) are used to measure bycatch rates, and the data are collected within the Northeast Fisheries Observer Program. NEFSC collects landings data (Weighout), and total landings are used as a measure of total effort for the sink gillnet fishery. Mandatory logbook (Logbook) data are used to determine the spatial distribution of fishing effort in the Northeast sink gillnet fishery.
${ }^{\mathrm{b}}$ The observer coverage for the Northeast sink gillnet fishery and the mid-Atlantic coastal gillnet fisheries are measured in tons of fish landed.
${ }^{\text {© Since }} 1998$, takes from pingered and non-pingered nets within a marine mammal time/area closure that required pingers, and takes from pingered and non-pingered nets not within a marine mammal time/area closure were pooled. The pooled bycatch rate was weighted by the total number of samples taken from the stratum and used to estimate the mortality. In 2000-2004, respectively, $8,10,3,0,8$ takes were observed in nets with pingers. In 2000-2004, respectively, 18, 22, 9, 21, 37 takes were observed in nets without pingers.
${ }^{\mathrm{d}}$ Number of vessels is not known.
${ }^{\text {e }}$ Sixty-five percent of sampling in the mid-Atlantic coastal gillnet by the NEFSC fisheries observer program was concentrated in one area off the coast of Virginia. Because of the low level of sampling that was not distributed proportionately throughout the mid-Atlantic region observed mortality is considered unknown in 2002. The four year average (2000-2001, 2003, and 2004) estimated mortality was applied as the best representative estimate.

Other Mortality

Historically, harbor seals were bounty hunted in New England waters, which may have caused a severe decline of this stock in U.S. waters (Katona et al. 1993). Bounty hunting ended in the mid-1960s.

Currently, aquaculture operations in eastern Canada are licensed to shoot nuisance seals, but the number of seals killed is unknown (Baird 2001). Other sources of harbor seal mortality include human interactions, storms, abandonment by the mother, disease, and predation (Katona et al. 1993; Jacobs and Terhune 2000; NMFS unpublished data). Mortalities caused by human interactions include boat strikes, fishing gear interactions, power plant entrainment, oil spill/exposure, harassment, and shooting.

Small numbers of harbor seals strand each year throughout their migratory range. Stranding data provide insight into some of these sources of mortality. From 2000-2004, 2,059 harbor seal strandings were reported (219 in 2000, 246 in 2001, 337 in 2002, 479 in 2003, and 774 in 2004) in all states between Maine and North Carolina (Table 3; NMFS unpublished data). Ninety-nine (4.8\%) of the seals stranded during this five year period showed signs of human interaction as a direct cause of mortality. An Unusual Mortality Event (UME) was declared for harbor seals in northern Gulf of Maine waters during 2004. Stranding data probably underestimate the extent of fishery-related mortality and serious injury because all of the marine mammals that die or are seriously injured may
not wash ashore, nor will all of those that do wash ashore necessarily show signs of entanglement or other fisheryinteraction. Finally, the level of technical expertise among stranding network personnel varies widely as does the ability to recognize signs of fishery interaction.

Stobo and Lucas (2000) have documented shark predation as an important source of natural mortality at Sable Island, Nova Scotia. They suggest that shark-inflicted mortality in pups, as a proportion of total production, was less than 10% in 1980-1993, approximately 25% in 1994-1995, and increased to 45% in 1996 . Also, shark predation on adults was selective towards mature females. They suggest that the combined predation mortality is likely impacting the Sable Island population growth, and may be contributing to the observed population decline.

Table 3. Harbor seal (Phoca vitulina) reported strandings along the U.S. Atlantic coast (2002-2004).

State	$\mathbf{2 0 0 2}$	$\mathbf{2 0 0 3}$	$\mathbf{2 0 0 4}^{\mathbf{c}}$	Total
Maine	183	259	$509^{\text {a }}$	951
New Hampshire	3	15	24	42
Massachusetts	108	109	170	387
Rhode Island	4	12	12	28
Connecticut	0	1	3	4
New York	18	22	31	71
New Jersey	15	30	$16^{\text {b }}$	61
Delaware	0	2	0	2
Maryland	0	2	1	3
Virginia	3	6	5	14
North Carolina	3	23	4	30
Florida	0	0	1	1
Total	337	481	776	1,594

Unusual Mortality Event (UME) declared for harbor seals in northern Gulf of Maine waters during 2004.
${ }^{\mathrm{b}}$ Harbor seals were treated and released in New Jersey.
${ }^{\text {c }}$ During 2004, the Northeast region had 37 seal strandings where species could not be determined. In 2004, 13 harbor seals had signs of human interaction.

STATUS OF STOCK

The status of the western North Atlantic harbor seal stock, relative to OSP, in the U.S. Atlantic EEZ is unknown, but the stock's abundance is increasing. The species is not listed as threatened or endangered under the Endangered Species Act. Total U.S. fishery-related mortality and serious injury for this stock is not less than 10% of the calculated PBR and, therefore, cannot be considered to be approaching zero mortality and serious injury rate. This is not a strategic stock because human-related mortality and serious injury does not exceed PBR.

REFERENCES

Baird, R.W. 2001. Status of harbor seals, Phoca vitulina, in Canada. Can. Field Nat. 115:663-675.
Barlas, M.E. 1999. The distribution and abundance of harbor seals (Phoca vitulina concolor) and gray seals (Halichoerus grypus) in southern New England, winter 1998- summer 1999. MA Thesis, Boston University, Graduate School of Arts and Sciences., Boston, MA. 52 pp.
Barlow, J., S.L. Swartz, T.C. Eagle, and P.R. Wade. 1995. U.S. marine mammal stock assessments: Guidelines for preparation, background, and a summary of the 1995 assessments. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-6, 73 pp.
Bisack, K.D. 1997. Harbor porpoise bycatch estimates in the New England multispecies sink gillnet fishery: 1994 and 1995. Rep. int. Whal. Commn 47:705-14.
Boulva, J. and I.A. McLaren. 1979. Biology of the harbor seal, Phoca vitulina, in eastern Canada. Bull. Fish. Res. Bd. Can. 200:1-24.
Bravington, M.V. and K.D. Bisack. 1996. Estimates of harbor porpoise bycatch in the Gulf of Maine sink gillnet fishery, 1990-93. Rep. int. Whal. Commn 46:567-574.
deHart, P.A.P. 2002. The distribution and abundance of harbor seals (Phoca vitulina concolor) in the Woods Hole region. MA Thesis, Boston University, Graduate School of Arts and Sciences. Boston, MA, 88 pp.

Gilbert, J.R., G.T. Waring, K.M. Wynne, and N. Guldager. 2005. Changes in abundance and distribution of harbor seals in Maine, 1981-2001. Mar. Mammal Sci. 21:519-535.
Gilbert, J.R. and J.L. Stein. 1981. Harbor seal populations and marine mammal fisheries interactions, 1981. Annual report, Contract NA-80-FA-C-00029, to NMFS, Northeast Fisheries Science Center, 166 Water St., Woods Hole, MA. 35 pp.
Gilbert, J.R. and K.M. Wynne. 1983. Harbor seal populations and marine mammal fisheries interactions, 1982. Second annual report, Contract NA-80-FA-C-00029, to NMFS, Northeast Fisheries Science Center, 166 Water St., Woods Hole, MA. 43 pp.
Gilbert, J.R. and K.M. Wynne. 1984. Harbor seal populations and marine mammal fisheries interactions, 1983. Third annual report, Contract NA-80-FA-C-00029, to NMFS, Northeast Fisheries Science Center, 166 Water St, Woods Hole, MA. 52 pp.
Gilbert, J.R. and K.M. Wynne. 1985. Harbor seal populations and fisheries interactions with marine mammals in New England, 1984. Interim Rep., NOAA NA-84-EAC-00070, to NMFS, Northeast Fisheries Science Center, 166 Water St., Woods Hole, MA. 15 pp.
Gilbert, J.R. and K.M. Wynne. 1987. Marine mammal interactions with New England gillnet fisheries. Final Report, Contract No. NA-84-EAC-00070, to NMFS, Northeast Fisheries Science Center, 166 Water St., Woods Hole, MA. 21 pp.
Gilbert, J.R. and N. Guldager. 1998. Status of harbor and gray seal populations in northern New England. Final Report under NMFS/NER Cooperative Agreement 14-16-009-1557, to NMFS, Northeast Fisheries Science Center, 166 Water St., Woods Hole, MA. 13 pp.
Hoover, K., S. Sadove, and P. Forestell. 1999. Trends of harbor seal, Phoca vitulina, abundance from aerial surveys in New York waters: 1985-1999. Proceedings of the 13 Biennial Conference on the Biology of Marine , Wailea, Hawaii, Nov. 28 - Dec. 3, 1999. (Abstract).
Jacobs, S.R. and J.M. Terhune. 2000. Harbor seal (Phoca vitulina) numbers along the New Brunswick coast of the Bay of Fundy in autumn in relation to aquaculture. Northeastern Naturalist 7(3): 289-296.
Katona, S.K., V. Rough, and D.T. Richardson. 1993. A field guide to whales, porpoises, and seals from Cape Cod to Newfoundland. Smithsonian Institution Press: Washington, DC, 316 pp.
Kenney, M.K. 1994. Harbor seal population trends and habitat use in Maine. M.S. Thesis. University of Maine, Orono, ME. 55 pp.
Lens, S. 1997. Interactions between marine mammals and deep water trawlers in the NAFO regulatory area. ICES C.M. 8/Q. 10 pp.

Mansfield, A.W. 1967. Distribution of the harbor seal, Phoca vitulina Linnaeus, in Canadian Arctic waters. J. Mamm. 48(2):249-257.
Payne. P.M. and D.C. Schneider. 1984. Yearly changes in abundance of harbor seals, Phoca vitulina, at a winter haul-out site in Massachusetts. Fish. Bull., U.S. 82:440-442.
Payne, P.M. and L.A. Selzer. 1989. The distribution, abundance and selected prey of the harbor seal, Phoca vitulina concolor, in southern New England. Mar. Mammal Sci. 5(2):173-192.
Read, A. J. 1994. Interactions between cetaceans and gillnet and trap fisheries in the northwest Atlantic. Rep. int. Whal. Commn (Special Issue) 15:133-147.
Richardson, D.T. 1976. Assessment of harbor and gray seal populations in Maine 1974-1975. Final report, contract No. MM4AC009, Marine Mammal Commission., Washington, DC, 46 pp.
Rosenfeld M., M. George, and J.M. Terhune. 1988. Evidence of autumnal harbour seal, Phoca vitulina, movement from Canada to the United States. Can. Field Nat. 102(3):527-529.
Rough, V. 1995. Gray seals in Nantucket Sound, Massachusetts, winter and spring, 1994. Final report to Marine Mammal Commission, Contract T10155615, 28 pp. NTIS Pub. PB95-191391.
Schneider, D.C. and P.M. Payne. 1983. Factors affecting haul-out of harbor seals at a site in southeastern Massachusetts. J. Mamm. 64(3):518-520.
Schroeder, C.L. 2000. Population status and distribution of the harbor seal in Rhode Island waters. M.S. Thesis, University of Rhode Island, Kingston, RI. 197 pp.
Slocum, C.J., R. Schoelkopf, S. Tulevech, M. Stevens, S. Evert, and M. Moyer. 1999. Seal populations wintering in New Jersey (USA) have increased in abundance and diversity. Proceedings of the $13^{\text {th }}$ Biennial Conference on the Biology of Marine Mammals, Wailea, Hawaii, Nov. 28 - Dec. 3, 1999. (Abstract).
Stanley, H.F., S. Casey, J.M. Carnahan, S. Goodman, J. Harwood, and R.K. Wayne. 1996. Worldwide patterns of mitochondrial DNA differentiation in the harbor seal (Phoca vitulina). Mol. Biol. Evol. 13:368-382.

Stobo, W.T. and G.M. Fowler. 1994. Aerial surveys of seals in the Bay of Fundy and off southwest Nova Scotia. Can. Tech. Rep. Fish. Aquat. Sci. 1943:57 pp.
Stobo, W.T. and Z. Lucas. 2000. Shark-inflicted mortality on a population of harbour seals (Phoca vitulina) at Sable Island, Nova Scotia. J. Zool. Lond. 252:405-414.
Temte, J.L., M.A. Bigg, and O. Wiig. 1991. Clines revisited: the timing of pupping in the harbour seal (Phoca vitulina). J. Zool. Lond. 224:617-632.
Wade, P.R. and R.P. Angliss. 1997. Guidelines for assessing marine mammal stocks: Report of the GAMMS Workshop April 3-5, 1996, Seattle, Washington. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR12, 93 pp .
Waring, G.T., J.R. Gilbert, J. Loftin, and N. Cabana. 2006. Short term movements of radio tagged harbor seals in New England. Northeast. Nat. 13(1):1-14.
Whitman, A.A. and P.M. Payne. 1990. Age of harbour seals, Phoca vitulina concolor, wintering in southern New England. Can. Field Nat. 104(4):579-582.
Williams, A.S. 1999. Prey selection by harbor seals in relation to fish taken by the Gulf of Maine sink gillnet fishery. M.S. Thesis University of Maine, Orono, ME. 62 pp.
Wilson, S.C. 1978. Social organization and behavior of harbor seals, Phoca concolor, in Maine. Final Report contract MM6ACO13, GPO-PB-280-188, Marine Mammal Commission, Washington, DC, 36 pp .

GRAY SEAL (Halichoerus grypus): Western North Atlantic Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

The gray seal is found on both sides of the North Atlantic, with three major populations: eastern Canada, northwestern Europe and the Baltic Sea (Katona et al. 1993). The western North Atlantic stock is equivalent to the eastern Canada population, and ranges from New England to Labrador (Mansfield 1966; Katona et al. 1993; Davies 1957; Lesage and Hammill 2001). This stock is separated by geography, differences in the breeding season, and mitochondrial DNA variation from the northwestern Atlantic stock (Bonner 1981; Boskovic et al. 1996; Lesage and Hammill 2001). There are two breeding concentrations in eastern Canada; one at Sable Island, and one that breeds on the pack ice in the Gulf of St. Lawrence (Laviguer and Hammill 1993). Tagging studies indicate that there is little intermixing between the two breeding groups (Zwanenberg and Bowen 1990) and, for management purposes, they are treated by the Canadian DFO as separate stocks (Mohn and Bowen 1996).

Small numbers of animals and pupping have been observed on several isolated islands along the Maine coast and in Nantucket-Vineyard Sound, Massachusetts (Katona et al. 1993; Rough 1995; J. R. Gilbert, pers. comm., University of Maine, Orono, ME). In the late 1990s, a year-round breeding population of approximately 400+ animals was documented on outer Cape Cod and Muskeget Island (D. Murley, pers. comm., Mass. Audubon Society, Wellfleet, MA). In December 2001, NMFS initiated aerial surveys to monitor gray seal pup production on Muskeget Island and at the Monomoy National Wildlife Refuge (NWR; S. Wood, pers. comm., University of Massachusetts, Boston, MA). Gilbert (pers. comm.) has also documented resident colonies and pupping in Maine since 1994.

POPULATION SIZE

Current estimates of the total western Atlantic gray seal population are not available; although estimates of portions of the stock are available for select time periods. The Canadian population, inhabiting the Gulf of St. Lawrence and Sable Island, appears to be growing. A 1993 survey estimated the population at 144,000 animals (DFO 2003, Mohn and Bowen 1996) and a 1997 survey estimated 195,000 (DFO 2003). While the overall population in increasing, the population at Sable Island is increasing by approximately 13% per year, while the population in the Gulf of St. Lawrence is declining (Bowen et al. 2003).

The population in US waters is also increasing. Maine coast-wide surveys conducted during summer (all other surveys were conducted January-May) revealed 597 and 1,731 gray seals in 1993 and 2001, respectively (Gilbert et al. 2005). In 2002, the maximum counts of two breeding colonies in Maine, with number of pups in parentheses, were 193 (9) on Seal Island and 74 (31) on Green Island (S. Wood, pers. comm.). Gray seal numbers are increasing in Massachusetts at Muskeget Island off the coast of Nantucket, and at Monomoy Island, off the coast Chatham, Cape Cod. Pup counts on Muskeget have increased from 0 in 1989 to 1,023 in 2002 (Rough 1995, S. Wood, pers. comm.). Gray seal numbers increase in this region in the spring (April-May) when molting occurs. In April-May 1994 a maximum count of 2,010 was obtained for Muskeget Island and Monomoy combined (Rough 1995). In March 1999 a maximum count of 5,611 was obtained in the region south of Maine (between Isles of Shoals, NH and Woods Hole, MA) (Barlas 1999). No gray seals were recorded at haul out sites between Newport, RI and Montauk Pt., NY (Barlas 1999), although, more recently small numbers of gray seals have been recorded in this region (deHart 2002; R. DiGiovanni, pers. comm., Riverhead Foundation, Riverhead, NY). Recently, a small number of gray seals have maintained a winter presence in the Woods Hole region (Vineyard Sound) (deHart 2002).

Table 1. Summary of abundance estimates for the western North Atlantic gray seal. Month, year, and area covered during each abundance survey, resulting abundance estimate $\left(\mathrm{N}_{\min }\right)$ and coefficient of variation (CV). Month/Year Area			
March 1999	Muskeget Island and Monomoy NWR, MA	Nmin $^{\text {a }}$	CV
May 2001	Maine coast	5,611	None reported
a. These counts pertain to animals seen in U.S. waters, and the stock relationship to animals in Canadian waters is unknown.			

Minimum Population Estimate

It is estimated that there are at least 195,000 gray seals in Canada (DFO 2003). Present data are insufficient to calculate the minimum population estimate for U.S. waters.

Current Population Trend

Gray seal abundance is likely increasing in the U.S. Atlantic Exclusive Economic Zone (EEZ), but the rate of increase is unknown. The population in eastern Canada was greatly reduced by hunting and bounty programs, and in the 1950s the gray seal was considered rare (Lesage and Hammill 2001). The Sable Island population was less affected and has been increasing for several decades. Pup production on Sable Island, Nova Scotia, has been about 13% per year since 1962 (Stobo and Zwanenberg 1990; Mohn and Bowen 1996); whereas, in the Gulf of St. Lawrence the population appears to be declining, and may have been declining since 1990 (DFO 2003). Approximately 57% of the western North Atlantic population is from the Sable Island stock. In recent years pupping has been established on Hay Island, off the Cape Breton coast (Lesage and Hammill 2001).

Winter breeding colonies in Maine and on Muskeget Island may provide some measure of gray seal population trends and expansion in distribution. Sightings in New England increased during the 1980s as the gray seal population and range expanded in eastern Canada. Five pups were born at Muskeget in 1988. The number of pups increased to 12 in 1992, 30 in 1993, and 59 in 1994 (Rough 1995). In January 2002, between 883 and 1,023 pups were counted on Muskeget Island and surrounding shoals (S. Wood, pers. comm.). These observations continue the increasing trend in pup production reported by Rough (1995). NMFS recently initiated a collaborative program with the University of Massachusetts, Boston and University of Maine to monitor gray seal population trends and pup production in New England waters. The change in gray seal counts at Muskeget and Monomoy from 2,010 in 1994 to 5,611 in 1999 represents an annual increase rate of 20.5%, however, it cannot be determined what proportion of the increase represents growth or immigration.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Current and maximum net productivity rates are unknown for this stock. One study estimated an annual or net productivity increase in pup production of 13% on Sable Island (Mohn and Bowen 1996; Bowen et al. 2003). For purposes of this assessment, the maximum net productivity rate was assumed to be 0.12 . This value is based on theoretical modeling showing that pinniped populations may not grow at rates much greater than 12% given the constraints of their reproductive life history (Barlow et al. 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential Biological Removal (PBR) is the product of minimum population size, one-half the maximum productivity rate, and a "recovery" factor (MMPA Sec. 3. 16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size is unknown. The maximum productivity rate is 0.12 , the default value for pinnipeds. The recovery factor $\left(\mathrm{F}_{\mathrm{R}}\right)$ for this stock is 1.0 , the value for stocks of unknown status, but is known to be increasing. PBR for the western North Atlantic gray seals in U.S. waters cannot be determined.

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

For the period 2000-2004, the total estimated human caused mortality and serious injury to gray seals was 371 per year. The average was derived from three components: 1) 228 (CV=0.22) Table 2) from the 2000-2004 U.S. observed fishery; 2) 5 from average 2000-2004 stranding mortalities in U.S. waters resulting from power plant entrainments, oil spill, shooting, boat strike, and other sources (NMFS unpublished data), and 3) 138 from average 2000-2003 kill in the Canadian hunt (DFO 2003, Stenson unpublished data).

Fishery Information

Detailed fishery information is given in Appendix III.

U.S.
 Northeast Sink Gillnet

Annual estimates of gray seal bycatch in the Northeast sink gillnet fishery reflect seasonal distribution of the species and of fishing effort. There were 33 gray seal mortalities observed in the Northeast sink gillnet fishery between 2000 and 2004. Estimated annual mortalities (CV in parentheses) from this fishery was 193 in 2000 (0.55), 117 in 2001 (0.59), 0 in 2002, 242 (0.47) in 2003, and 504 (0.34) in 2004 (Table 2). There were 5, 8, 2, 2 and 9 unidentified seals observed during 2000-2004, respectively. Since 1997 unidentified seals have not been prorated to a species. This is consistent with the treatment of other unidentified mammals that do not get prorated to a specific
species. Average annual estimated fishery-related mortality and serious injury to this stock attributable to this fishery during 2000-2004 was 211 gray seals ($\mathrm{CV}=0.23$) (Table 2). The stratification design used is the same as that for harbor porpoise (Bravington and Bisack 1996).

Mid-Atlantic Coastal Gillnet

One gray seal was observed taken during 2001and 2004 (Table 2). In 2001 the gray seal was taken at 44 fathom depth during the month of April off the coast of New Jersey near Hudson Canyon. The 2004 take was off Virginia in April. Observed effort was scattered between New Jersey and North Carolina from 1 to 50 miles off the beach. In 2002, 65% of sampling was concentrated in one area and not distributed proportionally across the fishery. Therefore, observed mortality is considered unknown in 2002. Average annual estimated fisher-related mortality and serious injury to this stock attributable to this fishery during 2000-2004 was 17 gray seals (CV=0.92) (Table 2).

CANADA

An unknown number of gray seals have been taken in Newfoundland and Labrador, Gulf of St. Lawrence, and Bay of Fundy groundfish gillnets, Atlantic Canada and Greenland salmon gillnets, Atlantic Canada cod traps, and in Bay of Fundy herring weirs (Read 1994). In addition to incidental catches, some mortalities (e.g., seals trapped in herring weirs) were the result of direct shooting, and there were culls of about 1,700 animals annually during the 1970s and early 1980s on Sable Island (Anonymous 1986).

In 1996, observers recorded 3 gray seals (1 released alive) in Spanish deep-water trawl fishing on the southern edge of the Grand Banks (NAFO Areas 3) (Lens, 1997). Seal bycatches occurred year-round, but interactions were highest during April-June. Many of the seals that died during fishing activities were unidentified. The proportion of sets with mortality (all seals) was 2.7 per 1,000 hauls (0.003).

Table 2. Summary of the incidental mortality of gray seal (Halichoerus grypus) by commercial fishery including the years sampled (Years), the number of vessels active within the fishery (Vessels), the type of data used (Data Type), the annual observer coverage (Observer Coverage), the mortalities recorded by on-board observers (Observed Mortality), the estimated annual mortality (Estimated Mortality), the estimated CV of the annual mortality (Estimated CVs) and the mean annual mortality (CV in parentheses).

Fishery	Years	Vessels	Data Type ${ }^{\text {a }}$	Observer Coverage ${ }^{\text {b }}$	Observed Mortality	Estimated Mortality	Estimated CVs	Mean Annual Mortality
Northeast Sink Gillnet ${ }^{\text {c }}$	00-04	301	Obs. Data, Weighout, Logbooks	$\begin{gathered} .06, .04, .02 \\ .03, .06 \end{gathered}$	5, 2, 0, 5, 21	$\begin{gathered} 193,117,0 \\ 242,504 \end{gathered}$	$\begin{gathered} .55, .59,0, .47, \\ .34 \end{gathered}$	211 (0.23)
Mid-Atlantic Coastal Gillnet ${ }^{\text {d }}$	00-04	unk ${ }^{\text {e }}$	Obs. Data, Weighout	$\begin{gathered} .02, .02, .01 \\ .01, .02 \end{gathered}$	$0,1, u^{\text {f }}{ }^{\text {f }}, 0,1$	$\begin{gathered} 0,0, \mathrm{unk}^{\mathrm{f}}, 0 \\ 69 \end{gathered}$	$\begin{gathered} 0,0, u n k^{\mathrm{f}}, 0, \\ .92 \end{gathered}$	17 (0.92)
TOTAL								228 (0.22)

a. Observer data (Obs. Data) are used to measure bycatch rates, and the data are collected within the Northeast Fisheries Observer Program. The

Northeast Fisheries Observer Program collects landings data (Weighout), and total landings are used as a measure of total effort for the sink
gillnet fishery. Mandatory logbook (Logbook) data are used to determine the spatial distribution of fishing effort in the Northeast multispecies sink gillnet fishery.
b. The observer coverages for the Northeast sink gillnet fishery and the mid-Atlantic coastal gillnet fisheries are ratios based on tons of fish landed.
c. Since 1998, takes from pingered and non-pingered nets within a marine mammal time/area closure that required pingers, and takes from pingered and non-pingered nets not within a marine mammal time/area closure were pooled. The pooled bycatch rate was weighted by the total number of samples taken from the stratum and used to estimate the mortality. In 1998, 1 take was observed in a net without a pinger that was within a marine mammal closure that required pingers. In 2000-2004, respectively, $2,0,0,1,1$ takes were observed in nets with pingers. In $2000-2004$, respectively, $3,2,0,4,20$ takes were observed in nets without pingers.
d. The one observed take in the mid-Atlantic gillnet fisheries (2001) was on a "fish trip", therefore no mortality estimate was extrapolated. See Bisack (1997) for "trip" type definitions.
e. Number of vessels is not known.
f. Sixty-five percent of sampling in the mid-Atlantic coastal gillnet by the Northeast Fisheries Observer Program was concentrated in one area off the coast of Virginia. Because of the low level of sampling that was not distributed proportionately throughout the mid-Atlantic region observed mortality is considered unknown in 2002. The four year average (2000-2001, 2003, and 2004) estimated mortality was applied as the best representative estimate.

Other Mortality

Canada: In Canada, gray seals were hunted for several centuries by indigenous people and European settlers in the Gulf of St. Lawrence and along the Nova Scotia eastern shore, and were locally extirpated (Lavigueur and Hammill 1993 Between 1999 and 2003 the annual kill of gray seals by hunters in Canada was: 1999 (98), 2000 (342), 2001 (76) 2002 (126), and 2003 (6) (DFO 2003; Stenson unpublished data). A commercial hunt of 10,000 animals per year was established in 2003. At present, they are harvested in Atlantic Canada, mostly in the Magdalen Islands and Cape Breton. No commercial hunting is permitted on Sable Island, NS.

Canada also issues personal hunting licenses which allow the holder to take 6 gray seals annually (Lesage and Hammill 2001). Hunting is not permitted during the breeding season and some additional seasonal/spatial restrictions are in effect (Lesage and Hammill 2001).
U.S: Gray seals, like harbor seals, were hunted for bounty in New England waters until the late 1960s. This hunt may have severely depleted this stock in U.S. waters (Rough 1995). Other sources of mortality include human interactions, storms, abandonment by the mother, disease, and predation. Mortalities caused by human interactions include boat strikes, fishing gear interactions, power plant entrainment, oil spill/exposure, harassment, and shooting. The Cape Cod stranding network has documented gray seals entangled in netting or plastic debris around the Cape Cod/Nantucket area, and in recent years have made successful disentanglement attempts.

From 1999-2004, 434 gray seal strandings were recorded, extending from Maine to North Carolina. Most strandings were in Massachusetts. Twenty-five (5.8\%) of the seals stranded during this period showed signs of human interaction.

Gray seal strandings from 2002 to 2004 are presented in Table 3.

Table 3. Gray seal (Halichoerus grypus) reported strandings along the U.S. Atlantic coast (2002-2004).				
State	$\mathbf{2 0 0 2}$	$\mathbf{2 0 0 3}$	$\mathbf{2 0 0 4}$	Total
Maine	7	6	4	17
New Hampshire	0	1	0	1
Massachusetts	43	64	47	154
Rhode Island	3	7	8	18
Connecticut	0	0	2	2
New York	14	13	20	47
New Jersey	3	14	9	26
Delaware	0	1	3	4
Maryland	0	0	1	1
Virginia	0	2	4	6
North Carolina	1	0	2	3
Total	71	108	100	279

a. During 2004, the Northeast region had 37 seal strandings where species could not be determined.

In 2004, 10 seals had signs of human interaction.

STATUS OF STOCK

The status of the gray seal population relative to OSP in U.S. Atlantic EEZ waters is unknown, but the stock's abundance appears to be increasing in Canadian and U.S. waters. The species is not listed as threatened or endangered under the Endangered Species Act. The total U.S. fishery-related mortality and serious injury for this stock in the U.S. Atlantic EEZ is low relative to the stock size in Canadian waters and can be considered insignificant and approaching zero mortality and serious injury rate. The level of human-caused mortality and serious injury in the U.S. Atlantic EEZ is unknown, but believed to be very low relative to the total stock size; therefore, this is not a strategic stock.

REFERENCES

Anonymous. 1986. Seals and sealing in Canada. Rep. of the Royal Commission on Seals and Sealing, Vol. 1, 65 pp. Available from Canadian Government Publishing Centre, Ottawa, Canada.
Barlas, M.E. 1999. The distribution and abundance of harbor seals (Phoca vitulina concolor) and gray seals (Halichoerus grypus) in southern New England, winter 1998- summer 1999. MA Thesis, Boston University, Graduate School of Arts and Sciences., Boston, MA. 52 pp.
Barlow, J., S.L. Swartz, T.C. Eagle, and P.R. Wade. 1995. U.S. Marine Mammal Stock Assessments: Guidelines for Preparation, Background, and a Summary of the 1995 Assessments. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-6, 73 pp.
Bisack, K.D. 1997. Harbor porpoise bycatch estimates in the New England multispecies sink gillnet fishery: 1994 and 1995. Rep. int. Whal. Commn 47:705-14.
Bonner, W.N. 1981. Grey seal Halichoerus grypus Fabricus, 1791. Pp. 111-144 in: S. H. Ridgway and R. J. Harrison (eds), Handbook of marine mammals, Vol. 2: Seals. Academic Press, London, 359 pp.
Boskovic, R., K.M. Kovacs, M.O. Hammill, and B.N. White. 1996. Geographic distribution of mitochondrial DNA haplotypes in grey seals (Halichoerus grypus). Can. J. Zool. 74:1787-1796.
Bowen, W.D., J. McMillan, and R. Mohn. 2003. Sustained exponential population growth of grey seals at Sable Island, Nova Scotia. ICES J. Mar. Sci. 60:1265-1274.
Bravington, M.V. and K.D. Bisack. 1996. Estimates of harbor porpoise bycatch in the Gulf of Maine sink gillnet fishery, 1990-93. Rep. int. Whal. Commn 46:567-574.
DFO [Dept. of Fisheries and Oceans]. 2003. Atlantic seal hunt: 2003-2005 management plan. Available from Canadian Department of Fisheries and Oceans, Ottawa, Ontario, Canada, K1A 0E6, Fisheries Resource Management - Atlantic. 34 pp.
Davies, J. L. 1957. The geography of the gray seal. J. Mamm. 38:297-310.
deHart, P.A.P. 2002. The distribution and abundance of harbor seals (Phoca vitulina concolor) in the Woods Hole region. MA Thesis, Boston University, Graduate School of Arts and Sciences., Boston, MA. 88 pp.
Gilbert, J.R., G.T. Waring, K.M. Wynne, and N. Guldager, 2005. Changes in abundance and distribution of harbor seals in Maine, 1981-2001. Mar. Mammal Sci. 21:519-535.
Katona, S.K., V. Rough, and D.T. Richardson. 1993. A field guide to whales, porpoises, and seals from Cape Cod to Newfoundland. Smithsonian Institution Press, Washington, DC. 316 pp.
Laviguer, L. and M.O. Hammill. 1993. Distribution and seasonal movements of grey seals, Halichoerus grypus, born in the Gulf of St. Lawrence and eastern Nova Scotia shore. Can. Field Nat. 107:329-340.
Lens, S. 1997. Interactions between marine mammals and deep water trawlers in the NAFO regulatory area. ICES C.M. 8/Q. 10 pp.

Lesage, V. and M.O. Hammill. 2001. The status of the grey seal, Halichoerus grypus, in the Northwest Atlantic. Can. Field Nat. 115(4):653-662.
Mansfield, A.W. 1966. The grey seal in eastern Canadian waters. Can. Audubon Mag. 28:161-166.
Mohn, R. and W.D. Bowen. 1996. Grey seal predation on the eastern Scotian Shelf: Modeling the impact on Atlantic cod. Can. J. Aquat. Sci. 53:2722-2738.
Read, A. J. 1994. Interactions between cetaceans and gillnet and trap fisheries in the northwest Atlantic. Rep. int. Whal. Commn (Special Issue) 15:133-147.
Rough, V. 1995. Gray seals in Nantucket Sound, Massachusetts, winter and spring, 1994. Final report to Marine Mammal Commission, Contract T10155615, 28 pp. NTIS Pub. PB95-191391.
Stobo, W. T. and K. C. T. Zwanenburg. 1990. Grey seal (Halichoerus grypus) pup production on Sable Island and estimates of recent production in the northwest Atlantic. Pp. 171-184 in: W. D. Bowen (ed), Population biology of sealworm (Pseudoterranova decipiens) in relation to its intermediate and seal hosts. Can. Bull. Fish. and Aq. Sci. 222.
Wade, P.R. and R.P. Angliss. 1997. Guidelines for assessing marine mammal stocks: Report of the GAMMS Workshop April 3-5, 1996, Seattle, Washington. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR12, 93 pp .
Zwanenberg, K.C.T. and W.D. Bowen. 1990. Population trends of the grey seal (Halichoerus grypus) in eastern Canada. Pp. 185-197 in: W.D. Bowen (ed.), Population Biology of Sealworm (Pseudoterranova decipiens) in Relation to its Intermediate and Seal Hosts. Can. Bull. Fish. and Aq. Sci. 222.

HARP SEAL (Pagophilus groenlandicus): Western North Atlantic Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

The harp seal occurs throughout much of the North Atlantic and Arctic Oceans (Ronald and Healey 1981; Lavigne and Kovacs 1988.) The world's harp seal population is divided into three separate stocks, each identified with a specific breeding site (Bonner 1990; Lavigne and Kovacs 1988). The largest stock is located off eastern Canada and is divided into two breeding herds which breed on the pack ice. The Front herd breeds off the coast of Newfoundland and Labrador, and the Gulf herd breeds near the Magdalen Islands in the middle of the Gulf of St. Lawrence (Sergeant 1965; Lavigne and Kovacs 1988). The second stock breeds breeds on the West Ice off eastern Greenland (Lavigne and Kovacs 1988), and the third stock breeds on the ice in the White Sea off the coast of the Russia. The Front/Gulf stock is equivalent to western North Atlantic stock.

Harp seals are highly migratory (Sergeant 1965; Stenson and Sjare 1997). Breeding occurs at different times for each stock between mid-February and April. Adults then assemble north of their whelping patches to undergo the annual molt. The migration then continues north to Arctic summer feeding grounds. In late September, after a summer of feeding, nearly all adults and some of the immature animals of the western North Atlantic stock migrate southward along the Labrador coast, usually reaching the entrance to the Gulf of St. Lawrence by early winter. There they split into two groups, one moving into the Gulf and the other remaining off the coast of Newfoundland. The southern limit of the harp seal's habitat extends into the U.S. Atlantic Exclusive Economic Zone (EEZ) during winter and spring.

In recent years, numbers of sightings and strandings have been increasing off the east coast of the United States from Maine to New Jersey (Katona et al. 1993; Stevick and Fernald 1998; McAlpine 1999; Lacoste and Stenson 2000, B. Rubinstein, pers. comm., New England Aquarium). These extralimital appearances usually occur in January-May (Harris et al. 2002), when the western North Atlantic stock of harp seals is at its most southern point of migration. Concomitantly, a southward shift in winter distribution off Newfoundland was observed during the mid1990s, which was attributed to abnormal environmental conditions (Lacoste and Stenson 2000).

POPULATION SIZE

Abundance estimates for the western North Atlantic stock are available which use a variety of methods including aerial surveys and mark-recapture (Table 1). These methods involve surveying the whelping concentrations and estimating total population adult numbers from pup production. Roff and Bowen (1983) developed an estimation model to provide a more precise estimate of total abundance. This technique incorporates recent pregnancy rates and estimates of age-specific hunting mortality (CAFSAC 1992). This model was subsequently been updated in Shelton et al. (1992), Stenson 1993), Shelton et al. (1996), and Warren et al. 1997. The 2000 total population estimate was 5.5 million seals ($95 \% \mathrm{CI}=4.5-6.4$ million, Healey and Stenson 2000) which was not significantly different from the 2004 estimate of 5.9 million ($95 \% \mathrm{CI}=4.6-72$. million, DFO 2005) (Table 1).

Table 1. Summary of abundance estimates for western North Atlantic harp seals. Year and area covered during each abundance survey, resulting abundance estimate $\left(\mathrm{N}_{\text {best }}\right)$ and confidence interval (CI).						
Month/Year	Area	$\mathrm{N}_{\text {best }}$	CI			
2000	Front and Gulf	5.5 million	$(95 \%$ CI 4.5-6.4 million)			
2004	Front and Gulf	5.9 million	(95\% CI 4.6-7.2 million)			

Minimum population estimate

The minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the lognormally distributed best abundance estimate. This is equivalent to the 20th percentile of the log-normal distribution as specified by Wade and Angliss (1997). The best estimate of abundance for western North Atlantic harp seals is 5.9 million $(\mathrm{SE}=660,000)(\mathrm{DFO} 2005)$. The minimum population estimate based on the 2004 pup survey results is 5.3 million seals. Data are insufficient to calculate the minimum population estimate for U.S. waters.

Current population trend

Harp seal pup production in the 1950s was estimated at 645,000 , but had decreased to 225,000 by 1970 (Sergeant 1975). Estimated number then began to increase and have continued to increase through the late 1990s, reaching 478,000 in 1979 (Bowen and Sergeant 1983; Bowen and Sergeant 1985), 577,900 (CV=0.07) in 1990 (Stenson et al. 1993), 708,400 (CV=0.10) in 1994 (Stenson et al. 2002), and 998,000 (CV=0.10) in 1999 (Stenson et al. 2003). The 2004 estimate of 991,000 pups ($\mathrm{CV}=0.06$) suggests that the increase in pup production observed throughout the 1990s may have abated (Stenson et al. 2005).

The population appears to be increasing in U.S. waters, judging from the increased number of stranded harp seals, but the magnitude of the suspected increase is unknown. In Canada, the 2004 pup production estimate suggests that the increase in pup production observed throughout the 1990s has likely stopped (Stenson et al. 2005).

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Current and maximum net productivity rates are unknown for this stock. For purposes of this assessment, the maximum net productivity rate was assumed to be 0.12 . This value is based on theoretical modeling showing that pinniped populations may not grow at rates much greater than 12% given the constraints of their reproductive life history (Barlow et al. 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential Biological Removal (PBR) is the product of minimum population size, one-half the maximum productivity rate, and a "recovery" factor (MMPA Sec. 3. 16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size in U.S. waters is unknown. The maximum productivity rate is 0.12 , the default value for pinnipeds. The "recovery" factor, which accounts for endangered, depleted, threatened stocks, or stocks of unknown status relative to optimum sustainable population (OSP) was set at 1.0 because it was believed that harp seals are within OSP. PBR for the western North Atlantic harp seal in U.S. waters is unknown. Applying the formula to the minimum population estimate for Canadian waters results in a "PBR" of 321,000 harp seals. However, Johnston et al. (2000) suggests that catch statistics from the Canadian hunt are negatively biased due to under reporting; therefore, an F_{R} of 0.5 may be appropriate. Using the lower F_{R} results in a "PBR" of 160,500 harp seals. The Canadian model predicts replacement yields between 522,000 and 541,000 (Healey and Stenson 2000). However, the PBR for the stock in US waters is unknown.

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

For the period 2000-2004, the total estimated human caused mortality and serious injury to harp seals was $4,06.686$. This is derived from three components: 1) an average catch of 406,600 seals from 2000-2004 by Canada (Table 2a); and 2) 81 seals (CV=0.29) from the observed U.S. fisheries (Table 2b) and 3) 5 from average 2000-2004 stranding mortalities resulting from human interactions (NMFS unpublished data).

Table 2a. Summary of the Canadian directed catch and bycatch incidental mortality of harp seal (Pagophilus groenlandicus) by year.							
Fishery	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	$\mathbf{2 0 0 3}$	$\mathbf{2 0 0 4}$	Average	
Commercial catches $^{\mathrm{a}}$	92,055	226,493	312,367	289,512	365,971	$\mathbf{2 5 7 , 2 8 0}$	
Commercial catch struck and lost $^{\mathrm{b}}$	7,762	16,607	22,190	18,678	23,887	$\mathbf{1 7 , 8 2 5}$	
Greenland subsistence catch $^{\mathrm{c}}$	101,941	89,617	69,895	68,499	67,064	$\mathbf{7 9 , 4 0 3}$	
Canadian Arctic $^{\text {d }}$	280	405	715	715	715	$\mathbf{5 6 6}$	
Greenland and Canadian Arctic struck and lost $^{\mathrm{e}}$	51,111	45,011	35,305	34,607	33,889	$\mathbf{3 9 , 9 8 5}$	
Newfoundland lumpfish $^{\text {f }}$	11,323	19,400	9,329	5,367	12,290	$\mathbf{1 1 , 5 4 2}$	
Total	$\mathbf{2 6 4 , 4 7 2}$	$\mathbf{3 9 7 , 5 3 3}$	$\mathbf{4 4 9 , 8 0 1}$	$\mathbf{4 1 7 , 3 7 8}$	$\mathbf{5 0 3 , 8 1 6}$	$\mathbf{4 0 6 , 6 0 0}$	

a. Hammill and Stenson 2003, DFO 2003, DFO 2005; Stenson unpublished data
b. Struck and lost is calculated for the commercial harvest assuming that the rate is 5% for young of the year, and 50% for animals one year of age and older (DFO 2001, Stenson unpublished data).
c. Anonymous 2003, DFO 2005; Stenson unpublished data
d. Hammill and Stenson 2003; Stenson unpublished data
e. The Canadian Arctic and Greenland struck and lost rate is calculated assuming the rate is 50% for all age classes (DFO 2001; Stenson unpublished data).
f. DFO 2005; Stenson unpublished data

Fishery Information

U.S.

Detailed fishery information is reported in the Appendix III.

Northeast Sink Gillnet

Annual estimates of harp seal bycatch in the Northeast sink gillnet fishery reflect seasonal distribution of the species and of fishing effort. There were 19 harp seal mortalities observed in the Northeast sink gillnet fishery between 2000 and 2004. Estimated annual mortalities (CV in parentheses) from this fishery during 2000-2004 were: 24 in 2000 (1.57), 26 in 2001 (1.04), 0 during 2002-2003, and 303(0.30) in 2004 (Table 2b). There were also 5, 8, 2, 2 , and 9 unidentified seals observed during 2000 through 2004 respectively. Since 1997, unidentified seals have not been prorated to a species. This is consistent with the treatment of other unidentified mammals that do not get prorated to a specific species. Average annual estimated fishery-related mortality and serious injury to this stock attributable to this fishery during 2000-2004 was 71 harp seals ($\mathrm{CV}=0.29$) (Table 2). The stratification design used for this species is the same as that for harbor porpoise (Bravington and Bisack 1996). The bycatch occurred principally in winter (January-May) and was mainly in waters between Cape Ann and New Hampshire. One observed winter mortality was in waters south of Cape Cod.

Mid-Atlantic Gillnet

No harp seals were taken in observed trips during 1993-1997, and 1999-2004. One harp seal was observed taken in 1998. Observed effort from 1993-2004 was scattered between New York and North Carolina from 1 to 50 miles off the beach. All bycatches were documented during January to April. Using the observed takes, the estimated annual mortality (CV in parentheses) attributed to this fishery was 0 in 1995-1997, 17 in 1998 (1.02) and 0 in 1999-2004. In $2002,65 \%$ of observer coverage was concentrated in one area and not distributed proportionally across the fishery. Therefore observed mortality is considered unknown in 2002. Average annual estimated fisheryrelated mortality attributable to this fishery during 2000-2004 was zero harp seals.

Northeast Bottom Trawl

The fishery is active in New England waters in all seasons. One mortality was observed between 2000 and 2004. The estimated annual fishery-related mortality and serious injury attributable to this fishery (CV in parentheses) was 0 between 1991 and 2000, $49(C V=1.10)$ in 2001, and 0 between 2002 and 2004. Average annual estimated fishery-related mortality attributable to this fishery between 2000 and 2004 was 10 harp seals (CV=1.10) (Table 2b).

Table 2b. Summary of the incidental mortality of harp seal (Pagophilus groenlandicus) by commercial fishery including the years sampled (Years), the number of vessels active within the fishery (Vessels), the type of data used (Data Type), the annual observer coverage (Observer Coverage), the mortalities recorded by on-board observers (Observed Mortality), the estimated annual mortality (Estimated Mortality), the estimated CV of the annual mortality (Estimated CVs) and the mean annual mortality (CV in parentheses).								
Fishery	Years	Vessels	Data Type ${ }^{\text {a }}$	Observer Coverage ${ }^{\text {b }}$	Observed Mortality ${ }^{\text {c }}$	Estimated Mortality	Estimated CVs	Mean Annual Mortality
Northeast Sink Gillnet	00-04	301	Obs. Data Weighout, Logbooks	$\begin{gathered} .06, .04, .02, \\ .03, .06 \end{gathered}$	$3,1,0,0,15$	$\begin{gathered} 24,26,0,0, \\ 303 \end{gathered}$	$\begin{gathered} 1.57,1.04,0, \\ 0, .30 \end{gathered}$	71 (0.29)
Northeast Bottom Trawl	00-04	TBD	Obs. Data Weighout	$\begin{gathered} .01, .01, .03 \\ .04, .05 \end{gathered}$	$0,1,0,0,0$	0, 49, 0, 0, 0	$\begin{gathered} 0,1.10,0,0 \\ 0 \end{gathered}$	10 (1.10)
TOTAL								81 (0.29)

a. Observer data (Obs. Data) are used to measure bycatch rates, and the data are collected within the Northeast Fisheries Observer Program. The Northeast Fisheries Observer Program collects landings data (Weighout) and total landings are used as a measure of total effort for the sink gillnet fishery. Mandatory logbook (Logbook) data are used to determine the spatial distribution of fishing effort in the Northeast sink gillnet fishery.
b. The observer coverage for the Northeast sink gillnet fishery and the mid-Atlantic coastal sink gillnet fisheries are measured in tons of fish landed. North Atlantic bottom trawl fishery coverage is measured in trips.
c. Since 1998, takes from pingered and non-pingered nets within a marine mammal time/area closure that required pingers, and takes from pingered and non-pingered nets not within a marine mammal time/area closure were pooled. The pooled bycatch rate was weighted by the total number of samples taken from the stratum and used to estimate the mortality. In 2000-2004, respectively, $2,1,0,0,4$ takes were observed in nets with pingers. In $2000-2004$, respectively, 1, 0, 0, 0, 11 takes were observed in nets without pingers.

Other Mortality

U.S.

From 1999 to 2004, 1,482 strandings were recorded (116 in 1999, 145 in 2000, 495 in 2001, 188 in 2002, 101 in 2003, and 332 in 2004) in all states between Maine and North Carolina (NMFS unpublished data). Factors contributing to a dramatic increase in strandings in 2001 are unknown (Harris et al. 2002). Twenty-three (1.6\%) of the stranded animals during this five- year period showed signs of human interaction as a direct cause of mortality. Mortalities caused by human interaction include boat strikes, fishing gear interactions, power plant entrainment, oil spills, harassment, and shooting.

The total number of harp seal strandings in 2004 was 332 , of which 7 were healthy and did not require rehabilitation. Sixteen animals were rehabilitated and released. The remaining animals were either found dead or died in rehabilitation.

Table 3. Harp seal (Pagophilus groenlandicus) reported along the U.S. Atlantic coast (2002-2004).

State	$\mathbf{2 0 0 2}$	$\mathbf{2 0 0 3}$	$\mathbf{2 0 0 4}^{\mathbf{a}}$	Total
Maine	35	21	112	168
New Hampshire	1	1	2	4
Massachusetts	67	31	104	202
Rhode Island	10	6	14	30
Connecticut	12	1	2	15
New York	48	28	66	142
New Jersey	13	9	22	44
Delaware	0	1	5	6
Maryland	0	1	0	1
Virginia	1	0	4	5
North Carolina	1	2	1	4
Total	188	101	332	621
a. During 2004, one harp seal had signs of human interaction as the cause of mortality.				

STATUS OF STOCK

The status of the harp seal stock, relative to OSP, in the U.S. Atlantic EEZ is unknown, but the stock's abundance appears to have stabilized. The species is not listed as threatened or endangered under the Endangered Species Act. The total U.S. fishery-related mortality and serious injury for this stock is very low relative to the stock size and can be considered insignificant and approaching zero mortality and serious injury rate. The level of humancaused mortality and serious injury in the U.S. Atlantic EEZ is also low relative to the total stock size; therefore, this is not a strategic stock.

REFERENCES CITED

Anonymous. 2003. Report of the ICES/NAFO Working Group on Harp and Hooded Seals. 2-6 September 2003, Arkhangelsk, Russia. ICES CM 2004/ACFM:06. 57 pp.
Barlow, J., S.L. Swartz, T.C. Eagle, and P.R. Wade. 1995. U.S. Marine Mammal Stock Assessments: Guidelines for Preparation, Background, and a Summary of the 1995 Assessments. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-6, 73 pp.
Bravington, M.V. and K.D. Bisack. 1996. Estimates of harbor porpoise bycatch in the Gulf of Maine sink gillnet fishery, 1990-93. Rep. int. Whal. Commn 46:567-574.
Bonner, W.N. 1990. The natural history of seals. Facts on File, New York, 196 pp.
Bowen, W.D. and D.E. Sergeant. 1983. Mark-recapture estimates of harp seal pup (Phoca groenlandica) production in the northwest Atlantic. Can. J. Fish. Aquat. Sci. 40:728-742.
Bowen, W.D. and D.E. Sergeant. 1985. A mark-recapture estimate of 1983 harp seal pup production in the Northwest Atlantic. NAFO SCR. Doc. 85/I/1.
CAFSAC. 1992. Update on population estimates of Harp seal in the Northwest Atlantic. Canadian Atlantic Fisheries Scientific Advisory Committee, CAFSAC Adv. Doc. 92/8.
DFO [Dept. Of Fisheries and Oceans]. 2000. Northwest Atlantic harp seals. DFO Science Stock Status Report E101. Available at http://www.dfo-mpo.gc.ca/csas/Csas/status/2000/.

DFO [Dept. Of Fisheries and Oceans]. 2001. Report on the Eminent Panel on Seal Management. Available from Canadian Department of Fisheries and Oceans, Ottawa, Ontario, Canada, K1A 0E6, Communication Branch. 145 pp.
DFO [Dept. Of Fisheries and Oceans]. 2003. Atlantic Seal Hunt: 2003-2005 Management Plan. Available from Canadian Department of Fisheries and Oceans, Ottawa, Ontario, Canada, K1A 0E6, Fisheries Resource Management - Atlantic. 34 pp.
DFO [Dept. Of Fisheries and Oceans]. 2005. Stock assessment of Northwest Atlantic harp seals (Pagophilus groenlandicus). DFO Can. Sci. Advis. Sec. Sci. Advis. Rep. 2005/037. Available at http://www.dfompo.gc.ca/csas.
Hammill, M.O. and G.B. Stenson. 2003. Harvest simulations for 2003-2006 harp seal management plan. Can. Sci. Advisory Sec. Res. Doc. 2003/068.
Harris, D.E., B. Lelli, and G. Jakush. 2002. Harp seal records from the southern Gulf of Maine: 1997-2001. Northeastern Naturalist 9(3):331-340.
Healey, B.P., and G.B. Stenson. 2000. Estimating pup production and population size of the northwest Atlantic harp seal (Phoca groenlandica). Can. Stock Assess. Sec. Res. Doc. 2000/081.
Johnston, D.W., P. Meisenheimer, and D.M. Lavigne. 2000. An evaluation of management objectives for Canada's commercial harp seal hunt, 1996-1998. Conserv. Biol. 14:729-737.
Katona, S.K., V. Rough, and D.T. Richardson. 1993. A field guide to whales, porpoises, and seals from Cape Cod to Newfoundland. Smithsonian Institution Press, Washington, DC. 316 pp.
Lacoste, K.N. and G.B. Stenson. 2000. Winter distribution of harp seals (Phoca groenlandica) off eastern Newfoundland and southern Labrador. Polar Biol. 23:805-811.
Lavigne, D.M. and K.M. Kovacs. 1988. Harps and Hoods Ice Breeding Seals of the Northwest Atlantic. University of Waterloo Press, Waterloo, Ontario, Canada, 174 pp.
McAlpine, D.F. 1999. Increase in extralimital occurrences of ice-breeding seals in the northern Gulf of Maine region: more seals or fewer fish. Mar. Mammal Sci. 15:906-911.
McAlpine, D.F. and R.H. Walker. 1990. Extralimital records of the harp seal, Phoca groenlandica, from the western North Atlantic: a review. Mar. Mammal Sci. 6:243-247.
Roff, D.A. and W.D. Bowen. 1983. Population dynamics and management of the Northwest Atlantic harp seal. Can. J. Fish. Aquat. Sci. 40:919-932.
Ronald, K. and P.J. Healey. 1981. Harp Seal. Pages 55-87 in: S. H. Ridgway and R. J. Harrison (eds), Handbook of marine mammals, Vol. 2: Seals. Academic Press, New York, 359 pp.
Rubinstein, B. 1994. An apparent shift in distribution of ice seals, Phoca groenlandica, Cystophora cristata, and Phoca hispida, toward the east coast of the United States. M.A. Thesis, Boston University, Boston, MA, 45 pp.
Sergeant, D.E. 1965. Migrations of harp seal Pagophilus groenlandicus (Erxleben) in the Northwest Atlantic. J. Fish. Res. Bd. Can. 22:433-464.
Sergeant, D.E. 1975. Estimating numbers of harp seals. Rapp. P. -v. Reun. Cons. int Explor. Mer. 169:274-280.
Shelton, P.A., N.G. Caddigan, and G.B. Stenson. 1992. Model estimates of harp seal population trajectories in the Northwest Atlantic. CAFSAC Res. Doc. 92/89, 23 pp.

Shelton, P.A., G.B. Stenson, B. Sjare, and W.G. Warren. 1996. Model estimates of harp seal numbers-at-age for the Northwest Atlantic. NAFO Sci. Coun. Studies 26:1-14.
Stenson, G.B. 1993. The status of pinnipeds in the Newfoundland region. NAFO SCR Doc. 93/34.
Stenson, G.B. and B. Sjare. 1997. Seasonal distribution of harp seals, Phoca groenlandica, in the Northwest Atlantic. ICES C.M. 1997/CC:10 (Biology and Behavior II). 23 pp.
Stenson, G.B., M.O. Hammill, J. Lawson, J.F. Gosselin, and T. Haug. 2005. 2004 pup production of harp seals, Pagophilus groenlandicus, in the Northwest Atlantic. Available at: http://www.dfo-mpo.gc.ca./csas/ . 34 pp
Stenson, G.B., L.P. Rivest, M.O. Hammill, J.F. Gosselin, and B. Sjare. 2003. Estimating pup production of harp seals, Pagophilus groenlandicus, in the Northwest Atlantic. Mar. Mammal. Sci. 19:141-160.
Stenson, G.B., M.O. Hammill, M.C.S. Kingsley, B. Sjare, W.G. Warren, and R.A. Myers. 2002. Is there evidence of increased pup production in northwest Atlantic harp seals, Pagophilus groenlandicus? ICES J. Mar. Sci. 59:81-92.
Stenson, G.B., R.A. Myers, M.O. Hammill, I-H. Ni, W.G. Warren, and M.S. Kingsley. 1993. Pup production of harp seals, Phoca groenlandica, in the Northwest Atlantic. Can. J. Fish. Aquat. Sci. 50:2429-2439.
Stevick, P.T. and T.W. Fernald. 1998. Increase in extralimital records of harp seals in Maine. Northeast. Nat. 5:7582.

Wade, P.R. and R.P. Angliss. 1997. Guidelines for assessing marine mammal stocks: Report of the GAMMS Workshop April 3-5, 1996, Seattle, Washington. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR12, 93 pp .
Warren, W.G., P.A. Shelton, and G.B. Stenson. 1997. Quantifying some of the major sources of uncertainty associated with estimates of harp seal prey consumption. Part 1: Uncertainty in the estimates of harp seal population size. J. Northwest Atl. Fish. Sci. 22:289-302.

HOODED SEAL (Cystophora cristata): Western North Atlantic Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

The hooded seal occurs throughout much of the North Atlantic and Arctic Oceans (King 1983) preferring deeper water and occurring farther offshore than harp seals (Sergeant 1976a; Campbell 1987; Lavigne and Kovacs 1988; Stenson et al. 1996). The world's hooded seal population has been divided by ICES into three separate stocks, each identified with a specific breeding site (Lavigne and Kovacs 1988; Stenson et al. 1996): Northwest Atlantic, Greenland Sea ("West Ice"), and White Sea ("East Ice"). The Western North Atlantic stock (synonymous with the ICES Northwest Atlantic stock), whelps off the coast of eastern Canada and is divided into three whelping areas. The Front herd (largest) breeds off the coast of Newfoundland and Labrador, Gulf herd breeds in the Gulf of St. Lawrence, and the third area is in the Davis Strait.

Hooded seals are highly migratory and may wander as far south as Puerto Rico (Mignucci-Giannoni and Odell 2001), with increased occurrences from Maine to Florida. These appearances usually occur between January and May in New England waters, and in summer and autumn off the southeast U.S. coast and in the Caribbean (McAlpine et al. 1999; Harris et al. 2001; Mignucci-Giannoni and Odell 2001). Although it is not known which stock these seals come from, it is known that during spring, the northwest Atlantic stock of hooded seals are at their southernmost point of migration in the Gulf of St. Lawrence.

Hooded seals remain on the Newfoundland continental shelf during winter/spring (Stenson et al. 1996). Breeding occurs at about the same time in March for each stock. Adults from all stocks then assemble in the Denmark Strait to molt between late June and August (King 1983; ICES 1995), and following this, the seals disperse widely. Some move south and west around the southern tip of Greenland, and then north along the west coast of Greenland. Others move to the east and north between Greenland and Svalbard during late summer and early fall (Lavigne and Kovacs 1988). Little else is known about the activities of hooded seals during the rest of the year until they assemble again in February for breeding.

POPULATION SIZE

The number of hooded seals in the western North Atlantic is relatively well known and is derived from pup production estimates produced from whelping pack surveys.. Several estimates of pup production at the Front are available. Hooded seal pup production between 1966 and 1977 was estimated at $25,000-32,000$ annually (Benjaminsen and Oritsland 1975; Sergeant 1976b; Lett 1977; Winters and Bergflodt 1978; Stenson et al. 1996). Estimated pup production dropped to 26,000 hooded seal pups in 1978 (Winters and Bergflodt 1978). Pup production estimates began to increase after 1978, reaching 62,000 (95\% CI. 43,700-89,400) by 1984 (Bowen et al. 1987). Bowen et al. (1987) also estimated pup production in the Davis Strait at 18,600 (95% C.I. 14,000-23,000). A 1985 survey at the Front (Hay et al. 1985) produced an estimate of 61,400 (95% C.I. $16,500-119,450$). Hammill et al. (1992) estimated pup production to be 82,000 ($\mathrm{SE}=12,636$) in 1990. Assuming a ratio of pups to total population of $1: 5$, pup production in the Gulf and Front herds would represent a total population of approximately $400,000-450,000$ hooded seals (Stenson 1993). Based on the 1990 survey, Stenson et al. (1996) suggested that pup production may have increased at about 5\% per year since 1984. However, because of exchange between the Front and the Davis Strait stocks, the possibility of a stable or slightly declining level of pup production was also likely (Stenson 1993; Stenson et al. 1996). In 1998 and 1999, surveys were conducted to estimate pup production in the southern Gulf of St. Lawrence, which is the smallest component of the northwest Atlantic stock (ICES 2001). The estimate of 2,000 was similar to the previous published 1990 estimate (Hammill et al. 1992; ICES 2001).

Surveys of all three whelping areas in the Northwest Atlantic were carried out in 2005. Pup production at the Front was estimated to be $107,013(\mathrm{SE}=7,558, \mathrm{CV}=7.1 \%)$ while $6,620(\mathrm{SE}=1,700, \mathrm{CV}=25.8 \%)$ pups were estimated to have been born in the Gulf and 3,346 ($\mathrm{SE}=2,237$, $\mathrm{CV}=66.8 \%$) in Davis Strait. Total pup production in the northwest Atlantic was $116,900(\mathrm{SE}=7,918, \mathrm{CV}=6.8 \%)$. Fitting pup production estimates from all herds and making assumptions about numbers of hooded seals in the Davis Strait herd for years when this area was not included in the survey program, results in an estimate of total population in 2005 of $592,100(\mathrm{SE}=94,800$; 95\% C.I. $=$ 404,400-779,800).

Minimum population estimate

The minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the lognormally distributed best abundance estimate. This is equivalent to the 20th percentile of the log-normal distribution as specified by Wade and Angliss (1997). The best estimate of abundance for western North Atlantic hooded seals is $592,100(\mathrm{SE}=94,800)$. The minimum population estimate based on the 2005 pup survey results is 512,000 . Present data are insufficient to calculate the minimum population estimate for U.S. waters.

Current population trend

Comparison with previous estimates suggests that pup production (and total population size) may have increased since the mid 1980s but the considerable uncertainty about the relationship among whelping areas makes it difficult to reliably assess the population trend.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Current and maximum net productivity rates are unknown for this stock. The most appropriate data are based on Canadian studies. For purposes of this assessment, the maximum net productivity rate was assumed to be 0.12 . This value is based on theoretical modeling showing that pinniped populations may not grow at rates much greater than 12% given the constraints of their reproductive life history (Barlow et al. 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential Biological Removal (PBR) is the product of minimum population size, one-half the maximum productivity rate, and a "recovery" factor (MMPA Sec. 3. 16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size is 512,000 . The maximum productivity rate is 0.12 , the default value for pinnipeds. The recovery factor $\left(\mathrm{F}_{\mathrm{R}}\right)$ for this stock is 0.5 , the value for stocks with unknown population status. PBR for the western North Atlantic hooded seal stock is 15,360 but for U.S. waters is unknown.

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

For the period 2000-2004, the total estimated human caused mortality and serious injury to hooded seals was 4,818 . This is derived from two components: 1) an average catch of 4,793 seals from 2000-2004 by Canada and Greenland of the Northwest Atlantic and West Ice stocks (2000=1,950; 2001=3,960; 2002 = 7,341; 2003 = 5,446, and $2004=5,270)($ ICES 2006); and 2) 25 seals $(C V=0.82)$ from the observed U.S. fisheries (Table 1). Note that there is considerable intermixing between the Northwest Atlantic and West Ice stocks, so it is possible that Northwest Atlantic seals are taken by Greenland sealers.

Fishery Information

Detailed fishery information is reported in Appendix III.

U.S.

Northeast Sink Gillnet

The fishery has been observed in the Gulf of Maine and in southern New England. There were 2 hooded seal mortalities observed in the Northeast sink gillnet fishery between 1990 and 2004. Annual estimates of hooded seal bycatch in the Northeast sink gillnet fishery reflect seasonal distribution of the species and of fishing effort. Estimated annual mortalities (CV in parentheses) from this fishery during 1990-2003 were 0 in 1990-1994, 28 in $1995(0.96), 0$ in 1996-2000, 82 in 2001 (1.14), 0 in 2002-2003, and $43(0.95)$ in 2004. The 1995 bycatch includes 5 animals from the estimated number of unknown seals (based on observed mortalities of seals that could not be identified to species). The unknown seals were prorated, based on spatial/temporal patterns of bycatch of harbor seals, gray seals, harp seals, and hooded seals. There were 5, 8, 2, 2, and 9 unidentified seals observed during 20002004, respectively. Since 1997, unidentified seals have not been prorated to a species. This is consistent with the treatment of other unidentified mammals that do not get prorated to a specific species. Average annual estimated fishery-related mortality and serious injury to this stock attributable to this fishery during 2000-2004 was 25 hooded seals ($\mathrm{CV}=0.82$) (Table 1). The stratification design used is the same as that for harbor porpoise (Bravington and Bisack 1996). The bycatch in 2001 occurred in summer (July-September). All bycatch was in waters between Cape Ann and New Hampshire.

CANADA

An unknown number of hooded seals have been taken in Newfoundland and Labrador groundfish gillnets (Read 1994).

Hooded seals are being taken in Canadian lumpfish and groundfish gillnets and trawls; however, estimates of total removals have not been calculated to date.

Table 1. Summary of the incidental mortality of hooded seal (Cystophora cristata) by commercial fishery including the years sampled (Years), the number of vessels active within the fishery (Vessels), the type of data used (Data Type), the annual observer coverage (Observer Coverage), the mortalities recorded by onboard observers (Observed Mortality), the estimated annual mortality (Estimated Mortality), the estimated CV of the annual mortality (Estimated CVs) and the mean annual mortality (CV in parentheses).

Fishery	Years	Vessels	Data Type $^{\mathrm{a}}$	Observer Coverage $^{\mathrm{b}}$	Observed Mortality $^{\mathrm{c}}$	Estimated Mortality	Estimated CVs	Mean Annual Mortality
Northeast Sink Gillnet	$00-04$	301	Obs. Data Weighout, Logbooks	$.06, .04$, $02, .03$, .06	$0,1,0,0$,	$0,82,0,0$,	$0,1.14,0$,	25 0,95
TOTAL			43	$0, .95$	(0.82)			

a. Observer data (Obs. Data) are used to measure bycatch rates, and the data are collected within the Northeast Fisheries Science Center Observer Program. NEFSC collects Weighout (Weighout) landings data, and total landings are used as a measure of total effort for the sink gillnet fishery. Mandatory logbook (Logbook) data are used to determine the spatial distribution of some fishing effort in the Northeast sink gillnet fishery.
b. The observer coverage for the Northeast sink gillnet fishery is measured in tons of fish landed.
c. Only mortalities observed on marine mammal trips were used to estimate total hooded seal bycatch. See Bisack (1997) for "trip" type definitions. The one hooded seal mortality observed in 2001 was taken in a net equipped with pingers. The one hooded seal mortality observed in 2004 was taken in a net not equipped with pingers.

Other Mortality

In Atlantic Canada, hooded seals have been commercially hunted at the Front since the late 1800s. In 1974 total allowable catch (TAC) was set at 15,000, and reduced to 12,000 in 1983 and to 2,340 in 1984 (Stenson 1993; ICES 1998). From 1991 to 1992 the TAC was increased to 15,000 . A TAC of 8,000 was set for 1993, and held at that level through 1997. From 1974 through 1982, the average catch was 12,800 animals, mainly pups. Since 1983 catches ranged from 33 in 1986 to 6,425 in 1991, with a mean catch of 1,001 between 1983 and 1995. Catches peaked in $1996(25,754)$; the high catch was attributable to good ice conditions and strong market demand. Since 1996, catches have fallen markedly and during 2000-2004 averaged 169 animals per year (ICES 2006). A series of management regulations have been implemented for the Canadian harvest since 1960. For example, the taking of bluecoats was prohibited in 1993 and the TAC has been set at 10,000 seals per year since 1998 (ICES 2006).

In 1988-1993, strandings were fewer than 20 per year, and from 1994 to 1996 they increased to about 50 per year (Rubinstein 1994; Rubinstein, pers. comm.) From 2000 to 2004, 207 hooded seal strandings were reported $(2000=30,2001=86,2002=30,2003=20$, and $2004=41)$, in most states from Maine to Virginia (Table 2; NMFS unpublished data). Three (1.5%) of the seals stranded during this five year period showed signs of human interaction as a direct cause of mortality, (1 in 1999, 1 in 2000, and 1 in 2003). Extralimital strandings have also been reported off the southeast U.S., North Carolina to Florida, and in the Caribbean (McAlpine et al. 1999; Mignucci-Giannoni and Odell 2001; NMFS, unpublished data).

Table 2. Hooded seal (Cystophora cristata) reported strandings along the U.S. Atlantic coast (2002-2004).

State	$\mathbf{2 0 0 2}$	$\mathbf{2 0 0 3}$	$\mathbf{2 0 0 4}{ }^{\mathbf{a}}$	Total
Maine	14	10	15	39
New Hampshire	1	1	2	4
Massachusetts	10	4	13	27
Rhode Island	0	0	0	0
Connecticut	0	0	0	0
New York	2	2	5	9
New Jersey	2	2	2	6
Delaware	1	1	3	5
Maryland	0	0	1	1
Virginia	0	0	0	0
Total	30	20	41	91
a. During 2004, the Northeast region had 37 seal strandings where species could not be determined.				

STATUS OF STOCK

The status of hooded seals relative to OSP in U.S. Atlantic EEZ is unknown, but the stock's abundance appears to be increasing. The species is not listed as threatened or endangered under the Endangered Species Act. The total U.S. fishery-related mortality and serious injury for this stock is very low relative to the stock's size, and can be considered insignificant and approaching zero mortality and serious injury rate. Because the level of human-caused mortality and serious injury is also low relative to overall stock size; therefore, this is not a strategic stock.

REFERENCES CITED

Barlow, J., S.L. Swartz, T.C. Eagle, and P.R. Wade. 1995. U.S. Marine Mammal Stock Assessments: Guidelines for Preparation, Background, and a Summary of the 1995 Assessments. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-6, 73 pp.
Benjaminsen, T., and T. Oritsland. 1975. The survival of year-classes and estimates of production and sustainable yield of northwest Atlantic harp seals. Int. Comm. Northwest Atl. Fish. Res. Doc. 75/121.
Bowen, W.D., R.A. Myers, and K. Hay. 1987. Abundance estimation of a dispersed, dynamic population: Hooded seals (Cystophora cristata) in the Northwest Atlantic. Can. J. Fish. Aquat. Sci. 44:282-295.
Bravington, M.V. and K.D. Bisack. 1996. Estimates of harbor porpoise bycatch in the Gulf of Maine sink gillnet fishery, 1990-93. Rep. int. Whal. Commn 46:567-574.
Campbell, R.R. 1987. Status of the hooded seal, Cystophora cristata, in Canada. Can. Field Nat. 101:253-265.
DFO [Dept. of Fisheries and Oceans]. 2001. Atlantic Seal Hunt: 2001 management plan. Available from Canadian Department of Fisheries and Oceans, Ottawa, Ontario Canada, K1A OE6, Resource Management Atlantic. 34 pp .
Hammill, M.O., G.B. Stenson, and R.A. Myers. 1992. Hooded seal (Cystophora cristata) pup production in the Gulf of St. Lawrence. Can. J. Fish. Aquat. Sci. 49:2546-2550.
Harris, D.E., B. Lelli, G. Jakush, and G. Early. 2001. Hooded seal (Cystophora cristata) records from the southern Gulf of Maine. Northeast. Nat. 8:427-434.
Hay, K., G.B. Stenson, D. Wakeham, and R.A. Myers. 1985. Estimation of pup production of hooded seals (Cystophora cristata) at Newfoundland during March 1985. Can. Atl. Fish. Sci. Adv. Comm. 85/96.
ICES. 1995. Report of the Joint ICES/NAFO Working Group on Harp and Hooded Seals. 5-9 June 1995, Dartmouth, Nova Scotia Canada. NAFO SCS Doc. 95/16. Serial No. N2569. 40 pp.
ICES. 1998. Report of the Joint ICES/NAFO Working Group on Harp and Hooded Seals. 28 August - 3 September 1997, Copenhagen, Denmark. ICES CM 1998/Assess:3. 35 pp.
ICES. 2001. Report of the Joint ICES/NAFO Working Group on Harp and Hooded Seals. 2-6 October 2000, Copenhagen, Denmark. ICES CM 2001/ACFM:08. 40 pp.
ICES. 2006. Report of the ICES/NAFO Working Group on Harp and Hooded Seals. 12-16 June 2006. Copenhagen, Denmark. ICES Advisory Committee on Fishery Management. ICES CM 2006/ACFM:32 28 pp .

King, J.E. 1983. Seals of the World. Cornell University Press, Ithaca, NY, 240 pp.
Lavigne, D.M. and K.M. Kovacs. 1988. Harps and Hoods Ice Breeding Seals of the Northwest Atlantic. University of Waterloo Press, Waterloo, Ontario, Canada, 174 pp.
Lett, P.F. 1977. A model to determine stock size and management options for the Newfoundland hooded seal stock. Can. Atl. Fish. Sci. Adv. Comm. Res. Doc. 77/25.
Mignucci-Giannoni, A.A. and D.K. Odell. 2001. Tropical and subtropical records of hooded seals (Cystophora cristata) dispel the myth of extant Caribbean monk seals (Monachus tropicalis). Carib. Bull. Mar. Sci. 68:47-58.
McAlpine, D.F., P.T. Stevick, L.D. Murison, and S.D. Turnbull. 1999. Extralimital records of hooded seals (Cystophora Cristata) from the Bay of Fundy and northern Gulf of Maine. Northeastern Naturalist 6:225230.

Read, A.J. 1994. Interactions between cetaceans and gillnet and trap fisheries in the northwest Atlantic. Rep. int. Whal. Commn (Special Issue) 15:133-147.
Rubinstein, B. 1994. An apparent shift in distribution of ice seals, Phoca groenlandica, Cystophora cristata, and Phoca hispida, toward the east coast of the United States. M.A. Thesis, Boston University, Boston, MA, 45 pp .
Sergeant, D.E. 1976a. History and present status of populations of harp and hooded seals. Biol. Conserv. 10:95-117.
Sergeant, D.E. 1976b. Research on hooded seals Cystophora cristata Erxleben in 1976. ICNAF Res. Doc. 76/X/126.
Stenson, G.B. 1993. The status of pinnipeds in the Newfoundland region. NAFO SCR Doc. 93/34.
Stenson, GB., R.A. Myers, I-H. Ni and W.G. Warren. 1996. Pup production of hooded seals (Cystophora cristata) in the Northwest Atlantic. NAFO Sci. Coun. Studies 26:105-114.
Wade, P.R., and R.P. Angliss. 1997. Guidelines for assessing marine mammal stocks: Report of the GAMMS Workshop April 3-5, 1996, Seattle, Washington. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR12, 93 pp .
Winters, G. H. and B. Bergflodt. 1978. Mortality and productivity of the Newfoundland hooded seal stock. ICNAF Res. Doc. 78/XI/91.
APPENDIX I. Estimated serious injury and mortality (SI\&M) of Western North Atlantic marine mammals listed by U.S. observed fisheries for 2000-2004. Marine mammal species with zero (0) observed SI\&M during 2000 to 2004 are not shown in this table.
$(\operatorname{tbd}=$ to be determined; $\mathrm{n} / \mathrm{a}=$ not available; $\mathrm{JV}=$ Joint Venture; TALFF $=$ Total Allowable Level of Foreign Fishing; SNE = Southern New England).

Category, Fishery (estimated \# of vessels/persons),	Yrs. observed	Mean \% observer coverage	Est. SI by Year (CV)	Est. Mortality by Year (CV)	Annual Mortality (CV)
PBR					

CATEGORY I

Gillnet Fisheries: Northeast sink gillnet (341)
Harbor porpoise - after Take Reduction Plan
White sided dolphin
Common dolphin
Risso's dolphin
Bottlenose dolphin (offshore)
Harbor seal
Gray seal
Harp seal
Hooded seal
Gillnet Fisheries:US Mid-Atlantic gillnet (<655) Harbor porpoise - after Take Reduction Plan Bottlenose dolphin (offshore) ${ }^{\text {f }}$ Bottlenose dolphin Southern NC ${ }^{\text {f }}$ Bottlenose dolphin Northern NC ${ }^{\text {f }}$ Bottlenose dolphin Northern migratory ${ }^{\mathrm{f}}$ Bottlenose dolphin NC mixed \qquad Gray seal

Longline Fisheries: Pelagic longline (excluding NED-E) ${ }^{\text {a }}$						
Risso's dolphin	2000-2004	.04, .04, .05, .09, .09	$\begin{aligned} & \hline 23(1.0), 45(.7), 8(1.0), \\ & 40(.63), 28(\mathrm{tbd}) \end{aligned}$	41 (1.0), 24(1.0), 20(.86), 0,0	46 (.37)	124
Long and short-finned pilot whale	2000-2004	.04, .04, .05, .09, . 09	$\begin{aligned} & 109(1.0), 50(.58), \\ & 52(.48), 21(.49), 74(.42) \\ & \hline \end{aligned}$	24 (1.0), 20 (1.0), 2 (1.0), 0,0	70 (.37)	249
Pygmy sperm whale ${ }^{\text {b }}$	1999-2003	.04, .04, .02, .04, .02	$0,28(1.0), 0,0,0$	$0,0,0,0,0$	6(1.0)	3.7
Longline Fisheries: Pelagic longline (NED-E area only) ${ }^{\text {c }}$						
Risso's dolphin	2001-2003	1.0, 1.0, 1.0	$4(0), 3$ (0), 0	0, 0,1 (0)	3 (0)	124
Mid-Atlantic Mid-Water Trawl - Including Pair Trawl (Herring and Mackerel only)						
White-sided dolphin	2000-2004	. $08,0, .008, .04, .12$		0, 0, 9.4(.55), $73(.55), 31(.55)$	23(.39)	364
CATEGORY II						
Trawl Fisheries:Gulf of Maine/Georges Bank herring mid-water trawl - JV and TALFF ${ }^{\text {d }}$						
Long and short-finned pilot whale (JV and TALFF)	2001	$1.00^{\text {e }}$		11 (n/a)	11 (n/a)	249
White-sided dolphin (TALFF)	2001	1.00		2 (0)	2 (0)	379
Trawl Fisheries: Northeast bottom trawl ${ }^{\text {g }}$ (tbd)						
Harp seals	2000-2004	.01, .01, .03, .04, . 05		0, 49(1.10), 0, 0, 0	10 (1.10)	n/a
Harbor seals	2000-2004	.01, .01, .03, .04, . 05		0, 0, unk, 0,0	unk	5,493
Long and short-finned pilot whale	2000-2004	.01, .01, .03, .04, . 05	0, $0,0,0,0$	unk	unk	249
White-sided dolphin	2000-2004	.01, .01, .03, .04, . 05		unk	unk	379
Minke whale	2000-2004	. $01, .01, .03, .04, .05$		unk	unk	26
Mid-Atlantic Bottom Trawl ${ }^{\text {b }}$						
White-sided dolphin	2000-2004	. $01, .01, .01, .01, .03$		unk	unk	unk
Long and short-finned pilot whale	2000-2004	. $01, .01, .01, .01, .03$	2, $0,0,0,0$	unk	unk	249
Northeast Mid-Water Trawl Including Pair Trawl (Herring and Mackerel only)						
Long and short-finned pilot whale	2000-2004	$\begin{aligned} & .005, .001,0, .03, \\ & .14 \\ & \hline \end{aligned}$	0, $0,0,0,0$	4.6(.74), 11(.74), 8.9(.74), 14(.74), 5.8(.74)	8.9(.35)	249
White-sided dolphin	2000-2004	$\begin{aligned} & .005, .001,0, .03, \\ & .14 \end{aligned}$		$4.5((.74), 8.9(.74), 14(.44), 2.0(.74), 0.5(.5)$	6.0(.33)	379
Gillnet Fisheries:SE U.S. Atlantic shark gillnet (12)						
Bottlenose dolphin (coastal)	2000-2004	$\begin{aligned} & \text { C. Florida. } 15, .42 \text {, } \\ & .25, .09, .19 \end{aligned}$		2(1.0), 4(0), 7(1.0), 13(.81), 0	5(.49)	n / a

NOTES: The estimated number of vessels/participants is expressed in terms of the number of active participants in the fishery, when possible. If this information is not available, into the mortality and serious injury rates to reflect the effective range of this stock.
a. 2000 mortality estimates were taken from Table 10 in Yeung (2001).
b. Pygmy Sperm Whales - Twenty-eight seriously injured pygmy sperm whales were reported in 2000 in the pelagic longline fishery. The 2000 mortality estimates were taken from Table 10 in Yeung 2001 (NMFS Miami Laboratory PRD 00/01-17). There have been no observed mortalities or serious injuries by NMFS Sea Samplers in the pelagic drift gillnet, pelagic longline, pelagic pair trawl, Northeast sink gillnet, mid-Atlantic gillnet, or Northeast bottom trawl fisheries.
c. An experimental program to test effects of gear characteristics, environmental factors, and fishing practices on marine turtle bycatch rates in the Northeast Distant (NED-E) water component of the fishery was conducted from June 1, 2001 - December 31, 2003. Observer coverage was 100% during this experimental fishery. Summaries are provided for the pelagic longline EXCLUDING the NED-E area in one row and for ONLY the NED in the second row (Garrison, 2003; Garrison and Richard, 2004).
 may be nets fished by domestic vessels that do not get transferred to a foreign vessel for processing and therefore would not be observed. During TALFF fishing operations all nets fished by the foreign vessel are observed.
e. Ten vessels (3 foreign, 7 American) participated in the 2001 joint venture (JV) fishing operations and 2 of the foreign vessels participated in the 2001 Total Allowable Level be nets fished by domestic vessels that do not get transferred to the foreign vessels and would therefore not be observed. During TALFF fishing operations, all the nets fished by a foreign fishing vessel are observed.
f. Coastal Bottlenose Dolphins -These are "management units" of the coastal morphotype of bottlenose dolphin along the U.S. Atlantic coast. Annual estimated mortality/serious injury and PBR are by management unit.
g. Mortality estimation attributed to the Northeast and mid-Atlantic bottom trawl fishery has not been generated.
Appendix II. Summary of the confirmed human-caused mortality and serious injury ("SI") ${ }^{\text {a }}$ events involving baleen whales along the Gulf of Mexico coast, U.S East coast and adjacent Canadian Maritimes, 2000-2004, with number of events attributed to entanglements or vessel collisions by year.

Stock	Mean annual mortality and SI rate (and PBR)	Entanglements			Vessel Collisions		
		Annual rate (US waters / Canadian waters / other waters)	$\begin{gathered} \text { Confirmed } \\ \text { mortalities } \\ (\mathbf{2 0 0 0 , 2 0 0 1 , 2 0 0 2 ,} \\ \mathbf{2 0 0 3 , 2 0 0 4}) \end{gathered}$	Confirmed SI's (2000, 2001, 2002, 2003, 2004)	Annual rate (US waters / Canadian waters)	Confirmed mortalities $(2000,2001,2002$, $2003,2004)$	Confirmed SI's
Northern right whale	2.8 (0)	1.6 (0.6 / 1.0/ 0)	3 (0, 1, 1, 0, 1)	5 (1, 1, 2, 1, 0)	1.2 (1.0/ 0.2)	6 (0, 2, 1, 1, 2)	0
Gulf of Maine humpback whale ${ }^{\text {b }}$	3.0 (1.3)	2.4 (1.8/0.6/0)	$5(0,1,2,1,1)$	$8(3,0,1,3,1)$	0.6 (0.6 / 0)	$3(0,2,1,0,0)$	0
Western North Atlantic fin whale ${ }^{\text {c }}$	1.8 (4.7)	$\mathbf{0 . 8}$ (0.4 / $0.2 / 0.2)$	3 (0, 1, 1, 0, 1)	$\mathbf{1}(0,0,0,0,1)$	1.0 (.8/.2)	$5(1,2,0,0,2)$	0
Nova Scotian sei whale ${ }^{\text {d }}$	0.4 (-)	0	0	0	0.4 (0.4 / 0)	$2(0,1,0,1,0)$	0
Western North Atlantic blue whale ${ }^{\text {d }}$	0 (-)	0	0	0	0	0	0
Canadian East Coast minke whale	$2.8{ }^{\text {e }}$ (26)	$2.6{ }^{\text {e }}\left(2.6^{\circ} / 0 / 0\right)$	$12(1,2,2,5,2)$	$1(1,0,0,0,0)$	0.2	$1(0,0,0,0,1)$	0
Western North Atlantic Brydes whale	0.2 (0.3)	$0.2(0.2 / 0 / 0)$	$1(0,0,0,1,0)$	0	0	0	0
a. It is important to stress that serious injury determinations are made based upon the best available information; these determinations may change with the availability of information. Several factors must be considered: 1) a ship strike or entanglement may occur at some distance from the reported location; 2) the mortality or injury may involve multiple factors; for example, whales that have been both ship struck and entangled are not uncommon; 3) the actual vessel or gear type/source is often uncer 4) in entanglements, several types of gear may be involved. For the purposes of this report, discussion is primarily limited to those records considered confirmed hun caused mortalities or serious injuries. b. Includes only events involving confirmed members of the Gulf of Maine feeding stock. c. Includes an entanglement mortality found off Bermuda in 2001. d. Stock abundance estimates outdated; no PBR established for these stocks. e. Plus a pending bycatch estimate from the Northeast bottom trawl fishery.							

Appendix III Fishery Descriptions

This appendix is broken into two parts: Part A describes commercial fisheries that have documented interactions with marine mammals in the Atlantic Ocean; and Part B describes commercial fisheries that have documented interactions with marine mammals in the Gulf of Mexico. A complete list of all known fisheries for both oceanic regions is published in the Federal Register, vol. 71, No. 162, 2006. Each part of this appendix contains three sections: I) data sources used to document marine mammal mortality/entanglements and commercial fishing effort trip locations, II) fishery descriptions for Category I, II and III fisheries that have documented interactions with marine mammals and their historical level of observer coverage, and III) historical fishery descriptions.

Part A. Description of U.S Atlantic Commercial Fisheries

I. Data Sources

Items 1-5 describe sources of marine mammal mortality, serious injury or entanglement data; items 6-8 describe the sources of commercial fishing effort data used to summarize different components of each fishery (i.e. active number of permit holders, total effort, temporal and spatial distribution) and generate maps depicting the location and amount of fishing effort.

1. Northeast Region Fisheries Observer Program

In 1989 a Fisheries Observer Program was implemented in the Northeast Region (Maine-Rhode Island) to document incidental bycatch of marine mammals in the Northeast Region Multi-species Gillnet Fishery. In 1993 sampling was expanded to observe bycatch of marine mammals in Gillnet Fisheries in the Mid-Atlantic Region (New York-North Carolina). The Northeast Fisheries Observer Program (NEFOB) has since been expanded to sample multiple gear types in both the Northeast and Mid-Atlantic Regions for documenting and monitoring interactions of marine mammals, sea turtles and finfish bycatch attributed to commercial fishing operations. At sea Observers onboard commercial fishing vessels collect data on fishing operations, gear and vessel characteristics, kept and discarded catch composition, bycatch of protected species, animal biology, and habitat (NMFS-NEFSC, 2003).

2. Southeast Region Fishery Observer Programs

Three Fishery Observer Programs are managed by the Southeast Fisheries Science Center (SEFSC) that observe commercial fishery activity in U.S. Atlantic waters. The Pelagic Longline Observer Program (POP) administers a mandatory observer program for the U.S. Atlantic Large Pelagics Longline Fishery. The program has been in place since 1992 and randomly allocates observer effort by eleven geographic fishing areas proportional to total reported effort in each area and quarter. Observer coverage levels are mandated under the Highly Migratory Species Fisheries Management Plan (HMS FMP, 50 CFR Part 635). The second program is the Shark Drift Gillnet Observer Program that observes the U.S. Southeast Atlantic Shark Gillnet Fishery. The Observer Program is mandated under the HMS FMP, the Atlantic Large Whale Take Reduction Plan (ALWTRP) (50 CFR Part 229.32), and the Biological Opinion under Section 7 of the Endangered Species Act. Observers are deployed on any active fishing vessel reporting shark drift gillnet effort. They also sample other types of shark gillnet gear. The third program is the Southeastern Shrimp Otter Trawl Fishery Observer Program. This is a voluntary program administered by SEFSC in cooperation with the Gulf and South Atlantic Fisheries Foundation. The program is funding and project dependent, therefore observer coverage is not necessarily randomly allocated across the fishery. The total level of observer coverage for this program is $<1 \%$ of the total fishery effort. In each Observer Program, the observers record information on the total target species catch, the number and type of interactions with protected species (including both marine mammals and sea turtles), and biological information on species caught.

3. Regional Marine Mammal Stranding Networks

The Northeast and Southeast Region Stranding Networks are components of the Marine Mammal Health and Stranding Response Program (MMHSRP). The goals of the MMHSRP are to facilitate collection and dissemination of data, assess health trends in marine mammals, correlate health with other biological and environmental parameters, and coordinate effective responses to unusual mortality events (Becker, et al. 1994). Since 1997, the

Northeast Region Marine Mammal Stranding Network has been collecting and storing data on marine mammal strandings and entanglements that occur between the states of Maine and Virginia. The Southeast Region Strandings Program is responsible for data collection and stranding response coordination along the Atlantic coast from North Carolina to Florida, along the U.S. Gulf of Mexico coast from Florida through Texas, and in the U.S. Virgin Islands and Puerto Rico. Prior to 1997, stranding and entanglement data were maintained by the New England Aquarium and the National Museum of Natural History, Washington, D.C. Volunteer participants, acting under a letter of agreement, collect data on stranded animals that include: species; event date and location; details of the event (i.e., signs of human interaction) and determination on cause of death; animal disposition; morphology; and biological samples. Collected data are reported to the appropriate Regional Stranding Network Coordinator and are maintained in regional and national databases.

4. Marine Mammal Authorization Program

Commercial fishing vessels engaging in Category I or II fisheries are required to register under the Marine Mammal Authorization Program (MMAP) in order to lawfully capture a marine mammal incidental to fishing operations. All vessel owners, regardless of the category of fishery they are operating in, are required to report all incidental injuries and mortalities of marine mammals that have occurred as a result of fishing operations (NMFSOPR, 2003). Events are reported by fishermen on Mortality/Injury forms then submitted to and maintained by the NMFS Office of Protected Resources. The data reported include: captain and vessel demographics; gear type and target species; date, time and location of event; type of interaction; animal species; mortality or injury code; and number of interactions.

5. Other Data Sources for Protected Species Interactions/Entanglements/Ship Strikes

In addition to the above, data on fishery interactions/entanglements and vessel collisions with large cetaceans are reported from a variety of other sources including the New England Aquarium (Boston, MA); Provincetown Center for Coastal Studies (Provincetown, MA); U.S. Coast Guard; whale watch vessels; and Canadian Department of Fisheries and Oceans (DFO). These data, photographs, etc. are maintained by the Protected Species Branch at the Northeast Fisheries Science Center (NEFSC) and the SEFSC.

6. Northeast Region Vessel Trip Reports

The Northeast Region Vessel Trip Report Data Collection System is a mandatory, but self-reported, commercial fishing effort database (Wigley, et al. 1998). The data collected include: species kept and discarded; gear types used; trip location; trip departure and landing dates; port; and vessel and gear characteristics. The reporting of these data is mandatory only for vessels fishing under a federal permit.

7. Southeast Region Fisheries Logbook System

The Fisheries Logbook System (FLS) is maintained at the SEFSC and manages data submitted from mandatory Fishing Vessel Logbook Programs under several FMPs. In 1986 a comprehensive logbook program was initiated for the Large Pelagics Longline Fishery and this reporting became mandatory in 1992. Logbook reporting has also been initiated since the early 1990s for a number of other fisheries including: Reef Fish Fisheries; Snapper-Grouper Complex Fisheries; federally managed Shark Fisheries; and King and Spanish Mackerel Fisheries. In each case, vessel captains are required to submit information on the fishing location, the amount and type of fishing gear used, the total amount of fishing effort (e.g., gear sets) during a given trip, the total weight and composition of the catch, and the disposition of the catch during each unit of effort (e.g., kept, released alive, released dead). FLS data are used to estimate the total amount of fishing effort in the fishery and thus expand bycatch rate estimates from observer data to estimates of the total incidental take of marine mammal species in a given fishery.

8. Northeast Region Dealer Reported Data

The Northeast Region Dealer Database houses trip level fishery statistics on fish species landed by market category, vessel ID, permit number, port location and date of landing, and gear type utilized. The data are collected by both federally permitted seafood dealers and NMFS port agents. Data are considered to represent a census of both vessels actively fishing with a federal permit and total fish landings. It also includes vessels that fish with a state permit (excluding the state of North Carolina) that land a federally managed species. Some states submit the same trip level data to the Northeast Region, but contrary to the data submitted by federally permitted seafood dealers, the trip level data reported by individual states does not include unique vessel and permit information. Therefore, the estimated number of active permit holders reported within this appendix should be considered a minimum estimate.

II. U.S Atlantic Commercial Fisheries

Northeast Sink Gillnet (includes anchored float and drift gillnets)

Target Species: Atlantic Cod, Haddock, Pollock, Yellowtail Flounder, Winter Flounder, Witch Flounder, American Plaice, Windowpane Flounder, Spiny Dogfish, Monkfish, Silver Hake, Red Hake, White Hake, Ocean Pout, and Skate spp.

Number of Permit Holders: To Be Determined
Number of Active Permit Holders: In 2002 there were 361 active federal permits reported in the Northeast Region (ME-CT) Dealer Reported Landings Database.

Total Effort: Total metric tons of fish landed from 1998 to 2004 were $22,933,18,681,14,487,14,634,15,201$, 17,680 and 19,080, respectively (NMFS). Data on total quantity of gear fished (i.e., number of sets) have not been reported consistently among commercial gillnet fishermen on vessel logbooks, therefore will not be reported here. Total days absent from port, or days at sea, are yet to be determined. Figures documenting approximate gillnet trip locations are not yet available.

Temporal and Spatial Distribution: Effort is distributed throughout the Gulf of Maine, Georges Bank, and Southern New England Regions. Effort occurs year-round with a peak during May, June, and July primarily on the continental shelf region in depths ranging from 30 to 750 feet. Some nets are set in water depths greater than 800 feet. Figures $1-5$ document the distribution of sets and marine mammal interactions observed from 2000 to 2004 respectively.

Gear Characteristics: The Northeast Sink Gillnet Fishery is dominated by a bottom-tending (sink) net. Less than 1\% of the fishery utilizes a drift gillnet (either anchored floating or drift). Monofilament twine is the dominant material used with stretched mesh sizes ranging from 6 to 12 inches. String lengths range from 600 to 10,500 feet long. The mesh size and string length vary by the primary fish species targeted for catch.

Management and Regulations: The Northeast Sink Gillnet Fishery has been defined as a category I fishery in the 2006 List of Fisheries (71 FR162, 50 CFR Part 229). This gear is managed by several federal and state FMPs that range North and East of the 72 degree 30 min line. The relevant FMPs include, but may not be limited to: the Northeast Multi-species (FR 67, CFR Part 648); Monkfish (FR 68(81), 50 CFR Part 648); Spiny Dogfish (FR 65(7), 50 CFR Part 648); Summer Flounder, Scup and Black Sea Bass (FR 68(1), 50 CFR part 648); Atlantic Bluefish (FR 68(91), 50 CFR Part 648); and Northeast Skate Complex (FR 68(160), 50 CFR part 648). These fisheries are primarily managed by total allowable catch (TACs); individual trip limits (i.e., quotas); effort caps (i.e., limited number of days at sea per vessel); time and area closures; and gear restrictions.

Observer Coverage: During the period 1990-2004, estimated observer coverage (number of trips observed/total commercial trips reported) was $1 \%, 6 \%, 7 \%, 5 \%, 7 \%, 5 \%, 4 \%, 6 \%, 5 \%, 6 \%, 6 \%, 4 \%, 2 \%, 3 \%$, and 6% respectively.

Comments: Effort patterns in this fishery are heavily influenced by pinger requirements, marine mammal time/area closures, fish time/area closures, and gear restrictions due to fish conservation measures, the ALWTRP, and the Harbor Porpoise Take Reduction Plan (HPTRP).

Protected Species Interactions: Documented interaction with Harbor Porpoise, White-sided Dolphin, Harbor Seal, Gray Seal, Harp Seal, Hooded Seal, Long-finned Pilot Whale, Offshore Bottlenose Dolphin, Risso's Dolphin, and Common Dolphin. Not mentioned here are possible interactions with sea turtles and sea birds.

Bay of Fundy Sink Gillnet

Target Species: Atlantic cod and other groundfish.
Number of Permit Holders: To Be Determined
Number of Active Permit Holders: To Be Determined
Total Effort: To Be Determined

Temporal and Spatial Distribution: In Canadian waters the Gillnet Fishery occurs during the summer and early autumn months mostly in the western portion of the Bay of Fundy.

Gear Characteristics: Typical gillnet strings are 300 m long (three 100 m panels), 4 m deep, with stretched mesh size of 15 cm , strand diameter of $0.57-0.60 \mathrm{~mm}$, and are usually set at a depth of about 100 m for 24 hours.

Management and Regulations: To Be Determined
Observer Coverage: During the period 1994 to 2001, the estimated observer coverage of the Grand Manan portion of the sink gillnet fishery was $0.49,0.89,0.8,0.8,0.24,0.11,0.41$, and 0.56 . The fishery was not observed during 2002 and 2003. There is a proposal to observe the fishery during 2004.

Comments: Marine mammals in Canadian waters are regulated by the Committee on the Status of Endangered Wildlife in Canada (COSEWIC). DFO Maritimes Region has developed a Harbour Porpoise Conservation Strategy that has set a maximum take of 110 Harbor Porpoise per year in the Bay of Fundy. Bycatch mitigation measures include acoustic pingers and nylon barium-sulphate netting that target cetacean and sea bird bycatch reduction goals, and fishery effort restrictions that target fish management goals.

Protected Species Interactions: Documented interactions with Harbor Porpoise and sea birds.

Mid-Atlantic Gillnet

Target Species: Monkfish, Spiny and Smooth Dogfish, Bluefish, Weakfish, Menhaden, Spot, Croaker, Striped Bass, Coastal Sharks, Spanish Mackerel, King Mackerel, American Shad, Black Drum, and Skate spp.

Number of Permit Holders: To Be Determined

Number of Active Permit Holders: To Be Determined
Total Effort: Total metric tons of fish landed from 1998 to 2004 were $15,494,19,130,16,333,14,855,13,389$, 13,107 and 15,124 , respectively (NMFS). Data on total quantity of gear fished (i.e. number of sets)have not been reported consistently among commercial gillnet fishermen on vessel logbooks, therefore will not be reported here. During 1998 it was estimated that 302 full- and part-time sink gillnet vessels and an undetermined number of drift gillnet vessels participated in this fishery. This is the number of unique vessels in the Commercial Landings Database (Weighout) that reported catch from this fishery during 1998 from the states of Connecticut to North Carolina. This does not include a small percentage of records where the vessel number was missing. Figures documenting approximate gillnet trip locations are not yet available.

Temporal and Spatial Distribution: This fishery operates year-round, extending from New York to North Carolina. It's comprised of a combination of small vessels that target a variety of fish species. This fishery can be prosecuted right off the beach (6 feet) or in nearshore coastal waters to offshore waters (250 feet). Figures 6-10 document the distribution of sets and marine mammal interactions observed from 2000 to 2004 respectively.

Gear Characteristics: The Mid-Atlantic Gillnet Fishery utilizes both drift and sink gillnets. These nets are most frequently attached to the bottom, although unanchored drift or sink nets are also utilized to target specific species. Monofilament twine is the dominant material used with stretched mesh sizes ranging from 2.5 to 12 inches. String lengths range from 150 to 8400 feet long. The mesh size and string length vary by the primary fish species targeted for catch.

Management and Regulations: The Mid-Atlantic Gillnet Fishery has been defined as a Category I fishery in the 2006 List of Fisheries (71 FR162, 50 CFR Part 229. This gear is managed by several federal FMPs and Inter-State Fishery Management Plans (ISFMP's) managed by the Atlantic States Marine Fisheries Commission (ASMFC). This fishery ranges South and East of the 72 degree 30 min . line. The relevant FMPs include, but may not be limited to: Atlantic Bluefish (FR 68(91), 50 CFR Part 648); Weakfish (FR 68(191), 50 CFR 697); Shad and River Herring (ASMFC ISFMP 2002); Striped Bass (FR68(202), 50 CFR part 697); Spanish Mackerel (FR 65(92), 50 CFR 622); Monkfish (FR 68(81), 50 CFR Part 648); Spiny Dogfish (FR 65(7), 50 CFR Part 648); Summer Flounder, Scup and

Black Sea Bass (FR 68(1), 50 CFR part 648); Northeast Skate Complex (FR 68(160), 50 CFR part 648); and Atlantic Coastal Sharks (FR 68(247), 50 CFR 600-635). These fisheries are primarily managed by TACs; individual trip limits (i.e., quotas); effort caps (i.e., limited number of days at sea per vessel); time and area closures; and gear restrictions.

Observer Coverage: During the period 1995-2004, the estimated observer coverage was $5 \%, 4 \%, 3 \%, 5 \%, 2 \%, 2 \%$, $2 \%, 1 \%, 1 \%$, and 2% respectively.

Comments: Effort patterns in this fishery are heavily influenced by marine mammal time/area closures, gear restrictions due to fish conservation measures, the ALWTRP, and the HPTRP and Bottlenose Dolphin Take Reduction Plan (BDTRP).

Protected Species Interactions: Documented interaction with Harbor Porpoise, White-sided Dolphin, Harbor Seal, Gray Seal, Harp Seal, Coastal Bottlenose Dolphin, Offshore Bottlenose Dolphin, Common Dolphin, and LongFinned and Short-Finned Pilot Whale. Not mentioned here are possible interactions with sea turtles and sea birds.

Mid-Atlantic Bottom Trawl

Target Species: Include, but are not limited to: Atlantic Cod, Haddock, Pollock, Yellowtail Flounder, Winter Flounder, Witch Flounder, American Plaice, Atlantic Halibut, Redfish, Windowpane Flounder, Summer Flounder, Spiny and Smooth Dogfish, Monkfish, Silver Hake, Red Hake, White Hake, Ocean Pout, Scup, Black Sea Bass, Skate spp, Atlantic Mackerel, Loligo Squid, Illex Squid, and Atlantic Butterfish.

Number of Permit Holders: To Be Determined
Number of Active Permit Holders: To Be Determined
Mixed Groundfish Bottom Trawl Total Effort: Total effort, measured in trips, for the Mixed Groundfish Trawl from 1998 to 2004 was $27,521,26,525,24,362,27,890,28,103,25,725$ and 22,303 , respectively (NMFS). The number of days absent from port, or days at sea, is yet to be determined. Figures documenting approximate trawl trip locations are not yet available.

Squid, Mackerel, Butterfish Bottom Trawl Total Effort: Total effort, measured in trips, for the domestic Atlantic Mackerel Fishery in the Mid-Atlantic Region (bottom trawl only) from 1997 to 2004 were 373, 278, 262, 102, 175, 310, 238, and 231, respectively (NMFS). Total effort, measured in trips, for the Illex Squid Fishery from 1998 to 2004 were $412,141,108,51,39,103$, and 445 , respectively (NMFS). Total effort, measured in trips, for the Loligo Squid Fishery from 1998 to 2004 were $1,048,495,529,413,3,585,1,848$, and 1,124 , respectively (NMFS). Atlantic Butterfish is a bycatch (non-directed) fishery, therefore effort on this species will not be reported. The number of days absent from port, or days at sea, is yet to be determined. Figures documenting approximate trawl trip locations are not yet available.

Temporal and Spatial Distribution: The Mixed Groundfish Fishery occurs year-round from Cape Cod, Massachusetts to Cape Hatteras, North Carolina. Because of spatial and temporal differences in the harvesting of Illex and Loligo Squid and Atlantic Mackerel, each one of these sub-fisheries is described separately. Figures 11-15 document the distribution of tows and marine mammal interactions observed from 2000 to 2004 respectively.

Illex Squid

The U.S. domestic fishery for Illex Squid, ranging from Southern New England to Cape Hatteras, North Carolina, reflects patterns in the seasonal distribution of Illex Squid (Illex illecebrosus). Illex is harvested offshore (along or outside of the 100 m isobath), mainly by small-mesh otter trawlers, when the Squid are distributed in continental shelf and slope waters during the summer months (June-September) (Clark 1998).

Loligo Squid

The U.S. domestic fishery for Loligo Squid (Loligo pealeii) occurs mainly in Southern New England and mid-Atlantic waters. Fishery patterns reflect Loligo seasonal distribution, therefore most effort is directed offshore near the edge of the continental shelf during the fall and winter months (October-March) and inshore during the spring and summer months (April-September) (Clark 1998).

Atlantic Mackerel

The U.S. domestic fishery for Atlantic Mackerel (Scomber scombrus) occurs primarily in the Southern New England and mid-Atlantic waters between the months of January and May (Clark 1998). An Atlantic Mackerel Trawl Fishery also occurs in the Gulf of Maine during the summer and fall months (May-December) (Clark 1998).

Atlantic Butterfish

Atlantic Butterfish (Peprilus triacanthus) undergo a northerly inshore migration during the summer months, a southerly offshore migration during the winter months, and are mainly caught as bycatch to the directed Squid and Mackerel Fisheries. Fishery Observers suggest that a significant amount of Atlantic Butterfish discarding occurs at sea.

Gear Characteristics: The Mixed Groundfish Bottom Trawl Fishery gear characteristics have not yet been determined or summarized. The Illex and Loligo Squid Fisheries are dominated by small-mesh otter trawls, but substantial landings of Loligo Squid are also taken by inshore pound nets and fish traps during the spring and summer months (Clark 1998). The Atlantic Mackerel Fishery is prosecuted by both mid-water (pelagic) and bottom trawls.

Management and Regulations: The Mid-Atlantic Bottom Trawl Fishery has been defined as a Category II fishery in the 2006 List of Fisheries (71 FR162, 50 CFR Part 229). There are at least 2 distinct components to this fishery. One is the mixed groundfish bottom trawl fishery. It is managed by several federal and state FMPs that range from Massachusetts to North Carolina. The relevant FMPs include, but may not be limited to, Monkfish (FR 68(81), 50 CFR Part 648); Spiny Dogfish (FR 65(7), 50 CFR Part 648); Summer Flounder, Scup, and Black Sea Bass (FR $68(1), 50$ CFR part 648); and Northeast Skate Complex (FR 68(160), 50 CFR part 648). The second major component is the squid, mackerel, butterfish fishery. This component is managed by the federal Squid, Mackerel, Butterfish FMP. The Illex and Loligo Squid Fisheries are managed by moratorium permits, gear and area restrictions, quotas, and trip limits. The Atlantic Mackerel and Atlantic Butterfish Fisheries are managed by an annual quota system.

Observer Coverage: During the period 1996-2004, estimated observer coverage (measured in trips) for the Mixed Groundfish Bottom Trawl Fishery was $0.24 \%, 0.22 \%, 0.15 \%, 0.14 \%, 1 \%, 1 \%, 1 \%, 1 \%$, and 3%, respectively.

During the period 1996-2004, estimated observer coverage (trips) in the Illex Fishery was $3.7 \%, 6.21 \%$, 0.97%, $2.84 \%, 11.11 \%, 0.00 \%, 0.00 \%, 8.74 \%$ and 5.07%, respectively. During the period $1996-2004$, estimated observer coverage (trips) of the Loligo Fishery was $0.37 \%, 1.07 \%, 0.72 \%, 0.69 \%, 0.61 \%, 0.95 \%, 0.42 \%, 0.65 \%$ and 5.07%, respectively. During the period 1997-2004, estimated observer coverage (trips) of the domestic Atlantic Mackerel Fishery was $0.81 \%, 0.00 \%, 1.14 \%, 4.90 \%, 3.43 \%, 0.97 \%, 5.04 \%$ and 18.61%, respectively. Mandatory 100% observer coverage is required on any Joint Venture (JV) fishing operation. The most recent Atlantic Mackerel JV fishing activity occurred in 1998 and 2002 where 152 and 62 transfers from USA vessels were observed respectively. Only the net transfer operations from the USA vessel to the foreign processing vessel are observed. The actual net towing and hauling operations conducted on the USA vessel are not observed.

Comments: Mobile Gear Restricted Areas (GRAs) were put in place for fishery management purposes in November 2000. The intent of the GRAs is to reduce bycatch of scup. The GRAs are spread out in time and space along the edge of the Southern New England and Mid-Atlantic Continental Shelf Region (between 100 and 1000 meters). These seasonal closures are targeted at trawl gear with small-mesh sizes (<4.5 inches inside mesh measurement). The Atlantic Herring and Atlantic Mackerel Trawl Fisheries are exempt from the GRAs. Access to the GRAs to harvest non-exempt species (Loligo Squid, Black Sea Bass, and Silver Hake) can be granted by a special permit. For detailed information regarding GRAs refer to (FR 70(2), (50 CFR Part 648.122 parts A and B)).

Protected Species Interactions: Documented interaction with White-sided Dolphin, Common Dolphin, Long-finned Pilot Whale, Short-finned Pilot Whale, Harbor Seal, Gray Seal, and Harp Seal. Not mentioned here are possible interactions with sea turtles and sea birds.

Northeast Bottom Trawl

Target Species: Atlantic Cod, Haddock, Pollock, Yellowtail Flounder, Winter Flounder, Witch Flounder, American Plaice, Atlantic Halibut, Redfish, Windowpane Flounder, Summer Flounder, Spiny Dogfish, Monkfish, Silver Hake, Red Hake, White Hake, Ocean Pout, and Skate spp.

Number of Permit Holders: To Be Determined

Number of Active Permit Holders: In 2002 there were 803 active federal permits reported in the Northeast Region Dealer Reported Landings Database.

Total Effort: Total effort, measured in trips, for the North Atlantic Bottom Trawl Fishery from 1998 to 2004 was $13,263,10,795,12,625,12,384,12,711,11,577$ and 10,354 , respectively (NMFS). An average mean of 970 $(\mathrm{CV}=0.04)$ vessels (full- and part time) participated annually in the fishery during 1989-1993. The number of days absent from port, or days at sea, is yet to be determined. Figures documenting approximate trawl trip locations are not yet available.

Temporal and Spatial Distribution: Effort occurs year-round with a peak during May, June, and July primarily on the continental shelf and is distributed throughout the Gulf of Maine, Georges Bank and Southern New England Regions. Figures 16-20 document the distribution of tows and marine mammal interactions observed from 2000 to 2004 respectively.

Gear Characteristics: To Be Determined

Management and Regulations: The North Atlantic Bottom Trawl Fishery has been defined as a Category II fishery in the 2006 List of Fisheries (71 FR162, 50 CFR Part 229). This gear is managed by several federal and state FMPs that range from Maine to Connecticut. The relevant FMPs include, but may not be limited to: the Northeast Multispecies (FR 67, CFR Part 648); Monkfish (FR 68(81), 50 CFR Part 648); Spiny Dogfish (FR 65(7), 50 CFR Part 648); Summer Flounder, Scup and Black Sea Bass (FR 68(1), 50 CFR part 648); Atlantic Bluefish (FR 68(91), 50 CFR Part 648); and Northeast Skate Complex (FR 68(160), 50 CFR part 648). These fisheries are primarily managed by TACs; individual trip limits (i.e., quotas); effort caps (i.e., limited number of days at sea per vessel); time and area closures; and gear restrictions.

Observer Coverage: During the period 1994-2004, estimated observer coverage (measured in trips) was $0.4 \%, 1.1 \%$, $0.2 \%, 0.2 \%, 0.1 \%, 0.3 \%, 1 \%, 1 \%, 3 \%, 4 \%$, and 5%, respectively.

Vessels in the Northeast bottom Trawl Fishery, a Category II fishery under the MMPA, were observed in order to meet fishery management needs rather than monitoring for bycatch of marine mammals.

Comments: Mobile Gear Restricted Areas (GRAs) were put in place for fishery management purposes in November 2000. The intent of the GRAs is to reduce bycatch of Scup. The GRAs are spread out in time and space along the edge of the Southern New England and mid-Atlantic continental shelf region (between 100 and 1000 meters). These seasonal closures are targeted at trawl gear with small-mesh sizes (<4.5 inches inside mesh measurement). The Atlantic Herring and Atlantic Mackerel Trawl Fisheries are exempt from the GRAs. For detailed information regarding GRAs refer to (50 CFR Part 648.122 parts A and B).

Protected Species Interactions: Documented interaction with White-sided Dolphin, Common Dolphin, Harbor Seal, and Harp Seal. Not mentioned here are possible interactions with sea turtles and sea birds.

Northeast Mid-Water Trawl Fishery (includes pair trawls)

Target Species: Atlantic Herring and miscellaneous pelagic species.
Gear Characteristics: Historically, the Atlantic Herring resource was harvested by the Distant Water Fleet (DWF) until the fishery collapsed in the late 1970s. There has been no DWF since then. A domestic fleet has been harvesting the Atlantic Herring resource utilizing both fixed and mobile gears. Only a small percentage of the resource is currently harvested by fixed gear due to a combination of reduced availability and less use of fixed gear (Clark 1998). The majority of the resource is currently harvested by domestic mid-water (pelagic) trawls (single and paired).

Management and Regulations: The Northeast Mid-Water Trawl Fishery has been defined as a Category II fishery in the 2006 List of Fisheries (71 FR162, 50 CFR Part 229). Atlantic herring are managed jointly by the MAFMC and

ASMFC as one migratory stock complex. There has been a domestic resurgence in a directed fishery on the adult stock due to the recovery of the adult stock biomass.

Temporal and Spatial Distribution: The current fishery occurs during the summer months when the resource is distributed throughout the Gulf of Maine and Georges Bank regions. The stock continues on a southerly migration into mid-Atlantic waters during the winter months. Figures 21-25 document the distribution of tows and marine mammal interactions observed from 2000 to 2004 respectively.

Total Effort: Total effort, measured in trips, for the Northeast Mid-Water Trawl Fishery (across all gear types) from 1997 to 2004 was $578,289,553,1,312,2,404,1,736,2,158$, and 1,564 , respectively (NMFS).

Observer Coverage: During the period 1997-2004, estimated observer coverage (trips) was $0.00 \%, 0.00 \%, 0.73 \%$, $0.46 \%, 0.06 \%, 0.00 \%, 2.25 \%$ and 11.48%, respectively. A U.S. JV Mid-Water (pelagic) Trawl Fishery was conducted on Georges Bank from August to December 2001. A total allowable landings of foreign fishery (TALFF) was also granted during the same time period. Ten vessels (3 foreign and 7 American), fishing both single and paired mid-water trawls, participated in the 2001 Atlantic Herring JV Fishery. Two out of the three foreign vessels also participated in the 2001 TALFF and fished with paired mid-water trawls. The NMFS maintained 74% observer coverage (243 hauls) on the JV transfers and 100% observer coverage (114 hauls) on the foreign vessels granted a TALFF.

Comments: Mobile Gear Restricted Areas (GRAs) were put in place for fishery management purposes in November 2000. The intent of the GRAs is to reduce bycatch of Scup. The GRAs are spread out in time and space along the edge of the Southern New England and mid-Atlantic continental shelf region (between 100 and 1000 meters). These seasonal closures are targeted at trawl gear with small-mesh sizes (<4.5 inches inside mesh measurement). The Atlantic Herring and Atlantic Mackerel Trawl Fisheries are exempt from the GRAs. For detailed information regarding GRAs refer to (50 CFR Part 648.122 parts A and B)

Protected Species Interactions: Documented interaction with White-sided Dolphin and Long-finned Pilot Whale. There were no marine mammal takes observed from the domestic Mid-Water Trawl Fishery trips during the period 1997-2002. Not mentioned here are possible interactions with sea turtles and sea birds.

Mid-Atlantic Mid-Water Trawl Fishery (includes pair trawls)

Target Species: Atlantic Mackerel, Chub Mackerel and other miscellaneous pelagic species.
Gear Characteristics: To be determined.
Management and Regulations: The Mid-Atlantic Mid-Water Trawl Fishery has been defined as a Category I fishery in the 2006 List of Fisheries (71 FR162, 50 CFR Part 229).

Temporal and Spatial Distribution: To be determined. Figures 26-30 document the distribution of tows and marine mammal interactions observed from 2000 to 2004 respectively.

Total Effort:. Total effort, measured in trips, for the mid-Atlantic Mid-Water Trawl Fishery (across all gear types) from 1997 to 2004 was $331,223,374,166,408,261,428$, and 360, respectively (NMFS).

Observer Coverage:. During the period 1997-2004, estimated observer coverage (trips) was $0.00 \%, 0.00 \%, 1.01 \%$, $8.43 \%, 0.00 \%, 0.77 \%, 3.5 \%$ and 12.16%, respectively.

Comments: Mobile Gear Restricted Areas (GRAs) were put in place for fishery management purposes in November 2000. The intent of the GRAs is to reduce bycatch of Scup. The GRAs are spread out in time and space along the edge of the Southern New England and mid-Atlantic continental shelf region (between 100 and 1000 meters). These seasonal closures are targeted at trawl gear with small-mesh sizes (<4.5 inches inside mesh measurement). The Atlantic Herring and Atlantic Mackerel Trawl Fisheries are exempt from the GRAs. For detailed information regarding GRAs refer to (50 CFR Part 648.122 parts A and B).

Protected Species Interactions: . Documented interaction with White sided dolphins and Pilot Whale spp. Not mentioned here are possible interactions with sea turtles and sea birds.

Bay of Fundy Herring Weir

Target Species: Atlantic Herring

Number of Permit Holders: According to Canadian DFO officials, for 1998 there were 225 licenses for herring weirs on the New Brunswick and Nova Scotia sides of the Bay of Fundy (60 from Grand Manan Island, 95 from Deer and Campobello Islands, 30 from Passamaquoddy Bay, 35 from the East Charlotte area, and 5 from the Saint John area). The number of licenses has been fairly consistent since 1985 (Ed Trippel, pers. comm.)

Number of Active Permit Holders: In 2002 around Grand Manan Island, the only area surveyed for active weirs, there were 22 active weirs. In 2003 the number of active weirs included: 20 around Grand Manan Island, 9 around the Wolves Islands, 10 around Campobello Island, 2 at Deer Island, and 43 in Passamaquoddy Bay and the western Bay of Fundy. The numbers in the eastern Bay of Fundy are unknown, but some do exist.

Total Effort: Effort is difficult to measure. Weirs may or may not have twine (i.e., be actively fishing) on them in a given year and the amount of time the twine is up varies from year to year. Most weirs tend to fish (i.e., have twine on them) during July, August, and September. Some fishermen keep their twine on longer, into October and November, if it is a good year or there haven't been any storms providing incentive to take the twine down. Effort cannot simply be measured by multiplying the number of weirs with twine times the average number of fishing days (this will provide a very generous estimation of effort) because if a weir fills up with fish the fisherman will pull up the drop (close the net at the mouth) which prevents loss of fish, but also means no new fish can get in, therefore the weir is not actively fishing during that period.

Temporal and Spatial Distribution: In Canadian waters, the Herring Weir Fishery occurs from May to October along the southwestern shore of the Bay of Fundy, and is scattered along the coasts of western Nova Scotia.

Gear Characteristics: Weirs are large, heart-shaped structures (roughly 100 feet across) consisting of long wooden stakes ($50-80$ feet) pounded 3-6 feet into the sea floor and surrounded by a mesh net (the "twine") of about $3 / 4$ inch stretch mesh. Weirs are typically located within 100-400 feet of shore. The twine runs from the sea floor to the surface, and the only opening (the "mouth") is positioned close to shore. Herring swimming along the shore at night, encounter a fence (net of the same twine from sea floor to surface) that runs from the weir to the shoreline and directs the fish into the weir. At dawn, the weir fisherman tends the weir and if Herring are present, he/she may close off the weir until the fish can be harvested. Harvesting takes place when the tidal current is the slackest, usually just before low tide. A large net ("seine") is deployed inside the weir, and, much like a purse seine, it is drawn up to the surface so that the fish become concentrated. They are then pumped out with a vacuum hose into the waiting carrier for transport to the processing plant.

Management and Regulations: To Be Determined

Observer Coverage: From mid-July to early September, on a daily basis, scientists from the Grand Manan Whale \& Seabird Research Station check only the weirs around Grand Manan Island for the presence of cetaceans.

Comments: Marine mammals occasionally swim into weirs, in which they can breathe and move about. Marine mammals are vulnerable during the harvesting/seining process where they can become tangled in the seine and suffocate if care is not taken to remove them from the net or to remove them from the weir prior to the onset of the seining process. Small marine mammals, like porpoises, can be removed from the net, lifted into small boats, and taken out of the weir for release without interrupting the seining process. Larger marine mammals, such as whales, must be removed from the weir either through the creation of a large enough escape hole in the back of the weir (taking down the twine and removing some poles) or sometimes by sweeping them out with a specialized mammal net, although this approach carries with it a few more risks to the animal than the "escape hole" technique.

Through the cooperation of weir fishermen and the Grand Manan Whale \& Seabird Research Station, weirassociated mortality of cetaceans is relatively low. Over 91% of all entrapped porpoises, dolphins and whales are successfully released from weirs around Grand Manan Island. Thus the total number of entrapments (which can vary annually from 6 to 312) is in no way reflective or indicative of cetacean mortality caused by this fishery.

Protected Species Interactions: Documented interactions with Harbor Porpoise and Minke Whales. Right Whales are also vulnerable to entrapment, though very rarely. The last two Minke whales in a Grand Manan weir were safely released, unharmed, through the partial disassembly of the weir.

Gulf Of Maine Atlantic Herring Purse Seine Fishery

Target Species: Atlantic Herring.
Number of Permit Holders: To Be Determined
Number of Active Permit Holders: The Atlantic Herring FMP distinguishes between vessels catching herring incidentally while pursuing other species and those targeting herring by defining vessels that average less than 1 metric tons of herring caught per trip (in all areas) as incidental herring vessels. In 2002-2004 there were 7, 6, and 4 active federal permits reported in the Northeast Region Dealer Reported Landings Database.

Gear Characteristics: The purse seine is a deep nylon mesh net with floats on the top and lead weights on the bottom. Rings are fastened at intervals to the lead line and a purse line runs completely around the net through the rings (www.gma.org, Gulf of Maine Research Institute, GOMRI). One end of the net remains in the vessel and the other end is attached to a power skiff or "bug boat" that is deployed from the stern of the vessel and remains in place while the vessel encircles a school of fish with the net. Then the net is pursed and brought back aboard the vessel through a hydraulic power block. Purse seines vary in size according to the size of the vessel and the depth to be fished. Most purse seines used in the New England Herring Fishery range from 30 to 50 meters deep (100-165 ft) (NMFS 2005). Purse seining is a year round pursuit in the Gulf of Maine, but is most active in the summer when herring are more abundant in coastal waters and are mostly utilized at night, when herring are feeding near the surface. This fishing technique is less successful when fish remain in deeper water and when they do not form "tight" schools.

Management and Regulations: The Gulf Of Maine Atlantic Herring Purse Seine Fishery has been defined as a Category III fishery in the 2006 List of Fisheries (71 FR162, 50 CFR Part 229).fishery. This gear is managed by federal and state FMPs that range from Maine to North Carolina. The relevant FMPs include, but may not be limited to the Atlantic Herring FMP (FR 70(19), 50 CFR Part 648) and the Northeast Multi-species (FR 67, CFR Part 648). This fishery is primarily managed by total allowable catch (TACs).

Temporal and Spatial Distribution: Most U.S. Atlantic herring catches occur between May and October in the Gulf of Maine, consistent with the peak season for the lobster fishery. The connection between the herring and lobster fisheries is the reliance of the lobster industry on herring for bait. In addition, there is a relatively substantial winter fishery in southern New England, and catches from Georges Bank have increased somewhat in recent years. There is a very small recreational fishery for Atlantic herring that generally occurs from early spring to late fall, and herring is caught by tuna boats for use as live bait in the recreational tuna fisheries. In addition, there is a Canadian fishery for Atlantic herring from New Brunswick to the Gulf of St. Lawrence, which primarily utilizes fixed gear. Fish caught in the New Brunswick (NB) weir fishery are assumed to come from the same stock (inshore component) as that targeted by U.S. fishermen (http://www.nefmc.org/herring/index.html, Northeast Fisheries Management Council, NEFMC). Figures 31-33 document the distribution of sets and marine mammal interactions observed from 2000 to 2004, respectively.

Total Effort: Total metric tons of fish landed from 1998 to 2004 were $24,256,39,866,29,609,20,691,20,096$, 17,939, and 19,958 (2004 totals are provisional data), respectively (NMFS, Unpbl.). Total effort, measured in trips, for the Gulf of Maine Atlantic Herring Purse Seine Fishery from 2002 to 2004 was 343, 339, and 276 respectively (NMFS, Unpbl.). Figures documenting approximate purse seine trip fishing locations are not yet available.

Observer Coverage: During the period 1994 to 2002, estimated observer coverage (number of trips observed/total commercial trips reported) was 0% and 2003 to 2004 observer coverage, respectively, was 0.34%, and 9.8%. The coverage in 2004 may be considered a 'pilot' program, as sampling priorities and data collection methods were refined over the course of the year.

Comments:

Protected Species Interactions: Documented interactions with Harbor Seals, Gray Seals, and unidentified seals.

Northeast/Mid-Atlantic American Lobster Trap/Pot

There are three distinctly identified stock areas for the American lobster: 1) Gulf of Maine, 2) Southern New England, and 3) Georges Bank. In 2005, there were 3,266 vessels holding licenses to harvest lobsters in federal waters, 2,674 vessels licensed to use lobster pot gear in state waters, and approximately 1,030 licenses to use bottom trawls or dredge gear to harvest lobsters. In 2003, there were 11,522 vessels from Maine to North Carolina holding licenses. Lobsters are taken primarily by traps, with about $2-3 \%$ of the harvest being taken by mobile gear (trawlers and dredges). About 80% of lobsters were harvested from state waters. The offshore fishery in federal waters has developed in the past 15 years, largely due to technological improvements in equipment and lower competition in the offshore areas. In January 1997, NMFS changed the classification of the Gulf of Maine and Mid-Atlantic Lobster Pot Fisheries from Category III to Category I (1997 List of Fisheries 62 FR 33, January 2, 1997) based on examination of 1990 to 1994 stranding and entanglement records of large whales (including Right, Humpback and Minke whales). This fishery is operating under regulations from the ALWTRP (50 CFR 229.32) and the federal American Lobster FMP (50 CFR 697). Documented interaction with minke whales were reported in this fishery.

Atlantic Ocean, Caribbean, Gulf of Mexico Large Pelagics Longline

Target Species: Large pelagic fish species including: Swordfish, Yellowfin Tuna, Bigeye Tuna, Bluefin Tuna, Albacore Tuna, Dolphin Fish, Shortfin Mako Shark, and a variety of other shark species.

Number of Permit Holders: < 200

Number of Active Permit Holders: The number of active fishing vessels in the Pelagic Longline Fishery has been declining since a peak number of 361 vessels reporting longline effort during 1995. Over the period between 1995 and 1999, the mean number of vessels reporting effort to the FLS for the entire Atlantic including the Gulf of Mexico was 292. This declined to an annual average of 158 for the period between 2000 and 2004. Not including the Gulf of Mexico, an average of 85 vessels reported fishing effort in the Atlantic Ocean each year between 2000 and 2004. Fifty-eight vessels reported pelagic longline effort in the Atlantic during 2004. It is likely that some of these vessels also reported effort in the Gulf of Mexico.

Total Effort: The total fishing effort in the Atlantic component of the Pelagic Longline Fishery has been declining since a peak reported effort of 12,318 sets (7.41 million hooks) during 1995. The mean effort reported to the FLS between 1995 and 1999 was 9,819 sets (5.88 million hooks). Between 2000 and 2004, a mean of 5,126 sets (3.43 million hooks) was reported each year. During 2004, the total reported fishing effort in the Atlantic Ocean component of the fishery was 4,270 sets and 3.14 million hooks (Garrison 2005).

Temporal and Spatial Distribution: Fishing effort occurs year round and operates in waters both inside and outside the U.S. EEZ throughout Atlantic, Caribbean and Gulf of Mexico waters. The "Atlantic" component of the fleet operates both in coastal and continental shelf waters along the U.S. Atlantic coast from Florida to Massachusetts. The fleet also operates in distant waters of the Atlantic including the central equatorial Atlantic Ocean and the Canadian Grand Banks. Fishing effort is reported in 11 defined fishing areas including the Gulf of Mexico. During 2004, the majority of fishing effort in the Atlantic was reported in the Mid-Atlantic Bight (Virginia to New Jersey, 1,185 sets) and the South Atlantic Bight (Georgia to North Carolina, 989 sets) fishing areas (Garrison 2005).

Gear Characteristics: The pelagic longline gear consists of a mainline of $>700-\mathrm{lb}$ test monofilament typically ranging between 10 and 45 miles long. At regular intervals along the mainline, bullet-shaped floats are suspended and long sections of the gear are marked by "high-flyers" or radio beacons. Suspended from the mainline are long gangion lines of 200 to $400-\mathrm{lb}$ test monofilament that are typically 100 to 200 feet in length. Fishing depths are most typically between 40 and 120 feet. Hooks of various sizes are attached by a steel swivel leader. Hooks may be of the straight shank " J " type hook or circle shaped hooks and the hook end may be offset from the shank. A variety of bait types are used depending on the target species, but most typically include whole, frozen squid or fish baits such as sardine or mackerel. A combination of different hook and bait types may be used on a single set. Longline sets targeting tunas are typically set at dawn and soak throughout the day with recovery near dusk. Those sets targeting swordfish are more typically night sets. The total amount of time the gear remains in the water including
set, soak, and haul times is typically 10-14 hours. As a result of a recent Biological Opinion on interactions between Atlantic longline gear targeting Tunas and Swordfish and endangered sea turtles, a comprehensive change in the fishing gear occurred in the longline fishery. After August 2004, only circle shaped hooks of $16 / 0$ or $18 / 0$ size can be used throughout the fishery.

Management and Regulations: The Large Pelagics Longline Fishery is listed as a Category I fishery under the MMPA due to frequently observed interactions with marine mammals (71 FR 267, 50 CFR Part 229). The directed fishery is managed under the FMP for Atlantic Tunas, Swordfish, and Sharks (HMS FMP, 50 CFR Part 635). The fishery has also been the focus of management actions relating to bycatch of billfish. Amendment One to the Atlantic Billfish FMP also pertains to the Large Pelagics Longline Fishery and is consistent with the regulations in the HMS FMP. This fishery is also regulated under the Endangered Species Act resulting from frequent interactions with sea turtle species including both Loggerhead and Leatherback Turtles in the Atlantic and Gulf of Mexico. A Biological Opinion issued by the NMFS Southeast Regional Office in June 2004 mandated the use of circle hooks throughout the fishery, mandated the use of de-hooking and disentanglement gear by fishermen to reduce the mortality of captured sea turtles, reopened the Northeast Distant Water fishing area, and mandated increased reporting and monitoring of the fishery.

Observer Coverage: The Pelagic Longline Observer Program (POP) is a mandatory observer program managed by the SEFSC that has been in place since 1992. Observers are placed upon randomly selected vessels with total observer effort allocated on a geographic basis proportional to the total amount of fishing effort reported by the fleet. The target observer coverage level was 5% of reported sets through 2001 , and was elevated to 8% of total sets in 2002. Between 2000 and 2004, observer coverage as a percentage of reported sets in the Atlantic component of the fishery was $4 \%, 4 \%, 4 \%, 7 \%$, and 9%. The observer coverage during 2004 was 8.9% of reported sets; however, coverage was often $>10 \%$ in some areas and seasons (Garrison 2005). These values do not include the experimental portion of the fishery in the NED area, which was 100% of sets during 2001-2002. Observed longline sets and marine mammal interactions are shown for 2000-2004 in Figures 34 through 38.

Comments: This fishery has been the subject of numerous management actions since 2000 associated with bycatch of both billfish and sea turtles. These changes have resulted in a reduction of overall fishery effort and changes in the behaviors of the fishery. The most significant change was the closure of the Northeast Distant Water (NED) area off the Canadian Grand Banks and near the Azores as of June 1, 2001 (50 CFR Part 635). An experimental fishery was conducted in this area during both 2001 and 2002 to evaluate gear characteristics and fishing practices that increase the bycatch rate of sea turtles. Several marine mammals, primarily Risso's Dolphins, were seriously injured during this experimental fishery. In addition, there have been a number of time-area closures since late 2000 including year-round closures in the DeSoto Canyon area in the Gulf of Mexico and the Florida East Coast area; and additional seasonal closures in the Charleston Bump area and off of New Jersey (NMFS, 2003). Additionally, a ban on the use of live fish bait was initiated in 1999 due to concerns over billfish bycatch. The June 2004 has resulted in a significant change in the gear and fishing practices of this fishery that will likely impact marine mammal bycatch. The majority of interactions with marine mammals in this fishery have been with Pilot Whales and Risso's Dolphin. These interactions primarily occurred along the shelf break in the Mid-Atlantic Bight region during the third and fourth quarters (Garrison 2003a, Garrison 2005).

Protected Species Interactions: Documented interactions with Minke Whale, Risso's Dolphin, Long-finned Pilot Whale, Short-finned Pilot Whale, Common Dolphin, Atlantic Spotted Dolphin, Pantropical Spotted Dolphin, Striped Dolphin, Offshore Bottlenose Dolphin, Pygmy Sperm Whale, and Harbor Porpoise. Not mentioned here are documented interactions with sea turtles and sea birds.

Southeastern U.S. Atlantic Shark Gillnet

Target Species: Large and small coastal sharks including: Blacktip, Blacknose, Finetooth, Bonnethead, and Sharpnose Sharks

Number of Permit Holders: 6
Number of Active Permit Holders: 6

Total Effort: During the period from 2000 to 2004, the fishing effort reported to the FLS by vessels operating in the Shark Gillnet Fishery averaged 241 sets annually. The total reported effort has been generally declining in the last three years. The total reported fishing effort by the six vessels operating in the fleet was 212 sets during 2004. However, there is direct evidence of under-reporting as some observed sets were not reported to the FLS system. In addition, these vessels also prosecute other fisheries, and it is not possible to distinguish between trips targeting sharks from those targeting other finfish. The total fishing effort in this fleet therefore remains uncertain (Garrison 2003b).

Temporal and Spatial Distribution: The Shark Drift Gillnet Fleet operates in the coastal waters of Florida and Georgia. During the period from 15 November to 31 March, shark drift gillnet fishing effort is restricted to waters south of $27^{\circ} 51^{\prime} \mathrm{N}$ latitude under the provisions of the ALWTRP. Fishing for sharks with strikenet gear is exempt from the close period and area if special provisions are met. One vessel operates in waters off Key West, Florida during winter months. During the remainder of the year, the fishery effort is concentrated in waters off Cape Canaveral, Florida and southern Georgia (Carlson and Baremore 2002).

Gear Characteristics: The Shark Gillnet Fishery is characterized by large-mesh (5-10 inches) nets that are typically greater than 1500 feet long. The fleet has traditionally employed long, night-time drift sets with durations greater than 10 hours. However, in recent years, an increasing proportion of the fishing effort consists of "strike sets" in which schools of sharks are targeted and encircled. Strike sets are of much shorter duration (typically <1 hour) than drift sets and generally have very low bycatch of non-target species (Carlson and Baremore 2002). Approximately 50% of the fishing effort observed during the last several years was strike sets. Strike sets are used primarily during the winter "right whale" season (J. Carlson, SEFSC, Panama City, pers. comm.)

Management and Regulations: The southeastern U.S. Atlantic shark gillnet fishery is listed as a Category II fishery under the MMPA due to occasional interactions with marine mammals (71 FR 162, 50 CFR Part 229). The directed fishery effort is managed under an amendment to the HMS FMP (50 CFR Part 635, 66 FR 17370 March 30, 2001) that mandates observer coverage outside of the season, defined by the ALWTRP, at levels sufficient to achieve precise estimates (coefficient of variation <0.3) of marine mammal and sea turtle bycatch. The fishery is also managed under the ALWTRP (50 CFR Part 229.32), which includes seasonal restriction of driftnet fishing effort to below 27degrees 51 min . North latitude during 15 November - 31 March, special provisions for strikenet gear North of 27 degrees- 51 min . during this time period, and 100% observer coverage during this period South to 26 degrees46.5 min . N latitude. Similar provisions are also included in the Biological Opinion on the fishery under section 7 of the Endangered Species Act.

Observer Coverage: A dedicated observer program for the Shark Drift Gillnet Fishery has been in place since 1998. Due to the provisions of the ALWTRP, observer coverage has been high during winter months since 2000. However, due to limits on available resources, observer coverage outside of this period was generally low ($<5 \%$) prior to 2000 but has been increasing in the last few years. The overall observer coverage of the drift component of the fishery from 2000 to 2004 was $20 \%, 38 \%, 33 \%, 9 \%$, and 15%. However, given the uncertainties surrounding the level of reported effort in the FLS, these estimates of observer coverage are highly uncertain. The Shark Drift Gillnet Observer Program attempted to cover 100\% of shark gillnet trips by the fleet during 2002-2004 (Carlson and Baremore 2002, Garrison 2003b). The locations of observed strike and drift sets and marine mammal interactions in the shark gillnet fishery are shown in Figures 40-43.

Comments: There is a significant level of uncertainty surrounding estimating the total level of effort in this fishery. There is direct evidence of inconsistency in reporting. It is not possible to distinguish trips targeting sharks from those targeting other fish species, and it is not possible to distinguish strike sets from drift sets in the logbook data. However, the overall marine mammal and sea turtle bycatch rate is very low, therefore it is unlikely that even severe biases would result in large increases in the estimated total protected species bycatch in this fishery. In addition to marine mammal interactions, this fishery has been the subject of management concern due to recent interactions with endangered sea turtles including Leatherback and Loggerhead Turtles.

Protected Species Interactions: Documented interactions with Coastal Bottlenose Dolphin and Atlantic Spotted Dolphin.

Atlantic Blue Crab Trap/Pot

The Blue Crab Trap/Pot Fishery is broadly distributed in estuarine and nearshore coastal waters throughout the mid and south Atlantic. The fishery is estimated to have $>16,000$ participants deploying gear on a year-round basis. Pots are baited with fish or poultry and are typically set in shallow water. The pot position is marked by either a floating or sinking buoy line attached to a surface buoy. In recent years, reports of strandings with evidence of interactions between Bottlenose Dolphins and both recreational and commercial Crab Pot Fisheries have been increasing in the Southeast region (McFee and Brooks 1998). Interactions with crab pots appear to generally involve a dolphin becoming wrapped in the buoy line. The total number of these interactions and associated mortality rates has not been documented. The fishery has been defined as a Category II fishery in the 2006 List of Fisheries (71 FR162, 50 CFR Part 229).

Mid-Atlantic Haul/Beach Seine

A Beach Seine Fishery operates along northern North Carolina beaches targeting Striped Bass, Mullet, Spot, Weakfish, Sea Trout, and Bluefish. The fishery operates on the Outer Banks of North Carolina primarily in the spring (April-June) and fall (October-December). It uses two primary gear types: a "beach anchored gill net" and a "beach seine". Both systems utilize a small net anchored to the beach. Although the "beach anchored gillnet" is functionally utilized in the same manner as the "beach seine" they are mono-filament gillnets and are technically a component of the category I mid-Atlantic Gillnet fishery. The beach seine system uses a bunt and a wash net that are attached to the beach and are in the surf (Steve et al. 2001). The North Carolina Beach Seine Fishery has been observed since April 7, 1998 by the NMFS Fisheries Sampling Program (Observer Program) based at the NEFSC. Through 2001, there were 101 sets observed during the winter season (Nov-Apr) and 65 sets observed during the summer season (May-Oct). There were no sets observed during the summer of 2001. This fishery has observed interactions with Coastal Bottlenose Dolphin. The fishery has been defined as a Category II fishery in the 2006 List of Fisheries (71 FR162, 50 CFR Part 229) and has management actions under the Bottlenose Dolphin Take Reduction Plan (71 FR162, 50 CFR Part 223 and 229).

North Carolina Long Haul Seine

The Long Haul Seine is an estuarine fishery operating in North Carolina waters with 10-15 participants statewide. The seine consists of a 1000-1200 yard long net pulled by two boats for distances of 1-2 nautical miles (Steve et al., 2001). The fishery targets Weakfish, Spot, and Croaker and operates in Pamlico and Core sounds and tributaries. The fishery operates primarily between June and October. Occasional interactions with Coastal Bottlenose Dolphins have been reported. The fishery has been defined as a Category II fishery in the 2006 List of Fisheries (71 FR162, 50 CFR Part 229).

North Carolina Roe Mullet Stop Net

The Stop Net Fishery is unique to Bogue Banks, North Carolina and is currently operated by two crews including approximately 20 fishers each (Steve et al. 2001). The gear consists of a stationary, multi-filament anchored net extended perpendicular to the beach to stop the alongshore migration of Striped Mullet. Once the catch accumulates near the end of the stop net, a beach haul seine is used to capture fish and bring them ashore. The stop net is traditionally left in the water for 1 to 5 days during the fishery season from October to November (Steve et al. 2001). Interactions between this fishery and Coastal Bottlenose Dolphins have been reported; however, the total number of interactions has not been estimated. The fishery has been defined as a Category II fishery in the 2006 List of Fisheries (71 FR162, 50 CFR Part 229).

Virginia Pound Net

Pound Nets are a stationary gear fished in nearshore coastal and estuarine waters of Virginia. The gear consists of a large mesh lead posted perpendicular to the shoreline extending outward to the corral, or "heart", where the catch accumulates. Target species included Weakfish, Spot, and Croaker. The NEFOB began observing effort in this fishery in 2001. In 2004 and 2005 an experimental fishery was conducted in an area of the Chesapeake bay that was closed to commercial fishing effort from May to July for sea turtle conservation measures. Occasional interactions with Coastal Bottlenose Dolphins have been observed while monitoring for sea turtle interactions in both the commercial and experimental fisheries. In some cases it is not clear whether pound nets were the cause of death due to entanglement in other gear (monofilament twine). Data from the Chesapeake Bay suggest that the likelihood of Bottlenose Dolphin entanglement in pound net leads may be affected by the mesh size of the lead net (Bellmund et al. 1997), but the information is not conclusive. Stranded Bottlenose Dolphins have also shown
evidence of interactions with pound nets. The fishery has been defined as a Category II fishery in the 2006 List of Fisheries (71 FR162, 50 CFR Part 229).

Mid-Atlantic Menhaden Purse Seine

Between 1994 and 1997, two fleets of 9-10 vessels each operated out of two processing facilities in Reedville Beach, Virginia and one fleet of 2-6 vessels operated out of a Beaufort, North Carolina processing facility. Most of the sets occurred within three miles of shore during this time. Since 1998, only one plant has been operational in Virginia with a total fleet of 10 vessels, and the fleet in Beaufort has been reduced to two vessels. The majority of the effort occurs off North Carolina from November through January, moving northward during warmer months to southern New England. Occasional interactions with Coastal Bottlenose Dolphins have been recorded historically in this fishery. However, there is no observer coverage in this fishery, and the level of incidental interactions with marine mammals is undocumented. The Mid-Atlantic Menhaden Purse Seine Fishery has been defined as a Category II fishery in the 2006 List of Fisheries (71 FR162, 50 CFR Part 229).

Southeastern U.S. Atlantic Shrimp Trawl

The Shrimp Trawl Fishery operates from North Carolina through northern Florida virtually year-round, moving seasonally up and down the coast. A recent estimate of fishing effort based upon state dealer trip reports included approximately 23,000 shrimping trips (Epperly et al. 2002). The gear consists of relatively fine-meshed trawls typically fished in a paired fashion on either side of a fishing vessel. Effort occurs in both estuarine and nearshore coastal waters. The Shrimp Trawl Fishery has long been the focus of management actions associated with significant bycatch of both fish species and sea turtles. Observer coverage is typically very sparse and nonsystematic. Occasional interactions with Bottlenose Dolphins have been observed, and there is infrequent evidence of interactions from stranded animals. The Shrimp Trawl fishery has been defined as a Category III fishery in the 2006 List of Fisheries (71 FR162, 50 CFR Part 229).

III. Historical Fishery Descriptions

Atlantic Foreign Mackerel

Prior to 1977, there was no documentation of marine mammal bycatch in DWF activities off the Northeast coast of the U.S. With implementation of the Magnuson Fisheries Conservation and Management Act (MFCMA) in that year, an Observer Program was established which recorded fishery data and information on incidental bycatch of marine mammals. DWF effort in the U.S. Atlantic Exclusive Economic Zone (EEZ) under MFCMA had been directed primarily towards Atlantic Mackerel and Squid. From 1977 through 1982, an average mean of 120 different foreign vessels per year (range 102-161) operated within the U.S. Atlantic EEZ. In 1982, there were 112 different foreign vessels; 16%, or 18 , were Japanese Tuna longline vessels operating along the U.S. east coast. This was the first year that the Northeast Regional Observer Program assumed responsibility for observer coverage of the longline vessels. Between 1983 and 1991, the numbers of foreign vessels operating within the U.S. Atlantic EEZ each year were $67,52,62,33,27,26,14,13$, and 9 respectively. Between 1983 and 1988, the numbers of DWF vessels included 3, 5, 7, 6, 8, and 8 respectively, Japanese longline vessels. Observer coverage on DWF vessels was $25-35 \%$ during 1977-1982, and increased to $58 \%, 86 \%, 95 \%$ and 98%, respectively, in 1983-1986. One hundred percent observer coverage was maintained during 1987-1991. Foreign fishing operations for Squid ceased at the end of the 1986 fishing season and for Mackerel at the end of the 1991 season. Documented interactions with white sided dolphins were reported in this fishery.

Pelagic Drift Gillnet

In 1996 and 1997, NMFS issued management regulations which prohibited the operation of this fishery in 1997. The fishery operated during 1998. Then, in January 1999 NMFS issued a Final Rule to prohibit the use of drift net gear in the North Atlantic Swordfish Fishery (50 CFR Part 630). In 1986, NMFS established a mandatory selfreported fisheries information system for Large Pelagic Fisheries. Data files are maintained at the SEFSC. The estimated total number of hauls in the Atlantic Pelagic Drift Gillnet Fishery increased from 714 in 1989 to 1,144 in 1990; thereafter, with the introduction of quotas, effort was severely reduced. The estimated number of hauls from 1991 to 1996 was $233,243,232,197,164$, and 149 respectively. Fifty-nine different vessels participated in this fishery at one time or another between 1989 and 1993. In 1994 to 1998 there were $11,12,10,0$, and 11 vessels, respectively, in the fishery. Observer coverage, expressed as percent of sets observed, was 8% in $1989,6 \%$ in 1990, 20% in $1991,40 \%$ in $1992,42 \%$ in $1993,87 \%$ in $1994,99 \%$ in $1995,64 \%$ in 1996 , no fishery in 1997 , and 99%
coverage during 1998. Observer coverage dropped during 1996 because some vessels were deemed too small or unsafe by the contractor that provided observer coverage to NMFS. Fishing effort was concentrated along the southern edge of Georges Bank and off Cape Hatteras, North Carolina. Examination of the species composition of the catch and locations of the fishery throughout the year suggest that the Drift Gillnet Fishery was stratified into two strata: a southern, or winter, stratum and a northern, or summer, stratum. Documented interactions with North Atlantic right whales, humpback whales, sperm whales, pilot whale spp., Mesoplodon spp., rissos dolphins, common dolphins, striped dolphins and white sided dolphins were reported in this fishery.

Atlantic Tuna Purse Seine

The Tuna Purse Seine Fishery occurring between Cape Cod, Massachusetts and Cape Hatteras, North Carolina is directed at small and medium Bluefin and Skipjack Tuna for the canning industry, while the fishery north of Cape Cod, Massachusetts is directed at large medium and giant Bluefin Tuna These two fisheries are entirely separate from other Atlantic Tuna Purse Seine Fisheries. Spotter aircraft are used to locate fish schools. The official start date, set by regulation, is August 15. Individual Vessel Quotas (IVQs) and a limited access system prevent a derby fishery situation. Catch rates for large medium and giant Tuna are high and consequently, the season usually only lasts a few weeks. The 1996 regulations allocated 250 MT (5 IVQs) with a minimum of 90% giants and 10% large mediums.

Limited observer data is available for the Atlantic Tuna Purse Seine Fishery. Out of 45 total trips made in 1996, 43 trips (95.6%) were observed. Forty-four sets were made on the 43 observed trips and all sets were observed. A total of 136 days were covered. No trips were observed during 1997 through 1999. Two trips (seven hauls) were observed in October 2000 in the Great South Channel Region. Four trips were observed in September 2001. No marine mammals were observed taken during these trips. Documented interactions with pilot whale spp. were reported in this fishery.

Atlantic Tuna Pelagic Pair Trawl

The Pelagic Pair Trawl Fishery operated as an experimental fishery from 1991 to 1995, with an estimated 171 hauls in 1991, 536 in 1992, 586 in 1993, 407 in 1994, and 440 in 1995. This fishery ceased operations in 1996 when NMFS rejected a petition to consider pair trawl gear as an authorized gear type in the Atlantic Tuna Fishery. The fishery operated from August to November in 1991, from June to November in 1992, from June to October in 1993 (Northridge 1996), and from mid-summer to December in 1994 and 1995. Sea sampling began in October of 1992 (Gerrior et al. 1994) where 48 sets (9% of the total) were sampled. In 1993, 102 hauls (17% of the total) were sampled. In 1994 and $1995,52 \%$ (212) and 55% (238), respectively, of the sets were observed. Nineteen vessels have operated in this fishery. The fishery operated in the area between $35^{\circ} \mathrm{N}$ to $41^{\circ} \mathrm{N}$ and $69^{\circ} \mathrm{W}$ to $72^{\circ} \mathrm{W}$. Approximately 50% of the total effort was within a one degree square at $39^{\circ} \mathrm{N}, 72^{\circ} \mathrm{W}$, around Hudson Canyon, from 1991 to 1993. Examination of the 1991-1993 locations and species composition of the bycatch, showed little seasonal change for the six months of operation and did not warrant any seasonal or areal stratification of this fishery (Northridge 1996). During the 1994 and 1995 Experimental Pelagic Pair Trawl Fishing Seasons, fishing gear experiments were conducted to collect data on environmental parameters, gear behavior, and gear handling practices to evaluate factors affecting catch and bycatch (Goudey 1995, 1996), but the results were inconclusive. Documented interaction with pilot whale spp., rissos dolphin and common dolphins were reported in this fishery.

Part B. Description of U.S. Gulf of Mexico Fisheries

I. Data Sources

Items 1 and 2 describe sources of marine mammal mortality, serious injury or entanglement data, and item 3 describes the source of commercial fishing effort data used to generate maps depicting the location and amount of fishing effort and the numbers of active permit holders. In general, commercial fisheries in the Gulf of Mexico have had little directed observer coverage and the level of fishing effort for most fisheries that may interact with marine mammals is either not reported or highly uncertain. With the exception of the Large Pelagics Longline Fishery, no incidental take estimates are possible for Gulf of Mexico commercial fisheries.

1. Southeast Region Fishery Observer Programs

Two fishery observer programs are managed by the SEFSC that observe commercial fishery activity in the U.S. Gulf of Mexico. The Pelagic Longline Observer Program (POP) administers a mandatory observer program for the U.S. Atlantic Large Pelagics Longline Fishery. The program has been in place since 1992, and randomly allocates observer effort by eleven geographic fishing areas proportional to total reported effort in each area and quarter.

Observer coverage levels are mandated under the Highly Migratory Species FMP (HMS FMP, 50 CFR Part 635). The second is the Southeastern Shrimp Otter Trawl Fishery Observer Program. This is a voluntary program administered by SEFSC in cooperation with the Gulf and South Atlantic Fisheries Foundation. The program is funding and project dependent, and therefore observer coverage is not necessarily randomly allocated across the fishery. The total level of observer coverage for this program is $\ll 1 \%$ of the total fishery effort. In each Observer Program the observers record information on the total target species catch, the number and type of interactions with protected species including both marine mammals and sea turtles, and biological information on species caught.

2. Regional Marine Mammal Stranding Networks

The Southeast Regional Stranding Network is a component of the Marine Mammal Health and Stranding Response Program (MMHSRP). The goals of the MMHSRP are to facilitate collection and dissemination of data, assess health trends in marine mammals, correlate health with other biological and environmental parameters, and coordinate effective responses to unusual mortality events (Becker et al. 1994). The Southeast Region Strandings Program is responsible for data collection and stranding response coordination along the U.S. Gulf of Mexico coast from Florida through Texas. Prior to 1997, stranding and entanglement data were maintained by the New England Aquarium and the National Museum of Natural History, Washington, D.C. Volunteer participants, acting under a letter of agreement with NOAA Fisheries, collect data on stranded animals that include: species; event date and location; details of the event including evidence of human interactions; determinations of the cause of death; animal disposition; morphology; and biological samples. Collected data are reported to the appropriate Regional Stranding Network Coordinator and are maintained in regional and national databases.

3. Southeast Region Fisheries Logbook System

The FLS is maintained at the SEFSC and manages data submitted from mandatory fishing vessel logbook programs under several FMPs. In 1986, a comprehensive logbook program was initiated for the Large Pelagics Longline Fisheries, and this reporting became mandatory in 1992. Logbook reporting has also been initiated since the early 1990s for a number of other fisheries including: Reef Fish Fisheries; Snapper-Grouper Complex Fisheries; federally managed Shark Fisheries; and King and Spanish Mackerel Fisheries. In each case, vessel captains are required to submit information on the fishing location, the amount and type of fishing gear used, the total amount of fishing effort (e.g., gear sets) during a given trip, the total weight and composition of the catch, and the disposition of the catch during each unit of effort (e.g., kept, released alive, released dead). FLS data are used to estimate the total amount of fishing effort in the fishery and thus expand bycatch rate estimates from observer data to estimates of the total incidental take of marine mammal species in a given fishery.

II. Gulf of Mexico Commercial Fisheries

Atlantic Ocean, Caribbean, Gulf of Mexico Large Pelagics Longline

Target Species: Large pelagic fish species including: Swordfish, Yellowfin Tuna, Bigeye Tuna, Bluefin Tuna, Albacore Tuna, Dolphin Fish, Shortfin Mako Shark, and a variety of other shark species.

Number of Permit Holders: < 200
Number of Active Permit Holders: The number of active fishing vessels in the pelagic longline fishery has been declining since a peak number of 361 vessels reporting longline effort during 1995. Over the period between 1995 and 1999, the mean number of vessels reporting effort to the FLS for the entire Atlantic including the Gulf of Mexico was 292. This declined to an annual average of 158 for the period between 2000 and 2004. For the Gulf of Mexico, an average of 74 vessels reported fishing effort each year from 2000-2004. The total number of fishing vessels reporting effort in the Gulf of Mexico during 2004 was 69 , though some of these vessels likely also reported fishing effort in other areas.

Total Effort: The total fishing effort in the Gulf of Mexico component of the Pelagic Longline Fishery has increased since 1992 and has ranged between 2.5 and 4.1 million hooks. The mean effort reported to the FLS between 1995 and 1999 was 4,499 sets and 3.25 million hooks. During 2004, the total reported fishing effort in the Gulf of Mexico component of the fishery was 5,410 sets and 4.08 million hooks (Garrison 2005).

Temporal and Spatial Distribution: Fishing effort occurs year round and operates in waters both inside and outside the U.S. EEZ throughout Atlantic, Caribbean and Gulf of Mexico waters. The Gulf of Mexico component of the fleet operates both in continental shelf and deep continental slope waters from Florida to Texas.

Gear Characteristics: The pelagic longline gear consists of a mainline of $>700-\mathrm{lb}$ test monofilament typically ranging between 10 and 45 miles long. At regular intervals along the mainline, bullet-shaped floats are suspended and long sections of the gear are marked by "high-flyers" or radio beacons. Suspended from the mainline are long gangion lines of 200 to $400-\mathrm{lb}$ test monofilament that are typically 100 to 200 feet in length. Fishing depths are most typically between 40 and 120 feet. Hooks of various sizes are attached by a steel swivel leader. Hooks may be of the straight shank " J " type hook or circle shaped hooks and the hook end may be offset from the shank. A variety of bait types are used depending on the target species, but most typically include whole, frozen squid or fish baits such as sardine or mackerel. A combination of different hook and bait types may be used on a single set. Longline sets targeting tunas are typically set at dawn and soak throughout the day with recovery near dusk. Those sets targeting swordfish are more typically night sets. The total amount of time the gear remains in the water including set, soak, and haul times is typically 10-14 hours. As a result of a recent Biological Opinion on interactions between Atlantic longline gear targeting Tunas and Swordfish and endangered sea turtles, a comprehensive change in the fishing gear occurred in the longline fishery. After August 2004, only circle shaped hooks of $16 / 0$ or $18 / 0$ size can be used throughout the fishery.

Management and Regulations: The Large Pelagics Longline Fishery is listed as a Category I fishery under the MMPA due to frequently observed interactions with marine mammals (68 FR 41725, 50 CFR Part 229). The directed fishery is managed under the FMP for Atlantic Tunas, Swordfish, and Sharks (Highly Migratory Species FMP, 50 CFR Part 635). The fishery has also been the focus of management actions relating to bycatch of billfish. Amendment One to the Atlantic Billfish FMP also pertains to the Large Pelagics Longline Fishery and is consistent with the regulations in the Highly Migratory Species FMP. This fishery is also regulated under the Endangered Species Act resulting from frequent interactions with endangered sea turtle species including both Loggerhead and Leatherback Turtles in the Atlantic and Gulf of Mexico. A Biological Opinion issued by the NMFS Southeast Regional Office in June 2004 mandated the use of circle hooks throughout the fishery, mandated the use of dehooking and disentanglement gear by fishermen to reduce the mortality of captured sea turtles, and mandated increased reporting and monitoring of the fishery.

Observer Coverage: The Pelagic Longline Observer Program (POP) is a mandatory observer program managed by the SEFSC that has been in place since 1992. Observers are placed upon randomly selected vessels with total observer effort allocated on a geographic basis proportional to the total amount of fishing effort reported by the fleet. The target observer coverage level was 5% of reported sets through 2001 , and was elevated to 8% of total sets in 2002. Between 2000 and 2004, observer coverage of reported sets in the Gulf of Mexico component of the fishery was $4 \%, 4 \%, 3 \%, 5 \%$, and 5%. Observer coverage in the Gulf of Mexico during 2004 was 4.9% of reported sets; however, coverage was as high as 6.6% in some seasons (Garrison 2005). Observed longline sets and marine mammal interactions in the Gulf of Mexico are shown for 2000-2004 in Figures 34 through 38. Only one marine mammal interaction, with an unidentified dolphin, has been observed during this period.

Comments: This fishery has been the subject of numerous management actions over the last four years associated with bycatch of both billfish and sea turtles. These changes have resulted in a reduction of overall fishery effort and in the behaviors of the fishery. The most significant change was the closure of the Northeast Distant Water Area off the Canadian Grand Banks and near the Azores as of June 1, 2001 (50 CFR Part 635). In the Gulf of Mexico, a year round closure was implemented in two areas in DeSoto Canyon (NMFS, 2003). Additionally, a ban on the use of live fish bait was initiated in 1999 due to concerns over billfish bycatch. The June 2004 has resulted in a significant change in the gear and fishing practices of this fishery that will likely impact marine mammal bycatch. The majority of interactions with marine mammals in this fishery in the Gulf of Mexico have been with Risso's Dolphin (Garrison 2003a); however, there have been very few interactions with marine mammals observed in the last five years.

Protected Species Interactions: Gulf of Mexico stocks of Risso's Dolphin, Pantropical Spotted Dolphin, Atlantic Spotted Dolphin, and Offshore Bottlenose Dolphin.

Gulf of Mexico Shrimp Trawl

The Shrimp Trawl Fishery operates along the Gulf coast of the U.S. virtually year round. Hundreds of thousands of fishing trips are reported annually in the Gulf of Mexico with effort occurring in estuarine, nearshore coastal, and offshore continental shelf waters (Epperly et al. 2002). The gear consists of relatively fine-meshed trawls typically fished in a paired fashion on either side of a fishing vessel. Observer coverage is typically very sparse and is not systematic. The Shrimp Trawl Fishery has long been the focus of management actions associated with significant bycatch of both fish species and sea turtles. Occasional interactions with Bottlenose Dolphins have been observed in the Atlantic component of this fishery, and there is infrequent evidence of interactions from stranded animals. The Shrimp Trawl Fishery is listed as a Category III fishery in the 2006 List of Fisheries (71 FR 162, 50 CFR Part 229).

Gulf of Mexico Blue Crab Trap/Pot Fisheries

The Blue Crab Trap/Pot Fishery is broadly distributed in estuarine and nearshore coastal waters along the Gulf coast. The fishery is estimated to have approximately 4,000 participants deploying gear on a year-round basis (68 FR 41725). Pots are baited with fish or poultry and are typically set in rows in shallow water. Pot position is marked by either a floating or sinking buoy line attached to a surface buoy. In recent years, reports of strandings in the Atlantic with evidence of interactions between Bottlenose Dolphins and both recreational and commercial Crab Pot Fisheries have been increasing in the Southeast region (McFee and Brooks 1998). Interactions with crab pots appear to generally involve a Dolphin becoming wrapped in the buoy line. The total number of these interactions and associated mortality rates has not been documented. The fishery has been defined as a Category III fishery in the 2006 List of Fisheries (71 FR 162, 50 CFR Part 229).

Gulf of Mexico Menhaden Fishery

This fishery operates in coastal waters along the Gulf coast, with the majority of fishing effort concentrated off Louisiana. Fishing effort occurs both in bays, sounds, and in nearshore coastal waters. Between 1994 and 1998, fishery effort averaged approximately 23,000 sets annually (Smith et al. 2002). No observer data is available for the Gulf of Mexico Menhaden Fishery; however, interactions with Coastal Bottlenose Dolphins have been reported historically in Louisiana and for the similar Atlantic Menhaden Fishery. The fishery has been defined as a Category II fishery in the 2006 List of Fisheries (71 FR 162, 50 CFR Part 229).

Gulf of Mexico Gillnet Fisheries

Gillnets are not used in Texas, and large gillnets were excluded from Florida state waters after July 1995, but fixed and runaround gillnets are currently in use in Louisiana, Mississippi, and Alabama. These fisheries, for the most part, operate year around. They are state-controlled and licensed, and vary widely in intensity and target species. No marine mammal mortalities associated with Gillnet Fisheries have been reported in these states, but stranding data suggest that marine mammal interactions with gillnets do occur, causing mortality and serious injury. There are no effort or observer data available for these fisheries. The Gulf of Mexico Gillnet Fisheries are listed as Category II fisheries in the 2006 List of Fisheries (71 FR 162, 50 CFR Part 229).

Literature Cited

Becker P.R., Wilkinson D., Lillestolen T. 1994. Marine Mammal Health and Stranding Response Program: Program Development Plan. NOAA Tech. Mem. NMFS-OPR-94-2. U.S. Dep. Of Commerce, Washington D.C. 35pp.
Bellmund, S.A., Musick, J.A., Klinger, R.C., Byles, R.A., Keinath, J.A., and Barnard, D.E. 1997. Ecology of Sea Turtles in Virginia. Final Report to National Marine Fisheries Service Northeast Region. Contract number NA80FAC-00004. Virginia Institute of Marine Science, Gloucester Point, Virginia.
Carlson, J. and I. Baremore. 2002. The directed shark gillnet fishery: Right whale season, 2002. Available from NOAA Fisheries, Southeast Fisheries Science Center, Panama City, FL. SFD Contribution PCB-02/13.
Clark, S.H. 1998. Status of Fishery Resources off the Northeastern United States for 1998. NOAA Tech. Mem. NMFS-NE-115. 160 pp .
Epperly, S.L., L.P. Garrison, T. Henwood, W. Hoggard, J. Mitchell, J. Nance, J. Poffenberger, C. Sasso, E. ScottDenton, and C. Yeung. 2002. Analysis of sea turtle bycatch in the commercial shrimp fisheries of southeast U.S. waters and the Gulf of Mexico. NOAA Tech. Mem. NMFS-SEFSC-490. 88 pp.
Garrison, L.P. 2005. Estimated Bycatch of Marine Mammals and Turtles in the U.S. Atlantic Pelagic Longline Fleet During 2004. NOAA Tech. Mem. NMFS-SEFSC-531, 57 pp.

Garrison, L.P. 2003a. Estimated Bycatch of Marine Mammals and Turtles in the U.S. Atlantic Pelagic Longline Fleet During 2001-2002. NOAA Tech. Mem. NOAA FISHERIES-SEFSC-515, 52 p.
Garrison, L.P. 2003b. Protected species interactions with the directed shark gillnet fishery off Florida and Georgia from 1999-2002. NMFS/SEFSC Internal report. Available from: Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.
Gerrior, P., A.S. Williams and D.J. Christensen. 1994. Observations of the 1992 pelagic pair trawl fishery in the Northwest Atlantic. Mar. Fish. Rev. 56(3): 24-27.
Goudy, C.A. 1995. The 1994 experimental pair trawl fishery for tuna in the Northwest Atlantic. MITSWG 95-6, Massachusetts Institute of Technology, Sea Grant, Cambridge, MA. 10 pp.
Goudy, C.A. 1996. The 1995 experimental pair trawl fishery for tuna in the Northwest Atlantic. MITSG 96-17, Massachusetts Institute of Technology, Sea Grant, Cambridge, MA. 13 pp.
McFee, W. E. and W. Brooks, Jr. 1998. Fact finding meeting of marine mammal entanglement I in the crab pot fishery: a summary. U.S. Fish and Wildlife Service. Unpublished Report.
NMFS [National Marine Fisheries Service]. 2003. Guide for complying with the regulations for Atlantic tunas, swordfish, sharks, and billfish. September 2003. http://www.nmfs.noaa.gov/sfa/hms/2003_ComplianceGuide.pdf
NMFS-OPR [National Marine Fisheries Service-Office of Protected Resources]. 2003. Marine Mammal Authorization Program [http://www.nmfs.noaa.gov/prot_res/PR2/Fisheries_Interactions/MMAP.html]; accessed on 11/05/2003.
NMFS-NEFSC [National Marine Fisheries Service-Northeast Fisheries Science Center]. 2003. Fishery Sampling Branch [http://www.nefsc.noaa.gov/nefsc/directorate/divisions/femad/fishsamp.html]; accessed on 11/05/2003.
NMFS [National Marine Fisheries Service]. 2005. Essential fish habitat environmental impact statement for Atlantic Herring. National Marine Fisheries Service, Gloucester, MA.
Northridge, S. 1996. Estimation of cetacean mortality in the U.S. Atlantic swordfish and tuna drift gillnet and pair trawl fisheries. Final report, Contract No. 40ENNF500160, to the NMFS, Northeast Fisheries Science Center, 166 Water Street, Woods Hole, MA 02543
Smith, J.W., E.A. Hall, N.A. McNeil, and W.B. O'Bier. 2002. The distribution of purse-seine sets and catches in the Gulf Menhaden fishery in the Northern Gulf of Mexico, 1994-1998. Gulf of Mexico Science 20: 12-24.
Steve, C., J. Gearhart, D. Borggaard, L. Sabo and A.A. Hohn. 2001. Characterization of North Carolina Commercial Fisheries with Occasional Interactions with Marine Mammals. NOAA Tech. Mem. NMFS-SEFSC-458. 60 pp.
Wigley, S., Terceiro M., Delong A., Sosebee K. 1998. Proration of 1994-96 USA Commercial Landings of Atlantic Cod, Haddock and Yellowtail Flounder to Unit Stock Areas. NOAA, NMFS, NEFSC [Northeast Fisheries Science Center] Ref. Doc. 98-02, Woods Hole, Massachusetts

Appendix III: Fishery Descriptions - List of Figures

Figure 1. 2000 Northeast sink gillnet observed hauls (A) and incidental takes (B).
Figure 2. 2001 Northeast sink gillnet observed hauls (A) and incidental takes (B).
Figure 3. 2002 Northeast sink gillnet observed hauls (A) and incidental takes (B).
Figure 4. 2003 Northeast sink gillnet observed hauls (A) and incidental takes (B).
Figure 5. 2004 Northeast sink gillnet observed hauls (A) and incidental takes (B).
Figure 6. 2000 mid-Atlantic coastal gillnet observed hauls (A) and incidental takes (B).
Figure 7. 2001 mid-Atlantic coastal gillnet observed hauls (A) and incidental takes (B).
Figure 8. 2002 mid-Atlantic coastal gillnet observed hauls (A) and incidental takes (B). Figure 9. 2003 mid-Atlantic coastal gillnet observed hauls (A) and incidental takes (B).
Figure 10. 2004 mid-Atlantic coastal gillnet observed hauls (A) and incidental takes (B).
Figure 11. 2000 mid-Atlantic bottom trawl observed tows (A) and incidental takes (B).
Figure 12. 2001 mid-Atlantic bottom trawl observed tows (A) and incidental takes (B).
Figure 13. 2002 mid-Atlantic bottom trawl observed tows (A) and incidental takes (B).
Figure 14. 2003 mid-Atlantic bottom trawl observed tows (A) and incidental takes (B).
Figure 15. 2004 mid-Atlantic bottom trawl observed tows (A) and incidental takes (B).
Figure 16. 2000 Northeast bottom trawl observed tows (A) and incidental takes (B).
Figure 17. 2001 Northeast bottom trawl observed tows (A) and incidental takes (B).
Figure 18. 2002 Northeast bottom trawl observed tows (A) and incidental takes (B).
Figure 19. 2003 Northeast bottom trawl observed tows (A) and incidental takes (B).
Figure 20. 2004 Northeast bottom trawl observed tows (A) and incidental takes (B).
Figure 21. 2000 New Eng. mid-water trawl observed tows (A) and incidental takes (B).
Figure 22. 2001 New Eng. mid-water trawl observed tows (A) and incidental takes (B).
Figure 23. 2002 New Eng. mid-water trawl observed tows (A) and incidental takes (B).
Figure 24. 2003 New Eng. mid-water trawl observed tows (A) and incidental takes (B).
Figure 25. 2004 New Eng. mid-water trawl observed tows (A) and incidental takes (B).
Figure 26. 2000 mid-Atl. mid-water trawl observed tows (A) and incidental takes (B).
Figure 27. 2001 mid-Atl. mid-water trawl observed tows (A) and incidental takes (B).
Figure 28. 2002 mid-Atl. mid-water trawl observed tows (A) and incidental takes (B).
Figure 29. 2003 mid-Atl. mid-water trawl observed tows (A) and incidental takes (B).
Figure 30. 2004 mid-Atl. mid-water trawl observed tows (A) and incidental takes (B).
Figure 31. 2000-02 Atl. herring purse seine observed hauls (A) and incidental takes (B).
Figure 32. 2003 Atlantic herring purse seine observed hauls (A) and incidental takes (B).
Figure 33. 2004 Atlantic herring purse seine observed hauls (A) and incidental takes (B).
Figure 34. 2000 Observed sets and marine mammal interactions in the pelagic longline fishery U.S. Atlantic coast.

Figure 35. 2001 Observed sets and marine mammal interactions in the pelagic longline fishery U.S. Atlantic coast.

Figure 36. 2002 Observed sets and marine mammal interactions in the pelagic longline fishery U.S. Atlantic coast.

Figure 37. 2003 Observed sets and marine mammal interactions in the pelagic longline fishery U.S. Atlantic coast.

Figure 38. 2004 Observed sets and marine mammal interactions in the pelagic longline fishery U.S. Atlantic coast.

Figure 39. 2000 Observed sets and marine mammal interactions in the Southeast shark drift gillnet fishery.
Figure 40. 2001 Observed sets and marine mammal interactions in the Southeast shark drift gillnet fishery.
Figure 41. 2002 Observed sets and marine mammal interactions in the Southeast shark drift gillnet fishery.
Figure 42. 2003 Observed sets and marine mammal interactions in the Southeast shark drift gillnet fishery.
Figure 43. 2004 Observed sets and marine mammal interactions in the Southeast shark drift gillnet fishery.

Figure 44. 2000 Observed sets and marine mammal interactions in the pelagic longline fishery Gulf of Mexico.
Figure 45. 2001 Observed sets and marine mammal interactions in the pelagic longline fishery Gulf of Mexico.
Figure 46. 2002 Observed sets and marine mammal interactions in the pelagic longline fishery Gulf of Mexico.
Figure 47. 2003 Observed sets and marine mammal interactions in the pelagic longline fishery Gulf of Mexico.
Figure 48. 2004 Observed sets and marine mammal interactions in the pelagic longline fishery Gulf of Mexico.

Figure 4. 2003 Northeast sink gillnet observed hauls (A) and observed incidental takes (B)

Figure 6. 2000 mid-Atlantic gillnet observed hauls (A)

Figure 7. 2001 mid-Atlantic gillnet observed hauls (A)

Figure 8. 2002 mid-Atlantic gillnet observed hauls (A)

Figure 9. 2003 mid-Atlantic gillnet observed hauls (A)

Figure 10. 2004 mid-Atlantic gillnet observed hauls (A)

Figure 11. 2000 mid-Atlantic bottom trawl observed tows (A)

Figure 12. 2001 mid-Atlantic bottom trawl observed tows (A) and observed incidental takes (B)

- mixed finfishhinvertebrates
\square multi-species groundfish
Δ squid/mackerel/butterish
* summer flounder//scup/black sea bass - common dolphin
Restricted Gear Ar
$\begin{array}{ll}\square & \text { Restricted Gear Area } 1 \\ \square & \text { Restricted Gear Area } 2\end{array}$ Restricted Gear Area 3 Restricted Gear Area 4

E Northern Gear Restricted Area Southern Gear Restricted Area

Figure 13. 2002 mid-Atlantic bottom trawl observed tows (A)

Figure 15. 2004 mid-Atlantic bottom trawl observed tows (A) Oed incidental takes (B)
Observed tows

- mixed finfish/invertebrates
\square multi-species groundfish
Δ squid/mackerel/butterfish
\& summer flounder/scup/black sea bass
common dolphin

$$
\begin{array}{|l}
\square \\
\text { Restricted Gear Area } 1 \\
\square \\
\text { Restricted Gear Area? }
\end{array}
$$

$$
\square \text { Restricted Gear Area } 2
$$

$$
\text { Restricted Gear Area } 3
$$

Southern Gear Restricted Area

Figure 17. 2001 Northeast bottom trawl observed tows (A)

Figure 19. 2003 Northeast bottom trawl observed tows (A)

Figure 20. 2004 Northeast bottom trawl observed tows (A)
and observed incidental takes (B) Observed tows

- mixed finfish/invertebrates
\square multi-species groundfish
\triangle squid/mackerel/butterish
it summer flounder//scup/black sea bass
\checkmark common dolphin
§ long-finned pilot whale
- unknown pilot whale
Thed dolphin Rolling Closure Area 2 $\square \underbrace{\text { Rolling Closure Area } 5}_{\text {Rolling Closure Area } 4}$ Roling Closure Area 1 Closed Area 1 $\begin{aligned} & 2.20 \\ & 2 \\ & 2 \\ & 2\end{aligned}$

Figure 23. 2002 New England mid-water trawl observed tows (A)

Figure 30. 2004 mid-Atlantic mid-water trawl observed tows (A) $\begin{array}{ll}\text { ntal takes (B) } \\ \text { Observed tows } \\ \circ & \text { Atlantic herring } \\ \square & \text { Atlantic mackerel } \\ \triangle & \text { mixed finfish } \\ \bullet & \text { unknown dolphin } \\ + & \text { white-sided dolphin }\end{array}$

Figure 33. 2004 Atlantic herring purse seine observed hauls (A)
and observed incidental takes (B)

Figure 34. Observed sets and marine mammal interactions in the Pelagic longline fishery along the U.S. Atlantic coast during 2000. The boundaries of the Florida East Coast (FEC), South Atlantic Bight (SAB), Mid-Atlantic Bight (MAB), Northeast Coastal (NEC), and Sargasso Sea (SAR) fishing areas are shown.

Figure 35. Observed sets and marine mammal interactions in the Pelagic longline fishery along the U.S. Atlantic coast during 2001. The boundaries of the Florida East Coast (FEC), South Atlantic Bight (SAB), Mid-Atlantic Bight (MAB), Northeast Coastal (NEC), and Sargasso Sea (SAR) fishing areas are shown. Seasonal closed areas instituted in 2001 under the HMS FMP are shown as hatched areas.

Figure 36. Observed sets and marine mammal interactions in the Pelagic longline fishery along the U.S. Atlantic coast during 2002. The boundaries of the Florida East Coast (FEC), South Atlantic Bight (SAB), Mid-Atlantic Bight (MAB), Northeast Coastal (NEC), and Sargasso Sea (SAR) fishing areas are shown. Seasonal closed areas instituted in 2001 under the HMS FMP are shown as hatched areas.

Figure 37. Observed sets and marine mammal interactions in the Pelagic longline fishery along the U.S. Atlantic coast during 2003. The boundaries of the Florida East Coast (FEC), South Atlantic Bight (SAB), Mid-Atlantic Bight (MAB), Northeast Coastal (NEC), and Sargasso Sea (SAR) fishing areas are shown. Seasonal closed areas instituted in 2001 under the HMS FMP are shown as hatched areas.

Figure 38. Observed sets and marine mammal interactions in the Pelagic longline fishery along the U.S. Atlantic coast during 2004. The boundaries of the Florida East Coast (FEC), South Atlantic Bight (SAB), Mid-Atlantic Bight (MAB), Northeast Coastal (NEC), and Sargasso Sea (SAR) fishing areas are shown. Seasonal closed areas instituted in 2001 under the HMS FMP are shown as hatched areas.

Figure 39. Observed sets and marine mammal interactions in the Southeast Shark Drift Gillnet fishery during 2000. The locations of observed "strike" and "drift" sets are indicated.

Figure 40. Observed sets and marine mammal interactions in the Southeast Shark Drift Gillnet fishery during 2001. The locations of observed "strike" and "drift" sets are indicated.

Figure 41. Observed sets and marine mammal interactions in the Southeast Shark Drift Gillnet fishery during 2002. The locations of observed "strike" and "drift" sets are indicated.

Figure 42. Observed sets and marine mammal interactions in the Southeast Shark Drift Gillnet fishery during 2003. The locations of observed "strike" and "drift" sets are indicated.

Figure 43. Observed sets in the Southeast Shark Drift Gillnet fishery during 2004. The locations of observed "strike" and "drift" sets are indicated. No marine mammal interactions were observed.

Figure 44. Observed sets in the Pelagic longline fishery in the Gulf of Mexico during 2000. No marine mammal interactions were observed.

Figure 45. Observed sets in the Pelagic longline fishery in the Gulf of Mexico during 2001. No marine mammal interactions were observed. Closed areas in the DeSoto canyon instituted in 2001 are shown as hatched areas.

Figure 46. Observed sets in the Pelagic longline fishery in the Gulf of Mexico during 2002. No marine mammal interactions were observed. Closed areas in the DeSoto canyon instituted in 2001 are shown as hatched areas.

Figure 47. Observed sets and marine mammal interactions in the Pelagic longline fishery in the Gulf of Mexico during 2003. Closed areas in the DeSoto canyon instituted in 2001 are shown as hatched areas.

Figure 48. Observed sets in the Pelagic longline fishery in the Gulf of Mexico during 2004. No marine mammal interactions were observed. Closed areas in the DeSoto canyon instituted in 2001 are shown as hatched areas.

APPENDIX IV: Marine Mammal stock assessment reports not updated in 2006.

December 2005

SEI WHALE (Balaenoptera borealis): Nova Scotia Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

Indications are that, at least during the feeding season, a major portion of the Northwest Atlantic sei whale population is centered in northerly waters, perhaps on the Scotian Shelf (Mitchell and Chapman 1977). The southern portion of the species' range during spring and summer includes the northern portions of the U.S. Atlantic Exclusive Economic Zone (EEZ) - the Gulf of Maine and Georges Bank. The period of greatest abundance there is in spring, with sightings concentrated along the eastern margin of Georges Bank and into the Northeast Channel area, and along the southwestern edge of Georges Bank in the area of Hydrographer Canyon (CETAP 1982). NMFS aerial surveys in 1999, 2000 and 2001 found concentrations of sei and right whales along the Northern Edge of Georges Bank in the spring. The sei whale is often found in the deeper waters characteristic of the continental shelf edge region (Hain et al. 1985), and NMFS aerial surveys found substantial numbers of sei whales in this region, south of Nantucket, in the spring of 2001. Similarly, Mitchell (1975) reported that sei whales off Nova Scotia were often distributed closer to the $2,000 \mathrm{~m}$ depth contour than were fin whales.

This general offshore pattern of sei whale distribution is disrupted during episodic incursions into more shallow and inshore waters. Although known to take piscine prey, sei whales (like right whales) are largely planktivorous, feeding primarily on euphausiids and copepods. In years of reduced predation on copepods by other predators, and thus greater abundance of this prey source, sei whales are reported in more inshore locations, such as the Great South Channel (in 1987 and 1989) and Stellwagen Bank (in 1986) areas (R.D. Kenney, pers. comm.; Payne et al. 1990). An influx of sei whales into the southern Gulf of Maine occurred in the summer of 1986 (Schilling et al. 1993). Such episodes, often punctuated by years or even decades of absence from an area, have been reported for sei whales from various places worldwide.

Based on analysis of records from the Blandford, Nova Scotia, whaling station, where 825 sei whales were taken between 1965 and 1972, Mitchell (1975) described two "runs" of sei whales, in June-July and in September-October. He speculated that the sei whale population migrates from south of Cape Cod and along the coast of eastern Canada in June and July, and returns on a southward migration again in September and October; however, such a migration remains unverified.

Mitchell and Chapman (1977) reviewed the sparse evidence on stock identity of northwest Atlantic sei whales, and suggested two stocks - a Nova Scotia stock and a Labrador Sea stock. The range of the Nova Scotia stock includes the continental shelf waters of the northeastern U.S., and extends northeastward to south of Newfoundland. The Scientific Committee of the IWC, while adopting these general boundaries, noted that the stock identity of sei whales (and indeed all North Atlantic whales) was a major research problem (Donovan 1991). In the absence of evidence to the contrary, the proposed IWC stock definition is provisionally adopted, and the "Nova Scotia stock" is used here as the management unit for this stock assessment. The IWC boundaries for this stock are from the U.S. east coast to Cape Breton, Nova Scotia, thence east to longitude $42^{\circ} \mathrm{W}$.

POPULATION SIZE

The total number of sei whales in the U.S. Atlantic EEZ is unknown. However, two abundance estimates are available for portions of the sei whale habitat: from Nova Scotia during the 1970s, and in the U.S. Atlantic EEZ during the springs of 1979-1981.

Mitchell and Chapman (1977), based on tag-recapture data, estimated the Nova Scotia, Canada, stock to contain between 1,393 and 2,248 sei whales. Based on census data, they estimated a minimum Nova Scotian population of 870 sei whales.

An abundance of 280 sei whales was estimated from an aerial survey program conducted from 1978 to 1982 on the continental shelf and shelf edge waters between Cape Hatteras, North Carolina and Nova Scotia (CETAP 1982). The estimate is based on data collected during the spring when the greatest proportion of the population off the northeast U.S. coast appeared in the study area. This estimate does not include a correction for dive-time or $g(0)$, the probability of detecting an animal group on the track line. The CETAP report suggested, however, that correcting the estimated abundance for dive time would increase the estimate to approximately the same as Mitchell and Chapman's (1977) tag-
recapture estimate. This estimate is more than 20 years out of date and thus almost certainly does not reflect the current true population size; in addition, the estimate has a high degree of uncertainty (i.e., it has a large CV), and it was estimated just after cessation of extensive foreign fishing operations in the region. There are no recent abundance estimates for the sei whale.

Minimum Population Estimate

The minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the log-normally distributed best abundance estimate. This is equivalent to the 20th percentile of the log-normal distribution as specified by Wade and Angliss (1997). A current minimum population size cannot be estimated because there are no current abundance estimates (within the last 10 years).

Current Population Trend

There are insufficient data to determine the population trends for this species.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Current and maximum net productivity rates are unknown for this stock. For purposes of this assessment, the maximum net productivity rate was assumed to be 0.04 . This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive life history (Barlow et al. 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential Biological Removal (PBR) is the product of minimum population size, one-half the maximum productivity rate, and a "recovery" factor (MMPA Sec. 3. 16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size is unknown. The maximum productivity rate is 0.04 , the default value for cetaceans. The "recovery" factor, which accounts for endangered, depleted, threatened stocks, or stocks of unknown status relative to optimum sustainable population (OSP) is assumed to be 0.10 because the sei whale is listed as endangered under the Endangered Species Act (ESA). PBR for the Nova Scotia stock of the sei whale is unknown because the minimum population size is unknown.

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

There was no reported fishery-related mortality or serious injury to sei whales in fisheries observed by NMFS during 1999-2003. A review of NMFS stranding and entanglement records from 1999 through 2003 yielded an average of 0.4 human-caused mortalities per year as a result of two ship strikes. The carcass of a 13 -meter female was recovered on May 2, 2001, in New York harbor after it slid off the bow of an arriving ship. Freshness of the carcass and hemorrhaging around the dorsal impact area indicated the strike was pre-mortem. The second record within the period was an 11-meter male discovered February 19, 2003, outside of Norfolk Naval Base in Norfolk, VA. A large gash into muscle tissue extended from behind dorsal midline on left side almost all the way around to the ventral midline on the right sides through blubber layer and into some muscle. Histopathology results supported perimortem trauma. The only other NMFS record of a human-caused sei whale mortality was from November 17, 1994, when a sei whale carcass was observed on the bow of a container ship as it docked in Boston, Massachusetts.

Fishery Information

There have been no reported entanglements or other interactions between sei whales and commercial fishing activities; therefore there are no descriptions of fisheries.

STATUS OF STOCK

The status of this stock relative to OSP in the U.S. Atlantic EEZ is unknown, but the species is listed as endangered under the ESA. There are insufficient data to determine the population trends for sei whales. The total level of humancaused mortality and serious injury is unknown, but the rarity of mortality reports for this species suggests that this level is insignificant and approaching a zero mortality and serious injury rate. This is a strategic stock because the sei whale is listed as an endangered species under the ESA. A Recovery Plan for sei whales has been written and is awaiting legal clearance.

REFERENCES

Barlow, J., S. L. Swartz, T. C. Eagle and P. R. Wade. 1995. U.S. Marine Mammal Stock Assessments: Guidelines for preparation, background, and a summary of the 1995 assessments. NOAA Tech. Memo. NMFS-OPR-6. U.S. Department of Commerce, Washington, DC. 73 pp.

CETAP. 1982. A characterization of marine mammals and turtles in the mid- and north Atlantic areas of the U.S. outer continental shelf. Cetacean and Turtle Assessment Program, University of Rhode Island. Final Report \#AA551-CT8-48 to the Bureau of Land Management, Washington, DC, 538 pp .
Donovan, G. P. 1991. A review of IWC stock boundaries. Rep. int. Whal. Commn (Special Issue) 13:39-68.
Hain, J. H. W., M. A. M. Hyman, R. D. Kenney and H. E. Winn. 1985. The role of cetaceans in the shelf-edge region of the northeastern United States. Mar. Fish. Rev. 47(1): 13-17.
Mitchell, E. 1975. Preliminary report on Nova Scotia fishery for sei whales (Balaenoptera borealis). Rep. int. Whal. Commn 25:218-225.
Mitchell, E. and D. G. Chapman. 1977. Preliminary assessment of stocks of northwest Atlantic sei whales (Balaenoptera borealis). Rep. int. Whal. Commn (Special Issue) 1:117-120.
Payne, P. M., D. N. Wiley, S. B. Young, S. Pittman, P. J. Clapham and J. W. Jossi. 1990. Recent fluctuations in the abundance of baleen whales in the southern Gulf of Maine in relation to changes in selected prey. Fish. Bull., U.S. 88:687-696.

Schilling, M. R., I. Seipt, M. T. Weinrich, S. E. Frohock, A. E. Kuhlberg and P. J. Clapham. 1993. Behavior of individually identified sei whales, Balaenoptera borealis, during an episodic influx into the southern Gulf of Maine in 1986. Fish. Bull., U.S. 90(4):749-755.
Wade, P. R. and R. P. Angliss. 1997. Guidelines for assessing marine mammal stocks: Report of the GAMMS Workshop, April 3-5, 1996, Seattle, Washington. NOAA Tech. Memo. NMFS-OPR-12. U.S. Dept. of Commerce, Washington, DC. 93 pp.

SPERM WHALE (Physeter macrocephalus): North Atlantic Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

The distribution of the sperm whale in the U.S. Exclusive Economic Zone (EEZ) occurs on the continental shelf edge, over the continental slope, and into mid-ocean regions (Figure 1). Waring et al. (1993; 2001) suggest that this offshore distribution is more commonly associated with the Gulf Stream edge and other features. However, the sperm whales that occur in the eastern U.S. Atlantic EEZ likely represent only a fraction of the total stock. The nature of linkages of the U.S. habitat with those to the south, north, and offshore is unknown. Historical whaling records compiled by Schmidly (1981) suggested an offshore distribution off the southeast U.S., over the Blake Plateau, and into deep ocean. In the southeast Caribbean, both large and small adults, as well as calves and juveniles of different sizes are reported (Watkins et al. 1985). Whether the northwestern Atlantic population is discrete from northeastern Atlantic is currently unresolved. The International Whaling Commission recognizes one stock for the North Atlantic. Based on reviews of many types of stock studies, (i.e., tagging, genetics, catch data, mark-recapture, biochemical markers, etc.) Reeves and Whitehead (1997) and Dufault et al. (1999) suggest that sperm whale populations have no clear geographic structure. Recent ocean wide genetic studies (Lyrholm and Gyllensten 1998; Lyrholm et al. 1999) indicate low genetic diversity, but strong differentiation between potential social (matrilineally related) groups. Further, the ocean-wide findings, combined with observations from other studies, indicate stable social groups, site fidelity, and latitudinal range limitations in groups of females and juveniles (Whitehead 2003). In contrast, males migrate to polar regions to feed and return to more tropical waters to breed. There exists one tag return of a male tagged off Browns Bank (Nova Scotia) in 1966 and returned from Spain in 1973 (Mitchell 1975). Another male taken off northern Denmark in August 1981 had been wounded the previous summer by whalers off the Azores (Reeves and Whitehead 1997). In the U.S. Atlantic EEZ waters, there appears to be a distinct seasonal cycle (CETAP 1982; Scott and Sadove 1997). In winter, sperm whales are concentrated east and northeast of Cape Hatteras. In spring, the center of distribution shifts northward to east of Delaware and Virginia, and is widespread throughout the central portion of the MidAtlantic bight and the southern portion of Georges Bank. In summer, the distribution is similar but now also includes the area east and north of Georges Bank and into the Northeast Channel region, as well as the continental shelf (inshore of the 100 m isobath) south of New England. In the fall, sperm whale occurrence south of New England on the continental shelf is at its highest level, and there remains a continental shelf edge occurrence in the Mid-Atlantic bight. Similar inshore ($<200 \mathrm{~m}$) observations have been made on the southwestern (Kenney, pers. comm) and eastern Scotian Shelf, particularly in the region of "the Gully" (Whitehead et al. 1991).

Geographic distribution of sperm whales may be linked to their social structure and their low reproductive rate and both of these factors have management

Figure 1. Distribution of sperm whale sightings from NEFSC and SEFSC shipboard and aerial surveys during the summer in 1998, 1999 and 2004. Isobaths are $100 \mathrm{~m}, 1,000 \mathrm{~m}$, and 4,000 m . implications. Several basic groupings or social units are generally recognized - nursery schools, harem or mixed schools, juvenile or immature schools, bachelor schools, bull schools or pairs, and solitary bulls (Best 1979; Whitehead et al. 1991). These groupings have a distinct geographical distribution, with females and juveniles generally based in tropical and subtropical waters, and males more wide-ranging and occurring in higher latitudes. Male sperm whales are present off and sometimes on the continental shelf along the entire east coast of Canada south of Hudson Strait, whereas, females rarely migrate north of the southern limit of the Canadian EEZ (Reeves and Whitehead 1997; Whitehead 2003). Off the northeast U.S., CETAP and NMFS/NEFSC sightings in shelf-edge and off-shelf waters included many social
groups with calves/juveniles (CETAP 1982; Waring et al. 1992, 1993). The basic social unit of the sperm whale appears to be the mixed school of adult females plus their calves and some juveniles of both sexes, normally numbering 20-40 animals in all. There is evidence that some social bonds persist for many years.

POPULATION SIZE

Total numbers of sperm whales off the U.S. or Canadian Atlantic coast are unknown, although several estimates from selected regions of the habitat do exist for select time periods. Sightings were almost exclusively in the continental shelf edge and continental slope areas (Figure 1). An abundance of 219 ($\mathrm{CV}=0.36$) sperm whales was estimated from an aerial survey program conducted from 1978 to 1982 on the continental shelf and shelf edge waters between Cape Hatteras, North Carolina and Nova Scotia (CETAP 1982). An abundance of 338 (CV=0.31) sperm whales was estimated from an August 1990 shipboard line transect sighting survey, conducted principally along the Gulf Stream north wall between Cape Hatteras and Georges Bank (NMFS 1990; Waring et al. 1992). An abundance of 736 (CV=0.33) sperm whales was estimated from a June and July 1991 shipboard line- transect sighting survey conducted primarily between the 200 and $2,000 \mathrm{~m}$ isobaths from Cape Hatteras to Georges Bank (Waring et al. 1992; Waring 1998). An abundance of 705 $(\mathrm{CV}=0.66)$ and $337(\mathrm{CV}=0.50)$ sperm whales was estimated from line transect aerial surveys conducted from August to September 1991 using the Twin Otter and AT-11, respectively (NMFS 1991). As recommended in the GAMMS Workshop Report (Wade and Angliss 1997), estimates older than eight years are deemed unreliable, therefore should not be used for PBR determinations. Further, due to changes in survey methodology these data should not be used to make comparisons to more current estimates.

An abundance of $116(\mathrm{CV}=0.40)$ sperm whales was estimated from a June and July 1993 shipboard line- transect sighting survey conducted principally between the 200 and $2,000 \mathrm{~m}$ isobaths from the southern edge of Georges Bank, across the Northeast Channel to the southeastern edge of the Scotian Shelf (NMFS 1993). Data were collected by two alternating teams that searched with 25×150 binoculars and were analyzed using DISTANCE (Buckland et al. 1993). Estimates include school-size bias, if applicable, but do not include corrections for $g(0)$ or dive-time. Variability was estimated using bootstrap resampling techniques.

An abundance of $623(\mathrm{CV}=0.52)$ sperm whales was estimated from an August 1994 shipboard line transect survey conducted within a Gulf Stream warm-core ring located in continental slope waters southeast of Georges Bank (NMFS 1994). Data were collected by two alternating teams that searched with 25×150 binoculars and an independent observer who searched by naked eye from a separate platform on the bow. Data were analyzed using DISTANCE (Buckland et al. 1993). Estimates include school-size bias, if applicable, but do not include corrections for $g(0)$ or dive-time. Variability was estimated using bootstrap resampling techniques.

An abundance of $2,698(\mathrm{CV}=0.67)$ sperm whales was estimated from a July to September 1995 sighting survey conducted by two ships and an airplane that covered waters from Virginia to the mouth of the Gulf of St. Lawrence (Palka et al. Unpubl. Ms.). Total track line length was $32,600 \mathrm{~km}$. The ships covered waters between the 50 and 1,000 fathom isobaths, the northern edge of the Gulf Stream, and the northern Gulf of Maine/Bay of Fundy region. The airplane covered waters in the Mid-Atlantic from the coastline to the 50 fathom isobath, the southern Gulf of Maine, and shelf waters off Nova Scotia from the coastline to the 1,000 fathom isobath. Data collection and analysis methods used were described in Palka (1996).

An abundance of $2,848(\mathrm{CV}=0.49)$ sperm whales was estimated from a line- transect sighting survey conducted during 6 July to 6 September 1998 by a ship and plane that surveyed $15,900 \mathrm{~km}$ of track line in waters north of Maryland $\left(38^{\circ} \mathrm{N}\right)$ (Figure 1; Table 1; Palka et al. Unpubl. Ms.). Shipboard data were analyzed using the modified direct duplicate method (Palka 1995) that accounts for school size bias and $g(0)$, the probability of detecting a group on the track line. Aerial data were not corrected for $g(0)$.

An abundance of $1,181(\mathrm{CV}=0.51)$ sperm whales was estimated from a shipboard line -transect sighting survey conducted between 8 July and 17 August 1998 that surveyed $4,163 \mathrm{~km}$ of track line in waters south of Maryland ($38^{\circ} \mathrm{N}$) (Figure 1; Mullin and Fulling 2003). This estimate is a recalculation of the same data reported in previous SARs. For more details see Mullin and Fulling (2003). Abundance estimates were made using the program DISTANCE (Buckland et al. 1993) where school size bias and ship attraction were accounted for.

The best 1998 abundance estimate for sperm whales is the sum of the estimates from the two U.S. Atlantic surveys, $4,029(\mathrm{CV}=0.38)$, where the estimate from the northern U.S. Atlantic is $2,848(\mathrm{CV}=0.49)$ and from the southern U.S. Atlantic is $1,181(\mathrm{CV}=0.51)$. This joint estimate is considered best because together these two surveys have the most complete coverage of the species' habitat.

An abundance of $2,607(\mathrm{CV}=0.57)$ for sperm whales was estimated from a line-transect sighting survey conducted during 12 June to 4 August 2004 by a ship and plane that surveyed $10,761 \mathrm{~km}$ of track line in waters north of Maryland $\left(38^{\circ} \mathrm{N}\right)$ to the Bay of Fundy ($45^{\circ} \mathrm{N}$) (Figure 1; Palka Unpub. Ms.). Shipboard data were collected using the two independent team line transect method and analyzed using the modified direct duplicate method (Palka 1995) accounting for biases due to school size and other potential covariates, reactive movements (Palka and Hammond 2001), and $g(0)$, the probability of detecting a group on the track line. Aerial data were collected using the Hiby circle-back line transect
method (Hiby 1999) and analyzed accounting for $g(0)$ and biases due to school size and other potential covariates (Figure 1; Palka unpub.).

A survey of the U.S. Atlantic outer continental shelf and continental slope (water depths $>50 \mathrm{~m}$) between Florida and Maryland (27.5 and $38^{\circ} \mathrm{N}$) was conducted during June-August, 2004. The survey employed two independent visual teams searching with 50 x bigeye binocluars. Survey effort was stratified to include increased effort along the continental shelf break and Gulf Stream front in the Mid-Atlantic. The survey included $5,659 \mathrm{~km}$ of trackline, and there were a total of 473 cetacean sightings. Sightings were most frequent in waters north of Cape Hatteras, North Carolina along the shelf break. Data were analyzed to correct for visibility bias $(g(0))$ and group-size bias employing line transect distance analysis and the direct duplicate estimator (Palka, 1995; Buckland et al., 2001). The resulting abundance estimate for sperm whales between Florida and Maryland was 2,197 (CV =0.47).

The best 2004 abundance estimate for sperm whales is the sum of the estimates from the two 2004 U.S. Atlantic surveys, $4,804(\mathrm{CV}=0.38)$, where the estimate from the northern U.S. Atlantic is 2,607 ($\mathrm{CV}=0.57$), and from the southern U.S. Atlantic is $2,197(\mathrm{CV}=0.47)$. This joint estimate is considered best because together these two surveys have the most complete coverage of the species' habitat.

Because all the sperm whale estimates presented here were not corrected for dive-time, they are likely downwardly biased and an underestimate of actual abundance. The average dive-time of sperm whales is approximately 30-60 min (Whitehead et al. 1991; Watkins et al. 1993; Peter Madsen, Woods Hole Oceanographic Institution, pers. comm.), therefore, the proportion of time that they are at the surface and available to visual observers is assumed to be low.

Although the stratification schemes used in the 1990-2004 surveys did not always sample the same areas or encompass the entire sperm whale habitat, they did focus on segments of known or suspected high-use habitats off the northeastern U.S. coast. The collective 1990-2004 data suggest that, seasonally, at least several thousand sperm whales are occupying these waters. Sperm whale abundance may increase offshore, particularly in association with Gulf Stream and warm-core ring features; however, at present there is no reliable estimate of total sperm whale abundance in the western North Atlantic.

Table 1. Summary of abundance estimates for the western North Atlantic sperm whale. Month, year, and area covered during each abundance survey, and resulting abundance estimate $\left(\mathrm{N}_{\text {best }}\right)$ and coefficient of variation (CV).			
Month/Year	Area	$\mathbf{N}_{\text {best }}$	CV
Jul-Sep 1998	Maryland to Gulf of St. Lawrence	2,848	0.49
Jul-Aug 1998	Florida to Maryland	1,181	0.51
Jul-Sep 1998	Florida to Gulf of St. Lawrence (COMBINED)	4,029	0.38
Jun-Aug 2004	Maryland to the Bay of Fundy	2,607	0.57
Jun-Aug 2004	Florida to Maryland	2,197	0.47
Jun-Aug 2004	Florida to Bay of Fundy (COMBINED)	4,804	0.38

Minimum Population Estimate

The minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the log-normally distributed best abundance estimate. This is equivalent to the 20 th percentile of the log-normal distribution as specified by Wade and Angliss (1997). The best estimate of abundance for sperm whales is $4,804(\mathrm{CV}=0.38)$. The minimum population estimate for the western North Atlantic sperm whale is 3,539 .

Current Population Trend

There are insufficient data to determine the population trends for this species.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Current and maximum net productivity rates are unknown for this stock. While more is probably known about sperm whale life history in other areas, some life history and vital rates information is available for the northwest Atlantic. These
include: calving interval is 4-6 years; lactation period is 24 months; gestation period is $14.5-16.5$ months; births occur mainly in July to November; length at birth is 4.0 m ; length at sexual maturity $11.0-12.5 \mathrm{~m}$ for males and $8.3-9.2 \mathrm{~m}$ for females; mean age at sexual maturity is 19 years for males and 9 years for females; and mean age at physical maturity is 45 years for males and 30 years for females (Best 1974; Best et al. 1984; Lockyer 1981; Rice 1989).

For purposes of this assessment, the maximum net productivity rate was assumed to be 0.04 . This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive life history (Barlow et al. 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential Biological Removal (PBR) is the product of minimum population size, one-half the maximum productivity rate, and a "recovery" factor (MMPA Sec. 3. 16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size is 3,539 . The maximum productivity rate is 0.04 , the default value for cetaceans. The "recovery" factor, which accounts for endangered, depleted, threatened stocks, or stocks of unknown status relative to optimum sustainable population (OSP) is assumed to be 0.10 because the sperm whale is listed as endangered under the Endangered Species Act (ESA). PBR for the western North Atlantic sperm whale is 7.0.

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

During 1999-2003, human caused mortality was 0.4 sperm whales per year (CV=unknown). This is derived from three components: 0 sperm whales per year ($\mathrm{CV}=$ unknown) from U.S. fisheries using observer data;, 0.2 sperm whales based on the 2000 stranding of a sperm whale off Florida which had fishing gear in its blow hole; and 0.2 sperm whales per year from ship strikes.

Fishery Information

Detailed fishery information is reported in Appendix III.

Earlier Interactions

Several sperm whale entanglements have been documented. In July 1990, a sperm whale was entangled and subsequently released (injured) from the now prohibited pelagic drift gillnet near the continental shelf edge on southern Georges Bank. This resulted in an estimated annual fishery-related mortality and serious injury of 4.4 (CV=1.77) for 1990. In August 1993, a dead sperm whale, with longline gear wound tightly around the jaw, was found floating about 20 miles off Mt Desert Rock. In October 1994, a sperm whale was successfully disentangled from a fine- mesh gillnet in Birch Harbor, Maine. During June 1995, one sperm whale was entangled with "gear in/around several body parts" then released injured from a pelagic drift gillnet haul located on the shelf edge between Oceanographer and Hydrographer Canyons on Georges Bank. In May 1997, a sperm whale entangled in net with three buoys trailing was sighted 130 nmi northwest of Bermuda. No information on the status of the animal was provided.

Other Mortality

Four hundred twenty-four sperm whales were harvested in the Newfoundland-Labrador area between 1904-1972 and 109 male and no female sperm whales were taken near Nova Scotia in 1964-1972 (Mitchell and Kozicki 1984) in a Canadian whaling fishery. There was also a well-documented sperm whale fishery based on the west coast of Iceland. Other sperm whale catches occurred near West Greenland, the Azores, Madeira, Spain, Spanish Morocco, Norway (coastal and pelagic), Faroes, and British coastal. At present, because of their general offshore distribution, sperm whales are less likely to be impacted by humans and those impacts that do occur are less likely to be recorded. There has been no complete analysis and reporting of existing data on this topic for the western North Atlantic.

During 1994-2000, eighteen sperm whale strandings have been documented along the U.S. Atlantic coast between Maine and Miami, Florida (NMFS unpublished data). One 1998 and one 2000 stranding off Florida showed signs of human interactions. The 1998 animal's head was severed, but it is unknown if it occurred pre- or post-mortem. The 2000 animal had fishing gear in the blowhole. In October 1999, a live sperm whale calf stranded on eastern Long Island, and was subsequently euthanized. Also, a dead calf was found in the surf off Florida in 2000.

During 2001 to 2003, ten sperm whale strandings were documented along the U.S. Atlantic coast according the NER and SER strandings databases (Table 2). Except for the sperm whale struck by a naval vessel in the EEZ in 2001, there were no confirmed documented signs of human interactions on the other nine animals.

Table 2. Sperm whale (Physeter macrocephalus) reported stranding along the U.S. Atlantic coast.				
STATE	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	$\mathbf{2 0 0 3}$	TOTAL
Massachusetts	1	1	--	1
North Carolina	--	--	2	2
South Carolina	--	1	--	1
Florida	--	2	4	
EEZ	1	--	1	
TOTAL	4	--	9	
${ }^{\text {a }}$ U.S. Navy reported ship strike	4			

In eastern Canada, 5 dead strandings were reported in Newfoundland/Labrador in 1987-1995; 13 dead strandings along Nova Scotia in 1988-1996; 7 dead strandings on Prince Edward Island in 1988-1991; 2 dead strandings in Quebec in 1992; and 13 animals in 8 stranding events on Sable Island, Nova Scotia in 1970-1998 (Reeves and Whitehead 1997; Hooker et al. 1997; Lucas and Hooker 2000). Sex was recorded for 11 of the 13 Sable island animals, and all were male, which is consistent with sperm whale distribution patterns (Lucas and Hooker 2000).

Recent mass strandings have been reported in the North Sea, including; winter 1994/1995 (21); winter 1995/1996 (16); and winter 1997/1998 (20). Reasons for the strandings are unknown, although multiple causes (e.g., unfavorable North Sea topography, ship strikes, global changes in water temperature and prey distribution, and pollution) have been suggested (Holsbeek et al. 1999).

Ship strikes are another source of human- induced mortality. In May 1994 a ship-struck sperm whale was observed south of Nova Scotia (Reeves and Whitehead 1997) and in May 2000 a merchant ship reported a strike in Block Canyon (NMFS, unpublished data). In spring, Block Canyon is a major pathway for sperm whales entering southern New England continental shelf waters in pursuit of migrating squid (CETAP 1982; Scott and Sadove 1997).

A potential human-caused source of mortality is from accumulation of stable pollutants (e.g., polychlorobiphenyls (PCBs), chlorinated pesticides (DDT, DDE, dieldrin, etc.), polycyclic aromatic hydrocarbons (PAHs), and heavy metals) in long lived, high -trophic level animals. Analysis of tissue samples obtained from 21 sperm whales that mass -stranded in the North Sea in 1994/1995 indicated that mercury, PCB, DDE, and PAH levels were low and similar to levels reported for other marine mammals (Holsbeek et al. 1999). Cadmium levels were high and double reported levels in North Pacific sperm whales. Although the 1994/1995 strandings were not attributable to contaminant burdens, Holsbeek et al. (1999) suggest that the stable pollutants might affect the health or behavior of North Atlantic sperm whales.

Using stranding and entanglement data, during 1999-2003, one sperm whale was confirmed struck by a ship, thus, there is an annual average of 0.2 sperm whales per year struck by ships. In addition, during 1999-2003, one sperm whale was a confirmed fishery interaction, thus, there is an annual average of 0.2 sperm whales taken in U.S. fisheries.

STATUS OF STOCK

The status of this stock relative to OSP in U.S. Atlantic EEZ is unknown, but the species is listed as endangered under the ESA. There are insufficient data to determine population trends. The current stock abundance estimate was based upon a small portion of the known stock range. Total fishery-related mortality and serious injury for this stock is less than 10% of the calculated PBR, and therefore can be considered to be insignificant and approaching a zero mortality and serious injury rate. This is a strategic stock because the species is listed as endangered under the ESA.

REFERENCES

Barlow, J., S.L. Swartz, T.C. Eagle, and P.R. Wade. 1995. U.S. Marine Mammal Stock Assessments: Guidelines for Preparation, Background, and a Summary of the 1995 Assessments. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-6, 73 pp .
Best, P.B. 1974. Biology of the sperm whale. Pages 53-81. In: W. E. Schevill (ed), The whale problem: A status report. Harvard University Press, Cambridge, Massachusetts, 419 pp.
Best, P.B. 1979. Social organization in sperm whales, Physeter macrocephalus. Pages 227-289. In: H. E. Winn and B. L. Olla (eds.), Behavior of marine animals, Vol. 3: Cetaceans. Plenum Press, New York.

Best, P.B., P.A.S. Canham, and N. Macleod. 1984. Patterns of reproduction in sperm whales, Physeter macrocephlus. Rep. int. Whal. Commn (Special Issue) 8:51-79.
Buckland, S.T., D.R. Andersen, K.P Burnham, J.L. Laake, D.L. Borchers, and L. Thomas. 2001. Introduction to Distance Sampling estimating abundance of biological populations. Oxford University Press, New York, 432 pp.
Buckland, S.T., D.R. Andersen, K.P. Burnham, and J.L. Laake. 1993. Distance sampling: Estimating abundance of biological populations. Chapman and Hall, New York, 442 pp.

CETAP. 1982. A characterization of marine mammals and turtles in the mid- and north Atlantic areas of the U.S. outer continental shelf. Cetacean and Turtle Assessment Program, University of Rhode Island. Final Report \#AA551-CT8-48 to the Bureau of Land Management, Washington, DC, 538 pp .
Dufault, S., H. Whitehead, and M. Dillon. 1999. An examination of the current knowledge on the stock structure of sperm whales (Physeter macrocephalus) Worldwide. J. Cetacean Res. Manage. 1(1):1-10.
Hiby, L. 1999. The objective identification of duplicate sightings in aerial survey for porpoise. Pages 179-189 in:. G.W. Garner, S.C. Amstrup, J.L. Laake, B.F.J. Manly, L.L. McDonald, and D.G. Robertson (eds.). Marine Mammal Survey and Assessment Methods. Balkema, Rotterdam.
Holsbeek, L., C.R. Joiris, V. Debacker, I.B. Ali, P. Roose, J-P. Nellissen, S. Gobert, J-M. Bouquegneau, and M. Bossicart. 1999. Heavy metals, organochlorines and polycyclic aromatic hydrocarbons in sperm whales stranded in the southern North Sea during the 1994/1995 winter. Mar. Pollu. Bull. 38:4 304-313.
Hooker, S.K., R.W. Baird, and M.A. Showell. 1997. Cetacean Strandings and bycatches in Nova Scotia, Eastern Canada, 1991-1996. Paper SC/49/05 presented to the IWC Scientific Committee, September 1997. 11 pp.
Lockyer, C. 1981. Estimates of growth and energy budget for the sperm whale. Pages 491-504 in: Mammals in the seas, III. FAO Fish. Ser. No. 5. FAO, Rome, 504 pp.

Lucas, Z.N. and S.K. Hooker. 2000. Cetacean strandings on Sable Island, Nova Scotia, 1970-1998. Can. Field Nat.:114 (45-61).
Lyrholm, T. and U. Gyllensten. 1998. Global matrilineal population structure in sperm whales as indicated by mitochondrial DNA sequences. Proc. R. Soc. Lond. B 265:1679-1684.
Lyrholm, T., O. Leimar, B. Johanneson, and U. Gyllensten. 1999. Sex-biased dispersal in sperm whales: contrasting mitochondrial and nuclear genetic structure of global populations. Proc. R. Soc. Lond. B 266: 347-354.
Mitchell, E. 1975. Progress report on whale research, Canada. Rep. int. Whal. Commn 25:270-272.
Mitchell, E. and V.M. Kozicki. 1984. Reproductive condition of male sperm whales, Physeter macrocephalus, taken off Nova Scotia. Rep. int. Whal. Commn (Special Issue) 6:243-252.
Mullin, K.D. and G.L. Fulling. 2003. Abundance of cetaceans in the southern U.S. Atlantic Ocean during summer 1998. Fish. Bull., U.S. 101:603-613.
NMFS [National Marine Fisheries Service]. 1990. Cruise results, NOAA Ship CHAPMAN, Cruise No. 90-05. Marine Mammal Sighting Survey. 5 pp. Available from: National Marine Fisheries Service, 166 Water Street, Woods Hole, MA 02543-1026.
NMFS [National Marine Fisheries Service]. 1991. Northeast cetacean aerial survey and interplatform study. NOAA-NMFS-SEFSC and NEFSC. 4 pp. Available from: National Marine Fisheries Service, 166 Water Street, Woods Hole, MA 02543-1026.
NMFS [National Marine Fisheries Service]. 1993. Cruise results, NOAA Ship DELAWARE II, Cruise No. DEL 93-06, Marine Mammal Survey. 5 pp. Available from: National Marine Fisheries Service, 166 Water Street, Woods Hole, MA 02543-1026.
NMFS [National Marine Fisheries Service]. 1994. Cruise results, NOAA Ship RELENTLESS, Cruise No. RS 94-02, Marine Mammal Survey/Warm Core Ring Study. 8 pp. Available from: National Marine Fisheries Service, 166 Water Street, Woods Hole, MA 02543-1026.
Palka, D. 1995. Abundance estimate of the Gulf of Maine harbor porpoise. Rep. int. Whal. Commn (Special Issue) 16:2750.

Palka, D. 1996. Update on abundance of Gulf of Maine/Bay of Fundy harbor porpoises. NOAA/NMFS/NEFSC. Ref. Doc. 96-04; 37 pp. Available from: National Marine Fisheries Service, 166 Water Street, Woods Hole, MA 02543-1026.
Palka, D. and Hammond, P.S. 2001. Accounting for responsive movement in line transect estimates of abundance. Can. J. Fish. Aquat. Sci. 58: 777-787.
Reeves, R.R. and H. Whitehead. 1997. Status of sperm whale, Physeter macrocephalus, in Canada. Can. Field Nat. 111:293-307.
Rice, D.W. 1989. Sperm whale. Physeter macrocephalus Linnaeus, 1758. Pp. 177-233 in: Handbook of marine animals. Vol. 4. Ed. S. H. Ridgway and R Harrison. Academic Press, London.
Scott, T.M. and S.S. Sadove. 1997. Sperm whale, Physeter macrocephalus, sightings in the shallow shelf waters off Long Island, New York. Mar. Mammal Sci. 13:317-321.
Schmidly, D.J. 1981. Marine mammals of the southeastern United States and the Gulf of Mexico. Department of the Interior, U.S. Fish and Wildlife Service Publication FWS/OBS-80/41, Washington, DC, 166 pp.
Wade P.R., and R.P. Angliss. 1997. Guidelines for assessing marine mammal stocks: Report of the GAMMS Workshop April 3-5, 1996, Seattle, Washington. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-12, 93 pp.
Waring, G.T., T. Hamazaki, D. Sheehan, G. Wood, and S. Baker. 2001. Characterization of beaked whale (Ziphiidae) and sperm whale (Physeter macrocephalus) summer habitat in shelf-edge and deeper waters off the northeast U.S. Mar. Mammal Sci. 17(4):703-717.

Waring, G.T., C.P. Fairfield, C.M. Ruhsam, and M. Sano. 1992. Cetaceans associated with Gulf Stream features off the northeastern USA shelf. ICES. C.M. 1992/N:12. 29 pp.
Waring, G.T., C.P. Fairfield, C.M. Ruhsam, and M. Sano. 1993. Sperm whales associated with Gulf Stream features off the northeastern USA shelf. Fish. Oceanogr. 2:101-105
Waring, G.T. 1998. Results of the summer 1991 R/V Chapman marine mammal sighting survey. NOAA-NMFSNEFSC, Lab. Ref. Doc. No. 98-09, 21 pp. Available from: National Marine Fisheries Service, 166 Water Street, Woods Hole, MA 02543-1026.
Watkins, W.A., K.E. Moore, and P. Tyack. 1985. Sperm whale acoustic behavior in the southeast Caribbean. Cetology 49:1-15.
Watkins, W.A., M.A. Daher, K.M. Fristrup, and T.J. Howald. 1993. Sperm whales tagged with transponders and tracked underwater by sonar. Mar. Mammal Sci. 9:55-67.
Whitehead, H. 2003. Sperm whales social evolution in the ocean. The University of Chicago Press, Chicago, 431 pp.
Whitehead, H., S. Brennan, and D. Grover. 1991. Distribution and behavior of male sperm whales on the Scotian Shelf, Canada. Can. J. Zool. 70:912-918.

DWARF SPERM WHALE (Kogia sima): Western North Atlantic Stock Western North Atlantic Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

The dwarf sperm whale (Kogia sima) appears to be distributed worldwide in temperate to tropical waters (Caldwell and Caldwell 1989). There are no stranding records for the east Canadian coast (Willis and Baird 1998). Sightings of these animals in the western North Atlantic occur in oceanic waters (Mullin and Fulling 2003; NMFS unpublished data). Dwarf sperm whales and pygmy sperm whales (K. breviceps) are difficult to differentiate at sea (Caldwell and Caldwell 1989, Wursig et al. 2000), and sightings of either species are often categorized as Kogia sp. There is no information on stock differentiation for the Atlantic population. Duffield et al. (2003) propose using the molecular weights of myoglobin and hemoglobin, as determined by blood or muscle tissues of stranded animals, as a quick and robust way to provide species confirmation. Using hematological as well as stable-isotope data, Barros et al. (1998) speculated that dwarf sperm whales may have a more pelagic distribution than pygmy sperm whales, and/or dive deeper during feeding bouts. Diagnostic morphological characters have also been useful in distinguishing the two Kogia species (Barros and Duffield 2003), thus enabling researchers to use stranding data in distributional and ecological studies.. Specifically, the distance from the snout to the center of the blowhole in proportion to the animal's total length, as well as the height of the dorsal fin, in proportion to the animal's total length, can be used to differentiate between the two Kogia species when such measurements are obtainable (Barros and Duffield 2003).

POPULATION SIZE

Total numbers of dwarf sperm whales off the U.S. or Canadian Atlantic coast are unknown, although estimates from selected regions of the habitat do exist for select time periods. Because Kogia sima and Kogia breviceps are difficult to differentiate at sea, the reported abundance estimates are for both species of Kogia.

An abundance of $115(\mathrm{CV}=0.61)$ for Kogia sp . was estimated from a line-transect survey conducted from July 6 to September 6, 1998, by a ship and plane that surveyed $15,900 \mathrm{~km}$ of track line in waters north of Maryland ($38^{\circ} \mathrm{N}$) (Fig. 1; Palka et al., Unpubl. Ms.). Shipboard data were analyzed using the modified direct duplicate method (Palka 1995) that accounts for school size bias and $g(0)$, the probability of detecting a group on the track line. Aerial data were not corrected for $g(0)$.

An abundance of $580(\mathrm{CV}=0.57)$ for Kogia sp. was estimated from a shipboard line-transect sighting survey conducted between 8 July and 17 August 1998 that surveyed , $4,163 \mathrm{~km}$ of track line in waters south of Maryland ($38^{\circ} \mathrm{N}$) (Fig. 1; Mullin and Fulling 2003). Abundance estimates were made using the program DISTANCE (Buckland et al. 2001; Thomas et al. 1998).

An abundance of $358(\mathrm{CV}=0.44)$ for Kogia sp.was estimated from a line transect sighting survey conducted during June 12 to August 4, 2004 by a ship and plane that surveyed $10,761 \mathrm{~km}$ of track line in

Figure 1. Distribution of Kogia sp. sightings from NEFSC and SEFSC shipboard and aerial surveys during the summer in 1998 and 2004. Isobaths are at $100 \mathrm{~m}, 1,000 \mathrm{~m}$ and 4,000 m. waters north of Maryland (about $38^{\circ} \mathrm{N}$) to the Bay of Fundy (about $45^{\circ} \mathrm{N}$) (Figure 1; Palka unpublished). Shipboard data were collected using the two independent team line transect method and analyzed using the modified direct duplicate method (Palka 1995) accounting for biases due to school size and other potential covariates, reactive movements (Palka and Hammond 2001), and $g(0)$, the probability of detecting a group on the track line. Aerial data were collected using the Hiby circle-back line transect method (Hiby 1999) and analyzed accounting for $g(0)$ and biases due to school size and other potential covariates (Figure 1; Palka unpublished).

A survey of the U.S. Atlantic outer continental shelf and continental slope (water depths $\geq 50 \mathrm{~m}$) between $27.5-38^{\circ} \mathrm{N}$ latitude was conducted during June-August, 2004. The survey employed two independent visual teams searching with 50 x bigeye binoculars. Survey effort was stratified to include increased effort along the continental shelf break and Gulf Stream front in the Mid-Atlantic. The survey included $5,659 \mathrm{~km}$ of trackline, and there were a total of 473 cetacean sightings. Sightings were most frequent in waters North of Cape Hatteras, North Carolina along the shelf break. Data were analyzed to correct for visibility bias $(g(0))$ and group-size bias employing line transect distance analysis and the direct duplicate estimator (Palka 1995; Buckland et al., 2001). The resulting abundance estimate for Kogia sp. between Florida and Maryland was 37 (CV=0.75).

The best 2004 abundance estimate for Kogia sp. is the sum of the estimates from the two 2004 U.S. Atlantic surveys, $395(\mathrm{CV}=0.40)$, where the estimate from the northern U.S. Atlantic is $358(\mathrm{CV}=0.44)$, and from the southern U.S. Atlantic is $37(\mathrm{CV}=0.75)$. This joint estimate is considered the best because together these two surveys have the most complete coverage of the species' habitat. A separate estimate of dwarf sperm whale abundance cannot be provided due to the uncertainty of species identification at sea.

Table 1. Summary of abundance estimates for the western North Atlantic Kogia sp. Month, year, and area covered during each abundance survey, and resulting abundance estimate $\left(\mathrm{N}_{\text {best }}\right)$ and coefficient of variation (CV).

Month/Year	Area	$\mathbf{N}_{\text {best }}$	CV
Jul-Sep 1998	Maryland to Gulf of St. Lawrence	115	0.61
Jul-Aug 1998	Florida to Maryland	580	0.57
Jul-Sep 1998	Florida to Gulf of St. Lawrence (COMBINED)	695	0.49
Jun-Aug 2004	Maryland to Bay of Fundy	358	0.44
Jun-Aug 2004	Florida to Maryland	37	0.75
Jun-Aug 2004	Bay of Fundy to Florida (COMBINED)	395	0.40

Minimum Population Estimate

The minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the log- normally distributed best abundance estimate. This is equivalent to the 20th percentile of the log-normal distribution as specified by Wade and Angliss (1997). The best estimate of abundance for Kogia sp. is 395 (CV=0.40). The minimum population estimate for Kogia sp. is 285.

Current Population Trend

The available information is insufficient to evaluate trends in population size for this species in the western North Atlantic.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Current and maximum net productivity rates are unknown for this stock. For purposes of this assessment, the maximum net productivity rate was assumed to be 0.04 . This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive life history (Barlow et al. 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential Biological Removal (PBR) is the product of minimum population size, one-half the maximum productivity rate, and a "recovery" factor (Wade and Angliss 1997). The minimum population size is 285 . The maximum productivity rate is 0.04 , the default value for cetaceans. The "recovery" factor, which accounts for endangered, depleted, threatened stocks, or stocks of unknown status relative to optimum sustainable population (OSP) is assumed to be 0.5 because this stock is of unknown status. PBR for the western North Atlantic Kogia sp. is 2.

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

Fishery Information

Detailed fishery information is reported in Appendix III. There has been no logbook report of fishery- related serious injury recorded off the east coast of Florida in the pelagic longline fishery in 2000 (Table 2) (Yeung 2001; Garrison 2003; Garrison and Richards, 2004). Total annual estimated average fishery-related mortality and serious injury to this stock
during 1999-2003 was zero for dwarf sperm whales, as there were no reports of mortality or serious injury to dwarf sperm whales (Yeung 2001; Garrison 2003; Garrison and Richards 2004).

Earlier Interactions

No dwarf sperm whale mortalities were observed in 1977-1991 foreign fishing activities. Bycatch has been observed by NMFS Sea Samplers in the pelagic drift gillnet fishery, but no mortalities or serious injuries have been documented in other fisheries.

There was one report of mortality or serious injury to a dwarf sperm whale attributable to the pelagic drift gillnet fishery. Estimated annual fishery-related mortality and serious injury (CV in parentheses) was 0 dwarf sperm whales from 1991-1994, 1.0 in 1995 (CV=0), and 0 from 1996-2003.

Other Mortality

From 1999-2003, 37 dwarf sperm whales were reported stranded between North Carolina and Puerto Rico (Table 2). No dwarf sperm whales were reported to stranded in Nova Scotia from 1990-2004 (T. Wimmer, Nova Scotia Marine Animal Response Society, pers. comm.). The total includes 8 animals stranded in North Carolina and 1 in Georgia in 1999; 4 animals stranded in North Carolina, 1 in South Carolina, and 4 in Florida in 2000; 1 animal stranded in North Carolina, 1 in South Carolina, and 2 in Florida in 2001; 3 animals stranded in Florida and 2 in Puerto Rico in 2002; and 4 animals stranded in North Carolina, 2 in South Carolina, 2 in Georgia, and 2 in Florida in 2003. In addition to the above strandings of Kogia sima, there were 8 strandings reported as Kogia sp. as follows: 1 Kogia sp. stranded in Georgia in 2000, 1 stranded in North Carolina and 2 in Florida in 2002, and 1 stranded in Georgia and 3 in Florida in 2003.

Table 2. Dwarf sperm whale (Kogia sima) strandings along the Atlantic coast, 1999-2003

STATE	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	$\mathbf{2 0 0 3}$	TOTALS
North Carolina	8	4	1^{a}	0^{a}	4	17
South Carolina	0	1	1	0	2	4
Georgia	1	0^{a}	0	0^{a}	2^{a}	3
Florida	0	4	2	3^{b}	2^{c}	11
Puerto Rico	0	0	0	2	0	2
TOTALS	9	9	4	5	10	37

${ }^{\text {a }} 1$ additional Kogia sp. stranded
${ }^{\mathrm{b}} 2$ additional Kogia sp. stranded
${ }^{\text {c }} 3$ additional Kogia sp. stranded

There were no documented strandings of dwarf sperm whales along the U.S. Atlantic coast during 1999-2003 which were classified as likely caused by fishery interactions.

Historical stranding records (1883-1988) of dwarf sperm whales in the southeastern U.S. (Credle 1988), and strandings recorded during 1988-1997 (Barros et al. 1998) indicate that this species accounts for about 17\% of all Kogia strandings in this area. During the period 1990-October 1998, 3 dwarf sperm whale strandings occurred in the northeastern U.S. (Maryland, Massachusetts, and Rhode Island), whereas 43 strandings were documented along the U.S. Atlantic coast between North Carolina and the Florida Keys in the same period. A pair of latex examination gloves was retrieved from the stomach of a dwarf sperm whale stranded in Miami in 1987 (Barros et al. 1990). In the period 19871994, 1 animal had possible propeller cuts on or near the flukes.
Stranding data probably underestimate the extent of fishery-related mortality and serious injury because all of the marine mammals that die or are seriously injured may not wash ashore, nor will all of those that do wash ashore necessarily show signs of entanglement or other fishery-interaction. Finally, the level of technical expertise among stranding network personnel varies widely as does the ability to recognize signs of fishery interaction.

Rehabilitation challenges for Kogia sp. are numerous due to limited knowledge regarding even the basic biology of these species. Advances in recent rehabilitation success has potential implications for future release and tracking of animals at sea to potentially provide information on distribution, movements and habitat use of these species (Manire et al. 2004).

STATUS OF STOCK

The status of the dwarf sperm whale relative to OSP in the western U.S. Atlantic EEZ is unknown. This species is not listed as endangered or threatened under the Endangered Species Act. There is insufficient information with which to assess population trends. Total fishery-related mortality and serious injury for this stock is less than 10% of the calculated PBR and therefore, can be considered to be insignificant and approaching zero mortality and serious injury rate. This is not a strategic stock.

REFERENCES

Barlow, J., S. L. Swartz, T. C. Eagle and P. R. Wade. 1995. U.S. Marine mammal stock assessments: Guidelines for preparation, background, and a summary of the 1995 assessments. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-6, 73pp. Available from NMFS, Southwest Fisheries Science Center, 8604 La Jolla Shores Drive, La Jolla, CA, 92037-1508.
Barros, N.B. and D.A. Duffield. 2003. Unraveling the mysteries of Pygmy and Dwarf sperm whales. Strandings Newsletter of the Southeast U.S. Marine Mammal Stranding Network. December 2003. NOAA Tech. Memo NMFS-SEFSC-521, 11 pp. Available from NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Drive, Miami, FL 33149.
Barros, N. B., D. A. Duffield, P. H. Ostrom, D. K. Odell and V. R. Cornish. 1998. Nearshore vs. offshore ecotype differentiation of Kogia breviceps and K. simus based on hemoglobin, morphometric and dietary analyses. World Marine Mammal Science Conference Abstracts. Monaco. 20-24 January.
Barros, N. B., D. K. Odell and G. W. Patton. 1990. Ingestion of plastic debris by stranded marine mammals from Florida. Page 746. In: R. S. Shomura and M.L. Godfrey (eds.). Proceedings of the Second International Conference on Marine Debris. NOAA Tech. Memo. NOAA-TM-NMFS-SWFSC-154. . Available from NMFS, Southwest Fisheries Science Center, 8604 La Jolla Shores Drive, La Jolla, CA, 92037-1508.
Buckland, S. T., D. R. Anderson, K. P. Burnham, J. L. Laake, D. L. Borchers and L. Thomas. 2001. Introduction to distance sampling: estimating abundance of biological populations. Oxford University Press, New York, 432 pp .
Caldwell, D. K. and M. C. Caldwell. 1989. Pygmy sperm whale Kogia breviceps (de Blainville 1838): dwarf sperm whale Kogia simus Owen, 1866. pp. 235-260 In: S. H. Ridgway and R. Harrison (eds.), Handbook of marine mammals, Vol. 4: River dolphins and the larger toothed whales. Academic Press, San Diego. 442 pp.
Credle, V. R. 1988. Magnetite and magnetoreception in dwarf and pygmy sperm whales, Kogia simus and Kogia breviceps. MSc. Thesis. University of Miami. Coral Gables, FL.
Duffield, D.A., N.B. Barros, E.O. Espinoza, S. Ploen, F.M.D. Gulland, and J.E. Heyning. 2003. Identifying Pygmy and Dwarf Sperm Whales (Genus Kogia) using electrospray ionization mass spectrometry of myoglobin and hemoglobin. Mar. Mammal Sci.19(2):395-399.
Garrison, L.P. 2003. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2001-2002. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SEFSC-515, 52 pp. Available from NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Road, Miami, Fl 33149.
Garrison, L.P. and P.M. Richards. 2004. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2003. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SEFSC-527, 57 pp. Available from NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Road, Miami, FL.
Hiby, L. 1999. The objective identification of duplicate sightings in aerial survey for porpoise. pp. 179-189. In: G.W. Garner, S. C. Amstrup, J. L. Laake, B. F. J. Manly, L. L. McDonald, and D. G. Robertson (eds.) Marine mammal survey and assessment methods. Balkema, Rotterdam. 287 pp.
Manire, C.A., H.L. Rhinehart, N.B. Barros, L. Byrd, and P. Cunningham-Smith. 2004. An approach to the rehabilitation of Kogia sp. Aquatic Mamm. 30(2):257-270.
Mullin, K.D. and G.L. Fulling. 2003. Abundance and distribution of cetaceans in the southern U.S. North Atlantic Ocean during summer 1998. Fish. Bull., U.S. 101:603-613.
Palka, D. 1995. Abundance estimate of the Gulf of Maine harbor porpoise. pp. 27-50 In: A. Bjørge and G.P.Donovan (eds.) Biology of the Phocoenids.. Rep. int. Whal. Commn (Special Issue) 16 i-x + 552 pp .
Palka, D. and P.S. Hammond. 2001. Accounting for responsive movement in line-transect estimates of abundance. Can. J. Fish. Aquat. Sci. 58:777-787.

Thomas, L., J.L. Laake, J.F. Derry, S.T. Buckland, D.L. Borchers, D.R. Anderson, K.P. Burnham, S. Strindberg, S.L. Hedley, F.F.C. Marques, J.H. Pollard and R.M. Fewster. 1998. Distance 3.5. Research Unit for Wildlife Population Assessment, University of St. Andrews, St. Andrews, UK.
Wade, P.R., and R.P. Angliss. 1997. Guidelines for assessing marine mammal stocks: Report of the GAMMS Workshop April 3-5, 1996, Seattle, Washington. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-12, 93 pp. Available from: NOAA, National Marine Fisheries Service, 166 Water St., Woods Hole, MA 02543.
Wursig, B., T.A. Jefferson, and D.J. Schmidly. 2000. The marine mammals of the Gulf of Mexico. Texas A\&M University Press, College Station, TX, 256 pp.
Yeung, C. 2001. Estimates of marine mammal and marine turtle bycatch by the U.S. Atlantic pelagic longline fleet in 1999-2000. NOAA Tech. Memo. NOAA-TM-SEFSC-467, 42 pp. Available from: NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL, 33149.

PYGMY SPERM WHALE (Kogia breviceps): Western North Atlantic Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

The pygmy sperm whale (Kogia breviceps) appears to be distributed worldwide in temperate to tropical waters (Caldwell and Caldwell 1989). Sightings of these animals in the western North Atlantic occur in oceanic waters (Mullin and Fulling 2003; SEFSC unpublished data). Pygmy sperm whales and dwarf sperm whales (K. sima) are difficult to differentiate at sea (Caldwell and Caldwell 1989, Wursig et al. 2000), and sightings of either species are often categorized as Kogia sp. There is no information on stock differentiation for the Atlantic population. Duffield et al. (2003) propose using the molecular weights of myoglobin and hemoglobin, as determined by blood or muscle tissues of stranded animals, as a quick and robust way to provide species confirmation. Using hematological as well as stable-isotope data, Barros et al. (1998) speculated that dwarf sperm whales may have a more pelagic distribution than pygmy sperm whales, and/or dive deeper during feeding bouts. Diagnostic morphological characters have also been useful in distinguishing the two Kogia species (Barros and Duffield 2003), thus enabling researchers to use stranding data in distributional and ecological studies.. Specifically, the distance from the snout to the center of the blowhole in proportion to the animal's total length, as well as the height of the dorsal fin, in proportion to the animal's total length, can be used to differentiate between the two Kogia species when such measurements are obtainable (Barros and Duffield 2003).

POPULATION SIZE

Total numbers of pygmy sperm whales off the U.S. or Canadian Atlantic coast are unknown, although estimates from selected regions of the habitat do exist for select time periods. Because Kogia breviceps and Kogia sima are difficult to differentiate at sea, the reported abundance estimates are for both species of Kogia.

An abundance of $115(\mathrm{CV}=0.61)$ for Kogia sp. was estimated from a line-transect survey conducted from July 6 to September 6, 1998, by a ship and plane that surveyed $15,900 \mathrm{~km}$ of track line in waters north of Maryland ($38^{\circ} \mathrm{N}$) (Fig. 1; Palka et al. in review Unpubl. Ms.). Shipboard data were analyzed using the modified direct duplicate method (Palka 1995) that accounts for school size bias and $g(0)$, the probability of detecting a group on the track line. Aerial data were not corrected for $g(0)$.

An abundance of $580(\mathrm{CV}=0.57)$ for Kogia sp. was estimated from a shipboard line- transect sighting survey conducted between 8 July and 17 August 1998 that surveyed $4,163 \mathrm{~km}$ of track line in waters south of Maryland ($38^{\circ} \mathrm{N}$) (Fig. 1; Mullin and Fulling 2003). Abundance estimates were made using the program DISTANCE (Buckland et al. 2001; Thomas et al. 1998).

An abundance of $358(\mathrm{CV}=0.44)$ for Kogia sp.was estimated from a line-transect sighting survey conducted during June 12 to August 4, 2004 by a ship and plane that surveyed $10,761 \mathrm{~km}$ of track line in waters north of Maryland $\left(38^{\circ} \mathrm{N}\right)$ to the Bay of Fundy ($45^{\circ} \mathrm{N}$) (Figure 1; Palka unpublished). Shipboard data were collected using the two independent team line-transect method and analyzed using the modified direct duplicate method (Palka 1995) accounting for biases due to school size and other potential covariates, reactive movements (Palka and Hammond 2001), and $g(0)$, the probability of detecting a group on the track line. Aerial data were collected using the Hiby circle-back line-transect method (Hiby 1999) and analyzed accounting for $\mathrm{g}(0)$ and biases due to school size and other potential covariates (Figure 1; Palka unpublished).

A survey of the U.S. Atlantic outer continental shelf and continental slope (water depths $\geq 50 \mathrm{~m}$) between $27.5-38^{\circ} \mathrm{N}$ latitude was conducted during June-August, 2004. The survey employed two independent visual teams searching with 50 x bigeye binoculars. Survey effort was stratified to include increased effort along the continental shelf break and Gulf Stream front in the Mid-Atlantic. The survey included $5,659 \mathrm{~km}$ of trackline, and there was a total of 473 cetacean sightings. Sightings were most frequent in waters north of Cape Hatteras, North Carolina along the shelf break. Data were analyzed to correct for visibility bias $(g(0))$ and group-size bias employing line-transect distance analysis and the direct duplicate estimator (Palka 1995; Buckland et al., 2001). The resulting abundance estimate for Kogia sp. between Florida and Maryland was 37 (CV=0.75).

The best 2004 abundance estimate for Kogia sp.is the sum of the estimates from the two 2004 U.S. Atlantic surveys, $395(\mathrm{CV}=0.40)$, where the estimate from the northern U.S. Atlantic is $358(\mathrm{CV}=0.44)$, and from the southern U.S. Atlantic is $37(\mathrm{CV}=0.75)$. This joint estimate is considered the best because together these two surveys have the most complete coverage of the species' habitat. A separate estimate of pygmy sperm whale abundance cannot be provided due to the uncertainty of species identification at sea.

Table 1. Summary of abundance estimates for the western North Atlantic Kogia pp. Month, year, and area covered during each abundance survey, and resulting abundance estimate $\left(\mathrm{N}_{\text {best }}\right)$ and coefficient of variation (CV).

Month/Year	Area	N $_{\text {best }}$	CV
Jul-Sep 1998	Maryland to Gulf of St. Lawrence	115	0.61
Jul-Aug 1998	Florida to Maryland	580	0.57
Jul-Sep 1998	Florida to Gulf of St. Lawrence (COMBINED)	695	0.49
Jun-Aug 2004	Maryland to Bay of Fundy	358	0.44
Jun-Aug 2004	Florida to Maryland	37	0.75
Jun-Aug 2004	Florida to Bay of Fundy (COMBINED)	395	0.40

Minimum Population Estimate

The minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the log- normally distributed best abundance estimate. This is equivalent to the 20th percentile of the log-normal distribution as specified by Wade and Angliss (1997). The best estimate of abundance for Kogia sp. is 395 (CV=0.40). The minimum population estimate for Kogia sp. is 285.

Current Population Trend

The available information is insufficient to evaluate trends in population size for this species in the western North Atlantic.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Current and maximum net productivity rates are unknown for this stock. For purposes of this assessment, the maximum net productivity rate was assumed to be 0.04 . This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive life history (Barlow et al. 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential Biological Removal (PBR) is the product of minimum population size, one-half the maximum productivity rate, and a "recovery" factor (Wade and Angliss 1997). The minimum population size is 285. The maximum productivity rate is 0.04 , the default value for cetaceans. The "recovery" factor, which accounts for endangered, depleted, threatened stocks, or stocks of unknown status relative to optimum sustainable population (OSP) is assumed to be 0.4 because the coefficient of variation for the mortality estimate was greater than 0.8 . PBR for the western North Atlantic Kogia sp. is 2 .

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

Fishery Information

Detailed fishery information is reported in Appendix III. There has been one logbook report of fishery- related serious injury recorded off the east coast of Florida in the pelagic longline fishery in 2000 (Table 2) (Yeung 2001; Garrison 2003; Garrison and Richards, 2004). Total annual estimated average fishery-related mortality and serious injury to this stock during 1999-2003 was $6(\mathrm{CV}=1.0)$ Kogia sp.

Table 2. Summary of the incidental mortality and serious injury of pygmy sperm whales (Kogia breviceps) by commercial fishery including the years sampled (Years), the number of vessels active within the fishery (Vessels), the type of data used (Data Type), the annual observer coverage (Observer Coverage), the observed mortalities and serious injuries recorded by onboard observers, the estimated annual mortality and serious injury, the combined annual estimates of mortality and serious injury (Estimated Combined Mortality), the estimated CV of the combined estimates (Estimated CVs) and the mean of the combined estimates (CV in parentheses).

Fishery	Years	Vessels ${ }^{\text {c }}$	Data Type ${ }^{a}$	Observer Coverage	Observed Serious Injury	Observed Mortality	Estimated Serious Injury 0	Estimated Mortality	Estimated Combined Mortality	Estimated CVs	Mean Annual Mortality
Pelagic Longline ${ }^{\text {b }}$	99-03	$\begin{array}{\|l\|} \hline 198,180, \\ 161,149, \\ 127 \\ \hline \end{array}$	Obs. Data Logbook		$\begin{aligned} & 0,0,1,0, \\ & 0 \end{aligned}$	$\begin{aligned} & 0,0,0,0, \\ & 0 \end{aligned}$	$\begin{aligned} & \hline 0, \\ & 0,28, \\ & 0,0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0,0,0,0, \\ & 0 \end{aligned}$	$\begin{aligned} & 0, \\ & 0,28^{2}, 0,0 \end{aligned}$	0, 0, 1, 0, 0	$\begin{array}{\|l} \hline 6 \\ (1.0) \end{array}$
TOTAL											$\begin{array}{\|l} \hline 6 \\ (1.0) \end{array}$

${ }^{\text {a }} \quad$ Observer data (Obs. Data) are used to measure bycatch rates, and the data are collected within the Southeast Fisheries Science Center (SEFSC) Observer Program. NEFSC collects landings data (Weighout), and total landings are used as a measure of total effort for the coastal gillnet fishery. Observed bycatch rates are raised to total fishing effort reported to the SEFSC Atlantic Large Pelagic Logbook.
b The 2000 mortality estimates were taken from Table 10 in Yeung 2001, and exclude the Gulf of Mexico.
c Number of vessels in the fishery are based on vessels reporting effort to the pelagic longline logbook.

Other Mortality

From 1999-2003, 125 pygmy sperm whales were reported stranded between Maine and Puerto Rico (Table 3). The total includes 7 animals stranded in Florida in 1999; 3 animals stranded in North Carolina, 1 in South Carolina, 7 in Florida and 1 in Puerto Rico in 2000; 1 animal stranded in North Carolina, 4 in South Carolina, 3 in Georgia, and 24 in Florida in 2001; 7 animals stranded in North Carolina, 5 in South Carolina, 4 in Georgia, and 15 in Florida in 2002; and 1 animal stranded in Nova Scotia, 4 animals in North Carolina, 7 in Georgia, and 31 in Florida in 2003. In addition to the above strandings of Kogia breviceps, there were 8 strandings reported as Kogia sp. as follows: 1 Kogia sp. stranded in Georgia in 2000, 1 stranded in North Carolina and 2 in Florida in 2002, 1 stranded in Georgia and 3 in Florida in 2003.

STATE	1999	2000	2001	2002	2003	TOTALS
Nova Scotia ${ }^{\text {a }}$					1	1
North Carolina	0	3	$1^{\text {b,c }}$	$7^{\text {c }}$	4	15
South Carolina	0	1	4	5	0	10
Georgia	0	$0^{\text {c }}$	3	$4^{\text {c }}$	$7^{\text {c }}$	14
Florida	$7^{\text {b }}$	7	24	$15^{\text {d }}$	$31^{\text {e }}$	84
Puerto Rico	0	$1{ }^{\text {b }}$	0	0	0	1
TOTALS	7	12	32	31	43	125
${ }^{\text {a }}$ Data supplied by Tonya Wimmer, Nova Scotia Marine Animal Response Society (pers. comm.) ${ }^{\mathrm{b}}$ Signs of human interaction reported c 1 additional Kogia sp. stranded d 2 additional Kogia sp. stranded ${ }^{\text {e }} 3$ additional Kogia sp. stranded						

There were 3 documented strandings of pygmy sperm whales along the U.S. Atlantic coast during 1999-2003 which were classified as likely caused by fishery interactions., 1 in Florida in 1999, 1 in Puerto Rico in 2000 and 1 in North Carolina in 2001. In one of the strandings in 2002 of a pygmy sperm whale, red plastic debris was found in the stomach along with squid beaks.

Historical stranding records (1883-1988) of pygmy sperm whales in the southeastern U.S. (Credle 1988), and strandings recorded during 1988-1997 (Barros et al. 1998) indicate that this species accounts for about 83% of all Kogia sp. strandings in this area. During the period 1990-October 1998, 21 pygmy sperm whale strandings occurred in the northeastern U.S. (Delaware, New Jersey, New York and Virginia), whereas 194 strandings were documented along the U.S. Atlantic coast between North Carolina and the Florida Keys in the same period. Remains of plastic bags and other marine debris have been retrieved from the stomachs of 13 stranded pygmy sperm whales in the southeastern U.S. (Barros et al. 1990, 1998), and at least on one occasion the ingestion of plastic debris is believed to have been the cause of death. During the period 1987-1994, 1 animal had possible propeller cuts on its flukes.

Stranding data probably underestimate the extent of fishery-related mortality and serious injury because all of the marine mammals that die or are seriously injured may not wash ashore, nor will all of those that do wash ashore necessarily show signs of entanglement or other fishery-interaction. Finally, the level of technical expertise among stranding network personnel varies widely as does the ability to recognize signs of fishery interaction.

Rehabilitation challenges for Kogia sp. are numerous due to limited knowledge regarding even the basic biology of these species. Advances in recent rehabilitation success has potential implications for future release and tracking of animals at sea to potentially provide information on distribution, movements and habitat use of these species (Manire et al., 2004).

STATUS OF STOCK

The status of the pygmy sperm whale relative to OSP in the western U.S. Atlantic EEZ is unknown. This species is not listed as endangered or threatened under the Endangered Species Act. There is insufficient information with which to assess population trends. Total fishery-related mortality and serious injury for this stock is not less than 10% of the calculated PBR and therefore, cannot be considered to be insignificant and approaching zero mortality and serious injury rate. This is a strategic stock because the 1999-2003 estimated average annual fishery-related mortality to pygmy sperm whales exceeds PBR.

REFERENCES

Barlow, J., S. L. Swartz, T. C. Eagle and P. R. Wade. 1995. U.S. Marine mammal stock assessments: Guidelines for preparation, background, and a summary of the 1995 assessments. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-6, 73pp. Available from NMFS, Southwest Fisheries Science Center, 8604 La Jolla Shores Drive, La Jolla, CA, 92037-1508.
Barros, N.B. and D.A. Duffield. 2003. Unraveling the mysteries of Pygmy and Dwarf sperm whales. Strandings Newsletter of the Southeast U.S. Marine Mammal Stranding Network. December 2003. NOAA Tech. Memo. NMFS-SEFSC-521, 11 pp. Available from NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Drive, Miami, FL 33149.
Barros, N. B., D. A. Duffield, P. H. Ostrom, D. K-. Odell and V. R. Cornish. 1998. Nearshore vs. offshore ecotype differentiation of Kogia breviceps and K. simus based on hemoglobin, morphometric and dietary analyses. World Marine Mammal Science Conference Abstracts. Monaco. 20-24 January.
Barros, N. B., D. K. Odell and G. W. Patton. 1990. Ingestion of plastic debris by stranded marine mammals from Florida. Page 746. In: R. S. Shomura and M.L. Godfrey (eds.). Proceedings of the Second International Conference on Marine Debris. NOAA Tech. Memo. NOAA-TM-NMFS-SWFSC-154. . Available from NMFS, Southwest Fisheries Science Center, 8604 La Jolla Shores Drive, La Jolla, CA, 92037-1508.
Buckland, S. T., D. R. Anderson, K. P. Burnham, J. L. Laake, D. L. Borchers and L. Thomas. 2001. Introduction to distance sampling: estimating abundance of biological populations. Oxford University Press, New York, 432 pp.
Caldwell, D. K. and M. C. Caldwell. 1989. Pygmy sperm whale Kogia breviceps (de Blainville 1838): dwarf sperm whale Kogia simus Owen, 1866. pp. 235-260 In: S. H. Ridgway and R. Harrison (eds.), Handbook of marine mammals, Vol. 4: River dolphins and the larger toothed whales. Academic Press, San Diego. 442 pp.
Credle, V. R. 1988. Magnetite and magnetoreception in dwarf and pygmy sperm whales, Kogia simus and Kogia breviceps. MSc. Thesis. University of Miami. Coral Gables, FL.
Duffield, D.A., N.B. Barros, E.O. Espinoza, S. Ploen, F.M.D. Gulland, and J.E. Heyning. 2003. Identifying Pygmy and Dwarf Sperm Whales (Genus Kogia) using electrospray ionization mass spectrometry of myoglobin and hemoglobin. Mar. Mammal Sci.19(2):395-399.
Garrison, L.P. 2003. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2001-2002. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SEFSC-515, 52 pp. Available from NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Road, Miami, Fl 33149.
Garrison, L.P. and P.M. Richards. 2004. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2003. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SEFSC-527, 57 pp. Available from NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Road, Miami, FL.
Wursig, B., T.A. Jefferson, and D.J. Schmidly. 2000. The marine mammals of the Gulf of Mexico. Texas A\&M University Press, College Station, TX, 256 pp.
Mullin, K. D. and G. L. Fulling. 2003. Abundance and distribution of cetaceans in the southern U.S. North Atlantic Ocean during summer 1998. Fish. Bull., U.S. 101:603-613.
Hiby, L. 1999. The objective identification of duplicate sightings in aerial survey for porpoise. pp. 179-189. In: G.W. Garner, S. C. Amstrup, J. L. Laake, B. F. J. Manly, L. L. McDonald, and D. G. Robertson (eds.) Marine mammal survey and assessment methods. Balkema, Rotterdam. 287 pp.
Manire, C.A., H.L. Rhinehart, N.B. Barros, L. Byrd, and P. Cunningham-Smith. 2004. An approach to the rehabilitation of Kogia sp. Aquatic Mamm. 30(2):257-270.

Palka, D. 1995. Abundance estimate of the Gulf of Maine harbor porpoise. pp. 27-50 In: A. Bjørge and G.P.Donovan (eds.) Biology of the Phocoenids. Rep. int. Whal. Commn (Special Issue) 16: i-x +552 pp .
Palka, D. and P.S. Hammond. 2001. Accounting for responsive movement in line-transect estimates of abundance. Can. J. Fish. Aquat. Sci. 58:777-787.

Thomas, L., J. L. Laake, J. F. Derry, S. T. Buckland, D. L. Borchers, D. R. Anderson, K. P. Burnham, S. Strindberg, S. L. Hedley, F. F. C. Marques, J. H. Pollard and R. M. Fewster. 1998. Distance 3.5. Research Unit for Wildlife Population Assessment, University of St. Andrews, St. Andrews, UK.
Wade, P.R., and R.P. Angliss. 1997. Guidelines for assessing marine mammal stocks: Report of the GAMMS Workshop April 3-5, 1996, Seattle, Washington. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-12, 93 pp. Available from: NOAA, National Marine Fisheries Service, 166 Water St., Woods Hole, MA 02543.
Yeung, C. 2001. Estimates of marine mammal and marine turtle bycatch by the U.S. Atlantic pelagic longline fleet in 1999-2000. NOAA Tech. Memo. NOAA-TM-SEFSC-467, 42 pp. Available from: NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL, 33149.

PYGMY KILLER WHALE (Feresa attenuata): Western North Atlantic Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

The pygmy killer whale is distributed worldwide in tropical to sub-tropical waters (Jefferson et al. 1994). Pygmy killer whales are assumed to be part of the cetacean fauna of the tropical western North Atlantic. The paucity of sightings is probably due to a naturally low number of groups compared to other cetacean species. Sightings in the more extensively surveyed northern Gulf of Mexico occur in oceanic waters (Mullin et al. 1994; Mullin and Fulling, 2004). Sightings of pygmy killer whales were documented in all seasons during aerial surveys of the northern Gulf of Mexico between 1992 and 1998 (Hansen et al. 1996; Mullin and Hoggard 2000). The western North Atlantic population is provisionally being considered one stock for management purposes. Additional morphological, genetic and/or behavioral data are needed to provide further information on stock delineation.

POPULATION SIZE

The numbers of pygmy killer whales off the U.S. or Canadian Atlantic coast are unknown, and seasonal abundance estimates are not available for this stock, since it was rarely seen in any surveys. A group of 6 pygmy killer whales was sighted during a 1992 vessel survey of the western North Atlantic off of Cape Hatteras, North Carolina, in waters $>1500 \mathrm{~m}$ deep (Hansen et al. 1994), but this species was not sighted during subsequent surveys (Anon. 1999; Anon. 2002; Mullin and Fulling 2003). Abundance was not estimated for pygmy killer whales from the 1992 vessel survey because the sighting was not made during line-transect sampling effort; therefore, the population size of pygmy killer whales is unknown.

Minimum Population Estimate

Present data are insufficient to calculate a minimum population estimate for this stock.

Current Population Trend

There are insufficient data to determine the population trends for this stock.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Current and maximum net productivity rates are unknown for this stock. For purposes of this assessment, the maximum net productivity rate was assumed to be 0.04 . This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive history (Barlow et al. 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential Biological Removal level (PBR) is the product of the minimum population size, one-half the maximum productivity rate, and a recovery factor (MMPA Sec. 3.16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size is unknown. The maximum productivity rate is 0.04 , the default value for cetaceans. The "recovery" factor, which accounts for endangered, depleted, threatened stocks, or stocks of unknown status relative to optimum sustainable population (OSP), is assumed to be 0.5 because this stock is of unknown status. PBR for the western North Atlantic stock of pygmy killer whales is unknown.

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY
 Fishery Information

Detailed fishery information is reported in Appendix III. Total annual estimated average fishery-related mortality and serious injury to this stock during 1999-2003 was zero pygmy killer whales, as there were no reports of mortality or serious injury to pygmy killer whales (Yeung 2001; Garrison 2003; Garrison and Richards, 2004).
There has historically been some take of this species in small cetacean fisheries in the Caribbean (Caldwell and Caldwell 1971).

Other Mortality

From 1999-2003, 2 pygmy killer whales were reported stranded between Maine and Puerto Rico (Table 1). The total includes 1 animal stranded in South Carolina and 1 in Georgia in 2003, though there were no indications of human interactions for these stranded animals.

Stranding data probably underestimate the extent of fishery-related mortality and serious injury because all of the marine mammals that die or are seriously injured may not wash ashore, nor will all of those that do wash ashore
necessarily show signs of entanglement or other fishery-interaction. Finally, the level of technical expertise among stranding network personnel varies widely as does the ability to recognize signs of fishery interaction.

Table 1. Pygmy killer whale (Feresa attenuata) strandings along the U.S. Atlantic coast, 1999-2003						
STATE	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	$\mathbf{2 0 0 3}$	TOTALS
North Carolina	0	0	0	0	0	0
South Carolina	0	0	0	0	1	1
Georgia	0	0	0	0	1	1
Florida	0	0	0	0	0	0
Puerto Rico	0	0	0	0	0	0
TOTALS	0	0	0	0	2	2

STATUS OF STOCK

The status of pygmy killer whales, relative to OSP, in the U.S. western North Atlantic EEZ is unknown. The species is not listed as threatened or endangered under the Endangered Species Act. There are insufficient data to determine the population size or trends and PBR cannot be calculated for this stock. No fishery-related mortality and serious injury has been observed since 1999; therefore, total fishery-related mortality and serious injury rate can be considered insignificant and approaching zero mortality and serious injury. This is not a strategic stock.

REFERENCES

Barlow, J., S. L. Swartz, T. C. Eagle and P. R. Wade. 1995. U.S. Marine mammal stock assessments: Guidelines for preparation, background, and a summary of the 1995 assessments. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR6, 73pp. Available from: NMFS, Southwest Fisheries Science Center, 8604 La Jolla Shores Drive, La Jolla, CA, 920371508.

Caldwell, D. K. and M. C. Caldwell. 1971. The pygmy killer whale, Feresa attenuata, in the western Atlantic, with a summary of world records. J. Mamm. 52:206-209.
Garrison, L.P. 2003. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 20012002. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SEFSC-515, 52 pp . Available from NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Road, Miami, Fl 33149.
Garrison, L.P. and P.M. Richards. 2004. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2003. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SEFSC-527, 57 pp. Available from NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Road, Miami, Fl 33149.
Hansen, L.J., K.D. Mullin and C.L. Roden. 1994. Preliminary estimates of cetacean abundance in the northern Gulf of Mexico from vessel surveys, and of selected cetacean species in the U.S. Atlantic Exclusive Economic Zone from vessel surveys. Southeast Fisheries Science Center, Miami Laboratory, Contribution No. MIA-93/94-58. Available from: NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL, 33149.
Hansen, L.J., K.D. Mullin, T.A. Jefferson and G.P. Scott. 1996. Visual surveys aboard ships and aircraft. Pages 55-132. In: R.W. Davis and G.S. Fargion (editors), Distribution and abundance of marine mammals in the north-central and western Gulf of Mexico: Final report. Volume II: Technical report. OCS Study MMS 96- 0027. Minerals Management Service, Gulf of Mexico OCS Region, New Orleans.
Jefferson, T.A., S. Leatherwood, and M.A. Weber. 1994. Marine mammals of the world. FAO, Rome, 320 pp .
Mullin, K.D. and G.L. Fulling. 2003. Abundance of cetaceans in the southern U.S. North Atlantic Ocean during summer 1998. Fish. Bull. 101:603-613.
Mullin, K.D. and G.L. Fulling. 2004. Abundance of cetaceans in the oceanic northern Gulf of Mexico, 1996-2001. Mar. Mammal Sci. 20(4):787-807.
Mullin, K.D. and W. Hoggard. 2000. Visual surveys of cetaceans and sea turtles from aircraft and ships. Pages 111-172. In: R. W. Davis, W. E. Evans and B. Würsig (editors), Cetaceans, sea turtles and seabirds in the northern Gulf of Mexico: Distribution, abundance and habitat associations. Volume II: Technical report. OCS Study MMS 96-0027. Minerals Management Service, Gulf of Mexico OCS Region, New Orleans.
NMFS [National Marine Fisheries Service]. 1999. Cruise results. Summer Atlantic Ocean marine mammal survey. NOAA Ship Oregon II cruise 236 (99-05), 4 August - 30 September 1999. Available from: SEFSC, 3209 Frederic Street, Pascagoula, MS, 39567.
NMFS [National Marine Fisheries Service]. 2002. Cruise results. Mid-Atlantic cetacean survey. NOAA Ship Gordon Gunter cruise GU-02-01, 6 February - 8 April 2002. Available from: SEFSC, 3209 Frederic Street, Pascagoula, MS 39567.
Wade, P.R., and R.P. Angliss. 1997. Guidelines for assessing marine mammal stocks: Report of the GAMMS Workshop April 35, 1996, Seattle, Washington. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR- 12, 93 pp. Available from: NOAA, National Marine Fisheries Service, 166 Water St., Woods Hole, MA 02543.
Yeung, C. 2001. Estimates of marine mammal and marine turtle bycatch by the U.S. Atlantic pelagic longline fleet in 19992000. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SEFSC-467, 43 pp. Available from: NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL, 33149.

CUVIER'S BEAKED WHALE (Ziphius cavirostris): Western North Atlantic Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

The distribution of Cuvier's beaked whales is poorly known, and is based mainly on stranding records (Leatherwood et al. 1976). Strandings have been reported from Nova Scotia along the eastern U.S. coast south to Florida, around the Gulf of Mexico, and within the Caribbean (Leatherwood et al. 1976; CETAP 1982; Heyning 1989; Houston 1990; Mignucci-Giannoni et al. 1999). Stock structure in the North Atlantic is unknown.

Cuvier's beaked whale sightings have occurred principally along the continental shelf edge in the MidAtlantic region off the northeast U.S. coast (CETAP 1982; Waring et al. 1992; Waring et al. 2001; Palka et al. Unpubl. Ms.). Most sightings were in late spring or summer.

POPULATION SIZE

The total number of Cuvier's beaked whales off the eastern U.S. and Canadian Atlantic coast is unknown.

However, several estimates of the undifferentiated complex of beaked whales (Ziphius and Mesoplodon spp.) from selected regions of the habitat do exist for select time periods. Sightings were almost exclusively in the continental shelf edge and continental slope areas (Figure 1). An abundance of 120 undifferentiated beaked whales $(\mathrm{CV}=0.71)$ was estimated from an aerial survey program conducted from 1978 to 1982 on the continental shelf and shelf edge waters between Cape Hatteras, North Carolina and Nova Scotia (CETAP 1982). An abundance of 442 ($\mathrm{CV}=0.51$) undifferentiated beaked whales was estimated from an

August 1990 shipboard line transect sighting survey, conducted principally along the Gulf Stream north wall between Cape Hatteras and Georges Bank (NMFS 1990; Waring et al. 1992). An abundance of 262 (CV=0.99) undifferentiated beaked whales was estimated from a June

Figure 1. Distribution of beaked whale sightings from NEFSC and SEFSC shipboard and aerial surveys during the summer 1998, 1999, and 2004. Isobaths are $100 \mathrm{~m}, 1,000 \mathrm{~m}$, and 4,000 m . and July 1991 shipboard line transect sighting survey conducted primarily between the 200 and $2,000 \mathrm{~m}$ isobaths from Cape Hatteras to Georges Bank (Waring et al. 1992; Waring 1998). An abundance of $370(\mathrm{CV}=0.65)$ and $612(\mathrm{CV}=0.73)$ undifferentiated beaked whales was estimated from line transect aerial surveys conducted from August to September 1991 using the Twin Otter and AT-11, respectively (NMFS 1991). As recommended in the GAMMS Workshop Report (Wade and Angliss 1997), estimates older than eight years are deemed unreliable, therefore should not be used for PBR determinations. Further, due to changes in survey methodology these data should not be used to make comparisons to more current estimates.

An abundance of $330(\mathrm{CV}=0.66)$ undifferentiated beaked whales was estimated from a June and July 1993 shipboard line transect sighting survey conducted principally between the 200 and $2,000 \mathrm{~m}$ isobaths from the southern edge of Georges Bank, across the Northeast Channel to the southeastern edge of the Scotian Shelf (NMFS 1993). Data were collected by two alternating teams that searched with 25×150 binoculars and were analyzed using DISTANCE (Buckland et al. 1993). Estimates include school-size bias, if applicable, but do not include corrections for $g(0)$ or dive-time. Variability was estimated using bootstrap resampling techniques.

An abundance of $99(\mathrm{CV}=0.64)$ undifferentiated beaked whales was estimated from an August 1994 shipboard line transect survey conducted within a Gulf Stream warm-core ring located in continental slope waters southeast of Georges Bank (NMFS 1994). Data were collected by two alternating teams that searched with 25×150 binoculars and an independent observer who searched by naked eye from a separate platform on the bow. Data were analyzed using

DISTANCE (Buckland et al. 1993). Estimates include school-size bias, if applicable, but do not include corrections for $g(0)$ or dive-time. Variability was estimated using bootstrap resampling techniques.

An abundance of $1,519(\mathrm{CV}=0.69)$ undifferentiated beaked whales was estimated from a July to September 1995 sighting survey conducted by two ships and an airplane that covered waters from Virginia to the mouth of the Gulf of St. Lawrence (Palka et al. Unpubl. Ms.). Total track line length was $32,600 \mathrm{~km}$. The ships covered waters between the 50 and 1,000 fathom isobaths, the northern edge of the Gulf Stream, and the northern Gulf of Maine/Bay of Fundy region. The airplane covered waters in the Mid-Atlantic from the coastline to the 50 f isobath, the southern Gulf of Maine, and shelf waters off Nova Scotia from the coastline to the $1,000 \mathrm{f}$ isobath. Data collection and analysis methods used were described in Palka (1996).

An abundance of 2,600 $(\mathrm{CV}=0.40)$ undifferentiated beaked whales was estimated from a line transect sighting survey conducted during 6 July 6 to 6 September 1998 by a ship and plane that surveyed 15,900 km of track line in waters north of Maryland ($38^{\circ} \mathrm{N}$) (Figure 1; Palka et al. Unpubl. Ms.). Shipboard data were analyzed using the modified direct duplicate method (Palka 1995) that accounts for school size bias and $g(0)$, the probability of detecting a group on the track line. Aerial data were not corrected for $g(0)$.

An abundance of $541(\mathrm{CV}=0.55)$ undifferentiated beaked whales was estimated from a shipboard line transect sighting survey conducted between 8 July and 17 August 1998 that surveyed $4,163 \mathrm{~km}$ of track line in waters south of Maryland $\left(38^{\circ} \mathrm{N}\right)$ (Figure 1; Mullin and Fulling 2003). This estimate is a recalculation of the same data reported in previous SARs. For more details, see Mullin and Fulling (2003). Abundance estimates were made using the program DISTANCE (Buckland et al. 1993) where school size bias and ship attraction were accounted for.

The best 1998 abundance estimate for undifferentiated beaked whales is the sum of the estimates from the two U.S. Atlantic surveys, $3,141(\mathrm{CV}=0.34)$, where the estimate from the northern U.S. Atlantic is $2,600(\mathrm{CV}=0.40)$ and from the southern U.S. Atlantic is $541(\mathrm{CV}=0.55)$. This joint estimate is considered best because together these two surveys have the most complete coverage of the species' habitat.

An abundance of $2,211(\mathrm{CV}=0.58)$ for beaked whales was estimated from a line-transect sighting survey conducted during 12 June to 4 August 2004 by a ship and plane that surveyed $10,761 \mathrm{~km}$ of track line in waters north of Maryland $\left(38^{0} \mathrm{~N}\right)$ to the Bay of Fundy ($45^{0} \mathrm{~N}$) (Figure 1; Palka unpubl.). Shipboard data were collected using the two independent team line transect method and analyzed using the modified direct duplicate method (Palka 1995) accounting for biases due to school size and other potential covariates, reactive movements (Palka and Hammond 2001), and $g(0)$, the probability of detecting a group on the track line. Aerial data were collected using the Hiby circle-back line-transect method (Hiby 1999) and analyzed accounting for $g(0)$ and biases due to school size and other potential covariates (Figure 1; Palka unpubl.).

A shipboard survey of the U.S. Atlantic outer continental shelf and continental slope (water depths. $>50 \mathrm{~m}$) between Florida and Maryland (27.5 and $38^{\circ} \mathrm{N}$ latitude) was conducted during June-August, 2004. The survey employed two independent visual teams searching with 50x bigeye binocluars. Survey effort was stratified to include increased effort along the continental shelf break and Gulf Stream front in the Mid-Atlantic. The survey included 5,659 km of trackline, and there were a total of 473 cetacean sightings. Sightings were most frequent in waters north of Cape Hatteras, North Carolina along the shelf break. Data were analyzed to correct for visibility bias $g(0)$ and group-size bias employing line transect distance analysis and the direct duplicate estimator (Palka, 1995; Buckland et al., 2001). The resulting abundance estimate for beaked whales between Florida and Maryland was 674 ($\mathrm{CV}=0.36$).

The best 2004 abundance estimate for beaked whales is the sum of the estimates from the two 2004 U.S. Atlantic surveys, $3,513(\mathrm{CV}=0.63)$, where the estimate from the northern U.S. Atlantic is $2,839(\mathrm{CV}=0.78)$, and from the southern U.S. Atlantic is $674(\mathrm{CV}=0.36)$. This joint estimate is considered best because together these two surveys have the most complete coverage of the species' habitat.

Although the 1990-2004 surveys did not sample exactly the same areas or encompass the entire beaked whale habitat, they did focus on segments of known or suspected high-use habitats off the northeastern U.S. coast. The collective 19902004 data suggest that, seasonally, at least several thousand beaked whales are occupying these waters, with highest levels of abundance in the Georges Bank region. Recent results suggest that beaked whale abundance may be highest in association with Gulf Stream and warm-core ring features.

Because the estimates presented here were not dive-time corrected, they are likely negatively biased and probably underestimate actual abundance. Given that Mesoplodon spp. prefers deep-water habitats (Mead 1989) the bias may be substantial.

Table 1. Summary of abundance estimates for the undifferentiated complex of beaked whales which include Ziphius and Mesoplodon spp. Month, year, and area covered during each abundance survey, and resulting abundance estimate $\left(\mathrm{N}_{\text {best }}\right)$ and coefficient of variation (CV).			
Month/Year	Area	$\mathbf{N}_{\text {best }}$	CV
Jul-Sep 1998	Maryland to Gulf of St. Lawrence	2,600	0.40
Jul-Aug 1998	Florida to Maryland	541	0.55
Jul-Sep 1998	Florida to Gulf of St. Lawrence (COMBINED)	3,141	0.34
Jun-Aug 2004	Maryland to the Bay of Fundy	2,839	0.78
Jun-Aug 2004	Florida to Maryland	674	0.36
Jun-Aug 2004	Florida to Bay of Fundy (COMBINED)	3,513	0.63

Minimum Population Estimate

The minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the log-normally distributed best abundance estimate. This is equivalent to the 20th percentile of the log-normal distribution as specified by Wade and Angliss (1997). The best estimate of abundance for undifferentiated beaked whales is 3,513 (CV =0.63). The minimum population estimate for the undifferentiated complex of beaked whales (Ziphius and Mesoplodon spp.) is 2,154. It is not possible to determine the minimum population estimate of only Cuvier's beaked whales.

Current Population Trend

There are insufficient data to determine the population trends for this species.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Current and maximum net productivity rates are unknown for this stock. Life history parameters that could be used to estimate net productivity include: length at birth is 2 to 3 m , length at sexual maturity is 6.1 m for females, and 5.5 m for males, maximum age for females were 30 growth layer groups (GLG's) and for males was 36 GLG's, which may be annual layers (Mitchell 1975; Mead 1984; Houston 1990).

For purposes of this assessment, the maximum net productivity rate was assumed to be 0.04 . This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive life history (Barlow et al. 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential Biological Removal (PBR) is the product of minimum population size, one-half the maximum productivity rate, and a "recovery" factor (MMPA Sec. 3. 16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size for the undifferentiated complex of beaked whales is 2,154 . The maximum productivity rate is 0.04 , the default value for cetaceans. The "recovery" factor, which accounts for endangered, depleted, threatened stocks, or stocks of unknown status relative to optimum sustainable population (OSP) is assumed to be 0.5 because this stock is of unknown status. PBR for all species in the undifferentiated complex of beaked whales (Ziphius and Mesoplodon spp.) is 22. It is not possible to determine the PBR for only Cuvier's beaked whales.

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

The 1999-2003 total average estimated annual mortality of beaked whales in fisheries in the U.S. Atlantic EEZ was 1.0 and is derived from three components: 1) two stranded animals were entangled in fishing gear, 2) two animals were ship struck, and 3) one stranded animal died from acoustic or blunt trauma - see other mortality text and (Table 2).

Fishery Information

Detailed fishery information is reported in Appendix III.
Total fishery-related mortality and serious injury cannot be estimated separately for each beaked whale species because of the uncertainty in species identification by fishery observers. The Atlantic Scientific Review Group advised adopting the risk-averse strategy of assuming that any beaked whale stock which occurred in the U.S. Atlantic EEZ might have been subject to the observed fishery-related mortality and serious injury.

Earlier Interactions

There is no historical information available that documents incidental mortality of beaked whales in either U.S. or Canadian Atlantic coast fisheries (Read 1994). The only documented bycatch of beaked whales is in the pelagic drift gillnet fishery (now prohibited). The bycatch only occurred from Georges Canyon to Hydrographer Canyon along the continental shelf break and continental slope during July to October. Forty-six fishery-related beaked whale mortalities were observed between 1989 and 1998. These included 24 Sowerby's, 4 True's, 1 Cuvier's and 17 undifferentiated beaked whales. Recent analyses of biological samples (genetics and morphological analysis) have been used to determine species identifications for some of the bycaught animals. Estimated bycatch mortality by species is available for the 19941998 period. Prior estimates are for undifferentiated beaked whales. The estimated annual fishery-related mortality (CV in parentheses) was 60 in $1989(0.21)$, 76 in $1990(0.26), 13$ in 1991 (0.21), 9.7 in $1992(0.24)$ and 12 in 1993 (0.16). The 1994-1998 estimates by 'species' are:

Year	Cuvier's	Sowerby's	True's	Mesoplodon spp.
1994	$1(0.14)$	$3(0.09)$	0	0
1995	0	$6(0)$	$1(0)$	$3(0)$
1996	0	$9(0.12)$	$2(0.26)$	$2(0.25)$
1997	NA	NA	NA	NA
1998	0	$2(0)$	$2(0)$	$7(0)$

During July 1996, one beaked whale was entangled and released alive with "gear in/around a single body part". Annual mortality estimates do not include any animals injured and released alive.

Other Mortality

From 1992 to 2000, a total of 53 beaked whales stranded along the U.S. Atlantic coast between Florida and Massachusetts (NMFS unpublished data). This includes: 28 (includes one tentative identification) Gervais' beaked whales (one 1997 animal had plastics in esophagus and stomach, and Sargassum in esophagus; 2 animals that stranded in September 1998 in South Carolina showed signs of fishery interactions); 2 True's beaked whales; 5 Blainville's beaked whales; 1 Sowerby's beaked whale; 13 Cuvier's beaked whales (one 1996 animal had propeller marks, and one 2000 animal had a longline hook in the lower jaw) and 4 unidentified animals.

One stranding of Sowerby's beaked whale was recorded on Sable Island between 1970-1998 (Lucas and Hooker 2000). The whale's body was marked by wounds made by the cookiecutter shark (Isistius brasiliensis), which has previously been observed on beaked whales (Lucas and Hooker 2000).

Also, several unusual mass strandings of beaked whales in North Atlantic marine environments have been associated with Naval activities. During the mid- to late 1980s multiple mass strandings of Cuvier's beaked whales (4 to about 20 per event) and small numbers of Gervais' beaked whale and Blainville's beaked whale occurred in the Canary Islands (Simmonds and Lopez-Jurado 1991). Twelve Cuvier's beaked whales that live stranded and subsequently died in the Mediterranean Sea on 12-13 May 1996 were associated with low frequency acoustic sonar tests conducted by the North Atlantic Treaty Organization (Frantzis 1998). In March 2000, 14 beaked whales live stranded in the Bahamas; 6 beaked whales (5 Cuvier's and 1 Blainville's) died (Balcomb and Claridge 2001; Evans and England 2001; Cox et al., in review). Four Cuvier's, 2 Blainville's and 2 unidentified beaked whales were returned to sea. The fate of the animals returned to sea is unknown, since none of the whales have been resighted. Necropsies of 6 dead beaked whales revealed evidence of tissue trauma associated with an acoustic or impulse injury that caused the animals to strand. Subsequently, the animals died due to extreme physiologic stress associated with the physical stranding (i.e., hyperthermia, high endogenous catecholamine release) (Cox et al., in review).

During 2001-2003, twenty-four beaked whales stranded along the U.S. Atlantic coast (Table 2).

STATE	2001	2002	2003	TOTAL
Maine		M. mirus (1)	M. bidens (1) ${ }^{\text {c }}$	2
Massachusetts	--	--	--	--
Virginia	--	M. europaeus (2) ${ }^{\text {b }}$	M. mirus (1) ${ }^{\text {d }}$	3
North Carolina	$\begin{gathered} \text { M. europaeus (1) } \\ \text { Mesoplodon spp. (3) } \end{gathered}$	Unid. (1)	M. europaeus (2) Mesoplodon spp. (1)	8
South Carolina	M. europaeus (2)	Ziphius (1)	Ziphius (2)	5
Florida	M. europaeus (4) ${ }^{\text {a }}$	--	Ziphius (1) M. europaeus (1)	6
Total	10	5	9	$24^{\text {e }}$
${ }^{\text {a }}$ Acoustic or blunt trauma was the assigned cause of mortality for one animal stranded in Broward County in Sept. ${ }^{\mathrm{b}}$ Ship strike was the likely cause of death for one animal ${ }^{c}$ Boat strike was the likely cause of death ${ }^{\text {d }}$ Entanglement in fishing gear was the likely cause of death ${ }^{\mathrm{e}}$ The cause of death for most of the stranded animals could not be determined.				

STATUS OF STOCK

The status of Cuvier's beaked whale relative to OSP in the U.S. Atlantic EEZ is unknown. This species is not listed as threatened or endangered under the Endangered Species Act. Although a species specific PBR cannot be determined, the permanent closure of the pelagic drift gillnet fishery has eliminated the principal known source of incidental fishery mortality. The total fishery mortality and serious injury for this group is less than 10% of the calculated PBR and, therefore, can be considered to be insignificant and approaching zero mortality and serious injury rate. This is a strategic stock because of uncertainty regarding stock size and evidence of human induced mortality and serious injury associated with acoustic activities.

REFERENCES

Balcomb, K. C. III and D. E. Claridge. 2001. A mass stranding of cetaceans caused by naval sonar in the Bahamas. Bahamas J. Sci. 2:2-12.
Barlow, J., S. L. Swartz, T. C. Eagle, and P. R. Wade. 1995. U.S. Marine Mammal Stock Assessments: Guidelines for Preparation, Background, and a Summary of the 1995 Assessments. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-6, 73 pp.
Buckland, S. T., D. R. Anderson, K. P. Burnham, and J. L. Laake. 1993. Distance sampling: estimating abundance of biological populations. Chapman and Hall, New York, NY, 442 pp.
Buckland, S. T., D.R. Andersen, K.P Burnham, J.L. Laake, D.L. Borchers, and L. Thomas. 2001. Introduction to Distance Sampling estimating abundance of biological populations. Oxford University Press, New York, 432 pp.
CETAP. 1982. A characterization of marine mammals and turtles in the mid- and north Atlantic areas of the U.S. outer continental shelf. Cetacean and Turtle Assessment Program, University of Rhode Island. Final Report \#AA551-CT8-48 to the Bureau of Land Management, Washington, DC, 538 pp.
Cox, T.M., T. Ragen, A.J. Read, E. Vos, R.W. Baird, K. Balcomb, J. Barlow, J. Caldwell, T. Cranford, L. Crum, A. D’Amico, G. D’Spain, A. Fernadez, J. Finneran, R. Gentry, W. Gerth, F. Gulland, J. Hildebrand, D. Houser, T. Hullar, P.D. Jepson, D. Ketten, C.D. MacLeod, P. Miller, S. Moore, D. Mountain, D. Palka, P. Ponganis, S. Rommel, T. Rowles, B. Taylor, P. Tyack, D. Wartzok, R. Gisiner, J. Mead, L. Benner. 2004. Report of a workshop to understand the impacts of anthropogenic sound on beaked whales. 33 pp . In press. J. Cetacean Res. Manage.
Frantzis, A. 1998. Does acoustic testing strand whales? Nature 392:29.
Evans, D.L. and G. R. England. 2001. Joint interim report - Bahamas Marine Mammal Stranding - event of 15-16 March 2000. U.S. Department of Commerce; Secretary of the Navy, vi +59 pp . Available at: http://www.nmfs.noaa.gov/pr/acoustics/acoustics reports.htm.
Heyning, J. E. 1989. Cuvier's beaked whale, Ziphius cavirostris G. Cuvier, 1823. Pages 289-308 In: S. H. Ridgway and R. Harrison (eds.), Handbook of Marine Mammals, Vol. 4: River dolphins and larger toothed whales. Academic Press, London, 442 pp.
Hiby, L. 1999. The objective identification of duplicate sightings in aerial survey for porpoise. Pages 179-189 In: G.W. Garner, S.C. Amstrup, J.L. Laake, B.F.J. Manly, L.L. McDonald, and D.G. Robertson (eds.). Marine Mammal Survey and Assessment Methods. Balkema, Rotterdam.

Houston, J. 1990. Status of Cuvier's Beaked Whale, Ziphius cavirostris, in Canada. Can. Field Nat. 105(2):215-218.
Leatherwood, S., D. K. Caldwell and H. E. Winn. 1976. Whales, dolphins, and porpoises of the western North Atlantic. A guide to their identification. U.S. Dept. of Commerce, NOAA Tech. Rep. NMFS Circ. 396, 176 pp.
Lucas, Z.N. and S.K. Hooker. 2000. Cetacean strandings on Sable Island, Nova Scotia, 1970-1998. Can. Field Nat. 114:45-61.
Mead, J.G. 1984. Survey of reproductive data for the beaked whales (Ziphiidae). Rep. int. Whal. Commn (Special Issue) 6:91-96.
Mead, J.G. 1989. Beaked whales of the genus Mesoplodon. Pages 349-430. In: S.H. Ridgeway and R. Harrison (eds.), Handbook of Marine Mammals, Vol. 4: River Dolphins and Toothed Whales. Academic Press, San Diego, CA, 442 pp .
Mignucci-Giannoni, A.A., B. Pinto-Rodríguez, M. Velasco-Escudero, R.A. Montoya-Ospina, N.M. Jiménez, M.A. Rodríguez-López, E.H. Williams, Jr., and D.K. Odell. 1999. Cetacean strandings in Puerto Rico and the Virgin Islands. J. Cetacean Res. Manage. 1:191-198.
Mitchell, E.D. (ed). 1975. Review of the biology and fisheries for smaller cetaceans. Report of the meeting on smaller cetaceans. Int. Whal. Commn. J. Fish. Res. Bd. Can. 32(7):875-1240.
Mullin, K. D. and G.L. Fulling. 2003. Abundance of cetaceans in the southern U.S. Atlantic Ocean during summer 1998. Fish. Bull., U.S.101:603-613.
NMFS [National Marine Fisheries Service]. 1990. Cruise results, NOAA Ship CHAPMAN, Cruise No. 90-05. Marine Mammal Sighting Survey. 5pp. Available from: National Marine Fisheries Service, 166 Water Street, Woods Hole, MA 02543-1026.
NMFS [National Marine Fisheries Service]. 1991. Northeast cetacean aerial survey and interplatform study. NOAA-NMFS-SEFSC and NEFSC. 4 pp. Available from: National Marine Fisheries Service, 166 Water Street, Woods Hole, MA 02543-1026.
NMFS [National Marine Fisheries Service]. 1993. Cruise results, NOAA ship DELAWARE II, Cruise No. DEL 93-06, Marine mammal Survey. 5 pp. Available from: National Marine Fisheries Service, 166 Water Street, Woods Hole, MA 02543-1026.
NMFS [National Marine Fisheries Service]. 1994. Cruise results, NOAA Ship RELENTLESS, Cruise No. RS 94-02, Marine Mammal Survey/Warm Core Ring Study. 8pp. Available from: National Marine Fisheries Service, 166 Water Street, Woods Hole, MA 02543-1026.
Palka, D. 1995. Abundance estimate of the Gulf of Maine harbor porpoise. Rep. int. Whal. Commn (Special Issue) 16:27-50.
Palka, D. 1996. Update on abundance of Gulf of Maine/Bay of Fundy harbor porpoises. NOAA/NMFS/NEFSC. Ref. Doc. 96-04; 37 pp. Available from: National Marine Fisheries Service, 166 Water Street, Woods Hole, MA 02543-1026.
Palka, D. and P.S. Hammond. 2001. Accounting for responsive movement in line transect estimates of abundance. Can. J. Fish. Aquat. Sci. 58:777-787.

Read, A. J. 1994. Interactions between cetaceans and gillnet and trap fisheries in the Northwest Atlantic. Rep. int. Whal. Commn (Special Issue) 15:133-147.
Simmonds, M.P. and L.F. Lopez-Jurado. 1991. Whales and the military. Nature 351:448.
Wade, P. R., and R. P. Angliss. 1997. Guidelines for assessing marine mammal stocks: Report of the GAMMS Workshop April 3-5, 1996, Seattle, Washington. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-12, 93 pp.
Waring, G.T., C.P. Fairfield, C.M. Ruhsam, and M. Sano. 1992. Cetaceans associated with Gulf Stream features off the northeastern USA shelf. ICES C.M. 1992/N:12 29 pp.
Waring, G.T. 1998. Results of the summer 1991 R/V Chapman marine mammal sighting survey. NOAA-NMFSNEFSC Lab. Ref. Doc. No. 98-09, 21 pp. Available from: National Marine Fisheries Service, 166 Water St., Woods Hole, Massachusetts 02543-1026.
Waring, G.T., T. Hamazaki, D. Sheehan, G. Wood, and S. Baker. 2001. Characterization of beaked whale (Ziphiidae) and sperm whale (Physeter macrocephalus) summer habitat in shelf-edge and deeper waters off the northeast U.S. Mar. Mammal. Sci. 17(4): 703-717.

MESOPLODON BEAKED WHALES (Mesoplodon spp.): Western North Atlantic Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

Within the genus Mesoplodon, there are four species of beaked whales that reside in the northwest Atlantic. These include True's beaked whale, Mesoplodon mirus; Gervais' beaked whale, M. europaeus; Blainville's beaked whale, M. densirostris; and Sowerby's beaked whale, M. bidens (Mead 1989). These species are difficult to identify to the species level at sea; therefore, much of the available characterization for beaked whales is to genus level only. Stock structure for each species is unknown.

The distribution of Mesoplodon spp. in the northwest Atlantic is known principally from stranding records (Mead 1989; Nawojchik 1994; Mignucci-Giannoni et al. 1999). Off the U.S. Atlantic coast, beaked whale (Mesoplodon spp.) sightings have occurred principally along the shelf-edge and deeper oceanic waters (CETAP, 1982; Waring et al. 1992; Tove 1995; Waring et al. 2001; Palka et al. unpublished manuscript; Figure 1)). Most sightings were in late spring and summer, which corresponds to survey effort.

True's beaked whale is a temperate-water species that has been reported from Cape Breton Island, Nova Scotia, to the Bahamas (Leatherwood et al. 1976; Mead 1989). It is considered rare in Canadian waters (Houston 1990).

Gervais' beaked whales are believed to be principally oceanic, and strandings have been reported from Cape Cod Bay to Florida, into the Caribbean and the Gulf of Mexico (Leatherwood et al. 1976; Mead 1989; NMFS unpublished data). This is the most common species of Mesoplodon to strand along the U.S. Atlantic coast. The northernmost stranding was on Cape Cod.

Blainville's beaked whales have been reported from southwestern Nova Scotia to Florida, and are believed to be widely but sparsely distributed in tropical to warmtemperate waters (Leatherwood et al. 1976; Mead 1989, Nicolas et al. 1993). There are two records of strandings in Nova Scotia which probably represent strays from the Gulf Stream (Mead 1989). They are considered rare in Canadian waters (Houston 1990).

Sowerby's beaked whales have been reported from New England waters north to the ice pack, and individuals are seen along the Newfoundland coast in summer (Leatherwood et al. 1976; Mead 1989). Furthermore, a single stranding occurred off the Florida west coast (Mead 1989). This species is considered rare in Canadian waters (Lien et al. 1990).

POPULATION SIZE

The total number of Mesoplodon spp. beaked whales off the eastern U.S. and Canadian Atlantic coast is unknown.

However, several estimates of the undifferentiated complex of beaked whales (Ziphius and Mesoplodon spp.) from selected regions of the habitat do exist for select time periods. Sightings were almost exclusively in the continental shelf edge and continental slope areas (Figure 1). An abundance of $120 \quad(\mathrm{CV}=0.71)$

Figure 1. Distribution of beaked whale sightings from NEFSC and SEFSC shipboard and aerial surveys during the summer 1998, 1999, and 2004. Isobaths are at $100 \mathrm{~m}, 1,000 \mathrm{~m}$, and $4,000 \mathrm{~m}$. undifferentiated beaked whales was estimated from an aerial survey program conducted from 1978 to 1982 on the continental shelf and shelf edge waters between Cape Hatteras, North Carolina and Nova Scotia (CETAP 1982). An abundance of 442 ($\mathrm{CV}=0.51$) undifferentiated beaked whales was estimated from an August 1990 shipboard line transect sighting survey, conducted principally along the Gulf Stream north wall between Cape Hatteras and Georges Bank (NMFS 1990; Waring et al. 1992). An abundance of 262 (CV=0.99)
undifferentiated beaked whales was estimated from a June and July 1991 shipboard line transect sighting survey conducted primarily between the 200 and $2,000 \mathrm{~m}$ isobaths from Cape Hatteras to Georges Bank (Waring et al. 1992; Waring 1998). Abundances of $370(\mathrm{CV}=0.65)$ and $612(\mathrm{CV}=0.73)$ undifferentiated beaked whales were estimated from line transect aerial surveys conducted from August to September 1991 using the Twin Otter and AT-11, respectively (NMFS 1991). As recommended in the GAMMS Workshop Report (Wade and Angliss 1997), estimates older than eight years are deemed unreliable, therefore should not be used for PBR determinations. Further, due to changes in survey methodology these data should not be used to make comparisons to more current estimates.

An abundance of $330(\mathrm{CV}=0.66)$ undifferentiated beaked whales was estimated from a June and July 1993 shipboard line transect sighting survey conducted principally between the 200 and $2,000 \mathrm{~m}$ isobaths from the southern edge of Georges Bank, across the Northeast Channel to the southeastern edge of the Scotian Shelf (NMFS 1993). Data were collected by two alternating teams that searched with 25×150 binoculars and were analyzed using DISTANCE (Buckland et al. 1993). Estimates include school-size bias, if applicable, but do not include corrections for $g(0)$ or dive-time. Variability was estimated using bootstrap resampling techniques.

An abundance of $99(\mathrm{CV}=0.64)$ undifferentiated beaked whales was estimated from an August 1994 shipboard line transect survey conducted within a Gulf Stream warm-core ring located in continental slope waters southeast of Georges Bank (Table 1; NMFS 1994). Data were collected by two alternating teams that searched with 25×150 binoculars and an independent observer who searched by naked eye from a separate platform on the bow. Data were analyzed using DISTANCE (Buckland et al. 1993). Estimates include school-size bias, if applicable, but do not include corrections for $g(0)$ or dive-time. Variability was estimated using bootstrap resampling techniques.

An abundance of $1,519(\mathrm{CV}=0.69)$ undifferentiated beaked whales was estimated from a July to September 1995 sighting survey conducted by two ships and an airplane that covered waters from Virginia to the mouth of the Gulf of St. Lawrence (Palka et al. unpublished manuscript). Total track line length was $32,600 \mathrm{~km}$. The ships covered waters between the 50 and 1000 fathom isobaths, the northern edge of the Gulf Stream, and the northern Gulf of Maine/Bay of Fundy region. The airplane covered waters in the Mid-Atlantic from the coastline to the 50 fathom isobath, the southern Gulf of Maine, and shelf waters off Nova Scotia from the coastline to the 1000 fathom isobath. Data collection and analysis methods used were described in Palka (1995).

An abundance of $2,600(\mathrm{CV}=0.40)$ undifferentiated beaked whales was estimated from a line transect sighting survey conducted during July 6 to September 6, 1998 by a ship and plane that surveyed 15,900km of track line in waters north of Maryland ($38^{\circ} \mathrm{N}$) (Figure 1; Palka et al. unpublished manuscript). Shipboard data were analyzed using the modified direct duplicate method (Palka 1995) that accounts for school size bias and $g(0)$, the probability of detecting a group on the track line. Aerial data were not corrected for $g(0)$.

An abundance of $541(\mathrm{CV}=0.55)$ for undifferentiated beaked whales was estimated from a shipboard line transect sighting survey conducted between 8 July and 17 August 1998 that surveyed 4,163km of track line in waters south of Maryland $\left(38^{\circ} \mathrm{N}\right)$ (Figure 1; Mullin and Fulling 2003). This estimate is a recalculation of the same data reported in previous SARs. For more details see Mullin and Fulling (2003). Abundance estimates were made using the program DISTANCE (Buckland et al. 1993) where school size bias and ship attraction were accounted for.

The best 1998 abundance estimate for undifferentiated beaked whales is the sum of the estimates from the two U.S. Atlantic surveys, $3,141(\mathrm{CV}=0.34)$, where the estimate from the northern U.S. Atlantic is $2,600(\mathrm{CV}=0.40)$ and from the southern U.S. Atlantic is $541(\mathrm{CV}=0.55)$. This joint estimate is considered best because together these two surveys have the most complete coverage of the species' habitat.

An abundance of $2,211(\mathrm{CV}=0.58)$ for beaked whales was estimated from a line transect sighting survey conducted during June 12 to August 4, 2004 by a ship and plane that surveyed $10,761 \mathrm{~km}$ of track line in waters north of Maryland $\left(38^{\circ} \mathrm{N}\right)$ to the Bay of Fundy $\left(45^{\circ} \mathrm{N}\right)$ (Figure 1; Palka unpublished). Shipboard data were collected using the two independent team line transect method and analyzed using the modified direct duplicate method (Palka 1995) accounting for biases due to school size and other potential covariates, reactive movements (Palka and Hammond 2001), and g(0), the probability of detecting a group on the track line. Aerial data were collected using the Hiby circle-back line transect method (Hiby 1999) and analyzed accounting for $g(0)$ and biases due to school size and other potential covariates (Figure 1; Palka unpublished).

A shipboard survey of the U.S. Atlantic outer continental shelf and continental slope (water depths $>50 \mathrm{~m}$) between Florida and Maryland (27.5 and $38^{\circ} \mathrm{N}$ latitude) was conducted during June-August, 2004. The survey employed two independent visual teams searching with 50x bigeye binocluars. Survey effort was stratified to include increased effort along the continental shelf break and Gulf stream front in the Mid-Atlantic. The survey included $5,659 \mathrm{~km}$ of trackline, and there were a total of 473 cetacean sightings. Sightings were most frequent in waters North of Cape Hatteras, North Carolina along the shelf break. Data were analyzed to correct for visibility bias $(g(0))$ and group-size bias employing line transect distance analysis and the direct duplicate estimator (Palka, 1995; Buckland et al., 2001). The resulting abundance estimate for beaked whales between Florida and Maryland was 674 ($\mathrm{CV}=0.36$).

The best 2004 abundance estimate for beaked whales is the sum of the estimates from the two 2004 U.S. Atlantic surveys, $3,513(\mathrm{CV}=0.63)$, where the estimate from the northern U.S. Atlantic is $2,839(\mathrm{CV}=0.578)$, and from the
southern U.S. Atlantic is $674(\mathrm{CV}=0.36)$. This joint estimate is considered best because together these two surveys have the most complete coverage of the species' habitat.

Although the 1990-2004 surveys did not sample exactly the same areas or encompass the entire beaked whale habitat, they did focus on segments of known or suspected high-use habitats off the northeastern U.S. coast. The collective 19902004 data suggest that, seasonally, at least several thousand beaked whales are occupying these waters, with highest levels of abundance in the Georges Bank region. Recent results suggest that beaked whale abundance may be highest in association with Gulf Stream and warm-core ring features.

Because the estimates presented here were not dive-time corrected, they are likely negatively biased and probably underestimate actual abundance. Given that Mesoplodon spp. prefers deep-water habitats (Mead 1989) the bias may be substantial.

Table 1. Summary of abundance estimates for the undifferentiated complex of beaked whales which include Ziphius and Mesoplodon spp. Month, year, and area covered during each abundance survey, and resulting abundance estimate $\left(N_{\text {best }}\right)$ and coefficient of variation (CV).			
Month/Year	Area	$\mathrm{N}_{\text {best }}$	CV
Jul-Sep 1998	Maryland to Gulf of St. Lawrence	2,600	0.40
Jul-Aug 1998	Florida to Maryland	541	0.55
Jul-Sep 1998	Gulf of St. Lawrence to Florida (COMBINED)	3,141	0.34
Jun-Aug 2004	Maryland to the Bay of Fundy	2,839	0.78
Jun-Aug 2004	Florida to Maryland	674	0.36
Jun-Aug 2004	Florida to Bay of Fundy (COMBINED)	3,513	0.63

Minimum Population Estimate

The minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the log-normally distributed best abundance estimate. This is equivalent to the 20th percentile of the log-normal distribution as specified by Wade and Angliss (1997). The best estimate of abundance for undifferentiated beaked whales is 3,513 ($\mathrm{CV}=0.63$). The minimum population estimate for the undifferentiated complex of beaked whales (Ziphius and Mesoplodon spp.) is 2,154. It is not possible to determine the minimum population estimate of only Mesoplodon beaked whales.

Current Population Trend

There are insufficient data to determine the population trends for these species.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Current and maximum net productivity rates are unknown for this stock. Life history parameters that could be used to estimate net productivity include: length at birth is 2 to 3 m , length at sexual maturity 6.1 m for females, and 5.5 m for males, maximum age for females were 30 growth layer groups (GLG's) and for males was 36 GLG's, which may be annual layers (Mead 1984).

For purposes of this assessment, the maximum net productivity rate was assumed to be 0.04 . This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive life history (Barlow et al. 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential Biological Removal (PBR) is the product of minimum population size, one-half the maximum productivity rate, and a "recovery" factor (MMPA Sec. 3. 16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size for the undifferentiated complex of beaked whales is 2,154 . The maximum productivity rate is 0.04 , the default value for cetaceans. The "recovery" factor, which accounts for endangered, depleted, threatened stocks, or stocks of unknown status relative to optimum sustainable population (OSP) is assumed to be 0.5 because this stock is of unknown status. PBR for all species in the undifferentiated complex of beaked whales (Ziphius and Mesoplodon spp.) is 22. It is not possible to determine the PBR for only Mesoplodon beaked whales.

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

The 1999-2003 total average estimated annual mortality of beaked whales in fisheries in the U.S. Atlantic EEZ was 1.0 and is derived from three components: 1) two stranded animals were entangled in fishing gear, 2) two animals were ship struck, and 3) one stranded animal died from acoustic or blunt trauma - see other mortality text and (Table 2).

Fishery Information

Total fishery-related mortality and serious injury cannot be estimated separately for each beaked whale species because of the uncertainty in species identification by fishery observers. The Atlantic Scientific Review Group advised adopting the risk-averse strategy of assuming that any beaked whale stock which occurred in the U.S. Atlantic EEZ might have been subject to the observed fishery-related mortality and serious injury.

Bycatch has been observed by NMFS sea samplers in the pelagic drift gillnet fishery, but no mortalities or serious injuries have been documented in the pelagic longline, pelagic trawl, Northeast sink gillnet, Mid-Atlantic coastal gillnet, or North Atlantic bottom trawl fisheries by NMFS sea samplers. Detailed fishery information is reported in Appendix III.

Earlier Interactions

There is no historical information available that documents incidental mortality in either U.S. or Canadian Atlantic coast fisheries (Read 1994). The only documented bycatch of beaked whales is in the pelagic drift gillnet fishery (now prohibited). The bycatch only occurred from Georges Canyon to Hydrographer Canyon along the continental shelf break and continental slope during July to October (Northridge 1996). Forty-six fishery-related beaked whale mortalities were observed between 1989 and 1998. These included: 24 Sowerby's; 4 True's; 1 Cuvier's; and 17 undifferentiated beaked whales. Recent analysis of biological samples (genetics and morphological analysis) have been used to determine species identifications for some of the bycaught animals. Estimates of bycatch mortality by species are available for the 19941998 period. Prior estimates are for undifferentiated beaked whales. The estimated annual fishery-related mortality (CV in parentheses) was 60 in 1989 (0.21), 76 in $1990(0.26), 13$ in 1991 (0.21$), 9.7$ in 1992 (0.24) and 12 in 1993 (0.16). The 1994-1998 estimates by 'species' are:

Year	Cuvier's	Sowerby's	True's	Mesoplodon spp.
1994	$1(0.14)$	$3(0.09)$	0	0
1995	0	$6(0)$	$1(0)$	$3(0)$
1996	0	$9(0.12)$	$2(0.26)$	$2(0.25)$
1997	NA	NA	NA	NA
1998	0	$2(0)$	$2(0)$	$7(0)$

During July 1996, one beaked whale was entangled and released alive with "gear in/around a single body part". Annual mortality estimates do not include any animals injured and released alive.

Other Mortality

From 1992-2000, a total of 53 beaked whales stranded along the U.S. Atlantic coast between Florida and Massachusetts (NMFS unpublished data). This includes: 28 (includes one tentative identification) Gervais' beaked whales (one 1997 animal had plastics in esophagus and stomach, and Sargassum in esophagus; 2 animals that stranded in September 1998 in South Carolina showed signs of fishery interactions); 2 True's beaked whales; 5 Blainville's beaked whales; 1 Sowerby's beaked whale; 13 Cuvier's beaked whales (one 1996 animal had propeller marks, and one 2000 animal had a longline hook in the lower jaw) and 4 unidentified animals. One stranding of Sowerby's beaked whale was recorded on Sable Island between 1970-1998 (Lucas and Hooker 2000). The whale's body was marked by wounds made by the cookiecutter shark (Isistius brasiliensis), which has previously been observed on beaked whales (Lucas and Hooker 2000).

Also, several unusual mass strandings of beaked whales in North Atlantic marine environments have been associated with naval activities. During the mid- to late 1980s multiple mass strandings of Cuvier's beaked whales (4 to about 20 per event) and small numbers of Gervais' beaked whale and Blainville's beaked whale occurred in the Canary Islands (Simmonds and Lopez-Jurado 1991). Twelve Cuvier's beaked whales that live stranded and subsequently died in the Mediterranean Sea on 12-13 May 1996 was associated with low frequency acoustic sonar tests conducted by the North Atlantic Treaty Organization (Frantzis 1998). In March 2000, 14 beaked whales live stranded in the Bahamas; 6 beaked
whales (5 Cuvier's and 1 Blainville's) died (Balcomb and Claridge 2001; Evans and England 2001; Cox et al., in review). Four Cuvier's, 2 Blainville's, and 2 unidentified beaked whales were returned to sea. The fate of the animals returned to sea is unknown, since none of the whales have been resighted. Necropsy of 6 dead beaked whales revealed evidence of tissue trauma associated with an acoustic or impulse injury that caused the animals to strand. Subsequently, the animals died due to extreme physiologic stress associated with the physical stranding (i.e., hyperthermia, high endogenous catecholamine release) (Cox et al., in review).

During 2001-2003, twenty-four beaked whales stranded along the U.S. Atlantic coast (Table 2).

State	2001	2002	2003	Total
Maine	0	M. mirus (1)	M. bidens (1) ${ }^{\text {c }}$	2
Massachusetts	0	--	0	0
Virginia	0	M. Europaeus (2) ${ }^{\text {b }}$	M. mirus (1) ${ }^{\text {d }}$	3
North Carolina	M. europaeus (1) Mesoplodon sp. (3)	Unid. (1)	M. europeaus (2); Mesoplodon sp. (1)	9
South Carolina	M. europaeus (2)	Ziphius (1)	Ziphius (2)	5
Florida	M. europaeus (4) ${ }^{\text {a }}$	--	Ziphius (1); M. europaeus (1)	5
Total	10	5	9	$24^{\text {e }}$
${ }^{\text {a }}$ Acoustic or blunt trauma was the assigned cause of mortality for one animal stranded in Broward County in Sept. ${ }^{\text {b }}$ Ship strike was the likely cause of death for one animal ${ }^{c}$ Boat strike was the likely cause of death ${ }^{\mathrm{d}}$ Entanglement in fishing gear was the likely cause of death ${ }^{\mathrm{e}}$ The cause of death for most of the stranded animals could not be determined.				

STATUS OF STOCK

The status of Mesoplodon beaked whales relative to OSP in U.S. Atlantic EEZ is unknown. These species are not listed as threatened or endangered under the Endangered Species Act. Although a species specific PBR cannot be determined, the permanent closure of the pelagic drift gillnet fishery has eliminated the principal known source of incidental fishery mortality. The total fishery mortality and serious injury for this group is less than 10% of the calculated PBR and, therefore, can be considered to be insignificant and approaching zero mortality and serious injury rate. This is a strategic stock because of uncertainty regarding stock size and evidence of human induced mortality and serious injury associated with acoustic activities.

REFERENCES

Balcomb, K.C. III and D.E. Claridge. 2001. A mass stranding of cetaceans caused by naval sonar in the Bahamas. Bahamas J. Sci. 2:2-12.
Barlow, J., S.L. Swartz, T.C. Eagle and P.R. Wade. 1995. U.S. Marine Mammal Stock Assessments: Guidelines for Preparation, Background, and a Summary of the 1995 Assessments. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-6, 73 pp.
Buckland, S.T., D.R. Andersen, K.P. Burnham and J.L. Laake. 1993. Distance sampling: Estimating abundance of biological populations. Chapman and Hall, New York, 446 pp.
Buckland, S.T., D.R. Andersen, K.P Burnham, J.L. Laake, D.L. Borchers, and L. Thomas. 2001. Introduction to Distance Sampling estimating abundance of biological populations. Oxford University Press, New York, 432 pp.
CETAP. 1982. A characterization of marine mammals and turtles in the mid- and north Atlantic areas of the U.S. outer continental shelf. Cetacean and Turtle Assessment Program, University of Rhode Island. Final Report \#AA551-CT8-48 to the Bureau of Land Management, Washington, DC, 538 pp.
Cox, T.M., T. Ragen, A.J. Read, E. Vos, R.W. Baird, K. Balcomb, J. Barlow, J. Caldwell, T. Cranford, L. Crum, A. D’Amico, G. D'Spain, A. Fernadez, J. Finneran, R. Gentry, W. Gerth, F. Gulland, J. Hildebrand, D. Houser, T. Hullar, P.D. Jepson, D. Ketten, C.D. MacLeod, P. Miller, S. Moore, D. Mountain, D. Palka, P. Ponganis, S. Rommel, T. Rowles, B. Taylor, P.

Tyack, D. Wartzok, R. Gisiner, J. Mead, L. Benner. 2004. Report of a workshop to understand the impacts of anthropogenic sound on beaked whales. 33 pp. Submitted to J. Cetacean Res. Manage.
Frantzis, A. 1998. Does acoustic testing strand whales? Nature 392:29.
Evans, D.L. and G.R. England. 2001. Joint interim report - Bahamas Marine Mammal Stranding - event of 15-16 March 2000. U.S. Department of Commerce; Secretary of the Navy, vi +59 pp. Available at: http://www.nmfs.noaa.gov/pr/acoustics/acoustics reports.htm.
Hiby, L. 1999. The objective identification of duplicate sightings in aerial survey for porpoise. Pages 179-189 in: Garner et al. (eds.). Marine Mammal Survey and Assessment Methods. Balkema, Rotterdam.
Houston, J. 1990. Status of Blainville's beaked whale, Mesoplodon densirostris, in Canada. Can. Field Nat. 104(1):117-120.
Leatherwood, S., D.K. Caldwell and H.E. Winn. 1976. Whales, dolphins, and porpoises of the western North Atlantic. A guide to their identification. U.S. Dept. of Commerce, NOAA Tech. Rep. NMFS Circ. 396, 176 pp.
Lien J., F. Barry, K. Breeck, and U. Zuschlag. 1990. Status of Sowerby's Beaked Whale, Mesoplodon bidens, in Canada. Can. Field Nat. 104(1):125-130.
Lucas, Z. N. and S. K. Hooker. 2000. Cetacean strandings on Sable Island, Nova Scotia, 1970-1998. Can. Field Nat. 114: (4561).

Mead, J. G. 1984. Survey of reproductive data for the beaked whales (Ziphiidae). Rep. int. Whal. Commn (Special Issue) 6:9196.

Mead, J. G. 1989. Beaked whales of the genus Mesoplodon. Pages 349-430 in: S. H., Ridgway and R. Harrison (eds.), Handbook of marine mammals, Vol. 4: River Dolphins and toothed whales. Academic press, San Diego, 442 pp.
Mignucci-Giannoni, A.A., B. Pinto-Rodríguez, M. Velasco-Escudero, R.A. Montoya-Ospina, N.M. Jiménez, M.A. RodríguezLópez, E.H. Williams, Jr., and D.K. Odell. 1999. Cetacean strandings in Puerto Rico and the Virgin Islands. J. Cetacean Res. Manage. 1:191-198.
Mullin, K.D. and G.L. Fulling. 2003. Abundance of cetaceans in the southern U.S. Atlantic Ocean during summer 1998. Fish. Bull., U.S.101:603-613.
Nawojchik, R. 1994. First record of Mesoplodon densirostris (Cetacea: Ziphiidae) from Rhode Island. Mar. Mammal Sci. 10:477-480.
Nicolas, J., A. Williams and G. Repucci. 1993. Observations of beaked whales (Mesoplodon spp.) in the western North Atlantic Ocean. Proceedings of the Tenth Biennial Conference on the Biology of Marine Mammals, Nov. 11-15, 1993, Galveston, TX (Abstract).
NMFS [National Marine Fisheries Service]. 1990. Cruise results, NOAA Ship CHAPMAN, Cruise No. 90-05. Marine Mammal Sighting Survey. 5 pp. Available from: National Marine Fisheries Service, 166 Water Street, Woods Hole, MA 025431026.

NMFS [National Marine Fisheries Service]. 1991. Northeast cetacean aerial survey and interplatform study. NOAA-NMFSSEFSC and NEFSC. 4 pp. Available from: National Marine Fisheries Service, 166 Water Street, Woods Hole, MA 025431026.

NMFS [National Marine Fisheries Service]. 1993. Cruise results, NOAA ship DELAWARE II, Cruise No. DEL 93-06, Marine mammal Survey. 5 pp . Available from: National Marine Fisheries Service, 166 Water Street, Woods Hole, MA 025431026.

NMFS [National Marine Fisheries Service]. 1994. Cruise results, NOAA ship RELENTLESS, Cruise No. RS 9402, Marine Mammal Survey/Warm Core Ring Study. 8 pp. Available from: National Marine Fisheries Service, 166 Water Street, Woods Hole, MA 02543-1026.
Northridge, S. 1996. Estimation of cetacean mortality in the U.S. Atlantic swordfish and tuna drift gillnet and pair trawl fisheries. Final report to the Northeast Fisheries Science Center, Contract No. 40ENNF500160.
Palka, D. 1995. Abundance estimate of the Gulf of Maine harbor porpoise. Rep. int. Whal. Commn (Special Issue) 16:27-50.
Palka, D. and P.S Hammond. 2001. Accounting for responsive movement in line transect estimates of abundance. Can. J. Fish. Aquat. Sci. 58: 777-787.
Read, A. J. 1994. Interactions between cetaceans and gillnet and trap fisheries in the Northwest Atlantic. Rep. int. Whal. Commn (Special Issue) 1:133-147.
Simmonds, M.P. and L.F. Lopez-Jurado. 1991. Whales and the military. Nature 351:448.
Tove, M. 1995. Live sighting of Mesoplodon CF. M. Mirus, True's Beaked Whale. Mar. Mammal Sci. 11(1):80-85.
Wade, P.R., and R.P. Angliss. 1997. Guidelines for assessing marine mammal stocks: Report of the GAMMS Workshop April 3-5, 1996, Seattle, Washington. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-12, 93 pp.
Waring, G.T., C.P. Fairfield, C.M. Ruhsam and M. Sano. 1992. Cetaceans associated with Gulf Stream features off the northeastern USA shelf. ICES C.M. 1992/N:12. 29 pp.
Waring, G.T. 1998. Results of the summer 1991 R/V Chapman marine mammal sighting survey. NOAA NMFS NEFSC, Lab. Ref. Doc. No. 98-09, 21 pp. Available from: National Marine Fisheries Service, 166 Water Street, Woods Hole, MA 025431026.

Waring, G.T., T. Hamazaki, D. Sheehan, G. Wood, and S. Baker. 2001. Characterization of beaked whale (Ziphiidae) and sperm whale (Physeter macrocephalus) summer habitat in shelf-edge and deeper waters off the northeast U.S. Mar. Mammal Sci. 17(4):703-71.

MELON-HEADED WHALE (Peponocephala electra): Western North Atlantic Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

The melon-headed whale is distributed worldwide in tropical to sub-tropical waters (Jefferson et al. 1994). Melonheaded whales are assumed to be part of the cetacean fauna of the tropical western North Atlantic. The paucity of sightings is probably due to a naturally low number of groups compared to other cetacean species. Sightings in the more extensively surveyed northern Gulf of Mexico occur in oceanic waters (Mullin et al. 1994; Mullin and Fulling, 2004). Sightings of melon-headed whales in the northern Gulf of Mexico were documented in all seasons during aerial surveys of the northern Gulf of Mexico between 1992 and 1998 (Hansen et al. 1996; Mullin and Hoggard 2000). The western North Atlantic population is provisionally being considered one stock for management purposes. Additional morphological, genetic and/or behavioral data are needed to provide further information on stock delineation.

POPULATION SIZE

The numbers of melon-headed whales off the U.S. or Canadian Atlantic coast are unknown, and seasonal abundance estimates are not available for this stock, since it was rarely seen in any surveys. A group of melon- headed whales was sighted during both a 1999 (20 whales) and 2002 (80 whales) vessel survey of the western North Atlantic off of Cape Hatteras, North Carolina in waters $>2500 \mathrm{~m}$ deep (Figure 1; Anon. 1999: Anon. 2002). Abundances have not been estimated from the 1999 and 2002 vessel surveys in western North Atlantic (NMFS 1999; NMFS 2002); because the sighting was not made during line-transect sampling effort; therefore the population size of melon-headed whales is unknown. No melon-headed whales have been observed in any other surveys.

Minimum Population Estimate

Present data are insufficient to calculate a minimum population estimate for this stock.

Current Population Trend

There are insufficient data to determine the population trends for this stock.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Current and maximum net productivity rates are unknown for this stock. For purposes of this assessment, the maximum net productivity rate was assumed to be 0.04 . This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive history (Barlow et al. 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential Biological Removal level (PBR) is the product of the minimum population size, one-half the maximum productivity rate, and a recovery factor (MMPA Sec. 3.16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size is unknown. The maximum productivity rate is 0.04 , the default value for cetaceans. The "recovery" factor, which accounts for endangered, depleted, threatened stocks, or stocks of unknown status relative to optimum sustainable population (OSP), is assumed to be 0.5 because this stock is of unknown status. PBR for the western North Atlantic stock of melon-headed whales is unknown because the minimum population size is unknown.

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY Fishery Information

Detailed fishery information is reported in Appendix III. Total annual estimated average fishery-related mortality and serious injury to this stock during 1999-2003 was zero melon-headed whales, as there were no reports of mortality or serious injury to melon-headed whales (Yeung 2001; Garrison 2003; Garrison and Richards, 2004).

Other Mortality

From 1999-2003, 1 melon-headed whale was reported stranded in Puerto Rico. There was one additional reported stranding of a melon-headed whale in the western North Atlantic between 1997 and 2002. No evidence of human interaction was apparent for either stranded animal.

Stranding data probably underestimate the extent of fishery-related mortality and serious injury because all of the marine mammals that die or are seriously injured may not wash ashore, nor will all of those that do wash ashore necessarily show signs of entanglement or other fishery-interaction. Finally, the level of technical expertise among stranding network personnel varies widely as does the ability to recognize signs of fishery interaction.

STATUS OF STOCK

The status of melon-headed whales, relative to OSP, in the western North Atlantic EEZ is unknown. The species is not listed as threatened or endangered under the Endangered Species Act. There are insufficient data to determine the population size or trends and PBR cannot be calculated for this stock. No fishery-related mortality and serious injury has been observed since 1999; therefore, total fishery-related mortality and serious injury rate can be considered insignificant and approaching zero mortality and serious injury. This is not a strategic stock.

REFERENCES

Barlow, J., S. L. Swartz, T. C. Eagle and P. R. Wade. 1995. U.S. Marine mammal stock assessments: Guidelines for preparation, background, and a summary of the 1995 assessments. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-6, 73pp. Available from NMFS, Southwest Fisheries Science Center, 8604 La Jolla Shores Drive, La Jolla, CA, 92037-1508.
Garrison, L.P. 2003. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2001-2002. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SEFSC-515, 52 pp. Available from NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Road, Miami, Fl 33149.
Garrison, L.P. and P.M. Richards. 2004. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2003. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SEFSC-527, 57 pp. Available from NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Road, Miami, Fl 33149.
Hansen, L. J., K. D. Mullin, T. A. Jefferson and G. P. Scott. 1996. Visual surveys aboard ships and aircraft. Pages 55132. In: R. W. Davis and G. S. Fargion (editors), Distribution and abundance of marine mammals in the northcentral and western Gulf of Mexico: Final report. Volume II: Technical report. OCS Study MMS 96-0027. Minerals Management Service, Gulf of Mexico OCS Region, New Orleans.
Jefferson, T. A., S. Leatherwood, and M. A. Weber. 1994. Marine mammals of the world. FAO, Rome, 320 pp.
Mullin, K. D., T. A. Jefferson, L. J. Hansen and W. Hoggard. 1994. First sightings of melon-headed whales (Peponocephala electra) in the Gulf of Mexico. Mar. Mam. Sci. 10(3): 342-348.
Mullin, K. D. and W. Hoggard. 2000. Visual surveys of cetaceans and sea turtles from aircraft and ships. Pages 111-172. In: R. W. Davis, W. E. Evans, and B. Würsig (editors), Cetaceans, sea turtles and seabirds in the northern Gulf of Mexico: Distribution, abundance and habitat associations. Volume II: Technical report. OCS Study MMS 960027. Minerals Management Service, Gulf of Mexico OCS Region, New Orleans.

Mullin, K. D. and G. L. Fulling. 2004. Abundance of cetaceans in the oceanic northern Gulf of Mexico, 1996-2001. Mar. Mammal Sci. 20(4):787-807.
NMFS [National Marine Fisheries Service]. 1999. Cruise results. Summer Atlantic Ocean marine mammal survey. NOAA Ship Oregon II cruise 236 (99- 05), 4 August - 30 September 1999. Available from SEFSC, 3209 Frederic Street, Pascagoula, MS 39567.
NMFS [National Marine Fisheries Service]. 2002. Cruise results. Mid-Atlantic cetacean survey. NOAA Ship Gordon Gunter cruise GU-02-01, 6 February - 8 April 2002. Available from SEFSC, 3209 Frederic Street, Pascagoula, MS 39567.
Wade, P.R., and R.P. Angliss. 1997. Guidelines for assessing marine mammal stocks: Report of the GAMMS Workshop April 3-5, 1996, Seattle, Washington. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR- 12, 93 pp. Available from: NOAA, National Marine Fisheries Service, 166 Water St., Woods Hole, MA 02543.
Yeung, C. 2001. Estimates of marine mammal and marine turtle bycatch by the U.S. Atlantic pelagic longline fleet in 1999-2000. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SEFSC-467, 43 pp. Available from: NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL, 33149.

ATLANTIC SPOTTED DOLPHIN (Stenella frontalis): Western North Atlantic Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

There are two species of spotted dolphin in the Atlantic Ocean, the Atlantic spotted dolphin, Stenella frontalis, formerly S. plagiodon, and the pantropical spotted dolphin, S. attenuata (Perrin et al. 1987). The Atlantic spotted dolphin occurs in two forms which may be distinct sub-species (Perrin et al. 1987, 1994; Rice 1998): the large, heavily spotted form which inhabits the continental shelf and is usually found inside or near the 200 m isobath; and the smaller, less spotted island and offshore form which occurs in the Atlantic Ocean but is not known to occur in the Gulf of Mexico (Fulling et al. 2003; Mullin and Fulling 2003; Mullin and Fulling 2004). Where they co- occur, the offshore form of the Atlantic spotted dolphin and the pantropical spotted dolphin can be difficult to differentiate at sea

Atlantic spotted dolphins are distributed in tropical and warm temperate waters of the western North Atlantic (Leatherwood et al. 1976). Their distribution is from southern New England, south through the Gulf of Mexico and the Caribbean to Venezuela (Leatherwood et al. 1976; Perrin et al. 1994). The large, heavily spotted form of the Atlantic spotted dolphin along the southeastern and Gulf coasts of the United States, which may warrant designation as a distinct sub-species (Rice 1998), inhabits the continental shelf, usually being found inside or near the 200 m isobath (within 250350 km of the coast) but sometimes coming into very shallow water adjacent to the beach (Figure 1). Off the northeast U.S. coast, spotted dolphins are widely distributed on the continental shelf, along the continental shelf edge, and offshore over the deep ocean south of $40^{\circ} \mathrm{N}$ (CETAP 1982). Atlantic spotted dolphins regularly occur in the inshore waters south of Chesapeake Bay and near the continental shelf edge and continental slope waters north of this region (Payne et al. 1984; Mullin and Fulling 2003). Sightings have also been made along the north wall of the Gulf Stream and warm-core ring features (Waring et al. 1992). Stock structure in the western North Atlantic is unknown.

POPULATION SIZE

Total numbers of Atlantic spotted dolphins off the U.S. or Canadian Atlantic coast are unknown, although estimates from selected regions of the habitat do exist for select time periods. Because S. frontalis and S. attenuata are difficult to differentiate at sea, the reported abundance estimates, prior to 1998, are for both species of spotted dolphins combined. Sightings were concentrated in the slope waters north of Cape Hatteras, but in the shelf waters south of Cape Hatteras, with sightings extending into the deeper slope and offshore waters of the Mid-Atlantic (Fig. 1).

An abundance of 6,107 undifferentiated spotted dolphins ($\mathrm{CV}=0.27$) was estimated from an aerial survey program conducted from 1978 to 1982 on the continental, shelf and shelf edge waters between Cape Hatteras, North Carolina and Nova Scotia (CETAP 1982). As recommended in the GAMS Workshop Report (Wade and Angliss 1997), estimates older than eight years are deemed unreliable, therefore should not be used for PBR determinations. Further, due to changes in survey methodology these data should not be used to make comparisons to more current estimates.

An abundance of 4,772 (CV=1.27) undifferentiated spotted dolphins was estimated from a July to September 1995 sighting survey conducted by two ships and an airplane that covered waters from Virginia to the mouth of the Gulf of St. Lawrence (Table 1; Palka et al. Unpublished Manuscript). Total track line length was $32,600 \mathrm{~km}$. The ships covered waters between the 50 and 1000 fathom depth contour lines, the northern edge of the

Figure 1. Distribution of Atlantic spotted dolphin sightings from NEFSC and SEFSC shipboard and aerial surveys during the summer in 1998 and 2004. Isobaths are at $100 \mathrm{~m}, 1,000 \mathrm{~m}$, and $4,000 \mathrm{~m}$.

Gulf Stream, and the northern Gulf of Maine/Bay of Fundy region. The airplane covered waters in the Mid-Atlantic from the coastline to the 50 fathom depth contour line, the southern Gulf of Maine, and shelf waters off Nova Scotia from the coastline to the 1000 fathom depth contour line. Data collection and analysis methods used were described in Palka (1996).

An abundance of $32,043(\mathrm{CV}=1.39)$ for offshore Atlantic spotted dolphins was estimated from a line transect sighting survey conducted during July 6 to September 6,1998 by a ship and plane that surveyed $15,900 \mathrm{~km}$ of track line in waters north of Maryland ($38^{\circ} \mathrm{N}$) (Figure 1; Palka et al. Unpubished Manuscript). Shipboard data were analyzed using the modified direct duplicate method (Palka 1995) that accounts for school size bias and $g(0)$, the probability of detecting a group on the track line. Aerial data were not corrected for $g(0)$.

An abundance of $14,438(\mathrm{CV}=0.63)$ for Atlantic spotted dolphins was estimated from a shipboard line transect sighting survey conducted between 8 July and 17 August 1998 that surveyed 4,163km of track line in waters south of Maryland ($38^{\circ} \mathrm{N}$) (Figure 1; Mullin and Fulling 2003). Abundance estimates were made using the program DISTANCE (Buckland et al. 2001) where school size bias and ship attraction were accounted for.

An abundance of $3,578(\mathrm{CV}=0.48)$ for Atlantic spotted dolphins was estimated from a line transect sighting survey conducted during June 12 to August 4, 2004 by a ship and plane that surveyed $10,761 \mathrm{~km}$ of track line in waters north of Maryland ($38^{\circ} \mathrm{N}$) to the Bay of Fundy ($45^{\circ} \mathrm{N}$) (Figure 1; Palka unpublished manuscript). Shipboard data were collected using the two independent team line transect method and analyzed using the modified direct duplicate method (Palka 1995) accounting for biases due to school size and other potential covariates, reactive movements (Palka and Hammond 2001), and $\mathrm{g}(0)$, the probability of detecting a group on the track line. Aerial data were collected using the Hiby circleback line transect method (Hiby 1999) and analyzed accounting for $g(0)$ and biases due to school size and other potential covariates (Figure 1; Palka Unpublished Manuscript).

A survey of the U.S. Atlantic outer continental shelf and continental slope (water depths $\geq 50 \mathrm{~m}$) between $27.5-38^{\circ} \mathrm{N}$ latitude was conducted during June-August, 2004. The survey employed two independent visual teams searching with 50x bigeye binoculars. Survey effort was stratified to include increased effort along the continental shelf break and Gulf Stream front in the Mid-Atlantic. The survey included $5,659 \mathrm{~km}$ of trackline, and there were a total of 473 cetacean sightings. Sightings were most frequent in waters North of Cape Hatteras, North Carolina along the shelf break. Data were analyzed to correct for visibility bias $(\mathrm{g}(0))$ and group-size bias employing line transect distance analysis and the direct duplicate estimator (Palka 1995; Buckland et al., 2001). The resulting abundance estimate for Atlantic spotted dolphins between Florida and Maryland was 47,400 (CV=0.45).

At their November 1999 meeting, the Atlantic SRG recommended that, without a genetic determination of stock structure, the abundance estimates for the coastal and offshore forms should be combined. There remains debate over how distinguishable both species are at sea, though in the waters south of Cape Hatteras identification to species is made with very high certainty. This does not, however, account for the potential for a mixed species herd, as has been recorded for several dolphin assemblages. Pending further genetic studies for clarification of this problem, a single species abundance estimate will be used as the best estimate of abundance, combining species specific data from the northern as well as southern portions of the species' ranges. This joint estimate is considered best because together these two surveys have the most complete coverage of the species' habitat. The best 2004 abundance estimate for Atlantic spotted dolphins is the sum of the estimates from the two 2004 western U.S. Atlantic surveys, $50,978(\mathrm{CV}=0.42)$, where the estimate from the northern U.S. Atlantic is $3,578(\mathrm{CV}=0.48)$, and from the southern U.S. Atlantic is $47,400(\mathrm{CV}=0.45)$.

Table 1. Summary of abundance estimates for both undifferentiated spotted dolphins (1995), and differentiated Atlantic spotted dolphins (1998 and 2004). Month, year, and area covered during each abundance survey, and resulting abundance estimate ($\mathrm{N}_{\text {best }}$) and coefficient of variation (CV).

Month/Year	Area	$\mathbf{N}_{\text {best }}$	CV
Jul-Sep 1998	Maryland to Gulf of St. Lawrence	$32,043^{\mathrm{a}}$	1.39
Jul-Aug 1998	Florida to Maryland	$14,438^{\mathrm{c}}$	0.63
		$46,481^{\mathrm{b}}$	0.98
Jul-Sep 1998	Florida to Gulf of St. Lawrence (COMBINED)	3,578	0.48
Jun-Aug 2004	Maryland to Bay of Fundy	47,400	0.45
Jun-Aug 2004	Florida to Maryland	$50,978^{\mathrm{b}}$	0.42
Jun-Aug 2004	Florida to Bay of Fundy (COMBINED)		

[^3]
Minimum Population Estimate

The minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the log- normally distributed best abundance estimate. This is equivalent to the 20th percentile of the log-normal distribution as specified by Wade and Angliss (1997).) The best abundance estimate is $50,978(\mathrm{CV}=0.42)$. The minimum population estimates based on the combined offshore and coastal abundance estimates is 36,235 .

Current Population Trend

There are insufficient data to determine the population trends for this species, given that surveys prior to 1998 did not differentiate between species of spotted dolphins.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Current and maximum net productivity rates are unknown for this stock. For purposes of this assessment, the maximum net productivity rate was assumed to be 0.04 . This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive life history (Barlow et al. 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential Biological Removal (PBR) is the product of minimum population size, one-half the maximum productivity rate, and a "recovery" factor (MMPA Sec. 3. 16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size for the Atlantic spotted dolphin is 36,235 . The maximum productivity rate is 0.04 , the default value for cetaceans. The "recovery" factor, which accounts for endangered, depleted, threatened stocks, or stocks of unknown status relative to optimum sustainable population (OSP) is set to 0.5 because this stock is of unknown status. PBR for the combined offshore and coastal forms of Atlantic spotted dolphins is 362 .

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

Fishery Information

Detailed fishery information is reported in Appendix III. Total annual estimated average fishery-related mortality or serious injury to this stock during 1999-2003 was zero Atlantic spotted dolphins (Stenella spp.) (Yeung 2001; Garrison 2003; Garrison and Richards, 2004).

Earlier Interactions

No spotted dolphin mortalities were observed in 1977-1991 foreign fishing activities. Bycatch had been observed by NMFS Sea Samplers in the pelagic drift gillnet and pelagic longline fisheries, but no mortalities or serious injuries have been documented in the pelagic pair trawl, Northeast sink gillnet, Mid-Atlantic coastal gillnet, and North Atlantic bottom trawl fisheries; and no takes have been documented in a review of Canadian gillnet and trap fisheries (Read 1994).

Forty-nine undifferentiated spotted dolphin mortalities were observed in the drift gillnet fishery between 1989 and 1998 and occurred northeast of Cape Hatteras within the 183 m isobath in February-April and near Lydonia Canyon in October. Six whole animal carcasses that were sent to the Smithsonian were identified as Pantropical spotted dolphins (S. attenuata). The remaining animals were not identified to species. Estimated annual mortality and serious injury attributable to this fishery (CV in parentheses) was 25 in 1989 (.65), 51 in 1990 (.49), 11 in 1991 (.41), 20 in 1992 (0.18), 8.4 in 1993 (0.40), 29 in 1994 (0.01), 0 in 1995, 2 in 1996 (0.06), no fishery in 1997 and 0 in 1998.

The pelagic longline fishery operates in the U.S. Atlantic (including Caribbean) and Gulf of Mexico EEZ. Interactions between the pelagic longline fishery and spotted dolphins have been reported; however, a vessel may fish in more than one statistical reporting area and it is not possible to separate estimates of fishing effort other than to subtract Gulf of Mexico effort from Atlantic fishing effort, which includes the Caribbean Sea. From 1999-2003, excluding the Gulf of Mexico, where one animal was hooked and released alive (Appendix 1), no Atlantic spotted dolphin bycatches were recorded.

Other Mortality

From 1999-2003, 17 Atlantic spotted dolphins were stranded between Massachusetts and Florida (NMFS unpublished data). One animal stranded in North Carolina in 1999, 3 animals stranded in North Carolina and 1 stranded in Georgia in 2000, 2 animals stranded in North Carolina and 3 in Florida in 2001, 2 animals stranded in North Carolina and 2 in Florida in 2002, and 1 animal stranded in Massachusetts, 1 in North Carolina and 1 in Florida in 2003. None of these strandings had documented signs of human interactions.

Stranding data probably underestimate the extent of fishery-related mortality and serious injury because all of the marine mammals that die or are seriously injured may not wash ashore, nor will all of those that do wash ashore necessarily show signs of entanglement or other fishery-interaction. Finally, the level of technical expertise among stranding network personnel varies widely as does the ability to recognize signs of fishery interaction.

Table 2. Atlantic spotted dolphin (Stenella frontalis) strandings along the U.S. Atlantic coast, 1999-2003

STATE	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	$\mathbf{2 0 0 3}$	TOTALS
Massachusetts	0	0	0	0	1	1
North Carolina	0	3	2	2	1	8
South Carolina	1	0	0	0	0	1
Georgia	0	1	0	0	0	1
Florida	0	0	3	2	1	6
TOTALS	1	4	5	4	3	17

STATUS OF STOCK

The status of Atlantic spotted dolphins, relative to OSP in the U.S. Atlantic EEZ is unknown. The species is not listed as threatened or endangered under the Endangered Species Act. There are insufficient data to determine the population trends for this species. Total fishery-related mortality and serious injury for this stock is less than 10% of the calculated PBR and, therefore, can be considered to be insignificant and approaching zero mortality and serious injury rate. Average annual fishery-related mortality and serious injury does not exceed the PBR; therefore, this is not a strategic stock.

REFERENCES

Barlow, J., S. L. Swartz, T. C. Eagle and P. R. Wade. 1995. U.S. Marine mammal stock assessments: Guidelines for preparation, background, and a summary of the 1995 assessments. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-6, 73pp. Available from NMFS, Southwest Fisheries Science Center, 8604 La Jolla Shores Drive, La Jolla, CA, 92037-1508.
Buckland, S. T., D. R. Anderson, K. P. Burnham, J. L. Laake, D. L. Borchers and L. Thomas. 2001. Introduction to distance sampling: estimating abundance of biological populations. Oxford University Press, New York, 432 pp .
CETAP. 1982. A characterization of marine mammals and turtles in the mid- and north Atlantic areas of the U.S. outer continental shelf. Cetacean and Turtle Assessment Program, University of Rhode Island. Final Report, Contract AA51-C78-48, Bureau of Land Management, Washington, DC, 538 pp .
Garrison, L.P. 2003. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2001-2002. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SEFSC-515, 52 pp. Available from NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Road, Miami, Fl 33149.
Garrison, L.P. and P.M. Richards. 2004. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2003. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SEFSC-527, 57 pp. Available from NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Road, Miami, Fl 33149.
Hiby, L. 1999. The objective identification of duplicate sightings in aerial survey for porpoise. pp. 179-189. In: G.W. Garner, S. C. Amstrup, J. L. Laake, B. F. J. Manly, L. L. McDonald, and D. G. Robertson (eds.) Marine mammal survey and assessment methods. Balkema, Rotterdam. 287 pp.
Leatherwood, S., D. K. Caldwell and H. E. Winn. 1976. Whales, dolphins, and porpoises of the western North Atlantic. A guide to their identification. NOAA Tech. Rep. NMFS Circ. 396, U.S. Dept. Commer. Washington, DC 176 pp.
Mullin, K. D. and G. L. Fulling. 2003. Abundance and cetaceans in the southern U.S. Atlantic Ocean during summer 1998. Fish. Bull., U.S. 101:603-613.
Palka, D. 1995. Abundance estimate of the Gulf of Maine harbor porpoise. pp. 27-50 In: A. Bjørge and G.P.Donovan (eds.) Biology of the Phocoenids. Rep. int. Whal. Commn (Special Issue) 16:i-x +552 pp .
Palka, D. 1996. Update on abundance of Gulf of Maine/Bay of Fundy harbor porpoises. NOAA/NMFS/NEFSC. Ref. Doc. $96-04 ; 37$ pp. Available from: National Marine Fisheries Service, 166 Water Street, Woods Hole, MA 02543-1026.
Palka, D. and P.S. Hammond. 2001. Accounting for responsive movement in line transect estimates of abundance. Can. J. Fish. Aquat. Sci. 58:777-787.

Payne, P.M., L.A. Selzer and A.R. Knowlton. 1984. Distribution and density of cetaceans, marine turtles, and seabirds in the shelf waters of the northeastern United States, June 1980-December 1983, based on shipboard observations. NOAA/NMFS Contract No. NA-81-FA-C-00023. Available from: National Marine Fisheries Service, 166 Water Street, Woods Hole, MA 02543-1026.
Perrin, W.F., E.D. Mitchell, J.G. Mead, D.K. Caldwell, M.C. Caldwell, P.J.H. van Bree, and W.H. Dawbin. 1987. Revision of the spotted dolphins, Stenella sp. Mar. Mammal Sci. 3(2):99-170.
Perrin, W.F., D.K. Caldwell, and M.C. Caldwell. 1994. Atlantic spotted dolphin. pp.173-190. In: S. H. Ridgway and R. Harrison (eds.). Handbook of marine mammals, Volume 5: The first book of dolphins. Academic Press, San Diego, 418 pp.

Read, A. J. 1994. Interactions between cetaceans and gillnet and trap fisheries in the northwest Atlantic. pp. 133-147. In: W.F. Perrin, G.P. Donovan and J. Barlow (eds.) Gillnets and Cetaceans. Rep. int. Whal. Commn (Special Issue) $15: i-i x+629 \mathrm{pp}$.
Rice, D.W. 1998. Marine mammals of the world, systematics and distribution. Spec. Publ. No 4. Society for The Society for Marine Mammalogy, Lawrence, KS. 231 pp.
Wade, P.R., and R.P. Angliss. 1997. Guidelines for assessing marine mammal stocks: Report of the GAMMS Workshop April 3-5, 1996, Seattle, Washington. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-12, 93 pp. Available from: NOAA, National Marine Fisheries Service, 166 Water St., Woods Hole, MA 02543.
Waring, G.T., C. P. Fairfield, C. M. Ruhsam and M. Sano. 1992. Cetaceans associated with Gulf Stream features off the northeastern USA shelf. ICES Marine Mammals Comm. CM 1992/N:12, 29 pp.
Yeung, C. 2001. Estimates of marine mammal and marine turtle bycatch by the U.S. Atlantic pelagic longline fleet in 1999-2000. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SEFSC-467, National Marine Fisheries Service, Miami, FL, 43 pp. Available from NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Road, Miami, Fl 33149.

PANTROPICAL SPOTTED DOLPHIN (Stenella attenuata): Western North Atlantic Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

There are two species of spotted dolphin in the Atlantic Ocean, the Atlantic spotted dolphin, Stenella frontalis, formerly S. plagiodon, and the pantropical spotted dolphin, S. attenuata (Perrin et al. 1987). The Atlantic spotted dolphin occurs in two forms which may be distinct sub-species (Perrin et al. 1987, 1994; Rice 1998): the large, heavily spotted form which inhabits the continental shelf and is usually found inside or near the 200 m isobath; and the smaller, less spotted island and offshore form which occurs in the Atlantic Ocean but is not known to occur in the Gulf of Mexico (Fulling et al. 2003; Mullin and Fulling 2003; Mullin and Fulling 2004). Where they co-occur, the offshore form of the Atlantic spotted dolphin and the pantropical spotted dolphin can be difficult to differentiate at sea

The pantropical spotted dolphin is distributed worldwide in tropical and some sub-tropical oceans (Perrin 1987; Perrin and Hohn 1994). Sightings of this species in the northern Gulf of Mexico occur over the deeper waters, and rarely over the continental shelf or continental shelf edge (Mullin et al. 1991; SEFSC, unpublished data). Pantropical spotted dolphins were seen in all seasons during recent seasonal aerial surveys of the northern Gulf of Mexico, and during recent winter aerial surveys offshore of the southeastern U.S. Atlantic coast (SEFSC unpublished data). Some of the Pacific populations have been divided into different geographic stocks based on morphological characteristics (Perrin 1987; Perrin and Hohn 1994); however, there is no information on stock differentiation in the Atlantic population.

POPULATION SIZE

Total numbers of pantropical spotted dolphins off the U.S. or Canadian Atlantic coast are unknown, although estimates from selected regions of the habitat do exist for select time periods. Because S. frontalis and S. attenuata are difficult to differentiate at sea, the reported abundance estimates, prior to 1998, are for both species of spotted dolphins combined. Sightings were concentrated in the southeastern edge of Georges Bank, along the Florida shelf and to a more limited degree the Florida slope waters, and offshore in Gulf Stream waters southeast of Cape Hatteras (Fig. 1).

An abundance of 6,107 undifferentiated spotted dolphins $(\mathrm{CV}=0.27)$ was estimated from an aerial survey program conducted from 1978 to 1982 on the continental, shelf and shelf edge waters between Cape Hatteras, North Carolina and Nova Scotia (CETAP 1982). As recommended in the GAMS Workshop Report (Wade and Angliss 1997), estimates older than eight years are deemed unreliable, therefore should not be used for PBR determinations. Further, due to changes in survey methodology these data should not be used to make comparisons to more current estimates.

An abundance of 4,772 (CV=1.27) undifferentiated spotted dolphins was estimated from a July to September 1995 sighting survey conducted by two ships and an airplane that covered waters from Virginia to the mouth of the Gulf of St. Lawrence (Table 1; Palka et al.Unpubl. Ms.). Total trackline length was $32,600 \mathrm{~km}$. The ships covered waters between the 50 and 1000 fathom depth contour lines, the northern edge of the Gulf Stream, and the northern Gulf of Maine/Bay of Fundy region. The airplane covered waters in the Mid-Atlantic from the coastline to the 50 fathom depth

Figure 1. Distribution of pantropical spotted dolphin sightings from NEFSC and SEFSC shipboard and aerial surveys during the summer in 1998 and 2004. Isobaths are at $100 \mathrm{~m}, 1,000$ m, and 4,000 m isobaths. contour line, the southern Gulf of Maine, and shelf waters off Nova Scotia from the coastline to the 1000 fathom depth contour line. Data collection and analysis methods used were described in Palka (1996).

An abundance of $343(\mathrm{CV}=1.03)$ for pantropical spotted dolphins was estimated from a line transect sighting survey conducted during July 6 to September 6, 1998 by a ship and plane that surveyed $15,900 \mathrm{~km}$ of track line in waters north of Maryland ($38^{\circ} \mathrm{N}$) (Figure 1; Palka et al.Unpubl. Ms.). Shipboard data were analyzed using the modified direct duplicate method (Palka 1995) that accounts for school size bias and $g(0)$, the probability of detecting a group on the track line. Aerial data were not corrected for $g(0)$.

An abundance of $12,747(\mathrm{CV}=0.56)$ for pantropical spotted dolphins was estimated from a shipboard line transect sighting survey conducted between 8 July and 17 August 1998 that surveyed $4,163 \mathrm{~km}$ of track line in waters south of Maryland $\left(38^{\circ} \mathrm{N}\right)$ (Figure 1; Mullin and Fulling 2003). This estimate is a recalculation of the same data reported in previous SARs. For more details see Mullin and Fulling (2003). Abundance estimates were made using the program DISTANCE (Buckland et al. 2003) where school size bias and ship attraction were accounted for.

An abundance of zero for pantropical spotted dolphins was estimated from a line transect sighting survey conducted during June 12 to August 4, 2004 by a ship and plane that surveyed $10,761 \mathrm{~km}$ of track line in waters north of Maryland $\left(38^{\circ} \mathrm{N}\right)$ to the Bay of Fundy ($45^{\circ} \mathrm{N}$) (Figure 1; Palka unpubl)., as no dolphins of this species were observed). Shipboard data were collected using the two independent team line transect method and analyzed using the modified direct duplicate method (Palka 1995) accounting for biases due to school size and other potential covariates, reactive movements (Palka and Hammond 2001), and $g(0)$, the probability of detecting a group on the track line. Aerial data were collected using the Hiby circle-back line transect method (Hiby 1999) and analyzed accounting for $g(0)$ and biases due to school size and other potential covariates (Figure 1; Palka unpubl.).

A survey of the U.S. Atlantic outer continental shelf and continental slope (water depths $=50 \mathrm{~m}$) between $27.5-38^{\circ} \mathrm{N}$ latitude was conducted during June-August, 2004. The survey employed two independent visual teams searching with 50x bigeye binoculars. Survey effort was stratified to include increased effort along the continental shelf break and Gulf Stream front in the Mid-Atlantic. The survey included $5,659 \mathrm{~km}$ of trackline, and there were a total of 473 cetacean sightings. Sightings were most frequent in waters North of Cape Hatteras, North Carolina along the shelf break. Data were analyzed to correct for visibility bias $(g(0))$ and group-size bias employing line transect distance analysis and the direct duplicate estimator (Palka 1995; Buckland et al., 2001). The resulting abundance estimate for pantropical spotted dolphins between Florida and Maryland was 4,439 (CV=0.49).

At their November 1999 meeting, the Atlantic SRG recommended that, without a genetic determination of stock structure, the abundance estimates for the coastal and offshore forms should be combined. There remains debate over how distinguishable both species are at sea, though in the waters south of Cape Hatteras identification to species is made with very high certainty. This does not, however, account for the potential for a mixed species herd, as has been recorded for several dolphin assemblages. Pending further genetic studies for clarification of this problem, a single species abundance estimate will be used as the best estimate of abundance, combining species specific data from the northern as well as southern portions of the species' ranges. This joint estimate is considered best because together these two surveys have the most complete coverage of the species' habitat. The best 2004 abundance estimate for pantropical spotted dolphins is the sum of the estimates from the two 2004 western U.S. Atlantic surveys, $4,439(\mathrm{CV}=0.49)$, where the estimate from the northern U.S. Atlantic is 0 , and from the southern U.S. Atlantic is $4,439(\mathrm{CV}=0.49)$.

Table 1. Summary of abundance estimates for pantropical spotted dolphins . Month, year, and area covered during each abundance survey, and resulting abundance estimate ($\mathrm{N}_{\text {best }}$) and coefficient of variation (CV).

Month/Year	Area	$\mathbf{N}_{\text {best }}$	CV
Jul-Sep 1998	Maryland to Gulf of St. Lawrence	343^{a}	1.03
Jul-Aug 1998	Florida to Maryland	$12,747^{\mathrm{a}}$	0.56
Jul-Aug 1998	Florida to Gulf of St. Lawrence (COMBINED)	13,090	0.55
Jun-Aug 2004	Maryland to Bay of Fundy	0	0
Jun-Aug 2004	Florida to Maryland	4,439	0.49
Jun-Aug 2004	Florida to Bay of Fundy (COMBINED)	4,439	0.49
This represents the first estimates for pantropical spotted dolphin.			

Minimum Population Estimate

The minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the log- normally distributed best abundance estimate. This is equivalent to the 20th percentile of the log-normal distribution as specified by Wade and Angliss (1997). The best estimate of abundance for pantropical spotted dolphins is 4,439 (CV=0.49) The minimum population estimate for pantropical spotted dolphins is 3,010 .

Current Population Trend

There are insufficient data to determine the population trends for this species, because prior to 1998 spotted dolphins (Stenella sp.) were not differentiated during surveys.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Current and maximum net productivity rates are unknown for this stock. For purposes of this assessment, the maximum net productivity rate was assumed to be 0.04 . This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive life history (Barlow 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential Biological Removal (PBR) is the product of minimum population size, one-half the maximum productivity rate, and a "recovery" factor (MMPA Sec. 3. 16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size for pantropical spotted dolphins is 3,010 . The maximum productivity rate is 0.04 , the default value for cetaceans. The "recovery" factor, which accounts for endangered, depleted, threatened stocks, or stocks of unknown status relative to optimum sustainable population (OSP) is assumed to be 0.5 because this stock is of unknown status. PBR for pantropical spotted dolphins is 30 .

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

Fishery Information

Detailed fishery information is reported in Appendix III. Total annual estimated average fishery-related mortality or serious injury to this stock during 1999-2003 was zero pantropical spotted dolphins, as there were no reports of mortality or serious injury to pantropical spotted dolphins (Yeung 2001; Garrison 2003; Garrison and Richards, 2004).

Earlier Interactions

No spotted dolphin mortalities were observed in 1977-1991 foreign fishing activities. Bycatch has been observed by NMFS Sea Samplers in the pelagic drift gillnet and pelagic longline fisheries, but no mortalities or serious injuries have been documented in the pelagic pair trawl, Northeast sink gillnet, Mid-Atlantic coastal gillnet, and North Atlantic bottom trawl fisheries; and no takes have been documented in a review of Canadian gillnet and trap fisheries (Read 1994).

Forty-nine undifferentiated spotted dolphin mortalities were observed in the drift gillnet fishery between 1989 and 1998 and occurred northeast of Cape Hatteras within the 183m isobath in February-April, and near Lydonia Canyon in October. Six whole animal carcasses that were sent to the Smithsonian were identified as pantropical spotted dolphins (S. attenuata). The remaining animals were not identified to species. Estimated annual mortality and serious injury attributable to this fishery (CV in parentheses) was 25 in 1989 (.65), 51 in 1990 (.49), 11 in 1991 (.41), 20 in 1992 (0.18), 8.4 in 1993 (0.40), 29 in $1994(0.01), 0$ in 1995, 2 in 1996 (0.06), no fishery in 1997 and 0 in 1998.

The pelagic longline fishery operates in the U.S. Atlantic (including Caribbean) and Gulf of Mexico EEZ (SEFSC unpublished data). Interactions between the pelagic longline fishery and spotted dolphins have been reported; however, a vessel may fish in more than one statistical reporting area and it is not possible to separate estimates of fishing effort other than to subtract Gulf of Mexico effort from Atlantic fishing effort, which includes the Caribbean Sea. Excluding the Gulf of Mexico where 1 animal was hooked and released alive, no pantropical spotted dolphin bycatches were observed during 1999-2003.

Other Mortality

From 1999-2003, 6 pantropical spotted dolphins were stranded between North Carolina and Puerto Rico (NMFS unpublished data). The 6 mortalities includes the 4 animals stranded in Florida in 1999, 1 animal stranded in North Carolina and 1 in Florida in both 2002 and 2003. There were no documented signs of human interactions in any of these strandings.

Stranding data probably underestimate the extent of fishery-related mortality and serious injury because all of the marine mammals that die or are seriously injured may not wash ashore, nor will all of those that do wash ashore necessarily show signs of entanglement or other fishery-interaction. Finally, the level of technical expertise among stranding network personnel varies widely as does the ability to recognize signs of fishery interaction.

Table 2. Pantropical spotted dolphin (Stenella attenuata) strandings along the U.S. Atlantic coast, 1999-2003

STATE	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	$\mathbf{2 0 0 3}$	TOTALS
North Carolina	0	0	0	0	0	0
South Carolina	0	0	0	0	0	0
Georgia	0	0	0	0	0	0
Florida	4	0	1	1	0	6
Puerto Rico	0	0	0	0	0	0
TOTALS	4	0	1	1	0	6

STATUS OF STOCK

The status of pantropical spotted dolphins, relative to OSP in the western U.S. Atlantic EEZ is unknown. The species is not listed as threatened or endangered under the Endangered Species Act. There are insufficient data to determine the population trends for this species. Total fishery-related mortality and serious injury for this stock is less than 10% of the calculated PBR and, therefore, can be considered to be insignificant and approaching zero mortality and serious injury rate. Average annual fishery-related mortality and serious injury does not exceed the PBR; therefore, this is not a strategic stock

REFERENCES

Barlow, J., S. L. Swartz, T. C. Eagle and P. R. Wade. 1995. U.S. Marine mammal stock assessments: Guidelines for preparation, background, and a summary of the 1995 assessments. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-6, 73pp. Available from NMFS, Southwest Fisheries Science Center, 8604 La Jolla Shores Drive, La Jolla, CA, 92037-1508.
Buckland, S. T., D. R. Anderson, K. P. Burnham, J. L. Laake, D. L. Borchers and L. Thomas. 2001. Introduction to distance sampling: estimating abundance of biological populations. Oxford University Press, New York, 432 pp.
CETAP. 1 982. A characterization of marine mammals and turtles in the mid- and north Atlantic areas of the U.S. outer continental shelf. Cetacean and Turtle Assessment Program, University of Rhode Island. Final Report, Contract AA51-C78-48, Bureau of Land Management, Washington, DC. 538 pp.
Garrison, L.P. 2003. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2001-2002. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SEFSC-515, 52 pp. Available from NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Road, Miami, F1 33149.
Garrison, L.P. and P.M. Richards. 2004. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2003. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SEFSC-527, 57 pp. Available from NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Road, Miami, Fl 33149.
Hiby, L. 1999. The objective identification of duplicate sightings in aerial survey for porpoise. pp. 179-189. In: G.W. Garner, S. C. Amstrup, J. L. Laake, B. F. J. Manly, L. L. McDonald, and D. G. Robertson (eds.) Marine mammal survey and assessment methods. Balkema, Rotterdam. 287 pp.
Mullin, K. D. and G. L. Fulling. 2003. Abundance of cetaceans in the southern U.S. Atlantic Ocean during summer 1998. Fish. Bull., U.S. 101:603-613.
Mullin, K., W. Hoggard, C. Roden, R. Lohoefener, C. Rogers and B. Taggart. 1991. Cetaceans on the upper continental slope in the north-central Gulf of Mexico. OCS Study/MMS 91-0027. U.S. Dept. of the Interior, Minerals Management Service, Gulf of Mexico OCS Regional Office, New Orleans, Louisiana, 108 pp.
Palka, D. 1995. Abundance estimate of the Gulf of Maine harbor porpoise. pp. 27-50 In: A. Bjørge and G.P.Donovan (eds.) Biology of the Phocoenids. Rep. int. Whal. Commn (Special Issue) 16:i-x +552 pp .
Palka, D. 1996. Update on abundance of Gulf of Maine/Bay of Fundy harbor porpoises. NOAA-NMFS-NEFSC. Ref. Doc. 96-04; 37p. Available from: National Marine Fisheries Service, 166 Water Street, Woods Hole, MA 02543-1026.
Palka, D. and P.S. Hammond. 2001. Accounting for responsive movement in line transect estimates of abundance. Can. J. Fish. Aquat. Sci. 58: 777-787.

Perrin, W.F., E.D. Mitchell, J.G. Mead, D.K. Caldwell, M.C. Caldwell, P.J.H. van Bree, and W.H. Dawbin. 1987. Revision of the spotted dolphins, Stenella sp. Mar. Mammal Sci. 3(2):99-170.
Perrin, W.F. and A.A. Hohn. 1994. Pantropical spotted dolphin Stenella attenuata. Pp. 71-98 in: S. H. Ridgway and R. Harrison (eds.). Handbook of marine mammals, Vol. 5: The first book of dolphins. Academic Press, San Diego, 418 pp .
Read, A.J. 1994. Interactions between cetaceans and gillnet and trap fisheries in the northwest Atlantic. pp. 133-147. In: W.F. Perrin, G.P. Donovan and J. Barlow (eds.) Gillnets and Cetaceans. Rep. int. Whal. Commn (Special Issue) $15: \mathrm{i}-\mathrm{ix}+629 \mathrm{pp}$.

Scott, G.P. and C.A. Brown. 1997. Estimates of marine mammal and marine turtle catch by the U.S. Atlantic pelagic longline fleet in 1994-1995. Miami Laboratory Contribution MIA-96/97-28
Wade, P.R., and R.P. Angliss. 1997. Guidelines for assessing marine mammal stocks: Report of the GAMMS Workshop April 3-5, 1996, Seattle, Washington. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-12, 93 pp. Available from: NOAA, National Marine Fisheries Service, 166 Water St., Woods Hole, MA 02543.
Yeung, C. 2001. Estimates of marine mammal and marine turtle bycatch by the U.S. Atlantic pelagic longline fleet in 1999-2000. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SEFSC-467, 43 pp. Available from: NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL, 33149.

STRIPED DOLPHIN (Stenella coeruleoalba): Western North Atlantic Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

The striped dolphin, Stenella coeruleoalba, is distributed worldwide in warm-temperate to tropical seas (Archer and Perrin 1997). Striped dolphins are found in the western North Atlantic from Nova Scotia south to at least Jamaica and in the Gulf of Mexico. In general, striped dolphins appear to prefer continental slope waters offshore to the Gulf Stream (Leatherwood et al. 1976; Perrin et al. 1994; Schmidly 1981). There is very little information concerning striped dolphin stock structure in the western North Atlantic (Archer and Perrin 1997).

In waters off the northeastern U.S. coast, striped dolphins are distributed along the continental shelf edge from Cape Hatteras to the southern margin of Georges Bank, and also occur offshore over the continental slope and rise in the Mid-Atlantic region (CETAP 1982; Mullin and Fulling 2003; Palka et al. Unpub. Ms.; Figure 1). Continental shelf edge sightings in this program were generally centered along the $1,000 \mathrm{~m}$ depth contour in all seasons (CETAP 1982). During 1990 and 1991 cetacean habitat-use surveys, striped dolphins were associated with the Gulf Stream north wall and warm-core ring features (Waring et al. 1992). Striped dolphins seen in a survey of the New England Sea Mounts (Palka 1997) were in waters that were between 20° and $27^{\circ} \mathrm{C}$ and deeper than 900 m .

Although striped dolphins are considered to be uncommon in Canadian Atlantic waters (Baird et al. 1997), recent summer sightings (2-125 individuals) in the deeper and warmer waters of the Gully (submarine canyon off eastern Nova Scotia shelf) suggest that this region may be an important part of their range (Gowans and Whitehead 1995; Baird et al. 1997).

POPULATION SIZE

Total numbers of striped dolphins off the U.S. or

Figure 1. Distribution of striped dolphin sightings from NEFSC and SEFSC shipboard and aerial surveys during the summer 1998, 1999, and 2004. Isobaths are at $100 \mathrm{~m}, 1,000 \mathrm{~m}$, and 4,000 m. Canadian Atlantic coast are unknown, although several estimates from selected regions of the habitat do exist for select time periods. Sightings were almost exclusively in the continental shelf edge and continental slope areas west of Georges Bank (Figure 1). An abundance of 36,780 striped dolphins ($\mathrm{CV}=0.27$) was estimated from an aerial survey program conducted from 1978 to 1982 on the continental, shelf and shelf edge waters between Cape Hatteras, North Carolina and Nova Scotia (CETAP 1982). An abundance of 25,939 $(\mathrm{CV}=0.36)$ and $13,157(\mathrm{CV}=0.45)$ striped dolphins was estimated from line transect aerial surveys conducted from August to September 1991 using the Twin Otter and AT-11, respectively (NMFS 1991). The study area included that covered in the CETAP study plus several additional continental slope survey blocks. Due to weather and logistical constraints, several survey blocks south and east of Georges Bank were not surveyed. As recommended in the GAMS Workshop Report (Wade and Angliss 1997), estimates older than eight years are deemed unreliable, therefore should not be used for PBR determinations. Further, due to changes in survey methodology these data should not be used to make comparisons to more current estimates

An abundance of $31,669(\mathrm{CV}=0.73)$ striped dolphins was estimated from a July to September 1995 sighting survey conducted by two ships and an airplane that covered waters from Virginia to the mouth of the Gulf of St. Lawrence (Palka et al. Unpubl. Ms.). Total track line length was $32,600 \mathrm{~km}$. The ships covered waters between the 50 and 1,000 fathom depth contour lines, the northern edge of the Gulf Stream, and the northern Gulf of Maine/Bay of Fundy region. The airplane covered waters in the Mid-Atlantic from the coastline to the 50 fathom depth contour line, the southern Gulf of

Maine, and shelf waters off Nova Scotia from the coastline to the 1,000 fathom depth contour line. Data collection and analysis methods used were described in Palka (1996).

An abundance of $39,720(C V=0.45)$ for striped dolphins was estimated from a line transect sighting survey conducted during 6 July to 6 September 1998 by a ship and plane that surveyed $15,900 \mathrm{~km}$ of track line in waters north of Maryland $\left(38^{\circ} \mathrm{N}\right)$ (Figure 1; Palka et al. unpublished Ms.). Shipboard data were analyzed using the modified direct duplicate method (Palka 1995) that accounts for school size bias and $g(0)$, the probability of detecting a group on the track line. Aerial data were not corrected for $g(0)$.

An abundance of $10,225(\mathrm{CV}=0.91)$ for striped dolphins was estimated from a shipboard line transect sighting survey conducted between 8 July and 17 August 1998 that surveyed $4,163 \mathrm{~km}$ of track line in waters south of Maryland ($38^{\circ} \mathrm{N}$) (Figure 1; Mullin and Fulling 2003). This estimate is a recalculation of the same data reported in previous SARs. For more details see Mullin and Fulling (2003). Abundance estimates were made using the program DISTANCE (Buckland et al. 1993) where school size bias and ship attraction were accounted for.

The best 1998 abundance estimate for striped dolphins is the sum of the estimates from the two U.S. Atlantic surveys, $49,945(\mathrm{CV}=0.40)$, where the estimate from the northern U.S. Atlantic is $39,720(\mathrm{CV}=0.45)$ and from the southern U.S. Atlantic is $10,225(\mathrm{CV}=0.91)$. This joint estimate is considered best because together these two surveys have the most complete coverage of the species' habitat.

An abundance of $52,055(\mathrm{CV}=0.57)$ for striped dolphins was estimated from a line transect sighting survey conducted during June 12 to August 4, 2004 by a ship and plane that surveyed $10,761 \mathrm{~km}$ of track line in waters north of Maryland $\left(38^{\circ} \mathrm{N}\right)$ to the Bay of Fundy ($45^{\circ} \mathrm{N}$) (Figure 1; Palka unpublished). Shipboard data were collected using the two independent team line transect method and analyzed using the modified direct duplicate method (Palka 1995) accounting for biases due to school size and other potential covariates, reactive movements (Palka and Hammond 2001), and $g(0)$, the probability of detecting a group on the track line. Aerial data were collected using the Hiby circle-back line transect method (Hiby 1999) and analyzed accounting for $g(0)$ and biases due to school size and other potential covariates (Figure 1; Palka unpublished).

A shipboard survey of the U.S. Atlantic outer continental shelf and continental slope (water depths $>50 \mathrm{~m}$) between Florida and Maryland (27.5 and $38^{\circ} \mathrm{N}$) was conducted during June-August, 2004. The survey employed two independent visual teams searching with 50 x bigeye binocluars. Survey effort was stratified to include increased effort along the continental shelf break and Gulf Stream front in the Mid-Atlantic. The survey included $5,659 \mathrm{~km}$ of trackline, and there were a total of 473 cetacean sightings. Sightings were most frequent in waters North of Cape Hatteras, North Carolina along the shelf break. Data were analyzed to correct for visibility bias $(g(0))$ and group-size bias employing line transect distance analysis and the direct duplicate estimator (Palka, 1995; Buckland et al., 2001). The resulting abundance estimate for striped dolphins between Florida and Maryland was $42,407(\mathrm{CV}=0.53)$.

The best 2004 abundance estimate for striped dolphins is the sum of the estimates from the two 2004 U.S. Atlantic surveys, $94,462(\mathrm{CV}=0.40)$, where the estimate from the northern U.S. Atlantic is $52,055(\mathrm{CV}=0.57)$, and from the southern U.S. Atlantic is $42,407(\mathrm{CV}=0.53)$. This joint estimate is considered best because together these two surveys have the most complete coverage of the species' habitat.

Table 1. Summary of abundance estimates for western North Atlantic striped dolphins. Month, year, and area covered during each abundance survey, and resulting abundance estimate $\left(\mathrm{N}_{\text {best }}\right)$ and coefficient of variation (CV).			
Month/Year	Area	$\mathrm{N}_{\text {best }}$	CV
Jul-Sep 1998	Maryland to Gulf of St. Lawrence	39,720	0.45
Jul-Aug 1998	Florida to Maryland	10,225	0.91
Jul-Sep 1998	Florida to Gulf of St. Lawrence (COMBINED)	49,945	0.40
Jun-Aug 2004	Maryland to the Bay of Fundy	52,055	0.57
Jun-Aug 2004	Florida to Maryland	42,407	0.53
Jun-Aug 2004	Florida to Bay of Fundy (COMBINED)	94,462	0.40

Minimum Population Estimate

The minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the log-normally distributed best abundance estimate. This is equivalent to the 20 th percentile of the log-normal distribution as specified by

Wade and Angliss (1997). The best estimate of abundance for striped dolphins is 94,462 (CV=0.40). The minimum population estimate for the western North Atlantic striped dolphin is 68,558 .

Current Population Trend

There are insufficient data to determine the population trends for this species.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Current and maximum net productivity rates are unknown for this stock. For purposes of this assessment, the maximum net productivity rate was assumed to be 0.04 . This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive life history (Barlow 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential Biological Removal (PBR) is the product of minimum population size, one-half the maximum productivity rate, and a "recovery" factor (MMPA Sec. 3. 16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size is 68,558 . The maximum productivity rate is 0.04 , the default value for cetaceans. The "recovery" factor, which accounts for endangered, depleted, threatened stocks, or stocks of unknown status relative to optimum sustainable population (OSP) is 0.5 because this stock is of unknown status. PBR for the western North Atlantic striped dolphin is 686 .

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

Total annual estimated average fishery-related mortality to this stock during 1999-2003 was zero striped dolphins.

Fishery Information

Detailed fishery information is reported in Appendix III.

Earlier Interactions

The pelagic drift gillnet fishery is now closed. Forty striped dolphin mortalities were observed between 1989 and 1998 and occurred east of Cape Hatteras in January and February, and along the southern margin of Georges Bank in summer and autumn (Northridge 1996). Estimated annual mortality and serious injury (CV in parentheses) attributable to the pelagic drift gillnet fishery were 39 striped dolphins in 1989 (0.31), 57 in 1990 (0.33), 11 in 1991 (0.28), 7.7 in 1992 (0.31), 21 in 1993 (0.11), 13 in 1994 (0.06), 2 in 1995 (0), 7 in 1996 (CV=0.22), no fishery in 1997 and 4 in 1998 (CV=0).

In the North Atlantic bottom trawl fishery the only reported fishery-related mortalities (two) occurred in 1991, where the total estimated mortality and serious injury attributable to this fishery for 1991 was 181 (CV=0.97).

USA

Bycatch has previously been observed by NMFS Sea Samplers in the pelagic drift gillnet and North Atlantic bottom trawl fisheries (see above) but no mortalities or serious injuries have recently been documented in any U.S. fishery.

CANADA

No mortalities were documented in review of Canadian gillnet and trap fisheries (Read 1994). However, in a recent review of striped dolphins in Atlantic Canada two records of incidental mortality have been reported (Baird et al. 1997) In the late 1960s and early 1970s two mortalities each, were reported in trawl and salmon net fisheries.

Between January 1993 and December 1994, 36 Spanish deep-water trawlers, covering 74 fishing trips (4,726 fishing days and 14,211 sets), were observed in NAFO Fishing Area 3 (off the Grand Bank) (Lens 1997). A total of 47 incidental catches were recorded, which included two striped dolphins. The incidental mortality rate for striped dolphins was $0.014 /$ set.

Other Mortality

From 1995-1998, 7 striped dolphins were stranded between Massachusetts and Florida (NMFS unpublished data). From 1999-2003, forty-three dolphins were reported stranded from Maine to Florida (NMFS unpublished data). There were no signs of human interactions or mass strandings. The number of reported strandings per year were 2003 (19), 2002 (5), 2001 (9), 2000 (5), and 1999 (5).

In eastern Canada, 10 strandings were reported off eastern Canada from 1926-1971, and 19 from 1991-1996 (Sergeant et al. 1970; Baird et al. 1997; Lucas and Hooker 1997). In both time periods, most of the strandings were on Sable Island, Nova Scotia.

STATUS OF STOCK

The status of striped dolphins, relative to OSP, in the U.S. Atlantic EEZ is unknown. The species is not listed as threatened or endangered under the Endangered Species Act. There are insufficient data to determine the population trends for this species. The total fishery-related mortality and serious injury for this stock is less than 10% of the calculated PBR, therefore can be considered to be insignificant and approaching zero mortality and serious injury rate. Average annual fishery-related mortality and serious injury does not exceed the PBR; therefore, this is not a strategic stock.

REFERENCES

Archer, F. I., II and W. F. Perrin. 1997. Species account of striped dolphins (Stenella coeruleoalba). Paper SC/49/SM27 presented to the IWC Scientific Committee, September 1997. 27 pp.
Baird, R.W., S. K. Hooker, H. Whitehead, and R. Etcheberry. 1997. A Review of records of striped dolphins (Stenella coeruleoalba) from Canadian waters. IWC Doc. SC/49/SM4, 10 pp.
Barlow, J., S. L. Swartz, T. C. Eagle, and P. R. Wade. 1995. U.S. Marine Mammal Stock Assessments: Guidelines for Preparation, Background, and a Summary of the 1995 Assessments. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-6, 73 pp.
Buckland, S. T., D. R. Andersen, K. P. Burnham, and J. L. Laake. 1993. Distance sampling: Estimating abundance of biological populations. Chapman and Hall, New York, 446 pp.
Buckland, S. T., D.R. Andersen, K.P Burnham, J.L. Laake, D.L. Borchers, and L. Thomas. 2001. Introduction to Distance Sampling estimating abundance of biological populations. Oxford University Press, New York, 432 pp.
CETAP. 1982. A characterization of marine mammals and turtles in the mid- and north Atlantic areas of the U.S. outer continental shelf. Cetacean and Turtle Assessment Program, University of Rhode Island. Final Report, Contract AA51-C78-48, Bureau of Land Management, Washington, DC, 538 pp.
Gowans, S. and H. Whitehead. 1995. Distribution and habitat partitioning by small odontocetes in the Gully, a submarine canyon on the Scotian Shelf. Can. J. Zool. 73:1599-1608.
Hiby, L. 1999. The objective identification of duplicate sightings in aerial survey for porpoise. Pages 179-189 in: G.W. Garner, S.C. Amstrup, J.L. Laake, B.F.J. Manly, L.L. McDonald, and D.G. Robertson (eds.). Marine Mammal Survey and Assessment Methods. Balkema, Rotterdam.
Leatherwood, S., D. K. Caldwell, and H. E. Winn. 1976. Whales, dolphins, and porpoises of the western North Atlantic. A guide to their identification. U.S. Dept. of Commerce, NOAA Tech. Rep. NMFS Circ. 396, 176 pp.
Lens, S. 1997. Interactions between marine mammals and deep water trawlers in the NAFO regulatory area. ICES CM 1997/Q:8. 10 pp.
Lucas, A. N. and S. K. Hooker. 1997. Cetacean strandings on Sable Island, Nova Scotia, 1990-1996. Paper SC/49/06 presented to the IWC Scientific Committee, September 1997. 10 pp.
Mullin, K. D and G. L. Fulling. 2003. Abundance of cetaceans in the southern U.S. Atlantic Ocean during summer 1998. Fish. Bull., U.S 101:603-613.
NMFS [National Marine Fisheries Service]. 1991. Northeast cetacean aerial survey and interplatform study. NOAA, NMFS, NEFSC \& SEFSC, 4 pp. Available from NEFSC, Woods Hole Laboratory, Woods Hole, MA.
Northridge, S. 1996. Estimation of cetacean mortality in the U.S. Atlantic swordfish and tuna drift gillnet and pair trawl fisheries. Final report to the Northeast Fisheries Science Center, Contract No. 40ENNF500160.
Palka, D. 1995. Abundance estimate of the Gulf of Maine harbor porpoise. Rep. int. Whal. Commn (Special Issue) 16:27-50.
Palka, D. 1996. Update on abundance of Gulf of Maine/Bay of Fundy harbor porpoises. NOAA/NMFS/NEFSC. Ref. Doc. 96-04; 37p. Available from: National Marine Fisheries Service, 166 Water Street, Woods Hole, MA 02543-1026.
Palka, D.L. 1997 . A review of striped dolphins (Stenella coeruleoalba) in U.S. Atlantic waters. IWC Doc. SC/49/SM26, 13 pp .
Palka, D. and Hammond, P.S. 2001 . Accounting for responsive movement in line transect estimates of abundance. Can. J. Fish. Aquat. Sci. 58: 777-787.

Perrin, W.F., C.E. Wilson and F.I. Archer II. 1994. Pages 129-159 In: S. H. Ridgway and R. Harrison (eds.), Handbook of marine mammals, Volume 5: The first book of dolphins, Academic Press, San Diego.
Read, A. J. 1994. Interactions between cetaceans and gillnet and trap fisheries in the northwest Atlantic. Rep. int. Whal. Commn (Special Issue) 15:133-147.
Sergeant, D.E., A.W. Mansfield and B. Beck. 1970. Inshore records of cetacea for eastern Canada, 1949-68. J. Fish. Res. Brd. of Can. 27: 1903-1915.
Schmidly, D. J. 1981. Marine mammals of the southeastern United States coast and the Gulf of Mexico. Pub. No. FWS/OBS-80/41, U.S. Fish and Wildlife Service, Office of Biological Services, Washington, DC, 163 pp.

Wade, P. R. and R. P. Angliss. 1997. Guidelines for assessing marine mammal stocks: Report of the GAMMS Workshop April 3-5, 1996, Seattle, Washington. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-12, 93 pp.
Waring, G. T., C. P. Fairfield, C. M. Ruhsam, and M. Sano. 1992. Cetaceans associated with Gulf Stream features off the northeastern USA shelf. ICES Marine Mammals Comm. CM 1992/N:12, 29 pp.

FRASER'S DOLPHIN (Lagenodelphis hosei): Western North Atlantic Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

Fraser's dolphin is distributed worldwide in tropical waters (Perrin et al. 1994). Fraser's dolphins are assumed to be part of the cetacean fauna of the tropical western North Atlantic. The paucity of sightings is probably due to naturally low abundance compared to other cetacean species. Sightings in the more extensively surveyed northern Gulf of Mexico are uncommon but occur on a regular basis. Fraser's dolphins have been observed in oceanic waters ($>200 \mathrm{~m}$) in the northern Gulf of Mexico during all seasons (Leatherwood et al. 1993; Hansen et al. 1996; Mullin and Hoggard 2000; Mullin and Fulling, 2004). The western North Atlantic population is provisionally being considered one stock for management purposes. Additional morphological, genetic and/or behavioral data are needed to provide further information on stock delineation.

POPULATION SIZE

The numbers of Fraser's dolphins off the U.S. or Canadian Atlantic coast are unknown, and seasonal abundance estimates are not available for this stock, since it was rarely seen in any surveys. A group of an estimated 250 Fraser's dolphins was sighted in waters 3300 m deep in the western North Atlantic off Cape Hatteras during a 1999 vessel survey (Figure 1; NMFS 1999). Abundances have not been estimated from the 1999 vessel survey in western North Atlantic (NMFS 1999); because the sighting was not made during linetransect sampling effort; therefore, the population size of Fraser's dolphins is unknown. No Fraser's dolphins have been observed in any other surveys.

Minimum Population Estimate

Present data are insufficient to calculate a minimum population estimate for this stock.

Current Population Trend

There are insufficient data to determine the population trends for this stock .

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Current and maximum net productivity rates are unknown for this stock. For purposes of this assessment, the maximum net productivity rate was assumed to be 0.04 . This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive history (Barlow et al. 1995).

Figure 1. Distribution of Fraser's dolphins from SEFSC shipboard survey during 1999. All sightings are shown. Solid lines indicate the $100 \mathrm{~m}, 1,000 \mathrm{~m}$, and $4,000 \mathrm{~m}$ isobaths.

POTENTIAL BIOLOGICAL REMOVAL

Potential Biological Removal level (PBR) is the product of the minimum population size, one-half the maximum productivity rate, and a recovery factor (MMPA Sec. 3.16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size is unknown. The maximum productivity rate is 0.04 , the default value for cetaceans. The "recovery" factor, which accounts for endangered, depleted, threatened stocks, or stocks of unknown status relative to optimum sustainable population (OSP), is assumed to be 0.5 because this stock is of unknown status. PBR for the western North Atlantic Fraser's dolphin stock is unknown because the minimum population size is unknown.

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

Fishery Information

Detailed fishery information is reported in Appendix III. Total annual estimated average fishery-related mortality and serious injury to this stock during 1999-2003 was zero Fraser's dolphins, as there were no reports of mortality or serious injury to Fraser's dolphins (Yeung 2001; Garrison 2003; Garrison and Richards, 2004).

Other Mortality

From 1999-2003, 12 Fraser's dolphins were reported stranded between Maine and Puerto Rico (Table 1). The total includes 1 animal stranded in Puerto in 1999 and 1 in 2002, and 10 mass stranded live animals in April 2003 in Lee, Florida. There were no indications of human interactions for these stranded animals.

Stranding data probably underestimate the extent of fishery-related mortality and serious injury because all of the marine mammals that die or are seriously injured may not wash ashore, nor will all of those that do wash ashore necessarily show signs of entanglement or other fishery-interaction. Finally, the level of technical expertise among stranding network personnel varies widely as does the ability to recognize signs of fishery interaction.

Table 1. Fraser's dolphin (Lagenodelphis hosei) strandings along the U.S. Atlantic coast, 1999-2003

STATE	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	$\mathbf{2 0 0 3}$	TOTAL
North Carolina	0	0	0	0	0	0
South Carolina	0	0	0	0	0	0
Georgia	0	0	0	0	0	0
Florida	0	0	0	0	10^{a}	10
Puerto Rico	1	0	0	1	0	2
TOTAL	1	0	0	1	10	12
Florida live mass stranding of 10 animals in Lee, Florida on April 4, 2003						

STATUS OF STOCK

The status of Fraser's dolphins, relative to OSP, in the U.S. western North Atlantic EEZ is unknown. The species is not listed as threatened or endangered under the Endangered Species Act. There are insufficient data to determine the population size or trends and PBR cannot be calculated for this stock. No fishery-related mortality and serious injury has been observed since 1999; therefore, total fishery-related mortality and serious injury rate can be considered insignificant and approaching zero mortality and serious injury. This is not a strategic stock.

REFERENCES

Barlow, J., S. L. Swartz, T. C. Eagle and P. R. Wade. 1995. U.S. Marine mammal stock assessments: Guidelines for preparation, background, and a summary of the 1995 assessments. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-6, 73pp. Available from NMFS, Southwest Fisheries Science Center, 8604 La Jolla Shores Drive, La Jolla, CA, 92037-1508.
Garrison, L.P. 2003. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2001-2002. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SEFSC-515, 52 pp. Available from NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Road, Miami, Fl 33149.
Garrison, L.P. and P.M. Richards. 2004. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2003. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SEFSC-527, 57 pp. Available from NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Road, Miami, Fl 33149.
Hansen, L. J., K. D. Mullin, T. A. Jefferson and G. P. Scott. 1996. Visual surveys aboard ships and aircraft. pp. 55132. In: R. W. Davis and G. S. Fargion (eds.), Distribution and abundance of marine mammals in the north-central and western Gulf of Mexico: Final report. Volume II: Technical report. OCS Study MMS 960027. Minerals Management Service, Gulf of Mexico OCS Region, New Orleans.

Leatherwood, S., T. A. Jefferson, J. C. Norris, W. E. Stevens, L. J. Hansen and K. D. Mullin. 1993. Occurrence and sounds of Fraser's dolphin in the Gulf of Mexico. Texas J. Sci. 45(4):349-354.
Mullin, K. D. and W. Hoggard. 2000. Visual surveys of cetaceans and sea turtles from aircraft and ships. Pages 111172. In R. W. Davis, W. E. Evans, and B. Würsig (eds.), Cetaceans, sea turtles and seabirds in the northern Gulf of Mexico: Distribution, abundance and habitat associations. Volume II: Technical report. OCS Study MMS 96-0027. Minerals Management Service, Gulf of Mexico OCS Region, New Orleans.
Mullin, K. D. and G. L. Fulling. 2004. Abundance of cetaceans in the oceanic northern Gulf of Mexico, 19962001. Mar. Mammal Sci. 20(4):787-807.

NMFS [National Marine Fisheries Service]. 1999. Cruise results. Summer Atlantic Ocean marine mammal survey. NOAA Ship Oregon II cruise 236 (99-05), 4 August - 30 September 1999. Available from SEFSC, 3209 Frederic Street, Pascagoula, MS 39567.
Perrin, W. F., S. Leatherwood and A. Collet. 1994. Fraser's dolphin Lagenodelphis hosei (Fraser 1956). pp. 225240. In: S. H. Ridgway and R. Harrison (editors), Handbook of marine mammals, Vol. 5: The first book of dolphins. Academic Press, London, 416 pp.
Wade, P.R., and R.P. Angliss. 1997. Guidelines for assessing marine mammal stocks: Report of the GAMMS Workshop April 3-5, 1996, Seattle, Washington. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR12, 93 pp. Available from: NOAA, National Marine Fisheries Service, 166 Water St., Woods Hole, MA 02543.

Yeung, C. 2001. Estimates of marine mammal and marine turtle bycatch by the U.S. Atlantic pelagic longline fleet in 1999-2000. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SEFSC-467, 43 pp. Available from: NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL, 33149.

CLYMENE DOLPHIN (Stenella clymene): Western North Atlantic Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

The Clymene dolphin is endemic to tropical and sub-tropical waters of the Atlantic (Jefferson and Curry 2003). Clymene dolphins have been commonly sighted in the Gulf of Mexico since 1990 (Mullin et al. 1994; Fertl et al. 2003), and a Gulf of Mexico stock has been designated since 1995. Four Clymene dolphin groups were sighted during summer 1998 in the western North Atlantic (Mullin and Fulling 2003), and two groups were sighted in the same general area during a 1999 bottlenose dolphin survey (NMFS unpublished). These sightings and stranding records (Fertl et al. 2003) indicate that this species routinely occurs in the western North Atlantic. The western North Atlantic population is provisionally being considered a separate stock for management purposes, although there is currently no information to differentiate this stock from the northern Gulf of Mexico stock(s). Additional morphological, genetic and/or behavioral data are needed to provide further information on stock delineation.

POPULATION SIZE

The numbers of Clymene dolphins off the U.S. or Canadian Atlantic coast are unknown, and seasonal abundance estimates are not available for this species since it was rarely seen in any surveys.

Clymene dolphins were observed during earlier surveys along the U.S. Atlantic coast. Estimates of abundance were derived through the application of distance sampling analysis (Buckland et al. 2001) and the computer program DISTANCE (Thomas et al. 1998) to sighting data. Data were collected using standard line- transect techniques conducted from NOAA Ship Relentless during July and August 1998 between Maryland $\left(38.00^{\circ} \mathrm{N}\right)$ and central Florida $\left(28.00^{\circ} \mathrm{N}\right)$ from the 10 m isobath to the seaward boundary of the U.S. EEZ. Transect lines were placed perpendicular to bathymetry in a double saw-tooth pattern. Sightings of Clymene dolphins were primarily on the continental slope east of Cape Hatteras, North Carolina (Fig. 1). The best estimate of abundance for the Clymene dolphin was 6,086 ($\mathrm{CV}=0.93$) (Mullin and Fulling 2003) and represents the first and only estimate to date for this species in the U.S. Atlantic EEZ. No Clymene dolphins have been observed in subsequent surveys.

Minimum Population Estimate

The minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the log-normally distributed best abundance estimate. This is equivalent to the 20th percentile of the log-normal distributed abundance estimate as specified by Wade and Angliss (1997). The best estimate of abundance for the western North Atlantic Clymene dolphin stock, based on the 1998 surveys, is 6,086 ($\mathrm{CV}=0.93$). The minimum population estimate for the western North Atlantic stock is 3,132 Clymene dolphins.

Current Population Trend

There are insufficient data to determine the population trends for this stock

Figure 1. Distribution of Clymene dolphin sightings from NEFSC and SEFSC vessel and aerial summer surveys during 1998. Isobaths are at $100 \mathrm{~m}, 1,000 \mathrm{~m}$, and $4,000 \mathrm{~m}$.

CURRENT AND MAXIMUM NET PRODUCTIVITY
 RATES

Current and maximum net productivity rates are unknown for this stock. For purposes of this assessment, the maximum net productivity rate was assumed to be 0.04 . This value is based on theoretical modeling showing that
cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive history (Barlow et al. 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential Biological Removal (PBR) is the product of minimum population size, one half the maximum net productivity rate, and a recovery factor (MMPA Sec. 3. 16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size is 3,132 . The maximum productivity rate is 0.04 , the default value for cetaceans. The "recovery" factor, which accounts for endangered, depleted, threatened stocks, or stocks of unknown status relative to optimum sustainable population (OSP) is assumed to be 0.5 because this stock is of unknown status. PBR for the western North Atlantic Clymene dolphin stock is 31 .

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

Fishery Information

Detailed fishery information is reported in Appendix III. Total annual estimated fishery-related mortality and serious injury to this stock during 1999-2003 was zero Clymene dolphins, as there were no reports of mortalities or serious injury to Clymene dolphins (Yeung 2001; Garrison 2003; Garrison and Richards, 2004).

Other Mortality

There have been 2 reported strandings of Clymene dolphins in the western North Atlantic between 1999-2003. No signs of human interactions were noted in either stranding. There may be some uncertainty in the identification of this species due to similarities with other Stenella species.

Stranding data probably underestimate the extent of fishery-related mortality and serious injury because all of the marine mammals that die or are seriously injured may not wash ashore, nor will all of those that do wash ashore necessarily show signs of entanglement or other fishery-interaction. Finally, the level of technical expertise among stranding network personnel varies widely as does the ability to recognize signs of fishery interaction.

STATUS OF STOCK

The status of Clymene dolphins, relative to OSP, in the EEZ is unknown. The species is not listed as threatened or endangered under the Endangered Species Act. There are insufficient data to determine the population trends for this stock. The total fishery-related mortality and serious injury for this stock is unknown, but assumed to be less than 10% of the calculated PBR and can be considered to be insignificant and approaching zero mortality and serious injury rate. This is not a strategic stock because the average annual fishery-related mortality and serious injury has not exceeded PBR for the last two years.

REFERENCES

Barlow, J., S. L. Swartz, T. C. Eagle, and P. R. Wade. 1995. U.S. marine mammal stock assessment: guidelines for preparation, background, and a summary of the 1995 assessments. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-6, National Marine Fisheries Service, Seattle, WA, 73 pp. Available from: NOAA National Marine Fisheries Service, 7600 Sand Point Way NE, Seattle, WA 98115-0070.
Buckland, S. T., D. R. Anderson, K. P. Burnham, J. L. Laake, D. L. Borchers and L. Thomas. 2001. Introduction to distance sampling: estimating abundance of biological populations. Oxford University Press, New York, 432 pp .
Fertl, D., T. A. Jefferson, I. B. Moreno, A. N. Zerbini and K. D. Mullin. 2003. Distribution of the Clymene dolphin Stenella clymene. Mammal Review 33(3):253-271.
Garrison, L.P. 2003. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2001-2002. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SEFSC-515, 52 pp. Available from NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Road, Miami, Fl 33149.
Garrison, L.P. and P.M. Richards. 2004. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2003. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SEFSC-527, 57 pp. Available from NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Road, Miami, Fl 33149.
Jefferson, T. A. and B. E. Curry. 2003. Stenella clymene. Mammalian Species 726:1-5.
Mullin, K. D. and G. L. Fulling. 2003. Abundance of cetaceans in the southern U.S. North Atlantic Ocean during summer 1998. Fish. Bull. 101:603-613.

Mullin, K. D., T. A. Jefferson, and L. J. Hansen. 1994. Sightings of the clymene dolphin (Stenella clymene) in the Gulf of Mexico. Mar. Mammal Sci. 10:464-470.
Palka, D. 1995. Abundance estimate of the Gulf of Maine harbor porpoise. pp. 27-50 In: A. Bjørge and G.P.Donovan (eds.) Biology of the Phocoenids. Rep. int. Whal. Commn (Special Issue) 16:i-x +552 pp .
Palka, D. and P.S. Hammond. 2001. Accounting for responsive movement in line transect estimates of abundance. Can. J. Fish. Aquat. Sci. 58:777-787.

Thomas, L., J. L. Laake, J. F. Derry, S. T. Buckland, D. L. Borchers, D. R. Anderson, K. P. Burnham, S. Strindberg, S. L. Hedley, F. F. C. Marques, J. H. Pollard and R. M. Fewster. 1998. Distance 3.5. Research Unit for Wildlife Population Assessment, University of St. Andrews, St. Andrews, UK.
Wade, P. R. and R. P. Angliss. 1997. Guidelines for assessing marine mammal stocks: Report of the GAMMS workshop April 3-5, 1996, Seattle, Washington. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-12, National Marine Fisheries Service, Seattle, WA, 93pp. Available from: NOAA National Marine Fisheries Service, 7600 Sand Point Way NE, Seattle, WA 98115-0070.
Yeung, C. 2001. Estimates of marine mammal and marine turtle bycatch by the U.S. Atlantic pelagic longline fleet in 1999-2000. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SEFSC-467, National Marine Fisheries Service, Miami, FL, 43 pp. Available from NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Road, Miami, Fl 33149.

SPINNER DOLPHIN (Stenella longirostris): Western North Atlantic Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

Spinner dolphins are distributed in oceanic and coastal tropical waters (Leatherwood et al. 1976). This is presumably an offshore, deep-water species (Schmidly 1981; Perrin and Gilpatrick 1994), and its distribution in the Atlantic is very poorly known. In the western North Atlantic, these dolphins occur in deep water along most of the U.S. coast south to the West Indies and Venezuela, including the Gulf of Mexico. Spinner dolphin sightings have occurred exclusively in deeper ($>2,000 \mathrm{~m}$) oceanic waters (CETAP 1982; Waring et al. 1992; NMFS unpublished data) off the northeast U.S. coast. Stranding records exist from North Carolina, South Carolina, Florida and Puerto Rico in the Atlantic and in Texas and Florida in the Gulf of Mexico. Stock structure in the western North Atlantic is unknown.

POPULATION SIZE

The numbers of spinner dolphins off the U.S. or Canadian Atlantic coast are unknown, and seasonal abundance estimates are not available for this stock since it was rarely seen in any of the surveys.

Minimum Population Estimate

Present data are insufficient to calculate a minimum population estimate.

Current Population Trend

There are insufficient data to determine the population trends for this stock.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Current and maximum net productivity rates are unknown for this stock. For purposes of this assessment, the maximum net productivity rate was assumed to be 0.04 . This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive life history (Barlow et al. 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential Biological Removal (PBR) is the product of minimum population size, one-half the maximum productivity rate, and a "recovery" factor (MMPA Sec. 3. 16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size is unknown. The maximum productivity rate is 0.04 , the default value for cetaceans. The "recovery" factor, which accounts for endangered, depleted, threatened stocks, or stocks of unknown status, relative to optimum sustainable population (OSP), is assumed to be 0.5 because this stock is of unknown status. PBR for the western North Atlantic spinner dolphin is unknown because the minimum population size is unknown.

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

Fishery Information

Detailed fishery information is reported in Appendix III. Total annual estimated average fishery-related mortality and serious injury to this stock during 1999-2003 was zero spinner dolphins, as there were no reports of mortalities or serious injury to spinner dolphins (Yeung 2001; Garrison 2003; Garrison and Richards, 2004).

EARLIER INTERACTIONS

There was no documentation of spinner dolphin mortality or serious injury in distant-water fleet (DWF) activities off the northeast U.S. coast (Waring et al. 1990). No takes were documented in a review of Canadian gillnet and trap fisheries (Read 1994).

Bycatch has been observed by NMFS Sea Samplers in the now prohibited pelagic drift gillnet fishery, but no mortalities or serious injuries have been documented in the pelagic longline, pelagic pair trawl, Northeast sink gillnet, Mid-Atlantic coastal gillnet, and North Atlantic bottom trawl fisheries.

Pelagic Drift Gillnet

One spinner dolphin mortality was observed in the pelagic driftnet between 1989 and 1993 and occurred east of Cape Hatteras in March 1993 (Northridge 1996). Estimates of total annual bycatch for 1994 and 1995 were estimated from the sum of the observed caught and the product of the average bycatch per haul and the number of unobserved hauls as recorded in self-reported fisheries information. Variances were estimated using bootstrap re- sampling techniques. Estimated annual mortality and serious injury attributable to this fishery (CV in parentheses) was 0.7 in 1989 (1.00), 1.7
in 1990 (1.00), 0.7 in 1991 (1.00), 1.4 in 1992 (0.31), 0.5 in 1993 (1.00) and zero from 1994-1996. This fishery is no longer in operation.

Other Mortality

From 1999-2003, 9 spinner dolphins were reported stranded between Maine and Puerto Rico (Table 1). The total includes 2 animals stranded in North Carolina in 2001, 2 animals stranded in Puerto Rico in 2002, 4 mass stranded live animals in December 2003 in Flagler, Florida (all died on the scene), and 1 additional animal stranded in Florida in 2003. There were no indications of human interactions for these stranded animals.

Stranding data probably underestimate the extent of fishery-related mortality and serious injury because all of the marine mammals that die or are seriously injured may not wash ashore, nor will all of those that do wash ashore necessarily show signs of entanglement or other fishery-interaction. Finally, the level of technical expertise among stranding network personnel varies widely as does the ability to recognize signs of fishery interaction.

| Table 1. Spinner dolphin (Stenella longirostris) strandings along the U.S. Atlantic coast, 1999-2003 | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| STATE | $\mathbf{1 9 9 9}$ | $\mathbf{2 0 0 0}$ | $\mathbf{2 0 0 1}$ | $\mathbf{2 0 0 2}$ | $\mathbf{2 0 0 3}$ | TOTALS |
| North Carolina | 0 | 0 | 2 | 0 | 0 | 2 |
| South Carolina | 0 | 0 | 0 | 0 | 0 | 0 |
| Georgia | 0 | 0 | 0 | 0 | 0 | 0 |
| Florida | 0 | 0 | 0 | 0 | $5^{\text {a }}$ | 5 |
| Puerto Rico | 0 | 0 | 0 | 2 | 0 | 2 |
| TOTALS | 0 | 0 | 2 | 2 | 5 | 9 |
| Includes live mass stranding of 4 animals in Flagler, Florida on December 29, 2003 | | | | | | |

STATUS OF STOCK

The status of spinner dolphins, relative to OSP, in the U.S. western North Atlantic EEZ is unknown. The species is not listed as threatened or endangered under the Endangered Species Act. There are insufficient data to determine the population size or trends and PBR cannot be calculated for this stock. No fishery-related mortality and serious injury has been observed since 1999; therefore, total fishery-related mortality and serious injury rate can be considered insignificant and approaching zero mortality and serious injury. This is not a strategic stock.

REFERENCES

Barlow, J., S.L. Swartz, T.C. Eagle and P.R. Wade. 1995. U.S. Marine Mammal Stock Assessments: Guidelines for Preparation, Background, and a Summary of the 1995 Assessments. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-6, 73 pp. Available from: NOAA, National Marine Fisheries Service, 7600 Sand Point Way NE, Seattle, WA, 98115-0070.
CETAP. 1982. A characterization of marine mammals and turtles in the mid- and north Atlantic areas of the U.S. outer continental shelf. Cetacean and Turtle Assessment Program, University of Rhode Island. Final Report, Contract AA51-C78-48, Bureau of Land Management, Washington, DC, 538 pp .
Garrison, L.P. 2003. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2001-2002. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SEFSC-515, 52 pp. Available from NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Road, Miami, Fl 33149.
Garrison, L.P. and P.M. Richards. 2004. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2003. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SEFSC-527, 57 pp. Available from NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Road, Miami, Fl 33149.
Leatherwood, S., D.K. Caldwell and H.E. Winn. 1976. Whales, dolphins, and porpoises of the western North Atlantic. A guide to their identification. U.S. Dep.Commer., NOAA Tech. Rep. NMFS Circ. 396, 176 pp. Available from: NOAA, National Marine Fisheries Service, 166 Water St., Woods Hole, MA 02543.
Northridge, S. 1996. Estimation of cetacean mortality in the U.S. Atlantic swordfish and tuna drift gillnet and pair trawl fisheries. Final report to the Northeast Fisheries Science Center, Contract No. 40ENNF500045, 18 pp. Available from: NOAA, National Marine Fisheries Service, 166 Water St., Woods Hole, MA 02543.
Perrin, W. F. and J. W. Gilpatrick, Jr. 1994. Spinner dolphin. pp. 99-128. In: S. H. Ridgway and R. Harrison (eds.), Handbook of marine mammals, Volume 5: The first book of dolphins. Academic Press, San Diego, California. 418 pp .
Read, A. J. 1994. Interactions between cetaceans and gillnet and trap fisheries in the northwest Atlantic. pp. 133-147. In: W.F. Perrin, G.P. Donovan and J. Barlow (eds.) Gillnets and Cetaceans. Rep. int. Whal. Commn (Special Issue) $15: \mathrm{i}-\mathrm{ix}+629 \mathrm{pp}$.
Schmidly, D.J. 1981. Marine mammals of the southeastern United States coast and the Gulf of Mexico. Pub. No. FWS/OBS-80/41, U.S. Fish and Wildlife Service, Office of Biological Services, Washington, DC, 163 pp.

Wade, P.R., and R.P. Angliss. 1997. Guidelines for assessing marine mammal stocks: Report of the GAMMS Workshop April 3-5, 1996, Seattle, Washington. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR- 12, 93 pp. Available from: NOAA, National Marine Fisheries Service, 166 Water St., Woods Hole, MA 02543.
Waring, G.T., P. Gerrior, P.M. Payne, B.L. Parry and J.R. Nicolas. 1990. Incidental take of marine mammals in foreign fishery activities off the northeastern United States 1977-1998. Fish. Bull., US. 88(2):347-360.
Waring, G. T., C. P. Fairfield, C. M. Ruhsam and M. Sano. 1992. Cetaceans associated with Gulf Stream features off the northeastern USA shelf. ICES Marine Mammals Comm. CM 1992/N:12, 29 pp.
Yeung, C. 2001. Estimates of marine mammal and marine turtle bycatch by the U.S. Atlantic pelagic longline fleet in 1999-2000. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SEFSC-467, 43 pp. Available from: NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL, 33149.

BOTTLENOSE DOLPHIN (Tursiops truncatus): Western North Atlantic Offshore Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

There are two morphologically and genetically distinct bottlenose dolphin morphotypes (Duffield et al. 1983; Duffield 1986) described as the coastal and offshore forms. Both inhabit waters in the western North Atlantic Ocean (Hersh and Duffield 1990; Mead and Potter 1995; Curry and Smith 1997) along the U.S. Atlantic coast. The offshore and nearshore ecotypes are genetically distinct using both mitochondrial and nuclear markers (Hoelzel et al. 1998). Hersh and Duffield (1990) also described morphological differences between offshore morphotype dolphins and dolphins with hematological profiles matching the coastal morphotype which had stranded in the Indian/Banana River in Florida.

The offshore form is distributed primarily along the outer continental shelf and continental slope in the Northwest Atlantic Ocean. North of Cape Hatteras, there is clear separation of the two morphotypes across bathymetry during summer months. Aerial surveys flown during 1979-1981 indicated a concentration of bottlenose dolphins in waters $<25 \mathrm{~m}$ deep corresponding to the coastal morphotype, and an area of high abundance along the shelf break corresponding to the offshore type (CETAP 1982; Kenney 1990). Biopsy tissue sampling and genetic analysis demonstrated that bottlenose dolphins concentrated close to shore were of the coastal morphotype, while those in waters > 40 m deep were from the offshore morphotype (Garrison et al. 2003). However, during winter months and south of Cape Hatteras, NC the range of the coastal and offshore morphotypes overlap to some degree. Torres et al. (2003) found a statistically significant break in the distribution of the ecotypes at 34 km from shore based upon the genetic analysis of tissue samples collected in nearshore and offshore waters. The offshore morphotype was found exclusively seaward of 34 km and in waters deeper than 34 m . Within 7.5 km of shore, all animals were of the coastal morphotype. Systematic biopsy collection surveys were conducted coastwide during the summer and winter between 2001-2003 to evaluate the degree of spatial overlap between the two morphotypes. Over the continental shelf south of Cape Hatteras, NC the two morphotypes overlap spatially, and

Figure 1. Distribution of bottlenose dolphin sightings from NEFSC and SEFSC aerial surveys during summer in 1998, 1999, and 2004. Isobaths are at $100 \mathrm{~m}, 1,000 \mathrm{~m}$, and 4,000 m. the probability of a sampled group being from the offshore morphotype increased with increasing depth based upon a logistic regression analysis. Offshore morphotype animals have been sampled as close as 7.3 km from shore in water depths of 13 m (Garrison et al. 2003).

Seasonally, bottlenose dolphins occur over the outer continental shelf and inner slope waters as far north as Georges Bank (Figure 1; CETAP 1982; Kenney 1990). Sightings occurred along the continental shelf break from Georges Bank to Cape Hatteras during spring and summer (CETAP 1982; Kenney 1990). In Canadian waters, bottlenose dolphins have occasionally been sighted on the Scotian Shelf, particularly in the Gully (Gowans and Whitehead 1995; NMFS unpublished data). Recent information from Wells et al. (1999) indicates that the range of the offshore bottlenose dolphin may include waters beyond the continental slope and that offshore bottlenose dolphins may move between the Gulf of Mexico and the Atlantic. Offshore morphotype bottlenose dolphins have stranded as far south as the Florida Keys.

POPULATION SIZE

An abundance of $16,689(C V=0.32)$ bottlenose dolphins was estimated from a line-transect sighting survey conducted during July 6 to September 6, 1998, by a ship and plane that surveyed $15,900 \mathrm{~km}$ of track line in waters north of Maryland ($38^{\circ} \mathrm{N}$) (Figure 1; Palka et al., unpublished manuscript). Shipboard data were analyzed using the modified direct duplicate method (Palka 1995) that accounts for school size bias and $g(0)$, the probability of detecting a group on the track line. Aerial data were not corrected for $g(0)$.

An abundance of $13,085(\mathrm{CV}=0.40)$ for bottlenose dolphins was estimated from a shipboard line transect sighting line-transect survey conducted between 8 July and 17 August 1998 that surveyed $4,163 \mathrm{~km}$ of track line in waters south of Maryland (38° N) (Fig. 1; Mullin and Fulling 2003). Abundance estimates were made using the program DISTANCE (Buckland et al. 2001; Thomas et al. 1998) accounting for school size bias.

During the summer (June - July) of 2002, aerial surveys were conducted along the U.S. Atlantic coast between Florida and New Jersey. A total of $6,734 \mathrm{~km}$ of trackline were completed during the summer survey between Sandy Hook, NJ to Ft. Pierce, FL. The abundance of bottlenose dolphins in survey strata were calculated using line transect methods and distance analysis, and the direct duplicate estimator was used to account for visibility bias (Buckland et al. 2001; Palka 1995). These estimates were further partitioned between the coastal and offshore morphotypes based upon the results of the logistic regression models and spatial analyses described above. A parametric bootstrap approach was used to incorporate the uncertainty in the logistic regression models into the overall uncertainty in the abundance estimate for offshore bottlenose dolphins (Garrison et al. 2003). The resulting coastwide abundance estimate for the offshore morphotype in waters $<40 \mathrm{~m}$ depth was $26,849(\mathrm{CV}=0.193)$.

An abundance of $9,786(\mathrm{CV}=0.56)$ for offshore morphotype bottlenose dolphins was estimated from a line transect sighting survey conducted during June 12 to August 4, 2004 by a ship and plane that surveyed $10,761 \mathrm{~km}$ of track line in waters north of $38^{\circ} \mathrm{N}$ (Figure 1; Palka unpubl.). Shipboard data were collected using the two independent team line transect method and analyzed using the modified direct duplicate method (Palka 1995) accounting for biases due to school size and other potential covariates, reactive movements (Palka and Hammond 2001), and $g(0)$, the probability of detecting a group on the track line. Aerial data were collected using the Hiby circle-back line transect method (Hiby 1999) and analyzed accounting for $g(0)$ and biases due to school size and other potential covariates (Figure 1; Palka unpubl.).

A survey of the U.S. Atlantic outer continental shelf and continental slope (water depths > 50m) between $27.5-$ $38^{\circ} \mathrm{N}$ latitude was conducted during June-August, 2004. The survey employed two independent visual teams searching with bigeye binoculars. Survey effort was stratified to include increased effort along the continental shelf break and Gulf stream front in the Mid-Atlantic. The survey included $5,659 \mathrm{~km}$ of trackline, and there were a total of 473 cetacean sightings. Sightings were most frequent in waters North of Cape Hatteras, North Carolina along the shelf break. Data were analyzed to correct for visibility bias and group-size bias employing line transect distance analysis and the direct duplicate estimator (Palka, 1995; Buckland et al., 2001). The resulting abundance estimate for offshore morphotype bottlenose dolphins between Florida and Maryland was $44,953(\mathrm{CV}=0.26)$.

The best available estimate for offshore morphotype bottlenose dolphins is the sum of the estimates from the summer 2002 aerial survey covering the continental shelf, the summer 2004 vessel survey south of Maryland, and the summer 2004 vessel and aircraft surveys north of Maryland. This joint estimate provides complete coverage of the offshore morphotype habitat from Florida to Georges Bank during summer months. The combined abundance estimate from these surveys is $81,588(\mathrm{CV}=0.17)$.

Minimum Population Estimate

The minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the lognormally distributed best abundance estimate. This is equivalent to the 20th percentile of the log-normal distribution as specified by Wade and Angliss (1997). The minimum population estimate for western North Atlantic offshore bottlenose dolphin is 70,775 .

Current Population Trend

The data are insufficient to determine population trends. Previous estimates cannot be applied to this process because previous survey coverage of the species' habitat was incomplete.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Current and maximum net productivity rates are unknown for this stock. For purposes of this assessment, the maximum net productivity rate was assumed to be 0.04 . This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive life history (Barlow et al. 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential biological removal (PBR) is the product of minimum population size, one-half the maximum productivity rate, and a "recovery" factor (MMPA Sec. 3. 16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size for offshore bottlenose dolphins is 70,775 . The maximum productivity rate is 0.04 , the default value for cetaceans. The "recovery" factor, which accounts for endangered, depleted, threatened stocks, or stocks of unknown status relative to optimum sustainable population (OSP) is assumed to be 0.5 because this stock is of unknown status. However, because the CV for the fishery mortality estimate exceeds 0.8 , the recovery factor was reduced to 0.4 . PBR for the western North Atlantic offshore bottlenose dolphin is therefore 566.

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

Total estimated mean annual fishery-related mortality for this stock during 1999-2003 was 26 (CV=1.16) bottlenose dolphins.

Fisheries Information

Bycatch has been observed in the pelagic drift gillnet, pelagic pair trawl, New England multispecies sink gillnet, North Atlantic bottom trawl and pelagic longline fisheries.

Pelagic Longline

The pelagic longline fishery operates in the U.S. Atlantic (including Caribbean) and Gulf of Mexico EEZ. Interactions between the pelagic longline fishery and bottlenose dolphins have been observed. These interactions occurred well offshore in deep waters, corresponding to the offshore morphotype. During 1993-1998, in Atlantic waters not including the Gulf of Mexico, 1 bottlenose dolphin was caught and released alive during 1993, and 1 was caught and released alive during 1998. In addition, one bottlenose dolphin was captured and released alive in 2003 (Garrison, 2003; Garrison and Richards, 2004,). There have been no observed mortalities or serious injuries of bottlenose dolphins in the pelagic longline fishery.

Pelagic Drift Gillnet

Estimated bottlenose dolphin mortalities (CV in parentheses) extrapolated for each year were 72 in 1989 (0.18), 115 in $1990(0.18), 26$ in $1991(0.15), 28$ in $1992(0.10), 22$ in $1993(0.13), 14$ in $1994(0.04), 5$ in $1995(0), 0$ in 1996, and 3 in 1998 (0). Since this fishery no longer exists, it has been excluded from Table 1.

Pelagic Pair Trawl

Thirty-two bottlenose dolphin mortalities were observed between 1991 and 1995. Estimated annual fisheryrelated mortality (CV in parentheses) was 13 dolphins in 1991 (0.52), 73 in 1992 (0.49), 85 in 1993 (0.41), 4 in 1994 (0.40) and 17 in 1995 (0.26). Since this fishery no longer exists, it has been excluded from Table 1.

North Atlantic Bottom Trawl

One bottlenose dolphin mortality was documented in 1991 and the total estimated mortality in this fishery in 1991 was 91 (CV=0.97). Since 1992 there were no bottlenose dolphin mortalities observed in this fishery.

Squid, Mackerel and Butterfish

Although there were reports of bottlenose dolphin mortalities in the foreign fishery during 1977-1988, there were no fishery-related mortalities of bottlenose dolphins reported in the self-reported fisheries information from the mackerel trawl fishery during 1990-1992.

New England Multispecies Sink Gillnet

The first observed mortality of bottlenose dolphins was recorded in 2000. This was genetically identified as an offshore, deep-water ecotype. The estimated annual fishery-related serious injury and mortality attributable to this fishery (CV in parentheses) was 0 from 1996-1999, and $132(\mathrm{CV}=1.16)$ in 2000. There have been no observed bottlenose dolphin mortalities since 2000 in this fishery (Table 1).

Mid-Atlantic Coastal Gillnet

Bottlenose dolphins were only reported during the trips in 1998, when 1 mortality was observed as a result of this fishery. Though this dolphin was not genetically identified, it is being treated as an offshore, deep-water ecotype because it was caught in the offshore habitat and statistical analyses of all biopsied bottlenose dolphins caught in this offshore habitat indicate this animal has a high probability of being the offshore ecotype. Observed effort was concentrated off New Jersey and scattered between Delaware and North Carolina from 1 to 50 miles off the beach. All bycatches were documented during January to April. Using the observed takes, the estimated annual mortality attributed to this fishery
was 0 in 1995 through 1997, $4(\mathrm{CV}=0.7)$ in 1998, and 0 from 1999 through 2000. A bottlenose dolphin was captured in the region of overlap over the continental shelf in the Mid-Atlantic gillnet fishery during May, 2001. Mortality estimates have not been developed for the offshore morphotype during 1999-2003 due to the uncertainties associated with the relative distribution of the two morphotypes.

Table 1. Summary of the incidental mortality of offshore morphotype bottlenose dolphins (Tursiops truncatus) by commercial fishery including the years sampled (Years), the number of vessels active within the fishery (Vessels), the type of data used (Data Type), the annual observer coverage (Observer Coverage), the mortalities recorded by on-board observers (Observed Mortality), the estimated annual mortality (Estimated Mortality), the estimated CV of the annual mortality (Estimated CVs) and the mean annual mortality (CV in parentheses).

Fishery	Years	Vessels	Data Type ${ }^{\text {a }}$	Observer Coverage ${ }^{\text {b }}$	Observed Mortality	Estimated Mortality	Estimated CVs	Mean Annual Mortality
New England Multisp.Sink Gillnet	99-03		Obs. Data Dealer Reports, Logbook	$\begin{gathered} .06, .06, \\ .04, .02, \\ .03 \end{gathered}$	$\begin{gathered} 0, \\ 1,0, \\ 0,0 \end{gathered}$	$\begin{gathered} 0, \\ 132,0, \\ 0,0 \end{gathered}$	$\begin{gathered} 0, \\ 1.16,0 \\ 0,0 \end{gathered}$	26 (1.16)
Mid-Atlantic Coastal Gillnet	99-03	Unk ${ }^{\text {c }}$	Obs. Data Dealer Reports		$\begin{gathered} 0, \\ 0,1, \\ 0,0 \end{gathered}$	$\begin{gathered} 0, \\ 0, \text { NA, } \\ 0,0 \end{gathered}$	$\begin{gathered} 0, \\ 0, \mathrm{NA}, \\ 0,0 \\ \hline \end{gathered}$	NA
Total								26 (1.16)

Observer data (Obs. Data) are used to measure bycatch rates, and the data are collected within the Northeast Fisheries Observer Program. Mandatory logbook (logbook) data collected by the Southeast Fisheries Science Center (SEFSC) are used to measure total effort for the pelagic drift gillnet fishery. The NEFSC collects landings data (Dealer Reports), and total landings are used as a measure of total effort for the gillnet fisheries. Mandatory vessel trip reports (Logbook) data are used to determine the spatial distribution of fishing effort in the Northeast multispecies sink gillnet fishery.
Observer coverage of the Northeast multispecies sink gillnet fishery is measured as the percentage of trips observed. Observer coverage of the Mid-Atlantic coastal gillnet fishery is measured as the percentage of tons of fish landed. Number of vessels is not known.

Other Mortality

Bottlenose dolphins are one of the most frequently stranded small cetaceans along the Atlantic coast. Many of the animals show signs of human interaction (i.e., net marks, mutilation, etc.). The estimated number of animals that represent the offshore morphotype is under evaluation.

STATUS OF STOCK

The status of this stock relative to OSP in the U.S. Atlantic EEZ is unknown. The western North Atlantic offshore bottlenose dolphin is not listed as threatened or endangered under the Endangered Species Act. There are insufficient data to determine the population trends for this species. Average 1999-2003 annual fishery-related mortality and serious injury does not exceed the PBR therefore this is not a strategic stock. The total fishery-related mortality and serious injury for this stock is less than 10% of the calculated PBR and, therefore, can be considered to be insignificant and approaching zero mortality and serious injury rate.

REFERENCES

Barlow, J., S. L. Swartz, T. C. Eagle and P. R. Wade. 1995. U.S. Marine Mammal Stock Assessments: Guidelines for Preparation, Background, and a Summary of the 1995 Assessments. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-6, 73 pp .
Buckland, S. T., D. R. Anderson, K. P. Burnham and, J. L. Laake, D. 2001. Introduction to distance sampling: Estimatingestimating abundance of biological populations. Chapman and Hall, New York. Oxford University Press, 432 pp .
CETAP (Cetacean and Turtle Assessment Program). 1982. A Characterization of Marine Mammals and Turtles in the Mid- and North Atlantic Areas of the U.S. Outer Continental Shelf, Final Report, Contract AA551-CT8- 48, U.S. NTIS PB83-215855, Bureau of Land Management, Washington, DC, 576 pp.
Curry, B. E. and J. Smith. 1997. Phylogeographic structure of the bottlenose dolphin (Tursiops truncatus): stock identification and implications for management. Pp. 327-247 in: A. E. Dizon, S. J. Chivers and W. F. Perrin (editors), Molecular genetics of marine mammals. Spec. Publ. 3 Society for Marine Mammalogy.

Duffield, D. A. 1986. Investigation of genetic variability in stocks of the bottlenose dolphin (Tursiops truncatus). Final report to the NMFS/SEFSC, Contract No. NA83-GA-00036, 53 pp .
Duffield, D. A., S. H. Ridgway and L. H. Cornell. 1983. Hematology distinguishes coastal and offshore forms of dolphins (Tursiops). Can. J. Zool. 61: 930-933.
Garrison, L.P., P.E. Rosel, A.A. Hohn, R. Baird, and W. Hoggard. 2003. Abundance of the coastal morphotype of bottlenose dolphin Tursiops truncatus, in U.S. continental shelf waters between New Jersey and Florida during winter and summer 2002. NMFS/SEFSC report prepared and reviewed for the Bottlenose Dolphin Take Reduction Team. Available from: Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.
Garrison, L.P. 2003. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2001-2002. NOAA Tech. Memo. NMFS-SEFSC-515, 52 pp.
Garrison, L. P. and P. M. Richards. 2004. Estimated Bycatch of Marine Mammals and Turtles in the U.S. Atlantic Pelagic Longline Fleet During 2003. NOAA Tech.Memo. NMFS-SEFSC-527, 57 p.
Gowans S. and H. Whitehead. 1995. Distribution and habitat partitioning by small odontocetes in the Gully, a submarine canyon on the Scotian Shelf. Can. J. Zool. 73: 1599-1608.
Hersh, S. L. and D. A. Duffield. 1990. Distinction between northwest Atlantic offshore and coastal bottlenose dolphins based on hemoglobin profile and morphometry. Pages 129-139 in: S. Leatherwood and R. R. Reeves (editors), The bottlenose dolphin. Academic Press, San Diego, 653 pp.
Hiby, L. 1999. The objective identification of duplicate sightings in aerial survey for porpoise. In: G.W. Garner, S.C. Amstrup, J.L. Laake, B.F.J. Manly, L.L. McDonald, and D.G. Robertson, editors. Marine Mammal Survey and Assessment Methods. Balkema, Rotterdam. p 179-189.
Hoelzel, A. R., C. W. Potter and P. B. Best. 1998. Genetic differentiation between parapatric 'nearshore' and 'offshore' populations of the bottlenose dolphin. Proc. R. Soc. Lond. B 265:1177-1183.
Kenney, R. D. 1990. Bottlenose dolphins off the northeastern United States. Pages 369-386 in: S. Leatherwood and R. R. Reeves (editors), The bottlenose dolphin. Academic Press, San Diego, 653 pp.

Mead, J. G. and C. W. Potter. 1995. Recognizing two populations for the bottlenose dolphin (Tursiops truncatus) off the Atlantic coast of North America: morphologic and ecologic considerations. International Biological Research Institute Reports 5:31-43.
Mullin, K. D., and G. L. Fulling. 2003. Abundance and distribution of cetaceans in the southern U.S. North Atlantic Ocean during summer 1998. Fish. Bull., U.S. 101:603-613.
Palka, D. 1995. Abundance estimate of the Gulf of Maine harbor porpoise. Rep. int. Whal. Commn (Special Issue) 16:2750
Palka, D. and P.S. Hammond. 2001. Accounting for responsive movement in line transect estimates of abundance. Can. J. Fish. Aquat. Sci. 58:777-787
Palka, D., G. Waring and D. Potter. (In review). Abundances of cetaceans and sea turtles in the northwest Atlantic during summer 1995 and 1998. Fish. Bull., U.S.
Thomas, L., J. L. Laake, J. F. Derry, S. T. Buckland, D. L. Borchers, D. R. Anderson, K. P. Burnham, S. Strindberg, S. L. Hedley, F. F. C. Marques, J. H. Pollard and R. M. Fewster. 1998. Distance 3.5. Research Unit for Wildlife Population Assessment, University of St. Andrews, St. Andrews, UK.
Torres, L.G., P.E. Rosel, C. D'Agrosa and A.J. Read. 2003. Improving managment of overlapping bottlenose dolphin ecotypes through spatial analysis and genetics. Mar. Mammal Sci. 19:502-514.
Wade, P.R. and R.P. Angliss. 1997. Guidelines for assessing marine mammal stocks: Report of the GAMMS Workshop April 3-5, 1996, Seattle, Washington. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-12, 93 pp.
Wells, R.S., H.L. Rhinehart, P. Cunningham, J. Whaley, M. Baran, C. Koberna and D.P. Costa. 1999. Long distance offshore movements of bottlenose dolphins. Mar. Mammal Sci. 15(4):1098-1114.

BLUE WHALE (Balaenoptera musculus): Western North Atlantic Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

The distribution of the blue whale, Balaenoptera musculus, in the western North Atlantic generally extends from the Arctic to at least mid-latitude waters. Blue whales are most frequently sighted in the waters off eastern Canada, with the majority of recent records from the Gulf of St. Lawrence (Sears et al. 1987). The species was hunted around Newfoundland in the first half of the 20th century (Sergeant 1966). The present Canadian distribution, broadly described, is spring, summer, and fall in the Gulf of St. Lawrence, especially along the north shore from the St. Lawrence River estuary to the Strait of Belle Isle and off eastern Nova Scotia. The species occurs in winter off southern Newfoundland and also in summer in Davis Strait (Mansfield 1985). Individual identification has confirmed the movement of a blue whale between the Gulf of St. Lawrence and western Greenland (R. Sears and F. Larsen, unpublished data), although the extent of exchange between these two areas remains unknown. Similarly, a blue whale photographed by a NMFS large whale survey in August 1999 had previously been observed in the Gulf of St. Lawrence in 1985 (R. Sears and P. Clapham, unpublished data).

The blue whale is best considered as an occasional visitor in US Atlantic Exclusive Economic Zone (EEZ) waters, which may represent the current southern limit of its feeding range (CETAP 1982; Wenzel et al. 1988). All of the five sightings described in the foregoing two references were in August. Yochem and Leatherwood (1985) summarized records that suggested an occurrence of this species south to Florida and the Gulf of Mexico, although the actual southern limit of the species' range is unknown.

Using the U.S. Navy's SOSUS program, blue whales have been detected and tracked acoustically in much of the North Atlantic, including in subtropical waters north of the West Indies and in deep water east of the US Atlantic EEZ (Clark 1995). Most of the acoustic detections were around the Grand Banks area of Newfoundland and west of the British Isles. Sigurjónsson and Gunnlaugsson (1990) note that North Atlantic blue whales appear to have been depleted by commercial whaling to such an extent that they remain rare in some formerly important habitats, notably in the northern and northeastern North Atlantic.

POPULATION SIZE

Little is known about the population size of blue whales except for in the Gulf of St. Lawrence area. Here, 308 individuals have been catalogued (Sears et al. 1987), but the data were deemed to be unusable for abundance estimation (Hammond et al. 1990). Mitchell (1974) estimated that the blue whale population in the western North Atlantic may number only in the low hundreds. R. Sears (pers. comm.) suggests that no present evidence exists to refute this estimate.

Minimum Population Estimate

The 308 recognizable individuals from the Gulf of St. Lawrence area which were catalogued by Sears et al. (1987) is considered to be a minimum population estimate for the western North Atlantic stock.

Current Population Trend

There are insufficient data to determine population trends for this species. Off western and southwestern Iceland, an increasing trend of 4.9% a year was reported for the period 1969-1988 (Sigurjónsson and Gunnlaugsson 1990), although this estimate should be treated with caution given the effort biases underlying the sightings data on which it was based.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Current and maximum net productivity rates are unknown for this stock. For purposes of this assessment, the maximum net productivity rate was assumed to be 0.04 . This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive life history (Barlow et al. 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential Biological Removal (PBR) is the product of minimum population size, one-half the maximum productivity rate, and a "recovery" factor (MMPA Sec. 3. 16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size is 308 . The maximum productivity rate is 0.04 , the default value for cetaceans. The "recovery" factor, which accounts for endangered, depleted, threatened stocks, or stocks of unknown status relative to optimum sustainable
population (OSP) is assumed to be 0.10 because the blue whale is listed as endangered under the Endangered Species Act (ESA). However, the minimum population size figure given above is now 14 years old and thus is not usable for the calculation of PBR (see Wade and Angliss 1997). Consequently, no PBR can be calculated for this stock because of lack of any data on current minimum population size.

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

There are no confirmed records of mortality or serious injury to blue whales in the US Atlantic EEZ. However, in March 1998 a dead $20 \mathrm{~m}(66 \mathrm{ft})$ male blue whale was brought into Rhode Island waters on the bow of a tanker. The cause of death was determined to be ship strike. Although it appears likely that the vessel concerned was responsible, the necropsy revealed some injuries that were difficult to explain in this context. The location of the strike was not determined; given the known rarity of blue whales in US Atlantic waters, and the vessel's port of origin (Antwerp), it seems reasonable to suppose that the whale died somewhere to the north of the US Atlantic EEZ.
However, this incident was used in calculating the total annual mortality rate of 0.2 used in the summary table on page 2 .

Fishery Information

No fishery information is presented because there are no observed fishery-related mortalities or serious injury.

STATUS OF STOCK

The status of this stock relative to OSP in the US Atlantic EEZ is unknown, but the species is listed as endangered under the ESA. There are insufficient data to determine population trends for blue whales. The total level of human-caused mortality and serious injury is unknown, but it is believed to be insignificant and approaching a zero mortality and serious injury rate. This is a strategic stock because the blue whale is listed as an endangered species under the ESA. A Recovery Plan has been published (Reeves et al. 1998) and is in effect.

REFERENCES

Barlow, J., S. L. Swartz, T. C. Eagle and P. R. Wade. 1995. U.S. Marine Mammal Stock Assessments: Guidelines for preparation, background, and a summary of the 1995 assessments. NOAA Tech. Memo. NMFS-OPR-6. U.S. Department of Commerce, Washington, DC. 73 pp.
CETAP. 1982. A characterization of marine mammals and turtles in the mid- and north Atlantic areas of the U.S. outer continental shelf. Cetacean and Turtle Assessment Program, University of Rhode Island. Final Report \#AA551-CT8-48 to the Bureau of Land Management, Washington, DC, 538 pp .
Clark, C. W. 1995. Application of U.S. Navy underwater hydrophone arrays for scientific research on whales. Rep. Int. Whal. Commn. 45: 210-212.
Hammond, P. S., R. Sears and M. Bérubé. 1990. A note on problems in estimating the number of blue whales in the Gulf of St Lawrence from photo-identification data. Rep. Int Whal. Comm (Special Issue) 12: 141-142.
Mansfield, A. W. 1985. Status of the blue whale, Balaenoptera musculus, in Canada. Can. Field Nat. 99(3): 417-420.
Mitchell, E. 1974. Present status of northwest Atlantic fin and other whale stocks. Pages 108-169 in W. E. Schevill (ed), The whale problem: A status report. Harvard University Press, Cambridge, MA, 419 pp.
Reeves, R. R., P. J. Clapham, R. L. Brownell, Jr. and G. K. Silber. 1998. Recovery Plan for the blue whale (Balaenoptera musculus). Office of Protected Resources, National Marine Fisheries Service, Silver Spring, MD 20910. 39 pp.
Sears, R., F. Wenzel and J. M. Williamson. 1987. The blue whale: a catalog of individuals from the western North Atlantic (Gulf of St. Lawrence). Mingan Island Cetacean Study, St. Lambert, Quebec, Canada, 27 pp.
Sergeant, D. E. 1966. Populations of large whale species in the western North Atlantic with special reference to the fin whale. Fish. Res. Board. Canada Circular No. 9, 30 pp.
Sigurjonsson, J. and T. Gunnlaugsson. 1990. Recent trends in abundance of blue (Balaenoptera musculus) and humpback whales (Megaptera novaeangliae) off west and southwest Iceland, with a note on occurrence of other cetacean species. Rep. Int. Whal. Commn 40: 537-551.
Wade, P. R. and R. P. Angliss. 1997. Guidelines for assessing marine mammal stocks: Report of the GAMMS Workshop, April 3-5, 1996, Seattle, Washington. NOAA Tech. Memo. NMFS-OPR-12. U.S. Dept. of Commerce, Washington, DC. 93 pp.
Wenzel, F., D. K. Mattila and P. J. Clapham. 1988. Balaenoptera musculus in the Gulf of Maine. Mar. Mamm. Sci. 4(2): 172-175.
Yochem, P. K. and S. Leatherwood. 1985. Blue whale. Pages 193-240 in: S. H. Ridgeway and R. Harrison (eds.), Handbook of Marine Mammals, Vol. 3: The Sirenians and Baleen Whales. Academic Press, New York.

KILLER WHALE (Orcinus orca): Western North Atlantic Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

Killer whales are characterized as uncommon or rare in waters of the U.S. Atlantic Exclusive Economic Zone (EEZ) (Katona et al. 1988). The 12 killer whale sightings constituted 0.1% of the 11,156 cetacean sightings in the 1978-81 CETAP surveys (CETAP 1982). The same is true for eastern Canadian waters, where the species has been described as relatively uncommon and numerically few (Mitchell and Reeves 1988). Their distribution, however, extends from the Arctic ice-edge to the West Indies. They are normally found in small groups, although 40 animals were reported from the southern Gulf of Maine in September 1979, and 29 animals in Massachusetts Bay in August 1986 (Katona et al. 1988). In the U.S. Atlantic EEZ, while their occurrence is unpredictable, they do occur in fishing areas, perhaps coincident with tuna, in warm seasons (Katona et al. 1988; NMFS unpublished data). In an extensive analysis of historical whaling records, Reeves and Mitchell (1988) plotted the distribution of killer whales in offshore and mid-ocean areas. Their results suggest that the offshore areas need to be considered in present-day distribution, movements, and stock relationships.

Stock definition is unknown. Results from other areas (e.g., the Pacific Northwest and Norway) suggest that social structure and territoriality may be important.

POPULATION SIZE

The total number of killer whales off the eastern U.S. coast is unknown.

Minimum Population Estimate

Present data are insufficient to calculate a minimum population estimate.

Current Population Trend

There are insufficient data to determine the population trends for this species.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Current and maximum net productivity rates are not known for this stock. The maximum net productivity rate was assumed to be 0.04 for purposes of this assessment. This value is based on theoretical calculations showing that cetacean populations may not generally grow at rates much greater than 4% given the constraints of their reproductive life history (Barlow et al. 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential Biological Removal (PBR) is the product of minimum population size, one-half the maximum productivity rate, and a "recovery" factor (Wade and Angliss 1997). The minimum population size is unknown. The maximum productivity rate is 0.04 , the default value for cetaceans. The "recovery" factor, which accounts for endangered, depleted, threatened stocks, or stocks of unknown status relative to optimum sustainable population (OSP) is assumed to be 0.5 because this stock is of unknown. PBR for the western North Atlantic killer whale is unknown because the minimum population size cannot be determined.

ANNUAL HUMAN-CAUSED MORTALITY

In 1994, one killer whale was caught in the New England multispecies sink gillnet fishery but released alive. No takes were documented in a review of Canadian gillnet and trap fisheries (Read 1994).

Fishery Information

Data on current incidental takes in U.S. fisheries are available from several sources. In 1986, NMFS established a mandatory self-reported fishery information system for large pelagic fisheries. Data files are
maintained at the Southeast Fisheries Science Center (SEFSC). The Northeast Fisheries Science Center (NEFSC) Fisheries Observer Observer Program was initiated in 1989, and since that year several fisheries have been covered by the program. In late 1992 and in 1993, the SEFSC provided observer coverage of pelagic longline vessels fishing off the Grand Banks (Tail of the Banks) and provides observer coverage of vessels fishing south of Cape Hatteras.

There have been no observed mortalities or serious injuries by NMFS Sea Samplers in the pelagic drift gillnet, pelagic longline, pelagic pair trawl, New England multispecies sink gillnet, Mid-Atlantic coastal sink gillnet, and North Atlantic bottom trawl fisheries.

STATUS OF STOCK

The status of killer whales relative to OSP in U.S. Atlantic EEZ is unknown. Because there are no observed mortalities or serious injury between 1990 and 1995, the total fishery-related mortality and serious injury for this stock is considered insignificant and approaching zero mortality and serious injury rate. The species is not listed as threatened or endangered under the Endangered Species Act. In Canada, the Cetacean Protection Regulations of 1982, promulgated under the standing Fisheries Act, prohibit the catching or harassment of all cetacean species. There are insufficient data to determine the population trends for this species. This is not a strategic stock because, although PBR could not be calculated, there is no evidence of human-induced mortality.

REFERENCES

Barlow, J., S.L. Swartz, T.C. Eagle, and P.R. Wade. 1995. U.S. Marine Mammal Stock Assessments: Guidelines for Preparation, Background, and a Summary of the 1995 Assessments. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-6, 73 pp.
CETAP. 1982. A characterization of marine mammals and turtles in the mid- and north Atlantic areas of the U.S. outer continental shelf. Cetacean and Turtle Assessment Program, University of Rhode Island. Final Report \#AA551-CT8-48 to the Bureau of Land Management, Washington, DC, 538 pp .
Katona, S. K., J. A. Beard, P. E. Girton, and F. Wenzel. 1988. Killer whales (Orcinus orca) from the Bay of Fundy to the Equator, including the Gulf of Mexico. Rit. Fiskideild. 9: 205-224.
Mitchell, E. and R.R. Reeves. 1988. Records of killer whales in the western North Atlantic, with emphasis on eastern Canadian waters. Rit. Fiskideild. 9:161-193.
Read, A. J. 1994. Interactions between cetaceans and gillnet and trap fisheries in the Northwest Atlantic. Rep. int. Whal. Commn (Special Issue) 15:133-147.
Reeves, R.R. and E. Mitchell. 1988. Killer whale sightings and takes by American pelagic whalers in the North Atlantic. Rit. Fiskideild. 9:7-23
Wade P.R., and R.P. Angliss. 1997. Guidelines for assessing marine mammal stocks: Report of the GAMMS Workshop April 3-5, 1996, Seattle, Washington. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-12, 93 pp.

NORTHERN BOTTLENOSE WHALE (Hyperoodon ampullatus): Western North Atlantic Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

Northern bottlenose whales are characterized as extremely uncommon or rare in waters of the U.S. Atlantic Exclusive Economic Zone. The two sightings of three individuals constituted less than 0.1% of the 11,156 cetacean sightings in the 1978-82 CETAP surveys. Both sightings were in the spring, along the $2,000 \mathrm{~m}$ isobath (CETAP 1982). In 1993 and 1996, two sightings of single animals, and in 1996, a single sighting of six animals (one juvenile), were made during summer shipboard surveys conducted along the southern edge of Georges Bank (NMFS 1993; NMFS 1996).

Northern bottlenose whales are distributed in the North Atlantic from Nova Scotia to about 70° in the Davis Strait, along the east coast of Greenland to 77° and from England to the west coast of Spitzbergen. It is largely a deep-water species and is very seldom found in waters less than $2,000 \mathrm{~m}$ deep (Mead 1989).

There are two main centers of bottlenose whale distribution in the western north Atlantic, one in the area called "The Gully" just north of Sable Island, Nova Scotia, and the other in Davis Strait off northern Labrador (Reeves et al. 1993). Studies at the entrance to the Gully from 1988-1995 identified 237 individuals and estimated the local population size at about 230 animals (95% C.I. 160-360) (Whitehead et al. 1997). These individuals are believed to be year-round residents and all age and sex classes are present (Gowans and Whitehead 1998). Mitchell and Kozicki (1975) documented stranding records in the Bay of Fundy and as far south as Rhode Island. Stock definition is unknown.

POPULATION SIZE

The total number of northern bottlenose whales off the eastern U.S. coast is unknown.

Minimum Population Estimate

Present data are insufficient to calculate a minimum population estimate.

Current Population Trend

There are insufficient data to determine the population trends for this species.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Current and maximum net productivity rates are unknown for this stock. For purposes of this assessment, the maximum net productivity rate was assumed to be 0.04 . This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive life history (Barlow et al. 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential Biological Removal (PBR) is the product of minimum population size, one-half the maximum productivity rate, and a "recovery" factor (MMPA Sec. 3. 16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size is unknown. The maximum productivity rate is 0.04 , the default value for cetaceans. The "recovery" factor, which accounts for endangered, depleted, threatened stocks, or stocks of unknown status relative to optimum sustainable population (OSP) is assumed to be 0.5 because this stock is of unknown status. PBR for the western North Atlantic northern bottlenose whale is unknown because the minimum population size cannot be determined.

ANNUAL HUMAN-CAUSED MORTALITY

No mortalities have been reported in U.S. waters. A fishery for northern bottlenose whales existed in Canadian waters during both the 1800 s and 1900s. Its development was due to the discovery that bottlenose whales contained spermaceti. A Norwegian fishery expanded from east to west (Labrador and Newfoundland) in several episodes. The fishery peaked in 1965. Decreasing catches led to the cessation of the fishery in the 1970s, and provided evidence that the population was depleted. A small fishery operated by Canadian whalers from Nova Scotia operated in the Gully, and took 87 animals from 1962 to 1967 (Mead 1989; Mitchell 1977).

Fishery Information

Data on current incidental takes in U.S. fisheries are available from several sources. In 1986, NMFS established a mandatory self-reported fishery information system for large pelagic fisheries. Data files are maintained at the Southeast Fisheries Science Center (SEFSC). The Northeast Fisheries Science Center (NEFSC) Fisheries Observer Observer Program was initiated in 1989, and since that year several fisheries have been covered by the program. In late 1992 and in 1993, the SEFSC provided observer coverage of pelagic longline vessels fishing off the Grand Banks (Tail of the Banks) and provides observer coverage of vessels fishing south of Cape Hatteras.

There have been no observed mortalities or serious injuries by NMFS Sea Samplers in the pelagic drift gillnet, pelagic longline, pelagic pair trawl, New England multispecies sink gillnet, Mid-Atlantic coastal sink gillnet, and North Atlantic bottom trawl fisheries.

STATUS OF STOCK

The status of northern bottlenose whales relative to OSP in U.S. Atlantic EEZ is unknown; however, a depletion in Canadian waters in the 1970s may have impacted U.S. distribution and may be relevant to current status in U.S. waters. The species is not listed as threatened or endangered under the Endangered Species Act. There are insufficient data to determine the population trends for this species. Because there are no observed mortalities or serious injury, the total fishery-related mortality and serious injury for this stock is considered to be approaching zero mortality and serious injury rate. This is not a strategic stock because there are no recent records of fishery-related mortality or serious injury.

REFERENCES

Barlow, J., S.L. Swartz, T.C. Eagle, and P.R. Wade. 1995. U.S. Marine Mammal Stock Assessments: Guidelines for Preparation, Background, and a Summary of the 1995 Assessments. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-6, 73 pp.
CETAP. 1982. A characterization of marine mammals and turtles in the mid- and north Atlantic areas of the U.S. outer continental shelf. Cetacean and Turtle Assessment Program, University of Rhode Island. Final Report \#AA551-CT8-48 to the Bureau of Land Management, Washington, DC, 538 pp .
Gowans, S. and H. Whitehead. 1998. Social organization of northern bottlenose whales. The World Marine Mammal Science Conference, Monaco, January 1998 (Abstract).
Mead, J. G. 1989. Bottlenose whales. Pages 321-348. In: S. H. Ridgway and R. Harrison (eds.), Handbook of marine mammals, Volume 4: River dolphins and the larger toothed whales. Academic Press, New York.
Mitchell, E.D. 1977. Evidence that the northern bottlenose whale is depleted. Rep. int. Whal. Commn 27:195-203.
Mitchell, E.D. and V. M. Kozicki. 1975. Autumn stranding of a northern bottlenose whale (Hyperoodon ampullatus) in the Bay of Fundy. J. Fish. Res. Bd. Can. 32: 1019-1040.
NMFS [National Marine Fisheries Service] 1993. Cruise results, NOAA ship DELAWARE II, Cruise No. DEL 93-06, Marine Mammal Survey. NOAA NMFS NEFSC, Woods Hole Laboratory, Woods Hole, MA 5 pp.
NMFS [National Marine Fisheries Service] 1996. Cruise results, R/V ABEL-J, Cruise No. AJ-9601, Part III, Marine Mammal Survey. NOAA NMFS NEFSC, Woods Hole Laboratory, Woods Hole, MA 7 pp.
Reeves, R.R., E. Mitchell and H. Whitehead. 1993. Status of the northern bottlenose whale, Hyperoodon ampullatus. Can. Field Nat. 107:490-508.
Whitehead, H., S. Gowans, A. Faucher, and S.W. McCarrey. 1997. Population analysis of northern bottlenose whales in the Gully, Nova Scotia. Mar. Mammal Sci. 13(2):173-185.
Wade P.R., and R.P. Angliss. 1997. Guidelines for assessing marine mammal stocks: Report of the GAMMS Workshop April 3-5, 1996, Seattle, Washington. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-12, 93 pp.

SPERM WHALE (Physeter macrocephalus): Northern Gulf of Mexico Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

Sperm whales are found throughout the world's oceans in deep waters to the edge of the ice at both poles (Leatherwood and Reeves 1983; Rice 1989; Whitehead 2002). Seasonal aerial surveys confirm that sperm whales are present in the northern Gulf of Mexico in all seasons (Mullin et al. 1994; Hansen et al. 1996; Mullin and Hoggard 2000).

There has been speculation, based on year-round occurrence of strandings, opportunistic sightings and whaling catches, that sperm whales in the Gulf of Mexico may constitute a distinct stock (Schmidly 1981). The Gulf of Mexico population is provisionally being considered a separate stock for management purposes, although there is currently no information to differentiate this stock from the Atlantic Ocean stock(s). Additional morphological, genetic and/or behavioral data are needed to provide further information on stock delineation.

Disturbance by anthropogenic noise may prove to be an important habitat issue in some areas of this population's range, notably in areas of oil and gas activities and/or where shipping activity is high. Limited studies are currently being conducted to address this issue and its impact, if any, on this and other marine species. The potential impact, if any, of coastal pollution may be an issue for this species in portions of its habitat, though little is known on this to date.

POPULATION SIZE

Estimates of abundance were derived through the application of distance sampling analysis (Buckland et al. 2001) and the computer program DISTANCE (Thomas et al. 1998) to sighting data. From 1991 through 1994, line-transect vessel surveys were conducted during spring in the northern Gulf of Mexico from the 200 m isobath to the seaward extent of the U.S. Exclusive Economic Zone (EEZ) (Hansen et al. 1995). Survey effort-weighted estimated average abundance of sperm whales for all surveys combined was 530 (CV=0.31) (Hansen et al. 1995). As recommended in the GAMMS Workshop Report (Wade and Angliss 1997), estimates older than 8 years are deemed unreliable, and therefore should not be used for PBR determinations. Similar surveys were conducted during April/May from 1996 to 2001 (excluding 1998) in oceanic waters of the northern Gulf of Mexico, using NOAA ships Oregon II (1996, 1997, 1999) and Gordon Gunter (2000, 2001). Estimates for all oceanic strata were summed, as survey effort was not

Figure 1. Distribution of sperm whale sightings from SEFSC spring vessel surveys during 1996-2001. All the on-effort sightings are shown, though not all were used to estimate abundance. Solid lines indicate the 100 m and $1,000 \mathrm{~m}$ isobaths and the dotted line indicates the offshore extent of the U.S. EEZ. uniformly distributed, to calculate a total estimate for the entire northern Gulf of Mexico oceanic waters (Figure 1; Mullin and Fulling 2004). Due to limited survey effort in any given year, survey effort was pooled across all years to develop an average abundance estimate. The estimate of abundance for sperm whales in oceanic waters, pooled from 1996 to 2001, is $1,349(\mathrm{CV}=0.23)$ (Mullin and Fulling 2004), which is the best available abundance estimate for this species in the northern Gulf of Mexico.

Minimum Population Estimate

The minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the log-normal distributed abundance estimate. This is equivalent to the 20th percentile of the log-normal distributed abundance estimate
as specified by Wade and Angliss (1997). The best estimate of abundance for sperm whales is 1,349 (CV=0.23). The minimum population estimate for the northern Gulf of Mexico is 1,114 sperm whales.

Current Population Trend

There are insufficient data to determine the population trends for this species. The pooled abundance estimate for 1996-2001 of $1,349(\mathrm{CV}=0.29)$ and that for 1991-1994 of $530(\mathrm{CV}=0.31)$ are not significantly different ($\mathrm{P}>0.05$), but due to the precision of the estimates, the power to detect a difference is relatively low.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Current and maximum net productivity rates are unknown for this stock. For purposes of this assessment, the maximum net productivity rate was assumed to be 0.04 . This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive history (Barlow et al. 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential biological removal level (PBR) is the product of the minimum population size, one half the maximum net productivity rate and a recovery factor (MMPA Sec. 3.16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size is $1,114(\mathrm{CV}=0.23)$. The maximum productivity rate is 0.04 , the default value for cetaceans. The "recovery" factor, which accounts for endangered, depleted, threatened stocks, or stocks of unknown status relative to optimum sustainable population (OSP), is assumed to be 0.1 because the sperm whale is an endangered species. PBR for the northern Gulf of Mexico sperm whale is 2.2.

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

There has been no reported fishing-related mortality of a sperm whale during 1998-2003 (Yeung 1999; Yeung 2001; Garrison 2003; Garrison and Richards 2004).

A commercial fishery for sperm whales operated in the Gulf of Mexico in deep waters between the Mississippi River delta and DeSoto Canyon during the late 1700s to the early 1900s (Mullin et al. 1991), but the exact number of whales taken is not known (Townsend 1935; Lowery 1974). Townsend (1935) reported many records of sperm whales from April through July in the north-central Gulf (Petersen and Hoggard 1996).

Fisheries Information

The level of past or current, direct, human-caused mortality of sperm whales in the northern Gulf of Mexico is unknown. Pelagic swordfish, tunas and billfish are the targets of the longline fishery operating in the U.S. Gulf of Mexico. There were no reports of mortality or serious injury to sperm whales by this fishery.

Other Mortality

A total of 9 sperm whale strandings were documented in the northern Gulf of Mexico during 1999-2003 (Table 1). There was no evidence of human interactions for these stranded animals. Stranding data probably underestimate the extent of fishery-related mortality and serious injury because not all of the marine mammals which die or are seriously injured in fishery interactions wash ashore, not all that wash ashore are discovered, reported or investigated, nor will all of those that do wash ashore necessarily show signs of entanglement or other fishery interaction. Finally, the level of technical expertise among stranding network personnel varies widely as does the ability to recognize signs of fishery interactions.

Table 1. Sperm whale (Physeter macrocephalus) strandings along the U.S. Gulf of Mexico coast, 1999-2003.

State	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	$\mathbf{2 0 0 3}$	TOTAL
Alabama	0	0	0	0	0	0
Florida	1	2	1	1	1	6
Louisiana	1	0	0	0	1	2
Mississippi	0	0	0	0	0	0
Texas	0	1	0	0	0	1
Total	2	3	1	1	2	9

STATUS OF STOCK

The status of sperm whales in the northern Gulf of Mexico, relative to OSP, is unknown. This species is listed as endangered under the Endangered Species Act (ESA). There are insufficient data to determine the population trends for this species. The total fishery-related mortality and serious injury for this stock is unknown, but assumed to be less than 10% of the calculated PBR and can be considered to be insignificant and approaching zero mortality and serious injury rate. This is a strategic stock because the sperm whale is listed as an endangered species under the ESA.

REFERENCES

Barlow, J., S.L. Swartz, T.C. Eagle and P.R. Wade. 1995. U.S. Marine mammal stock assessments: Guidelines for preparation, background, and a summary of the 1995 assessments. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-6, 73 pp .
Buckland, S.T., D.R. Anderson, K.P. Burnham, J.L. Laake, D.L. Borchers and L. Thomas. 2001. Introduction to distance sampling: Estimating abundance of biological populations. Oxford University Press, 432 pp .
Garrison, L.P. 2003. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2001-2002. NOAA Tech. Memo. NMFS-SEFSC-515, 52 pp.
Garrison, L.P. and P.M. Richards. 2004. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2003. NOAA Tech. Memo. NMFS-SEFSC-527, 57 pp.
Hansen, L.J., K.D. Mullin and C.L. Roden. 1995. Estimates of cetacean abundance in the northern Gulf of Mexico from vessel surveys. Southeast Fisheries Science Center, Miami Laboratory, Contribution No. MIA-94/95-25, 9 pp. Available from: NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.
Hansen, L.J., K.D. Mullin, T.A. Jefferson and G.P. Scott. 1996. Visual surveys aboard ships and aircraft. pp. 55-132. In: R.W. Davis and G.S. Fargion (eds.) Distribution and abundance of marine mammals in the north-central and western Gulf of Mexico: Final report. Volume II: Technical report. OCS Study MMS 96-0027. Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA.
Leatherwood, S. and R.R. Reeves. 1983. The Sierra Club handbook of whales and dolphins. Sierra Club Books, San Francisco, CA, 302 pp.
Lowery, G.H., Jr. 1974. The mammals of Louisiana and its adjacent waters. Louisiana State University Press, Baton Rouge, 565 pp .
Mate, B. 2002. Satellite-monitored radio tagging of a sperm whale in the Gulf of Mexico (unpublished). Report to the Southeast Fisheries Science Center, 3209 Frederic Street, Pascagoula, MS 39567. 5 pp.
Mullin, K., W. Hoggard, C. Roden, R. Lohoefener, C. Rogers and B. Taggart. 1991. Cetaceans on the upper continental slope in the north-central Gulf of Mexico. OCS Study/MMS 91-0027. U.S. Dep. Interior, Minerals Management Service, Gulf of Mexico OCS Regional Office, New Orleans, LA, 108 pp.
Mullin, K., W. Hoggard, C. Roden, R. Lohoefener, C. Rogers and B. Taggart. 1994. Cetaceans on the upper continental slope in the north-central Gulf of Mexico. Fish. Bull. 92: 773-786.
Mullin, K.D. and W. Hoggard. 2000. Visual surveys of cetaceans and sea turtles from aircraft and ships. pp. 111-172. In: R. W. Davis, W.E. Evans and B. Würsig (eds.) Cetaceans, sea turtles and seabirds in the northern Gulf of Mexico: Distribution, abundance and habitat associations. Volume II: Technical report. OCS Study MMS 960027. Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA.

Mullin, K.D. and G.L. Fulling. 2004. Abundance of cetaceans in the oceanic northern Gulf of Mexico. Mar. Mammal Sci. 20(4):787-807.
Petersen, J.C. and W. Hoggard. 1996. First sperm whale (Physeter macrocephalus) record in Mississippi. Gulf Research Reports 9(3):215-217.
Rice, D.W. 1989. Sperm whale, Physeter macrocephalus Linnaeus, 1758. pp. 177-233. In: S. H. Ridgway and R. Harrison (eds.) Handbook of marine mammals, Vol. 4: river dolphins and the larger toothed whales. Academic Press, London, 442 pp .
Schmidly, D.J. 1981. Marine mammals of the southeastern United States and the Gulf of Mexico. U.S. Fish and Wildlife Service, Office of Biological Services, Washington, DC, FWS/OBS-80/41, 165 pp.
Thomas, L., J.L. Laake, J.F. Derry, S. T. Buckland, D. L. Borchers, D. R. Anderson, K. P. Burnham, S.
Strindberg, S. L. Hedley, F. F. C. Marques, J. H. Pollard and R. M. Fewster. 1998. Distance 3.5. Research Unit for Wildlife Population Assessment, University of St. Andrews, St. Andrews, UK.
Townsend, C.H. 1935. The distribution of certain whales as shown by logbook records of American whale ships. Zoologica 19:1-50.
Wade, P.R. and R.P. Angliss. 1997. Guidelines for assessing marine mammal stocks: Report of the GAMMS Workshop April 3-5, 1996, Seattle, WA. U.S. Dep. Commer., NOAA Tech Memo. NMFS-OPR-12, 93 pp.
Whitehead, H. 2002. Estimates of the current global population size and historical trajectory for sperm whales. Mar. Ecol. Prog. Ser. 242: 295-304.

Yeung, C. 1999. Estimates of marine mammal and marine turtle bycatch by the U.S. Atlantic pelagic longline fleet in 1998. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SEFSC-430, 26 pp. Available from: NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.
Yeung, C. 2001. Estimates of marine mammal and marine turtle bycatch by the U.S. Atlantic pelagic longline fleet in 1999-2000. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SEFSC-467, 43 pp. Available from: NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.

BRYDE'S WHALE (Balaenoptera edeni): Northern Gulf of Mexico Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

Bryde's whales are distributed worldwide in tropical and sub-tropical waters. In the western Atlantic Ocean, Bryde's whales are reported from off the southeastern United States and the southern West Indies to Cabo Frio, Brazil (Leatherwood and Reeves 1983). Most of the sighting records of Bryde's whales in the Gulf of Mexico are from NMFS abundance surveys that were conducted during the spring (Figure 1; Hansen et al. 1995; Hansen et al. 1996; Mullin and Hoggard 2000; Mullin and Fulling 2004). However, there are stranding records from throughout the year (Würsig et al. 2000).

It has been postulated that the Bryde's whales found in the Gulf of Mexico may represent a resident stock (Schmidly 1981; Leatherwood and Reeves 1983), but there is no information on stock differentiation. The Gulf of Mexico population is provisionally being considered a separate stock for management purposes, although there is currently no information to differentiate this stock from the Atlantic Ocean stock(s). Additional morphological, genetic and/or behavioral data are needed to provide further information on stock delineation.

POPULATION SIZE

Estimates of abundance were derived through the application of distance sampling analysis (Buckland et al. 2001) and the computer program DISTANCE (Thomas et al. 1998) to sighting data.

From 1991 through 1994, linetransect vessel surveys were conducted

Figure 1. Distribution of Bryde's whale sightings from SEFSC spring vessel surveys during 1996-2001. All the on-effort sightings are shown, though not all were used to estimate abundance. Solid lines indicate the 100 m and $1,000 \mathrm{~m}$ isobaths and the dotted line indicates the offshore extent of the U.S. EEZ. during spring in the northern Gulf of Mexico from the 200 m isobath to the seaward extent of the U.S. Exclusive Economic Zone (EEZ) (Hansen et al. 1995). Survey effort-weighted estimated average abundance of Bryde's whales for all surveys combined from 1991 through 1994 was 35 (CV=1.10) (Hansen et al. 1995). As recommended in the GAMMS Workshop Report (Wade and Angliss 1997), estimates older than 8 years are deemed unreliable, and therefore should not be used for PBR determinations.

Similar surveys were conducted during April/May from 1996 to 2001 (excluding 1998) in oceanic waters of the northern Gulf of Mexico, using NOAA ships Oregon II (1996, 1997, 1999) and Gordon Gunter $(2000,2001)$. Estimates for all oceanic strata were summed, as survey effort was not uniformly distributed, to calculate a total estimate for the entire northern Gulf of Mexico oceanic waters (Figure 1; Mullin and Fulling 2004). Due to limited survey effort in any given year, survey effort was pooled across all years to develop an average abundance estimate.

The estimate of abundance for Bryde's whales in oceanic waters, pooled from 1996 to 2001, is $40(\mathrm{CV}=0.61)$ (Mullin and Fulling 2004), which is the best available abundance estimate for this species in the northern Gulf of Mexico.

Minimum Population Estimate

The minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the log-normal distributed abundance estimate. This is equivalent to the 20th percentile of the log-normal distributed abundance estimate as specified by Wade and Angliss (1997). The best estimate of abundance for Bryde's whales is 40 (CV=0.61). The minimum population estimate for the northern Gulf of Mexico is 25 Bryde's whales.

Current Population Trend

There are insufficient data to determine the population trends for this species. The pooled abundance estimate for 1996-2001 of $40(\mathrm{CV}=0.61)$ and that for 1991-1994 of $35(\mathrm{CV}=1.09)$ are not significantly different $(\mathrm{P}>0.05)$, but due to the precision of the estimates, the power to detect a difference is low.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Current and maximum net productivity rates are unknown for this stock. For purposes of this assessment, the maximum net productivity rate was assumed to be 0.04 . This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive history (Barlow et al. 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential biological removal level (PBR) is the product of the minimum population size, one half the maximum net productivity rate and a recovery factor (MMPA Sec. 3.16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size is 25 . The maximum productivity rate is 0.04 , the default value for cetaceans. The "recovery" factor, which accounts for endangered, depleted, threatened stocks, or stocks of unknown status relative to optimum sustainable population (OSP), is assumed to be 0.5 because the stock is of unknown status. PBR for the northern Gulf of Mexico Bryde's whale is 0.3 .

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

There has been no reported fishing-related mortality of Bryde's whales during 1998-2003 (Yeung 1999; Yeung 2001; Garrison 2003; Garrison and Richards 2004).

Fisheries Information

The level of past or current, direct, human-caused mortality of Bryde's whales in the northern Gulf of Mexico is unknown. Pelagic swordfish, tunas and billfish are the targets of the longline fishery operating in the U.S. Gulf of Mexico. There were no reports of mortality or serious injury to Bryde's whales by this fishery.

Other Mortality

There were no reported strandings of Bryde's whales in the Gulf of Mexico during 1999-2003.
Stranding data probably underestimate the extent of fishery-related mortality and serious injury because not all of the marine mammals which die or are seriously injured in fishery interactions wash ashore, not all that wash ashore are discovered, reported or investigated, nor will all of those that do wash ashore necessarily show signs of entanglement or other fishery-interaction. Finally, the level of technical expertise among stranding network personnel varies widely as does the ability to recognize signs of fishery interactions.

STATUS OF STOCK

The status of Bryde's whales in the northern Gulf of Mexico, relative to OSP, is unknown. The species is not listed as threatened or endangered under the Endangered Species Act. There are insufficient data to determine the population trends for this species. The total fishery-related mortality and serious injury for this stock is unknown, but assumed to be less than 10% of the calculated PBR and can be considered to be insignificant and approaching zero mortality and serious injury rate. This is not a strategic stock because average annual fishery-related mortality and serious injury does not exceed PBR.

REFERENCES

Barlow, J., S.L. Swartz, T.C. Eagle and P.R. Wade. 1995. U.S. Marine mammal stock assessments: Guidelines for preparation, background, and a summary of the 1995 assessments. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-6, 73 pp .
Buckland, S.T., D.R. Anderson, K.P. Burnham, J.L. Laake, D.L. Borchers and L. Thomas. 2001. Introduction to distance sampling: Estimating abundance of biological populations. Oxford University Press, 432 pp .
Garrison, L.P. 2003. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2001-2002. NOAA Tech. Memo. NMFS-SEFSC-515, 52 pp.
Garrison, L.P. and P.M. Richards. 2004. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2003. NOAA Tech. Memo. NMFS-SEFSC-527, 57 pp.
Hansen, L.J., K.D. Mullin and C. L. Roden. 1995. Estimates of cetacean abundance in the northern Gulf of Mexico from vessel surveys. Southeast Fisheries Science Center, Miami Laboratory, Contribution No. MIA-94/95-25, 9 pp. Available from: NMFS, Northeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.

Hansen, L.J., K.D. Mullin, T.A. Jefferson and G.P. Scott. 1996. Visual surveys aboard ships and aircraft. pp. 55-132. In: R. W. Davis and G. S. Fargion (eds.) Distribution and abundance of marine mammals in the north-central and western Gulf of Mexico: Final report. Volume II: Technical report. OCS Study MMS 96-0027. Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA.
Leatherwood, S. and R.R. Reeves. 1983. The Sierra Club handbook of whales and dolphins. Sierra Club Books, San Francisco, 302 pp.
Mullin, K.D. and W. Hoggard. 2000. Visual surveys of cetaceans and sea turtles from aircraft and ships. pp. 111-172. In: R.W. Davis, W.E. Evans and B. Würsig (eds.) Cetaceans, sea turtles and seabirds in the northern Gulf of Mexico: Distribution, abundance and habitat associations. Volume II: Technical report. OCS Study MMS 960027. Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA.

Mullin, K.D. and G.L. Fulling. 2004. Abundance of cetaceans in the oceanic northern Gulf of Mexico. Mar. Mammal Sci. 20(4):787-807.
Schmidly, D.J. 1981. Marine mammals of the southeastern United States and the Gulf of Mexico. U.S. Fish and Wildlife Service, Office of Biological Services, Washington, DC, FWS/OBS-80/41, 165 pp.
Thomas, L., J.L. Laake, J.F. Derry, S.T. Buckland, D.L. Borchers, D.R. Anderson, K.P. Burnham, S. Strindberg, S.L. Hedley, F.F.C. Marques, J.H. Pollard and R.M. Fewster. 1998. Distance 3.5. Research Unit for Wildlife Population Assessment, University of St. Andrews, St. Andrews, UK.
Wade, P.R. and R.P. Angliss. 1997. Guidelines for assessing marine mammal stocks: Report of the GAMMS Workshop April 3-5, 1996, Seattle, WA. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-12, 93 pp.
Würsig, B., T.A. Jefferson and D.J. Schmidly. 2000. The marine mammals of the Gulf of Mexico. Texas A\&M University Press, College Station.
Yeung, C. 1999. Estimates of marine mammal and marine turtle bycatch by the U.S. Atlantic pelagic longline fleet in 1998. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SEFSC-430, 26 pp. Available from: NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.
Yeung, C. 2001. Estimates of marine mammal and marine turtle bycatch by the U.S. Atlantic pelagic longline fleet in 1999-2000. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SEFSC-467, 43 pp. Available from: NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.

CUVIER'S BEAKED WHALE (Ziphius cavirostris): Northern Gulf of Mexico Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

Cuvier's beaked whales are distributed throughout the world's oceans except for the polar regions (Leatherwood and Reeves 1983; Heyning 1989). Strandings have occurred in all months along the east coast of the U.S. (Schmidly 1981) and throughout the year in the Gulf of Mexico (Würsig et al. 2000). Beaked whales were seen in all seasons during GulfCet aerial surveys of the northern Gulf of Mexico (Hansen et al. 1996; Mullin and Hoggard 2000). Some of the aerial survey sightings may have included Cuvier's beaked whale, but identification of beaked whale species from aerial surveys is problematic.

Strandings of Cuvier's beaked whales along the west coast of North America, based on skull characteristics, are thought to represent members of a panmictic population (Mitchell 1968), but there is no information on stock differentiation in the Gulf of Mexico and nearby

Figure 1. Distribution of Cuvier's beaked whale sightings from SEFSC shipboard spring vessel surveys during 1996-2001. All the on-effort sightings are shown, though not all were used to estimate abundance. Solid lines indicate the 100 m and $1,000 \mathrm{~m}$ isobaths and the dotted line indicates the offshore extent of the U.S. EEZ. waters. In the absence of adequate information on stock structure, a species' range within an ocean should be divided into defensible management units, and such management units include distinct oceanographic regions (Wade and Angliss 1997). The Gulf of Mexico population is provisionally being considered a separate stock for management purposes, although there is currently no information to differentiate this stock from the Atlantic Ocean stock(s). Additional morphological, genetic and/or behavioral data are needed to provide further information on stock delineation.

POPULATION SIZE

Estimates of abundance were derived through the application of distance sampling analysis (Buckland et al. 2001) and the computer program DISTANCE (Thomas et al. 1998) to sighting data. From 1991 through 1994, linetransect vessel surveys were conducted during spring in the northern Gulf of Mexico from the 200 m isobath to the seaward extent of the U.S. Exclusive Economic Zone (EEZ) (Hansen et al. 1995). Survey effort-weighted estimated average abundance of Cuvier's beaked whales for all surveys combined was $30(\mathrm{CV}=0.50)$. As recommended in the GAMMS Workshop Report (Wade and Angliss 1997), estimates older than 8 years are deemed unreliable, and therefore should not be used for PBR determinations.

Similar surveys were conducted during April/May from 1996 to 2001 (excluding 1998) in oceanic waters of the northern Gulf of Mexico, using NOAA ships Oregon II (1996, 1997, 1999) and Gordon Gunter $(2000,2001)$. Estimates for all oceanic strata were summed, as survey effort was not uniformly distributed, to calculate a total estimate for the entire northern Gulf of Mexico oceanic waters (Figure 1; Mullin and Fulling 2004). Due to limited survey effort in any given year, survey effort was pooled across all years to develop an average abundance estimate.

The estimate of abundance for Cuvier's beaked whales in oceanic waters, pooled from 1996 to 2001, is 95 ($\mathrm{CV}=0.47$) (Mullin and Fulling 2004), which is the best available abundance estimate for this species in the northern Gulf of Mexico. The estimated abundance of Cuvier's beaked whales is negatively biased because only sightings of beaked whales which could be positively identified to species were used. The estimate for the same time period for unidentified Ziphiidae is $146(\mathrm{CV}=0.46)$ which may include an unknown number of Mesoplodon spp.

Minimum Population Estimate

The minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the log-normal distributed abundance estimate. This is equivalent to the 20 th percentile of the log-normal distributed abundance estimate as specified by Wade and Angliss (1997). The best estimate of abundance for Cuvier's beaked whales is 95 ($\mathrm{CV}=0.47$). The minimum population estimate for the northern Gulf of Mexico is 65 Cuvier's beaked whales.

Current Population Trend

There are insufficient data to determine the population trends for this species. The pooled abundance estimate for 1996-2001 of $95(\mathrm{CV}=0.47)$ and that for 1991-1994 of $30(\mathrm{CV}=0.50)$ are not significantly different $(\mathrm{P}>0.05)$, but due to the precision of the estimates, the power to detect a difference is low.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

For purposes of this assessment, the maximum net productivity rate was assumed to be 0.04 . This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive history (Barlow et al. 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential biological removal level (PBR) is the product of the minimum population size, one half the maximum net productivity rate and a recovery factor (MMPA Sec. 3.16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size for the Cuvier's beaked whale is $65(\mathrm{CV}=0.47)$. The maximum productivity rate is 0.04 , the default value for cetaceans. The recovery factor for this stock is 0.5 because the stock is of unknown status. PBR for the northern Gulf of Mexico Cuvier's beaked whale is 0.7 .

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

There has been no reported fishing-related mortality of a Cuvier's beaked whale during 1998-2003 (Yeung 1999; Yeung 2001; Garrison 2003; Garrison and Richards 2004).

Fisheries Information

The level of past or current, direct, human-caused mortality of Cuvier's beaked whales in the northern Gulf of Mexico is unknown. Pelagic swordfish, tunas and billfish are the targets of the longline fishery operating in the U.S. Gulf of Mexico. There were no reports of mortality or serious injury to Cuvier's beaked whales by this fishery.

Other Mortality

Cuvier's beaked whales were taken occasionally in a small, directed fishery for cetaceans that operated out of the Lesser Antilles (Caldwell and Caldwell 1971). There were no reported strandings of Cuvier's beaked whales in the Gulf of Mexico during 1999-2003. Two unidentified beaked whales mass stranded in Florida in December 1999. Stranding data probably underestimate the extent of fishery-related mortality and serious injury because not all of the marine mammals which die or are seriously injured in fishery interactions wash ashore, not all that wash ashore are discovered, reported or investigated, nor will all of those that do wash ashore necessarily show signs of entanglement or other fishery-interaction. Finally, the level of technical expertise among stranding network personnel varies widely as does the ability to recognize signs of fishery interactions.

Several unusual mass strandings of beaked whales in North Atlantic marine environments have been associated with military naval activities. During the mid- to late 1980s multiple mass strandings of Cuvier's beaked whales (4 to about 20 per event) and small numbers of Gervais' beaked whales and Blainville's beaked whales occurred in the Canary Islands (Simmonds and Lopez-Jurado (1991). Twelve Cuvier's beaked whales that live stranded and subsequently died in the Mediterranean Sea on 12-13 May 1996 were associated with low frequency acoustic sonar tests conducted by the North Atlantic Treaty Organization (Frantzis 1998). In March 2000, 14 beaked whales live stranded in the Bahamas; 6 beaked whales (5 Cuvier's and 1 Blainville's) died (Evans and England 2001; Balcomb and Claridge 2001; Cox et al., in review). Four Cuvier's, 2 Blainville's, and 2 unidentified beaked whales were returned to sea. The fate of the animals returned to sea is unknown. Necropsies of 6 dead beaked whales revealed evidence of tissue trauma associated with an acoustic or impulse injury that caused the animals to strand. Subsequently, the animals died due to extreme physiologic stress associated with the physical stranding (i.e., hyperthermia, high endogenous catecholamine release) (Evans and England 2001; Cox et al., in review).

STATUS OF STOCK

The status of Cuvier's beaked whales in the northern Gulf of Mexico, relative to OSP, is unknown. The species is not listed as threatened or endangered under the Endangered Species Act. There are insufficient data to determine the population trends for this species. The total fishery-related mortality and serious injury for this stock is unknown, but assumed to be less than 10% of the calculated PBR and can be considered to be insignificant and approaching zero mortality and serious injury rate. This is a strategic stock because of evidence of human induced mortality and serious injury associated with acoustic activities.

Disturbance by anthropogenic noise may prove to be an important habitat issue in some areas of this population's range, notably in areas of oil and gas activities or where shipping or naval activities are high. Limited studies are currently being conducted to address this issue and its impact, if any, on this and other marine species.

REFERENCES

Balcomb, K. C. III and D. E. Claridge. 2001. A mass stranding of cetaceans caused by naval sonar in the Bahamas. Bahamas J. Sci. 2: 2-12.
Barlow, J., S. L. Swartz, T. C. Eagle and P. R. Wade. 1995. U.S. Marine mammal stock assessments: Guidelines for preparation, background, and a summary of the 1995 assessments. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-6, 73 pp .
Buckland, S. T., D. R. Anderson, K. P. Burnham, J. L. Laake, D. L. Borchers and L. Thomas. 2001. Introduction to distance sampling: Estimating abundance of biological populations. Oxford University Press, 432 pp .
Caldwell, D. K. and M. C. Caldwell. 1971. Beaked whales, Ziphius cavirostris, in the Bahamas. Florida Acad. Sci. Q. J. 34: 157-160.

Cox, T. M., T. J. Ragen, A. J. Read, E. Vos, R. W. Baird, K. Balcomb, J. Barlow, J. Caldwell, T. Cranford, L. Crum, A. D'Amico, G. D'Spain, A. Fernandez, J. Finneran, R. Gentry, W. Gerth, F. Gulland, J. Hildebrand, D. Houser, T. Hullar, P. D. Jepson, D. Ketten, C. D. MacLeod, P. Miller, S. Moore, D. Mountain, D. Palka, P. Ponganis, S. Rommel, T. Rowles, B. Taylor, P. Tyack, D. Wartzok, R. Gisiner, J. Mead, and L. Benner. (in review) Report of a workshop to understand the impacts of anthropogenic sound on beaked whales. Submitted to J. Cetacean Res. Manage. 33 pp. Available from: U.S. Marine Mammal Commission, 4340 East-West Highway, Rm. 905, Bethesda, MD 20814.
Evans, D.L. and G. R. England. 2001. Joint interim report - Bahamas Marine Mammal Stranding - event of 15-16 March 2000. U.S. Department of Commerce; Secretary of the Navy, vi +59 pp . Available at: http://www.nmfs.noaa.gov/pr/acoustics/acoustics reports.htm.
Frantzis, A. 1998. Does acoustic testing strand whales? Nature 392:29.
Garrison, L. P. 2003. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2001-2002. NOAA Tech. Memo. NMFS-SEFSC-515, 52 pp.
Garrison, L. P. and P. M. Richards. 2004. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2003. NOAA Tech. Memo. NMFS-SEFSC-527, 57 pp.
Hansen, L. J., K. D. Mullin and C. L. Roden. 1995. Estimates of cetacean abundance in the northern Gulf of Mexico from vessel surveys. Southeast Fisheries Science Center, Miami Laboratory, Contribution No. MIA-94/95-25, 9 pp. Available from: NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.
Hansen, L. J., K. D. Mullin, T. A. Jefferson and G. P. Scott. 1996. Visual surveys aboard ships and aircraft. pp. 55132. In: R. W. Davis and G. S. Fargion (eds.) Distribution and abundance of marine mammals in the north-central and western Gulf of Mexico: Final report. Volume II: Technical report. OCS Study MMS 96- 0027. Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA.
Heyning, J. E. 1989. Cuvier's beaked whale Ziphius cavirostris G. Cuvier, 1923. pp. 289-308. In: S. H. Ridgway and R. Harrison (eds.) Handbook of marine mammals, Vol. 4: River dolphins and the larger toothed whales. Academic Press, London. 442 pp.
Leatherwood, S. and R. R. Reeves. 1983. The Sierra Club handbook of whales and dolphins. Sierra Club Books, San Francisco, 302 pp.
Mitchell, E. 1968. Northeast Pacific stranding distribution and seasonality of Cuvier's beaked whale, Ziphius cavirostris. Can. J. Zool. 46: 265-279.
Mullin, K. D. and W. Hoggard. 2000. Visual surveys of cetaceans and sea turtles from aircraft and ships. pp. 111172. In: R. W. Davis, W. E. Evans and B. Würsig (eds.) Cetaceans, sea turtles and seabirds in the northern Gulf of Mexico: Distribution, abundance and habitat associations. Volume II: Technical report. OCS Study MMS 96-0027. Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA.

Mullin, K. D. and G. L. Fulling. 2004. Abundance of cetaceans in the oceanic northern Gulf of Mexico. Mar. Mammal Sci. 20(4):787-807.
Schmidly, D. J. 1981. Marine mammals of the southeastern United States and the Gulf of Mexico. U.S. Fish and Wildlife Service, Office of Biological Services, Washington, DC, FWS/OBS-80/41, 165 pp.
Simmonds, M. P. and L. F. Lopez-Jurado. 1991. Whales and the military. Nature 351: 448.
Thomas, L., J. L. Laake, J. F. Derry, S. T. Buckland, D. L. Borchers, D. R. Anderson, K. P. Burnham, S. Strindberg, S. L. Hedley, F. F. C. Marques, J. H. Pollard and R. M. Fewster. 1998. Distance 3.5. Research Unit for Wildlife Population Assessment, University of St. Andrews, St. Andrews, UK.
Wade, P. R. and R. P. Angliss. 1997. Guidelines for assessing marine mammal stocks: Report of the GAMMS Workshop April 3-5, 1996, Seattle, WA. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-12, 93 pp.
Würsig, B., T. A. Jefferson and D. J. Schmidly. 2000. The marine mammals of the Gulf of Mexico. Texas A\&M University Press, College Station.
Yeung, C. 1999. Estimates of marine mammal and marine turtle bycatch by the U.S. Atlantic pelagic longline fleet in 1998. U.S. Dep. Commer., NOAA Tech. Memo. NMFS_SEFSC_430, 26 pp. Available from: NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.
Yeung, C. 2001. Estimates of marine mammal and marine turtle bycatch by the U.S. Atlantic pelagic longline fleet in 1999-2000. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SEFSC-467, 43 pp. Available from: NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.

BLAINVILLE'S BEAKED WHALE (Mesoplodon densirostris): Northern Gulf of Mexico Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

Three species of Mesoplodon are known to occur in the Gulf of Mexico, based on stranding or sighting data (Hansen et al. 1995; Würsig et al. 2000). These are Blainville's beaked whale (M. densirostris), Gervais' beaked whale (M. europaeus) and Sowerby's beaked whale (M. bidens). Sowerby's beaked whale in the Gulf of Mexico is considered extralimital because there is only 1 known stranding of this species (Bonde and O'Shea 1989) and because it normally occurs in northern temperate waters of the North Atlantic (Mead 1989). Identification of Mesoplodon to species in the Gulf of Mexico is very difficult, and in many cases, Mesoplodon and Cuvier's beaked whale (Ziphius cavirostris) cannot be distinguished; therefore, sightings of beaked whales (Family Ziphiidae) are identified as Mesoplodon sp., Cuvier's beaked whale, or unidentified Ziphiidae.

Blainville's beaked whales appear to be widely but sparsely distributed in temperate and tropical waters of the world's oceans (Leatherwood et al. 1976; Leatherwood and Reeves 1983). Strandings have occurred along the northwestern Atlantic coast from Florida to Nova Scotia (Schmidly 1981), and there have been 4 documented strandings and 2 sightings of this species in the northern Gulf of Mexico (Hansen et al. 1995; Würsig et al. 2000). Beaked whales were seen in all seasons during GulfCet aerial surveys of the northern Gulf of Mexico from 1992 to 1998 (Hansen et al. 1996; Mullin and Hoggard 2000). The Gulf of Mexico population is provisionally being considered a separate stock for management purposes, although there is currently no information to differentiate this stock from the Atlantic Ocean stock(s). Additional morphological, genetic and/or behavioral data are needed to provide further information on stock delineation.

POPULATION SIZE

Estimates of abundance were derived through the application of distance sampling analysis (Buckland et al. 2001) and the computer program DISTANCE (Thomas et al. 1998) to sighting data. From 1991 through 1994, line-transect vessel surveys were conducted during spring in the northern Gulf of Mexico from the 200 m isobath to the seaward extent of the U.S. Exclusive Economic Zone (EEZ) (Hansen et al. 1995). Survey effort-weighted estimated average abundance of undifferentiated beaked whales (Mesoplodon spp. and unidentified Ziphiidae) for all surveys combined was 117 (CV=0.38) (Hansen et al. 1995). Hansen et al. (1995) did not estimate the abundance of Mesoplodon spp. As recommended in the GAMMS Workshop Report (Wade and Angliss 1997), estimates older than 8 years are deemed unreliable, and therefore should not be used for PBR

Figure 1. Distribution of beaked whale sightings (Mesoplodon spp.) from SEFSC spring vessel surveys during 1996-2001. All the on-effort sightings are shown, though not all were used to estimate abundance. Solid lines indicate the 100 m and $1,000 \mathrm{~m}$ isobaths and the dotted line indicates the offshore extent of the U.S. EEZ. determinations.

Similar surveys were conducted during April/May from 1996 to 2001 (excluding 1998) in oceanic waters of the northern Gulf of Mexico, using NOAA ships Oregon II (1996, 1997, 1999) and Gordon Gunter $(2000,2001)$. Estimates for all oceanic strata were summed, as survey effort was not uniformly distributed, to calculate a total estimate for the entire northern Gulf of Mexico oceanic waters (Figure 1; Mullin and Fulling 2004). Due to limited survey effort in any given year, survey effort was pooled across all years to develop an average abundance estimate.

The estimate of abundance for Mesoplodon spp. in oceanic waters, pooled from 1996 to 2001, is 106 (CV=0.41) (Mullin and Fulling 2004), which is the best available abundance estimate for these species in the northern Gulf of Mexico. This is a combined estimate for Gervais' beaked whale and Blainville's beaked whale. The estimate for the same time period for unidentified Ziphiidae is $146(\mathrm{CV}=0.46)$ which may also include an unknown number of Cuvier's beaked whales.

Minimum Population Estimate

The minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the log-normal distributed abundance estimate. This is equivalent to the 20th percentile of the log-normal distributed abundance estimate as specified by Wade and Angliss (1997). The best estimate of abundance for Mesoplodon spp. is 106 (CV=0.41). The minimum population estimate for Mesoplodon spp. in the northern Gulf of Mexico is 76.

Current Population Trend

There are insufficient data to determine the population trends for this species.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

For purposes of this assessment, the maximum net productivity rate was assumed to be 0.04 . This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive history (Barlow et al. 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential biological removal level (PBR) is the product of the minimum population size, one half the maximum net productivity rate and a recovery factor (MMPA Sec. 3.16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size for Mesoplodon spp. is 76. The maximum productivity rate is 0.04 , the default value for cetaceans. The "recovery" factor, which accounts for endangered, depleted, threatened stocks, or stocks of unknown status relative to optimum sustainable population (OSP), is assumed to be 0.5 because the stock is of unknown status. PBR for the northern Gulf of Mexico Mesoplodon spp. is 0.8 . It is not possible to determine the PBR for only Blainville's beaked whales.

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

There has been no reported fishing-related mortality of a beaked whale during 1998-2003 (Yeung 1999; Yeung 2001; Garrison 2003; Garrison and Richards 2004).

Fisheries Information

The level of past or current, direct, human-caused mortality of beaked whales in the northern Gulf of Mexico is unknown. Pelagic swordfish, tunas and billfish are the targets of the longline fishery operating in the U.S. Gulf of Mexico. There were no reports of mortality or serious injury to Blainville's or other beaked whales by this fishery.

Other Mortality

There were 2 reported stranding events of beaked whales in the Gulf of Mexico during 1999-2003. Two unidentified beaked whales mass stranded in Florida in December 1999, and 1 unidentified Mesoplodon stranded in Florida in January 2003. There was no evidence of human interactions for these stranded animals. Stranding data probably underestimate the extent of fishery-related mortality and serious injury because not all of the marine mammals which die or are seriously injured in fishery interactions wash ashore, not all that wash ashore are discovered, reported or investigated, nor will all of those that do wash ashore necessarily show signs of entanglement or other fishery interaction. Finally, the level of technical expertise among stranding network personnel varies widely as does the ability to recognize signs of fishery interactions.

Several unusual mass strandings of beaked whales in North Atlantic marine environments have been associated with military naval activities. During the mid- to late 1980s multiple mass strandings of Cuvier's beaked whales (4 to about 20 per event) and small numbers of Gervais' beaked whales and Blainville's beaked whales occurred in the Canary Islands (Simmonds and Lopez-Jurado 1991). Twelve Cuvier's beaked whales that live stranded and subsequently died in the Mediterranean Sea on 12-13 May 1996 were associated with low frequency acoustic sonar tests conducted by the North Atlantic Treaty Organization (Frantzis 1998). In March 2000, 14 beaked whales live stranded in the Bahamas; 6 beaked whales (5 Cuvier's and 1 Blainville's) died (NMFS 2001; Balcomb and Claridge 2001; Cox et al., in review). Four Cuvier's, 2 Blainville's and 2 unidentified beaked whales were returned to sea. The fate of the animals returned to sea is unknown. Necropsies of 6 dead beaked whales revealed evidence of tissue trauma associated with an acoustic or impulse injury that caused the animals to strand. Subsequently, the animals died due to extreme physiologic stress associated with the physical stranding (i.e., hyperthermia, high endogenous catecholamine release) (NMFS 2001; Cox et al., in review).

STATUS OF STOCK

The status of Blainville's beaked whales or other beaked whales in the northern Gulf of Mexico, relative to OSP, is unknown. The species is not listed as threatened or endangered under the Endangered Species Act. There are insufficient data to determine the population trends for this species. The total fishery-related mortality and serious injury for this stock is unknown, but assumed to be less than 10% of the calculated PBR and can be considered to be insignificant and approaching zero mortality and serious injury rate. This is a strategic stock because of uncertainty regarding stock size and evidence of human induced mortality and serious injury associated with acoustic activities.

Disturbance by anthropogenic noise may prove to be an important habitat issue in some areas of this population's range, notably in areas of oil and gas activities or where shipping or naval activities are high. Limited studies are currently being conducted to address this issue and its impact, if any, on this and other marine species.

REFERENCES

Balcomb, K. C. III and D. E. Claridge. 2001. A mass stranding of cetaceans caused by naval sonar in the Bahamas. Bahamas J. Sci. 2: 2-12.
Barlow, J., S. L. Swartz, T. C. Eagle and P. R. Wade. 1995. U.S. Marine mammal stock assessments: Guidelines for preparation, background, and a summary of the 1995 assessments. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-6, 73 pp .
Bonde, R. K. and T. J. O'Shea. 1989. Sowerby's beaked whale (Mesoplodon bidens) in the Gulf of Mexico. J. Mammal. 70: 447-449.
Buckland, S. T., D. R. Anderson, K. P. Burnham, J. L. Laake, D. L. Borchers and L. Thomas. 2001. Introduction to distance sampling: estimating abundance of biological populations. Oxford University Press, 432 pp .
Cox, T. M., T. J. Ragen, A. J. Read, E. Vos, R. W. Baird, K. Balcomb, J. Barlow, J. Caldwell, T. Cranford, L. Crum, A. D'Amico, G. D'Spain, A. Fernandez, J. Finneran, R. Gentry, W. Gerth, F. Gulland, J. Hildebrand, D. Houser, T. Hullar, P. D. Jepson, D. Ketten, C. D. MacLeod, P. Miller, S. Moore, D. Mountain, D. Palka, P. Ponganis, S. Rommel, T. Rowles, B. Taylor, P. Tyack, D. Wartzok, R. Gisiner, J. Mead, and L. Benner. (in review) Report of a workshop to understand the impacts of anthropogenic sound on beaked whales. Submitted to J. Cetacean Res. Manage. 33 pp. Available from: U.S. Marine Mammal Commission, 4340 East-West Highway, Rm. 905, Bethesda, MD 20814.
Frantzis, A. 1998. Does acoustic testing strand whales? Nature 392: 29.
Garrison, L. P. 2003. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2001-2002. NOAA Tech. Memo. NMFS-SEFSC-515, 52 pp.
Garrison, L. P. and P. M. Richards. 2004. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2003. NOAA Tech. Memo. NMFS-SEFSC-527, 57 pp.
Hansen, L. J., K. D. Mullin and C. L. Roden. 1995. Estimates of cetacean abundance in the northern Gulf of Mexico from vessel surveys. Southeast Fisheries Science Center, Miami Laboratory, Contribution No. MIA-94/95-25, 9 pp.
Hansen, L. J., K. D. Mullin, T. A. Jefferson and G. P. Scott. 1996. Visual surveys aboard ships and aircraft. pp. 55-132. In: R. W. Davis and G. S. Fargion (eds.) Distribution and abundance of marine mammals in the north-central and western Gulf of Mexico: Final report. Volume II: Technical report. OCS Study MMS 96-0027. Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA.
Leatherwood, S., D. K. Caldwell and H. E. Winn. 1976. Whales, dolphins, and porpoises of the western North Atlantic. NOAA Tech. Rep. NMFS CIRC-396, 176 pp.
Leatherwood, S. and R. R. Reeves. 1983. The Sierra Club handbook of whales and dolphins. Sierra Club Books, San Francisco, 302 pp.
Mead, J. G. 1989. Beaked whales of the genus Mesoplodon. pp. 349-430. In: S. H. Ridgway and R. Harrison (eds.) Handbook of marine mammals, Vol. 4: River dolphins and the larger toothed whales. Academic Press, London, 442 pp.
Mullin, K. D. and G. L. Fulling. 2004. Abundance of cetaceans in the oceanic northern Gulf of Mexico. Mar. Mammal Sci. 20(4): 787-807.
Mullin, K. D. and W. Hoggard. 2000. Visual surveys of cetaceans and sea turtles from aircraft and ships. pp. 111-172. In: R. W. Davis, W. E. Evans and B. Würsig (eds.) Cetaceans, sea turtles and seabirds in the northern Gulf of Mexico: Distribution, abundance and habitat associations. Volume II: Technical report. OCS Study MMS 2000003. U.S. Department of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA.
NMFS[National Marine Fisheries Service]. 2001. Joint interim report - Bahamas marine mammal stranding event of 1516 March 2000. Available from: National Marine Fisheries Service, Office of Protected Resources, Silver Spring, MD 20910.
Schmidly, D. J. 1981. Marine mammals of the southeastern United States and the Gulf of Mexico. U.S. Fish and Wildlife Service, Office of Biological Services, Washington, DC, FWS/OBS-80/41, 165 pp .
Simmonds, M. P. and L. F. Lopez-Jurado. 1991. Whales and the military. Nature 351:448.

Thomas, L., J. L. Laake, J. F. Derry, S. T. Buckland, D. L. Borchers, D. R. Anderson, K. P. Burnham, S. Strindberg, S. L. Hedley, F. F. C. Marques, J. H. Pollard and R. M. Fewster. 1998. Distance 3.5. Research Unit for Wildlife Population Assessment, University of St. Andrews, St. Andrews, UK.
Wade, P. R. and R. P. Angliss. 1997. Guidelines for assessing marine mammal stocks: Report of the GAMMS Workshop April 3-5, 1996, Seattle, WA. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-12, 93 pp.
Würsig, B., T. A. Jefferson and D. J. Schmidly. 2000. The marine mammals of the Gulf of Mexico. Texas A\&M University Press, College Station.
Yeung, C. 1999. Estimates of marine mammal and marine turtle bycatch by the U.S. Atlantic pelagic longline fleet in 1998. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SEFSC-430, 26 pp. Available from: NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.
Yeung, C. 2001. Estimates of marine mammal and marine turtle bycatch by the U.S. Atlantic pelagic longline fleet in 1999-2000. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SEFSC-467, 43 pp. Available from: NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.

GERVAIS' BEAKED WHALE (Mesoplodon europaeus): Northern Gulf of Mexico Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

Three species of Mesoplodon are known to occur in the Gulf of Mexico, based on stranding or sighting data (Hansen et al. 1995; Würsig et al. 2000). These are Blainville's beaked whale (M. densirostris), Gervais' beaked whale (M. europaeus), and Sowerby's beaked whale (M. bidens). Sowerby's beaked whale in the Gulf of Mexico is considered extralimital because there is only 1 known stranding of this species (Bonde and O'Shea 1989) and because it normally occurs in northern temperate waters of the North Atlantic (Mead 1989). Identification of Mesoplodon to species in the Gulf of Mexico is very difficult, and in many cases, Mesoplodon and Cuvier's beaked whale (Ziphius cavirostris) cannot be distinguished; therefore, sightings of beaked whales (Family Ziphiidae) are identified as Mesoplodon sp., Cuvier's beaked whale, or unidentified Ziphiidae.

Gervais' beaked whales appear to be widely but sparsely distributed in temperate and tropical waters of the world's oceans (Leatherwood et al. 1976; Leatherwood and Reeves 1983). Strandings have occurred along the northwestern Atlantic coast from Florida to Nova Scotia (Schmidly 1981), and there have been 16 documented strandings in the Gulf of Mexico (Würsig et al. 2000). Beaked whales were seen in all seasons during GulfCet aerial surveys of the northern Gulf of Mexico from 1992 to 1998 (Hansen et al. 1996; Mullin and Hoggard 2000). The Gulf of Mexico population is provisionally being considered a separate stock for management purposes, although there is currently no information to differentiate this stock from the Atlantic Ocean stock(s). Additional morphological, genetic and/or behavioral data are needed to provide further information on stock delineation.

Figure 1. Distribution of beaked whale sightings (Mesoplodon spp.) from SEFSC spring vessel surveys during 1996-2001. All the on-effort sightings are shown, though not all were used to estimate abundance. Solid lines indicate the 100 m and $1,000 \mathrm{~m}$ isobaths and the dotted line indicates the offshore extent of the U.S. EEZ. et al. 2001) and the computer program DISTANCE (Thomas et al. 1998) to sighting data. From 1991 through 1994, line-transect vessel surveys were conducted during spring in the northern Gulf of Mexico from the 200 m isobath to the seaward extent of the U.S. Exclusive Economic Zone (EEZ) (Hansen et al. 1995). Survey effort-weighted estimated average abundance of undifferentiated beaked whales (Ziphius and Mesoplodon spp.) for all surveys combined was 117 (CV=0.38) (Hansen et al. 1995). Hansen et al. (1995) did not estimate the abundance of Mesoplodon spp. As recommended in the GAMMS Workshop Report (Wade and Angliss 1997), estimates older than 8 years are deemed unreliable, and therefore should not be used for PBR determinations.

Similar surveys were conducted during April/May from 1996 to 2001 (excluding 1998) in oceanic waters of the northern Gulf of Mexico, using NOAA ships Oregon II (1996, 1997, 1999) and Gordon Gunter (2000, 2001). Estimates for all oceanic strata were summed, as survey effort was not uniformly distributed, to calculate a total
estimate for the entire northern Gulf of Mexico oceanic waters (Figure 1; Mullin and Fulling 2004). Due to limited survey effort in any given year, survey effort was pooled across all years to develop an average abundance estimate.

The estimate of abundance for Mesoplodon spp. in oceanic waters, pooled from 1996 to 2001, is 106 (CV=0.41) (Mullin and Fulling 2004), which is the best available abundance estimate for these species in the northern Gulf of Mexico. This is a combined estimate for Blainville's beaked whale and Gervais' beaked whale. The estimate for the same time period for unidentified Ziphiidae is $146(\mathrm{CV}=0.46)$ which may also include an unknown number of Cuvier's beaked whales.

Minimum Population Estimate

The minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the log-normal distributed abundance estimate. This is equivalent to the 20 th percentile of the log-normal distributed abundance estimate as specified by Wade and Angliss (1997). The best estimate of abundance for Mesoplodon spp. is 106 (CV $=0.41$). The minimum population estimate for Mesoplodon spp. in the northern Gulf of Mexico is 76.

Current Population Trend

There are insufficient data to determine the population trends for this species.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

For purposes of this assessment, the maximum net productivity rate was assumed to be 0.04 . This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive history (Barlow et al. 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential biological removal level (PBR) is the product of the minimum population size, one half the maximum net productivity rate and a recovery factor (MMPA Sec. 3.16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size for Mesoplodon spp. is 76. The maximum productivity rate is 0.04 , the default value for cetaceans. The "recovery" factor, which accounts for endangered, depleted, threatened stocks, or stocks of unknown status relative to optimum sustainable population (OSP), is assumed to be 0.5 because the stock is of unknown status. PBR for the northern Gulf of Mexico Mesoplodon spp. is 0.8 . It is not possible to determine the PBR for only Gervais' beaked whales.

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

There has been no reported fishing-related mortality of a beaked whale during 1998-2003 (Yeung 1999; Yeung 2001; Garrison 2003; Garrison and Richards 2004).

Fisheries Information

The level of past or current, direct, human-caused mortality of beaked whales in the northern Gulf of Mexico is unknown. Pelagic swordfish, tunas and billfish are the targets of the longline fishery operating in the U.S. Gulf of Mexico. There were no reports of mortality or serious injury to Gervais' or other beaked whales by this fishery.

Other Mortality

There were 2 reported stranding events of beaked whales in the Gulf of Mexico during 1999-2003. Two unidentified beaked whales mass stranded in Florida in December 1999, and 1 unidentified Mesoplodon stranded in Florida in January 2003. There was no evidence of human interactions for these stranded animals. Stranding data probably underestimate the extent of fishery-related mortality and serious injury because not all of the marine mammals which die or are seriously injured in fishery interactions wash ashore, not all that wash ashore are discovered, reported or investigated, nor will all of those that do wash ashore necessarily show signs of entanglement or other fishery interaction. Finally, the level of technical expertise among stranding network personnel varies widely as does the ability to recognize signs of fishery interactions.

Several unusual mass strandings of beaked whales in North Atlantic marine environments have been associated with military naval activities. During the mid- to late 1980s multiple mass strandings of Cuvier's beaked whales (4 to about 20 per event) and small numbers of Gervais' beaked whales and Blainville's beaked whales occurred in the Canary Islands (Simmonds and Lopez-Jurado 1991). Twelve Cuvier's beaked whales that live stranded and subsequently died in the Mediterranean Sea on 12-13 May 1996 were associated with low frequency acoustic sonar tests conducted by the North Atlantic Treaty Organization (Frantzis 1998). In March 2000, 14 beaked whales live
stranded in the Bahamas; 6 beaked whales (5 Cuvier's and 1 Blainville's) died (Evans and England 2001; Balcomb and Claridge 2001; Cox et al., in review). Four Cuvier's, 2 Blainville's, and 2 unidentified beaked whales were returned to sea. The fate of the animals returned to sea is unknown. Necropsies of 6 dead beaked whales revealed evidence of tissue trauma associated with an acoustic or impulse injury that caused the animals to strand. Subsequently, the animals died due to extreme physiologic stress associated with the physical stranding (i.e., hyperthermia, high endogenous catecholamine release) (Evans and England 2001; Cox et al., in review).

STATUS OF STOCK

The status of Gervais' beaked whales or other beaked whales in the northern Gulf of Mexico, relative to OSP, is unknown. The species is not listed as threatened or endangered under the Endangered Species Act. There are insufficient data to determine the population trends for this species. The total fishery-related mortality and serious injury for this stock is unknown, but assumed to be less than 10% of the calculated PBR and can be considered to be insignificant and approaching zero mortality and serious injury rate. This is a strategic stock because of uncertainty regarding stock size and evidence of human induced mortality and serious injury associated with acoustic activities.

Disturbance by anthropogenic noise may prove to be an important habitat issue in some areas of this population's range, notably in areas of oil and gas activities or where shipping or naval activities are high. Limited studies are currently being conducted to address this issue and its impact, if any, on this and other marine species.

REFERENCES

Balcomb, K. C. III and D. E. Claridge. 2001. A mass stranding of cetaceans caused by naval sonar in the Bahamas. Bahamas J. Sci. 2: 2-12.
Barlow, J., S. L. Swartz, T. C. Eagle and P. R. Wade. 1995. U.S. Marine mammal stock assessments: Guidelines for preparation, background, and a summary of the 1995 assessments. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-6, 73 pp.
Bonde, R. K. and T. J. O'Shea. 1989. Sowerby's beaked whale (Mesoplodon bidens) in the Gulf of Mexico. J. Mammal. 70: 447-449.
Buckland, S. T., D. R. Anderson, K. P. Burnham, J. L. Laake, D. L. Borchers and L. Thomas. 2001. Introduction to distance sampling: Estimating abundance of biological populations. Oxford University Press, 432 pp .
Cox, T. M., T. J. Ragen, A. J. Read, E. Vos, R. W. Baird, K. Balcomb, J. Barlow, J. Caldwell, T. Cranford, L. Crum, A. D'Amico, G. D'Spain, A. Fernandez, J. Finneran, R. Gentry, W. Gerth, F. Gulland, J. Hildebrand, D. Houser, T. Hullar, P. D. Jepson, D. Ketten, C. D. MacLeod, P. Miller, S. Moore, D. Mountain, D. Palka, P. Ponganis, S. Rommel, T. Rowles, B. Taylor, P. Tyack, D. Wartzok, R. Gisiner, J. Mead, and L. Benner. (in review). Report of a workshop to understand the impacts of anthropogenic sound on beaked whales. Submitted to J. Cetacean Res. Manage. 33 pp. Available from: U.S. Marine Mammal Commission, 4340 East-West Highway, Rm. 905, Bethesda, MD 20814.
Evans, D.L. and G. R. England. 2001. Joint interim report - Bahamas Marine Mammal Stranding - event of 15-16 March 2000. U.S. Department of Commerce; Secretary of the Navy, vi +59 pp. Available at: http://www.nmfs.noaa.gov/pr/acoustics/acoustics reports.htm.
Frantzis, A. 1998. Does acoustic testing strand whales? Nature 392: 29.
Garrison, L. P. 2003. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2001-2002. NOAA Tech. Memo. NMFS-SEFSC-515, 52 pp.
Garrison, L. P. and P. M. Richards. 2004. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2003. NOAA Tech. Memo. NMFS-SEFSC-527, 57 pp .
Hansen, L. J., K. D. Mullin and C. L. Roden. 1995. Estimates of cetacean abundance in the northern Gulf of Mexico from vessel surveys. Southeast Fisheries Science Center, Miami Laboratory, Contribution No. MIA-94/95-25, 9 pp. Available from: NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.
Hansen, L. J., K. D. Mullin, T. A. Jefferson and G. P. Scott. 1996. Visual surveys aboard ships and aircraft. pp. 55132. In: R. W. Davis and G. S. Fargion (eds.) Distribution and abundance of marine mammals in the north-central and western Gulf of Mexico: Final report. Volume II: Technical report. OCS Study MMS 96- 0027. Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA.
Leatherwood, S., D. K. Caldwell and H. E. Winn. 1976. Whales, dolphins, and porpoises of the western North Atlantic. NOAA Tech. Rep. NMFS CIRC-396, 176 pp.
Leatherwood, S. and R. R. Reeves. 1983. The Sierra Club handbook of whales and dolphins. Sierra Club Books, San Francisco, CA, 302 pp.

Mead, J. G. 1989. Beaked whales of the genus Mesoplodon. pp. 349-430. In: S. H. Ridgway and R. Harrison (eds.) Handbook of marine mammals, Vol. 4: River dolphins and the larger toothed whales. Academic Press, London, 442 pp .
Mullin, K. D. and G. L. Fulling. 2004. Abundance of cetaceans in the oceanic northern Gulf of Mexico. Mar. Mammal Sci. 20(4):787-807.
Mullin, K. D. and W. Hoggard. 2000. Visual surveys of cetaceans and sea turtles from aircraft and ships. pp. 111172. In: R. W. Davis, W. E. Evans and B. Würsig (eds.) Cetaceans, sea turtles and seabirds in the northern Gulf of Mexico: Distribution, abundance and habitat associations. Volume II: Technical report. OCS Study MMS 96-0027. Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA.
Schmidly, D. J. 1981. Marine mammals of the southeastern United States and the Gulf of Mexico. U.S. Fish and Wildlife Service, Office of Biological Services, Washington, DC, FWS/OBS-80/41, 165 pp.
Simmonds, M. P. and L. F. Lopez-Jurado. 1991. Whales and the military. Nature 351:448.
Thomas, L., J. L. Laake, J. F. Derry, S. T. Buckland, D. L. Borchers, D. R. Anderson, K. P. Burnham, S. Strindberg, S. L. Hedley, F. F. C. Marques, J. H. Pollard and R. M. Fewster. 1998. Distance 3.5. Research Unit for Wildlife Population Assessment, University of St. Andrews, St. Andrews, UK.
Wade, P. R. and R. P. Angliss. 1997. Guidelines for assessing marine mammal stocks: Report of the GAMMS Workshop April 3-5, 1996, Seattle, WA. U.S. Dep. Commer., NOAA Tech Memo. NMFS-OPR-12, 93 pp.
Würsig, B., T. A. Jefferson and D. J. Schmidly. 2000. The marine mammals of the Gulf of Mexico. Texas A\&M University Press, College Station.
Yeung, C. 1999. Estimates of marine mammal and marine turtle bycatch by the U.S. Atlantic pelagic longline fleet in 1998. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SEFSC-430, 26 pp. Available from: NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.
Yeung, C. 2001. Estimates of marine mammal and marine turtle bycatch by the U.S. Atlantic pelagic longline fleet in 1999-2000. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SEFSC-467, 43 pp. Available from: NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.

BOTTLENOSE DOLPHIN (Tursiops truncatus): Northern Gulf of Mexico Continental Shelf Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

The Gulf of Mexico continental shelf bottlenose dolphin stock inhabits waters from 20 to 200 m deep in the northern Gulf from the U.S.-Mexican border to the Florida Keys (Figure 1). Both "coastal" and "offshore" ecotypes of bottlenose dolphins (Hersh and Duffield 1990) occur in the Gulf of Mexico (LeDuc and Curry 1998). The continental shelf stock probably consists of a mixture of both the coastal and offshore ecotypes. The offshore and nearshore ecotypes are genetically distinct using both mitochondrial and nuclear markers (Hoelzel et al. 1998). In the northwestern Atlantic, Torres et al. (2003) found a statistically significant break in the distribution of the ecotypes at 34 km from shore. The offshore ecotype was found exclusively seaward of 34 km and in waters deeper than 34 m . Within 7.5 km of shore, all animals were of the coastal ecotype. The continental shelf is much wider in the Gulf of Mexico so these results may not apply. The continental shelf stock range may extend into Mexican and Cuban territorial waters; however, there are no available estimates of either abundance or mortality from those countries.

The bottlenose dolphins inhabiting waters $<20 \mathrm{~m}$ deep in the U.S. Gulf are believed to constitute 36 inshore or coastal stocks. An oceanic stock is provisionally defined for bottlenose dolphins inhabiting waters $>200 \mathrm{~m}$. Both inshore and coastal stocks and the oceanic stock are separate from the continental shelf stock. However, the continental shelf stock may overlap with coastal

Figure 1. Distribution of bottlenose dolphin sightings from SEFSC fall vessel surveys during 1998-2001. All the on-effort sightings are shown, though not all were used to estimate abundance. Solid lines indicate the 100 m and 1,000 m isobaths and the dotted line shows the offshore extent of the U.S. EEZ. stocks and the oceanic stock in some areas and may be genetically indistinguishable from those stocks. Analysis of biopsy samples obtained from bottlenose dolphins in the shelf region is scheduled for 2005-06. However, studies have shown significant genetic differentiation between inshore stocks and coastal/continental shelf stocks (Sellas 2002).

Based on research currently being conducted on bottlenose dolphins in the Gulf of Mexico, as well as the western North Atlantic Ocean, the structure of these stocks is uncertain, but appears to be complex. The multi-disciplinary research programs conducted over the last 3.5 decades (e.g., Wells 1994) have begun to shed light on the structure of some of the stocks of bottlenose dolphins, though additional analyses are needed before stock structures can be elaborated on in the Gulf of Mexico. As research is completed, it may be necessary to revise stocks of bottlenose dolphins in the Gulf of Mexico.

POPULATION SIZE

Estimates of abundance were derived through the application of distance sampling analysis (Buckland et al. 2001) and the computer program DISTANCE (Thomas et al. 1998) to sighting data. Data were collected from 1998 to 2001 during fall plankton surveys conducted from NOAA ships Oregon II (1998, 1999) and Gordon Gunter $(2000,2001)$. Tracklines, which were perpendicular to the bathymetry, covered shelf waters from the 20 m to the 200 m isobaths (Figure 1, Table 1; Fulling et al. 2003). Due to limited survey effort in any given year, survey effort was pooled across all years to develop an average abundance estimate for both areas.

The best abundance estimate of bottlenose dolphins, pooled from 1998 through 2001, for continental shelf vessel surveys was $25,320(\mathrm{CV}=0.26)$ (Fulling et al. 2003). This estimate is considered the best because these surveys have the most complete coverage of the species' habitat.

Minimum Population Estimate

The minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the log-normal distributed abundance estimate. This is equivalent to the 20th percentile of the log-normal distributed abundance estimate as specified by Wade and Angliss (1997). The best estimate of abundance for bottlenose dolphins is 25,320 ($\mathrm{CV}=0.26$). The minimum population estimate for the northern Gulf of Mexico is 20,414 bottlenose dolphins.

Current Population Trend

There are insufficient data to determine the population trends for this species. The pooled abundance estimate from the 1998-2001 ship survey of $25,320(\mathrm{CV}=0.26)$ and the previous abundance from a 1992-1994 aerial survey of 50,247 $(\mathrm{CV}=0.18)$ (Blaylock and Hoggard 1994) are significantly different $(\mathrm{P}<0.05)$. However, there are a number of reasons the 2 estimates are different other than from a change in abundance. Blaylock and Hoggard (1994) estimated from aerial surveys that about 31% of the bottlenose dolphins in shelf waters west of Mobile Bay were in a rather small area from the Mississippi River Delta west to about $90.5^{\circ} \mathrm{W}$. Vessel survey effort in this area was small and resulted in only 1 sighting of bottlenose dolphins. Therefore, vessel-based estimates may have underestimated the abundance of bottlenose dolphins in the western shelf. Aerial abundances were based on survey lines that extended from 9.3 km past the $18 \mathrm{~m}(10 \mathrm{fm})$ curve to 9.3 km past $183 \mathrm{~m}(100 \mathrm{fm})$ curve, so the area surveyed was somewhat different than from the study area $(20-200 \mathrm{~m})$ for vessel surveys. Also, Atlantic spotted dolphins are very common in shelf waters and are similar in length and shape to bottlenose dolphins. Atlantic spotted dolphins are born without spots and become progressively more spotted with age, but young animals look very similar to bottlenose dolphins. Therefore, depending on the composition of the group, from a distance Atlantic spotted are not always easily distinguished from bottlenose dolphins, so it is possible that some groups were misidentified during aerial surveys leading to bias in the relative abundance of each species.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Current and maximum net productivity rates are unknown for this stock. For purposes of this assessment, the maximum net productivity rate was assumed to be 0.04 . This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive history (Barlow et al. 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential biological removal level (PBR) is the product of the minimum population size, one half the maximum net productivity rate and a "recovery" factor (MMPA Sec. 3.16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size is $20,414(\mathrm{CV}=0.26)$. The maximum productivity rate is 0.04 , the default value for cetaceans. The "recovery" factor, which accounts for endangered, depleted, threatened stocks, or stocks of unknown status relative to optimum sustainable population (OSP) is assumed to be 0.5 because the stock is of unknown status. PBR for the northern Gulf of Mexico continental shelf bottlenose dolphin is 204.

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

There are no observed cases of human-caused mortality and serious injury in this stock; however, based on an observed non-lethal take in U.S. Atlantic waters in 1993 in the pelagic longline fishery, this stock may be subject to incidental take resulting in serious injury or mortality. Fishery interactions have been reported to occur between bottlenose dolphins and the longline swordfish/tuna fishery in the Gulf of Mexico (SEFSC unpublished logbook data), and annual fishery-related mortality and serious injury to bottlenose dolphins was estimated to be 2.8 per year (CV=0.74) during 1992-1993. This could include bottlenose dolphins from the oceanic stock. There has been no reported fishingrelated mortality of bottlenose dolphins during 1998-2003 (Yeung 1999; Yeung 2001; Garrison 2003; Garrison and Richards 2004).

Fisheries Information

The level of past or current, direct, human-caused mortality of bottlenose dolphins in the northern Gulf of Mexico is unknown; however, interactions between bottlenose dolphins and fisheries have been observed in the northern Gulf of Mexico. There have been no reports of incidental mortality or injury associated with the shrimp trawl fishery in this area. Pelagic swordfish, tunas and billfish are the targets of the longline fishery operating in the U.S. Gulf of Mexico. There were no observed incidental takes or releases of bottlenose dolphins in the Gulf of Mexico from 1997 to 2001. A trawl fishery for butterfish was monitored by NMFS observers for a short period in the 1980s with no records of incidental take of marine mammals (Burn and Scott 1988; NMFS unpublished data), although an experimental set by NMFS resulted in the death of 2 bottlenose dolphins (Burn and Scott 1988). There are no other data available.

Other Mortality

The use of explosives to remove oil rigs in portions of the continental shelf in the western Gulf of Mexico has the potential to cause serious injury or mortality to marine mammals. These activities have been closely monitored by NMFS observers since 1987 (Gitschlag and Herczeg 1994). There have been no reports of either serious injury or mortality to bottlenose dolphins (NMFS unpublished data).

STATUS OF STOCK

The status of bottlenose dolphins in the northern Gulf of Mexico, relative to OSP, is unknown. The species is not listed as threatened or endangered under the Endangered Species Act. There are insufficient data to determine the population trends for this species. The total fishery-related mortality and serious injury for this stock is unknown, but assumed to be less than 10% of the calculated PBR and can be considered to be insignificant and approaching zero mortality and serious injury rate. This is not a strategic stock because average annual fishery-related mortality and serious injury does not exceed PBR.

REFERENCES

Barlow, J., S. L. Swartz, T. C. Eagle and P. R. Wade. 1995. U.S. Marine mammal stock assessments: Guidelines for preparation, background, and a summary of the 1995 assessments. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-6, 73 pp .
Blaylock, R. A. and W. Hoggard. 1994. Preliminary estimates of bottlenose dolphin abundance in southern U.S. Atlantic and Gulf of Mexico continental shelf waters. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SEFSC-356, 10 pp. Available from: NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.
Buckland, S. T., D. R. Anderson, K. P. Burnham, J. L. Laake, D. L. Borchers and L. Thomas. 2001. Introduction to distance sampling: Estimating abundance of biological populations. Oxford University Press, 432 pp .
Burn, D. and G. P. Scott. 1988. Synopsis of available information on marine mammals-fisheries interactions in the southeastern United States: preliminary report. NMFS/SEFC, Miami Laboratory, Coastal Resources Division, Contribution ML-CRG-87/88-26, 37 pp.
Fulling, G. L., K. D. Mullin and C. W. Hubard. 2003. Abundance and distribution of cetaceans in outer continental shelf waters of the U.S. Gulf of Mexico. Fish. Bull. 101:923-932.
Garrison, L. P. 2003. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 20012002. NOAA Tech. Memo. NMFS-SEFSC-515, 52 pp .

Garrison, L. P. and P. M. Richards. 2004. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2003. NOAA Tech. Memo. NMFS-SEFSC-527, 57 pp.
Gitschlag, G. R. and B. A. Herczeg. 1994. Sea turtle observations at explosive removals of energy structures. Mar. Fish. Rev. 56(2): 1-8.
Hersh, S. L. and D. A. Duffield. 1990. Distinction between northwest Atlantic offshore and coastal bottlenose dolphins based on hemoglobin profile and morphometry. pp. 129-139. In: S. Leatherwood and R. R. Reeves (eds.) The bottlenose dolphin. Academic Press, San Diego, CA, 653 pp.
Hoelzel, A. R., C. W. Potter and P. B. Best. 1998. Genetic differentiation between parapatric 'nearshore' and 'offshore' populations of the bottlenose dolphin. Proc. R. Soc. Lond. B 265: 1177-1183.
Sellas, A. B. 2002. Population structure and group relatedness of bottlenose dolphins (Tursiops truncatus) in the coastal Gulf of Mexico using mitochondrial DNA and nuclear microsatellite markers. Masters Thesis from University of California, Santa Cruz.
Thomas, L., J. L. Laake, J. F. Derry, S. T. Buckland, D. L. Borchers, D. R. Anderson, K. P. Burnham, S. Strindberg, S. L. Hedley, F. F. C. Marques, J. H. Pollard and R. M. Fewster. 1998. Distance 3.5. Research Unit for Wildlife Population Assessment, University of St. Andrews, St. Andrews, UK.
Torres, L. G., P. E. Rosel, C. D'Agrosa and A. J. Read. 2003. Improving management of overlapping bottlenose dolphin ecotypes through spatial analysis and genetics. Mar. Mammal Sci. 19(3):502-514.
Wade, P. R. and R. P. Angliss. 1997. Guidelines for assessing marine mammal stocks: Report of the GAMMS Workshop April 3-5, 1996, Seattle, WA. U.S. Dep. Commer., NOAA Tech Memo. NMFS-OPR-12, 93 pp.
Wells, R. S. 1994. Determination of bottlenose dolphin stock discreteness: Application of a combined behavioral and genetic approach. pp. 16-20. In: K. R. Wang, P. M. Payne and V.G. Thayer (compilers) Coastal Stock(s) of Atlantic Bottlenose Dolphin: Status Review and Management. Proceedings and Recommendations from a Workshop held in Beaufort, NC, 13-14 September 1993. NOAA Tech. Memo. NMFS-OPR-4, 120 pp.
Yeung, C. 1999. Estimates of marine mammal and marine turtle bycatch by the U.S. Atlantic pelagic longline fleet in 1998. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SEFSC-430, 26 pp. Available from: NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.
Yeung, C. 2001. Estimates of marine mammal and marine turtle bycatch by the U.S. Atlantic pelagic longline fleet in 19992000. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SEFSC-467, 43 pp. Available from: NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.

BOTTLENOSE DOLPHIN (Tursiops truncatus): Northern Gulf of Mexico Coastal Stocks

STOCK DEFINITION AND GEOGRAPHIC RANGE

Bottlenose dolphins inhabit coastal waters throughout the northern Gulf of Mexico (Mullin et al. 1990). Northern Gulf of Mexico coastal waters have been divided for management purposes into 3 bottlenose dolphin stocks: eastern, northern and western. As a working hypothesis, it is assumed that the dolphins occupying habitats with dissimilar climactic, coastal and oceanographic characteristics might be restricted in their movements between habitats, and thus constitute separate stocks. Coastal waters are defined as those from shore, barrier islands, or presumed bay boundaries to the 20 m isobath (Figure 1). The eastern coastal bottlenose dolphin stock area extends from $84^{\circ} \mathrm{W}$ longitude to Key West, Florida; the northern coastal bottlenose dolphin stock area from $84^{\circ} \mathrm{W}$ longitude to the Mississippi River Delta; and the western coastal bottlenose dolphin stock area from the Mississippi River Delta to the Texas-Mexico border. The eastern coastal stock area is temperate to subtropical in climate, is bordered by a mixture of

Figure 1. Locations of bottlenose dolphin groups sighted in coastal waters during aerial surveys in 1992-1994. The 20 and 200 m isobaths are shown. coastal marshes, sand beaches, marsh and mangrove islands, and has an intermediate level of freshwater input. The northern coastal stock area is characterized by a temperate climate, barrier islands, sand beaches, coastal marshes and marsh islands, and has a relatively high level of fresh water input. The western coastal stock area is characterized by an arid to temperate climate, sand beaches in southern Texas, extensive coastal marshes in northern Texas and Louisiana, and low to high levels of fresh water input.

Portions of the coastal stocks may co-occur with the northern Gulf of Mexico continental shelf stock and bay, sound and estuary stocks, and the western coastal stock is trans-boundary with Mexico. The seaward boundary for coastal stocks, the 20m isobath, generally corresponds to survey strata (Scott et al. 1990; Blaylock and Hoggard 1994; Fulling et al. 2003), and thus represents a management boundary rather than an ecological boundary. Both "coastal/nearshore" and "offshore" ecotypes of bottlenose dolphins (Hersh and Duffield 1990) occur in the Gulf of Mexico (LeDuc and Curry 1998), and both could potentially occur in coastal waters. The offshore and coastal ecotypes are genetically distinct using both mitochondrial and nuclear markers (Hoelzel et al. 1998). In the northwestern Atlantic Ocean, Torres et al. (2003) found a statistically significant break in the distribution of the ecotypes at 34 km from shore. The offshore ecotype was found exclusively seaward of 34 km and in waters deeper than 34 m . Within 7.5 km of shore, all animals were of the coastal ecotype. The distance of the 20 m isobath ranges from 4 to 90 km from shore in the northern Gulf. However, because the continental shelf is much wider in the Gulf, results from the Atlantic may not apply. About 180 genetic samples are available to help assess whether the continental shelf and coastal stocks should be separated, and if so, where. Analysis of these samples is scheduled for 2005-06. Research on coastal stocks is limited. Sellas (2002) found significant genetic differentiation between Sarasota Bay resident dolphins and those occurring primarily in adjacent Gulf coastal waters. Fazioli and Wells (1999) conducted photo-identification surveys of coastal waters off Sarasota Bay over 14 months. They found coastal waters were inhabited by both 'inshore' and 'Gulf' dolphins but that the 2 types used coastal waters differently. While they found a mixture of ranging patterns (seasonal residency, transience), they did find some dolphins displayed many of the community structure characteristics of inshore dolphins. Similar finding were reported by Quintana-Rizzo and Wells (2001) for coastal waters of Cedar Key, Florida. Off Galveston, Texas, Beier (2001) reported an open population of individual dolphins in coastal waters, but several individual dolphins had been sighted previously by other researchers over a 10 -year period. Some coastal animals may move relatively long distances alongshore. Two bottlenose dolphins previously seen in the South Padre Island area in Texas were seen in Matagorda Bay, 285km north, in May 1992 and May 1993 (Lynn 1995).

POPULATION SIZE

Population size has not been estimated for the 3 coastal stocks for more than 8 years and therefore the current population size is unknown for each (Wade and Angliss 1997). Previous estimates of abundance were derived using distance sampling analysis (Buckland et al. 1993) and the computer program DISTANCE (Laake et al. 1993) with sighting data collected during aerial line-transect surveys conducted during autumn from 1992-1994 (Blaylock and Hoggard 1994; NMFS unpublished data). Systematic sampling transects, placed randomly with respect to the bottlenose dolphin distribution, extended orthogonally from shore out to approximately 9 km past the 18 m isobath. Approximately 5% of the total survey area was visually searched. Previous bottlenose dolphin abundance estimates for each stock based on the 1991-1994 surveys are listed in Table 1.

| Table 1. Previous bottlenose dolphin abundance ($\mathrm{N}_{\text {BEST }}$), coefficient of variation (CV), and minimum population |
| :--- | :--- | :--- | :--- | :--- | :--- |
| estimate ($\mathrm{N}_{\text {MIN }}$) for northern Gulf of Mexico coastal botlenose dolphin stocks. Because they are based on |
| data collected more than 8 years ago, all estimates are currently considered unknown. PBR - Potential |
| Biological Removal, UNK - unknown. |

Minimum Population Estimate

The current minimum population size for each stock is unknown. The previous minimum population estimates for each stock based on the 1992-1994 surveys are listed in Table 1. The minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the log-normally distributed abundance estimate. This is equivalent to the 20th percentile of the log-normal distribution as specified by Wade and Angliss (1997).

Current Population Trend

There are insufficient data to determine population trends for these stocks.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Current and maximum net productivity rates are not known for these stocks. The maximum net productivity rate was assumed to be 0.04 . This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive life history (Barlow et al. 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential Biological Removal (PBR) is currently unknown for each stock. PBR is the product of minimum population size, one-half the maximum productivity rate and a "recovery" factor (Wade and Angliss 1997). The "recovery" factor, which accounts for endangered, depleted and threatened stocks, or stocks of unknown status relative to optimum sustainable population (OSP) is assumed to be 0.5 because the stocks are of unknown status.

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

A total of 1,377 bottlenose dolphins were found stranded in the northern Gulf of Mexico from 1999 through 2003 (Table 2) (NMFS unpublished data). Of these, 73 or 5% showed evidence of human interactions as the cause of death (e.g., gear entanglement, mutilation, gunshot wounds). Bottlenose dolphins are known to become entangled in recreational and commercial fishing gear (Wells and Scott 1994; Wells et al. 1998; Gorzelany 1998), and some are struck by recreational and commercial vessels (Wells and Scott 1997).

There are a number of difficulties associated with the interpretation of stranding data. It is possible that some or all of the stranded dolphins may have been from a nearby bay, sound and estuary stock; however, the proportion of stranded dolphins belonging to another stock cannot be determined because of the difficulty of determining from where the stranded carcass originated. Stranding data probably underestimate the extent of human-related mortality and serious injury because not all of the dolphins which die or are seriously injured due to human interactions wash ashore, nor will all of those that do wash ashore necessarily show signs of fishery-interaction or other human interactions. Finally, the level of technical expertise among stranding network personnel varies widely as does the ability to recognize signs of human interaction, and the condition of the carcass if badly decomposed can inhibit the interpretation of cause of death.

The Gulf of Mexico menhaden fishery was observed to take 9 bottlenose dolphins (3 fatally) between 1992 and 1995 (NMFS unpublished data). During that period, there were 1,366 sets observed out of 26,097 total sets, which if extrapolated for all years suggests that as many as 172 bottlenose dolphins could have been taken in this fishery with up to

57 animals killed. Without an observer program it is not possible to obtain statistically reliable information for this fishery on the number of sets annually, the incidental take and mortality rates, and the communities from which bottlenose dolphins are being taken.

Feeding or provisioning, and swimming with wild bottlenose dolphins have been documented in Florida, particularly near Panama City Beach in the Panhandle. Feeding wild dolphins is defined under the MMPA as a form of 'take' because it can alter their natural behavior and increase their risk of injury or death. Nevertheless, Samuels and Bejder (2004) observed a high rate of uncontrolled provisioning near Panama City beach in 1998. The effects of swim-with activities on dolphins and their legality under the MMPA are less clear and are currently under review. Near Panama City Beach, Samuels and Bejder (2004) concluded that dolphins were amenable to swimmers due to provisioning.

Table 2. Bottlenose dolphin strandings in the U.S. Gulf of Mexico (West Florida to Texas) from 1999 to 2003. Data are from the Southeast Marine Mammal Stranding Database (SESUS). Percent of animals with human interactions were calculated based on animals which were determined as "yes" or "no" for human interactions. Animals that were "CBD" (could not be determined) were excluded from $\%$ with human interactions calculations.						
State	1999	2000	2001	2002	2003	Total
Florida						
No. Stranded	156	130	57	$82^{\text {a }}$	$64^{\text {d }}$	483
No. Human Interactions	5	8	2	6	7	28
No. CBD	106	76	26	44	34	286
\% With Human Interactions	10\%	15\%	6\%	16\%	23\%	14\%
Alabama						
No. Stranded	12	15	17	12	7	63
No. Human Interactions	0	0	2	0	1	3
No. CBD	8	7	8	9	4	36
\% With Human Interactions	0\%	0\%	22\%	0\%	33\%	11\%
Mississippi						
No. Stranded	25	27	22	$21^{\text {b }}$	$37^{\text {e }}$	126
No. Human Interactions	0	1	0	0	0	1
No. CBD	17	15	8	6	29	75
\% With Human Interactions	0\%	8\%	0\%	0\%	0\%	2\%
Louisiana						
No. Stranded	25	14	0	2	$33^{\text {f }}$	69
No. Human Interactions	1	0	-	0	0	1
No. CBD	19	14	-	2	29	64
\% With Human Interactions	17\%	CBD	-	CBD	0\%	20\%
Texas						
No. Stranded	102	113	116	$154{ }^{\text {c }}$	$154{ }^{\text {g }}$	636
No. Human Interactions	2	7	6	15	10	40
No. CBD	40	47	5	57	101	250
\% With Human Interactions	3\%	11\%	5\%	15\%	19\%	10\%
Totals						
No. Stranded	320	299	212	271	295	1377
No. Human Interactions	8	16	10	21	18	73
No. CBD	190	159	47	118	197	711
\% With Human Interactions		11%	6\%	14\%	18\%	11\%
Florida mass stranding of 2 animals in December 2002						
Mississippi mass stranding of 2 animals in March 2002						
Texas mass strandings (2 animals in January 2002, 2 animals in March 2002)						
Florida mass stranding of 2 animals in May 2003						
Mississippi mass stranding of 2 animals in April 2003						
Louisiana mass stranding of 3 animals in July 2003						
Texas mass stranding of 5 animals in March 2003						

Fisheries Information

The commercial fisheries which potentially could interact with coastal stocks in the northern Gulf of Mexico are the shrimp trawl, blue crab trap/pot, stone crab trap/pot, menhaden and gillnet fisheries (Appendix I). Historically, there have been very low numbers of incidental mortality or injury in the stocks associated with the shrimp trawl fishery. Bottlenose dolphins have been reported stranded with polypropylene rope around their flukes (NMFS 1991; McFee and Brooks, Jr. 1998; NMFS unpublished data), indicating the possibility of entanglement with crab pot lines. The blue crab fishery has not been monitored by observers and there are no estimates of bottlenose dolphin mortality or serious injury for this fishery. There is no observer program data for the menhaden fishery but incidental mortality of bottlenose dolphins has been reported for this fishery (Reynolds 1985). No marine mammal mortalities associated with gillnet fisheries have been reported, but stranding data suggest that gillnet and marine mammal interaction does occur, causing mortality and serious injury.

Other Mortality

The nearshore habitat occupied by these 3 stocks is adjacent to areas of high human population and in some areas, such as the Tampa Bay, Florida; Galveston, Texas; and Mobile, Alabama, is highly industrialized. Concentrations of anthropogenic chemicals such PCB's and DDT and its metabolites vary from site to site, and can reach levels of concern for bottlenose dolphin health and reproduction in the southeastern U.S. (Schwacke et al. 2002). PCB concentrations in 3 stranded dolphins sampled from the eastern coastal stock area ranged from $16-46 \Phi \mathrm{~g} / \mathrm{g}$ wet weight. Two stranded dolphins from the northern coastal stock area had the highest levels of DDT derivatives of any of the bottlenose dolphin liver samples analyzed in conjunction with a 1990 mortality investigation conducted by NMFS (Varanasi et al. 1992). The significance of these findings is unclear, but there is some evidence that increased exposure to anthropogenic compounds may reduce immune function in bottlenose dolphins (Lahvis et al. 1995). Concentrations of chlorinated hydrocarbons and metals were relatively low in most of the bottlenose dolphins examined in conjunction with an anomalous mortality event in Texas bays in 1990; however, some had concentrations at levels of possible toxicological concern (Varanasi et al. 1992). Agricultural runoff following periods of high rainfall in 1992 was implicated in a high level of bottlenose dolphin mortalities in Matagorda Bay, which is adjacent to the western coastal stock area (NMFS unpublished data).

The Mississippi River, which drains about two-thirds of the continental U.S., flows into the north-central Gulf of Mexico and deposits its nutrient load which is linked to the formation of 1 of the world's largest areas of seasonal hypoxia (Rabalais et al. 1999). This area is located in Louisiana coastal waters west of the Mississippi River delta. How it affects bottlenose dolphins is not known.

Since 1990, there have been 6 bottlenose dolphin die-offs in the northern Gulf of Mexico. From January through May 1990, a total of 367 bottlenose dolphins stranded in the northern Gulf of Mexico. Overall this represented a two-fold increase in the prior maximum recorded strandings for the same period, but in some locations (i.e., Alabama) strandings were 10 times the average number. The cause of the 1990 mortality event could not be determined (Hansen 1992). In March and April 1992, 111 bottlenose dolphins stranded in Texas; about 9 times the average number. Seven of 34 livecaptured bottlenose dolphins (20%) in 1992 from Matagorda Bay, Texas, tested positive for previous exposure to cetacean morbillivirus and it is possible that other stocks have been exposed to the morbillivirus (Duignan et al. 1996).

In 1992, NOAA Fisheries' Working Group on Unusual Marine Mortality Events was formalized and developed protocols to declare Unusual Mortality Events (UME) and respond to them. Since 1992, 4 UMEs involving bottlenose dolphins have been investigated in the northern Gulf of Mexico. In 1993-1994 a UME of bottlenose dolphins caused by morbillivirus started in the Florida Panhandle and spread west with most of the mortalities occurring in Texas (Lipscomb 1993; Lipscomb et al. 1994). In 1996 a UME was declared for bottlenose dolphins in Mississippi and while the cause was not determined, Karenia brevis (red tide) was suspected. Between August 1999 and February 2000, at least 120 bottlenose dolphins died coincident with K. brevis blooms and fish kills in the Florida Panhandle. In March and April 2004, in another Florida Panhandle UME possibly related to K. brevis blooms, 107 bottlenose dolphins stranded dead (NMFS 2004).

STATUS OF STOCK

The status of each stock relative to OSP is not known and population trends cannot be determined due to insufficient data. This species is not listed as threatened or endangered under the Endangered Species Act. The total known humanrelated mortality and serious injury for each stock cannot be assessed relative to PBR because the PBR is unknown for each stock, and therefore cannot be considered to be insignificant and approaching zero mortality and serious injury rate. Each is a strategic stock because the known level of human-related mortality or serious injury relative to PBR is unknown. Also, there is no systematic monitoring of all fisheries that may take these stocks. Insufficient information is available to determine whether the total fishery mortality and serious injury for coastal bottlenose dolphin stocks is insignificant and
approaching zero mortality and serious injury rate. The potential impact, if any, of coastal pollution may be an issue for this species in portions of its habitat, though little is known on this to date.

REFERENCES

Barlow, J., S.L. Swartz, T.C. Eagle and P.R. Wade. 1995. U.S. Marine Mammal Stock Assessments: Guidelines for Preparation, Background and a Summary of the 1995 Assessments. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-6, 73 pp .
Beier, A.G. 2001. Occurrence, distribution, and movement patterns of outer coastline bottlenose dolphins off Galveston, Texas. Master's thesis from Texas A\&M University, 97 pp.
Blaylock, R.A. and W. Hoggard. 1994. Preliminary estimates of bottlenose dolphin abundance in southern U.S. Atlantic and Gulf of Mexico continental shelf waters. NOAA Tech. Memo NMFS-SEFSC-356, 10 pp.
Buckland, S.T., D.R. Anderson, K.P. Burnham and J.L. Laake. 1993. Distance sampling: Estimating abundance of biological populations. Chapman \& Hall, London, 446 pp.
Duignan, P. J., C. House, D. K. Odell, R. S. Wells, L. Hansen, M. T. Walsh, D. J. St. Aubin, B. K. Rima and J. R. Geraci. 1996. Morbillivirus infection in bottlenose dolphin: evidence for recurrent epizootics in the Western Atlantic and Gulf of Mexico. Mar. Mammal Sci. 12(4):499-515.
Fazioli, K.L. and R.S. Wells. 1999. Stock structure of coastal bottlenose dolphins, Tursiops truncatus, near Sarasota, Florida. Final Contract Report to the National Marine Fisheries Service, Southeast Fisheries Science Center, Contract No. 40-WCNF701806.
Fulling, G.L., K.D. Mullin and C.W. Hubard. 2003. Abundance and distribution of cetaceans in outer continental shelf waters of the U.S. Gulf of Mexico. Fish. Bull. 101:923-932.
Gorzelany, J.F. 1998. Unusual deaths of two free-ranging Atlantic bottlenose dolphins (Tursiops truncatus) related to ingestion of recreational fishing gear. Mar. Mammal Sci. 14(3):614-6167.
Hansen, L.J. (ed). 1992. Report on investigation of 1990 Gulf of Mexico bottlenose dolphin strandings. NOAA-NMFSSEFSC Contribution MIA-92/93-21.
Hersh, S.L. and D.A. Duffield. 1990. Distinction between Northwest Atlantic offshore and coastal bottlenose dolphins based on hemoglobin profile and morphometry. pp. 129-139. In: S. Leatherwood and R. R. Reeves (eds.) The bottlenose dolphin. Academic Press, San Diego, CA, 653 pp.
Hoelzel, A.R., C.W. Potter and P.B. Best. 1998. Genetic differentiation between parapatric 'nearshore' and 'offshore' populations of bottlenose dolphins. Proc. R. Soc. Lond., Ser. B: Biol. Sci. 265: 1177-1183.
Laake, J.L., S.T. Buckland, D.R. Anderson and K.P. Burnham. 1993. DISTANCE user's guide, V2.0. Colorado Cooperative Fish \& Wildlife Research Unit, Colorado State University, Ft. Collins, 72 pp.
Lahvis, G.P., R.S. Wells, D.W. Kuehl, J.L. Stewart, H.L. Rhinehart and C.S. Via. 1995. Decreased lymphocyte responses in free-ranging bottlenose dolphins (Tursiops truncatus) are associated with increased concentrations of PCB's and DDT in peripheral blood. Environ. Health Perspect. 103: 67-72.
LeDuc, R.G. and B.E. Curry. 1998. Mitochondrial DNA sequence analysis indicates need for revision of the genus Tursiops. Rep. int. Whal. Commn 47:393.
Lipscomb, T.P. 1993. Some answers to questions about morbillivirus. pp. 4-5. In: R. A. Blaylock, B. Mase and D.K. Odell (eds.) Strandings, Vol. 2, No. 3, SEFSC Miami Laboratory, Miami, Florida, 7 pp.
Lipscomb, T.P. 1994. Morbilliviral disease in an Atlantic bottlenose dolphin (Tursiops truncatus) from the Gulf of Mexico. J. Wildl. Dis. 30(4): 572-576.
Lynn, S. K. and B. Würsig. 2002. Summer movement patterns of bottlenose dolphins in a Texas bay. G. Mex. Sci. 20(1): 25-37.
McFee, W.E. and W. Brooks Jr. 1998. Fact finding meeting of marine mammal entanglement in the crab pot fishery: A summary. U.S. Fish and Wildlife Service. Unpublished report. Available from: NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.
Mullin, K. D., R. R. Lohoefener, W. Hoggard, C. L. Roden and C. M Rogers. 1990. Abundance of bottlenose dolphins, Tursiops truncatus, in the coastal Gulf of Mexico. Northeast Gulf Sci. 11(2):113-122.
NMFS [National Marine Fisheries Service]. 2004. Interim report on the bottlenose dolphin (Tursiops truncatus) unusual mortality event along the Panhandle of Florida, March-April 2004. 35 pp.
Quintana-Rizzo, E. and R.S. Wells. 2001. Resighting and association patterns of bottlenose dolphins (Tursiops truncatus) in the Cedar Keys, Florida: Insight into social organization. Can. J. Zool. 79: 447-456.
Rabalais, N.N., R.E. Turner and W.J. Wiseman, Jr. 1999. Hypoxia in the northern Gulf of Mexico: Linkage with the Mississippi River. pp. 297-322. In: H. Kumpf, K. Steidinger and K. Sherman (eds.) The Gulf of Mexico large marine ecosystem. Blackwell Science, Oxford, UK.
Reynolds, J.E., III. 1985. Evaluation of the nature and magnitude of interactions between bottlenose dolphins, Tursiops truncatus, and fisheries and other human activities in coastal areas of the southeastern United States. National Technical Information Service PB86-162203, U.S. Department of Commerce, Springfield, VA 22161.

Samuels, A. and L. Bejder. 2004. Chronic interactions between human and free-ranging bottlenose dolphins near Panama City Beach, Florida, USA. J. Cetacean Res. Manage. 6: 69-77.
Sellas, A.B. 2002. Population structure and group relatedness of bottlenose dolphins (Tursiops truncatus) in the coastal Gulf of Mexico using mitochondrial DNA and nuclear microsatellite markers. Master's thesis from University of California, Santa Cruz.
Schwacke, L.H., E.O. Voit, L.J. Hansen, R.S. Wells, G.B. Mitchum, A.A. Hohn and P.A. Fair. 2002. Probabilistic risk assessment of reproductive effects of polychlorinated biphenyls on bottlenose dolphins (Tursiops truncatus) from the Southeast United States coast. Environ. Toxicol. Chem. 21:2752-2764.
Scott, G.P. 1990. Management-oriented research on bottlenose dolphins by the Southeast Fisheries Center. pp. 623-639. In: S. Leatherwood and R.R. Reeves (eds.) The bottlenose dolphin. Academic Press, San Diego, CA, 653 pp.
Smith, J.W., E.A. Hall, N.A. McNeil and W.B. O'Bier. 2002. The distribution of purse-seine sets and catches in the Gulf Menhaden fishery in the Northern Gulf of Mexico, 1994-1998. G. Mex. Sci. 20: 12-24.
Torres, L.G., P.E. Rosel, C. D'Agrosa and A.J. Read. 2003. Improving management of overlapping bottlenose dolphin ecotypes through spatial analysis and genetics. Mar. Mammal Sci. 19(3):502-514.
Varanasi, U., K.L. Tilbury, D.W. Brown, M.M. Krahn, C.A. Wigren, R.C. Clark and S.L. Chan. 1992. pp. 56-86. In: L. J. Hansen (ed.) Report on Investigation of 1990 Gulf of Mexico Bottlenose Dolphin Strandings, Southeast Fisheries Science Center Contribution MIA-92/93-21, 219 pp.
Wade, P.R. and R.P. Angliss. 1997. Guidelines for assessing marine mammal stocks: Report of the GAMMS Workshop April 3-5, Seattle, WA. NOAA Tech. Memo. NMFS-OPR-12, 93 pp.
Wells, R.S. and M.D. Scott. 1994. Incidence of gear entanglement for resident inshore bottlenose dolphins near Sarasota, Florida. p. 629. In: W. F. Perrin, G. P. Donovan and J. Barlow (eds.) Gillnets and cetaceans. Rep. int. Whal. Commn (Special Issue) 15.
Wells, R. S. and M. D. Scott. 1997. Seasonal incidence of boat strikes on bottlenose dolphins near Sarasota, Florida. Mar. Mammal Sci. 13(3):475-480.
Wells, R.S., S. Hofmann and T.L. Moors. 1998. Entanglement and mortality of bottlenose dolphins, Tursiops truncatus, in recreational fishing gear in Florida. Fish. Bull. 96(3):647-650.
Würsig, B. and S.K. Lynn. 1996. Movements, site fidelity, and respiration patterns of bottlenose dolphins on the central Texas coast. NOAA Tech. Memo. NMFS-SEFSC-383, 43 pp.

BOTTLENOSE DOLPHIN (Tursiops truncatus): Northern Gulf of Mexico Oceanic Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

Thirty-eight stocks have been provisionally identified for Gulf of Mexico bottlenose dolphins (Waring et al. 2001). Gulf of Mexico inshore habitat has been separated into 33 bay, sound and estuarine stocks. Three northern Gulf of Mexico coastal stocks include nearshore waters from the shore to the 20 m isobath. The continental shelf stock encompasses waters from 20 to 200 m deep. The Gulf of Mexico oceanic stock encompasses the waters from the 200 m isobath to the seaward extent of the U.S. Exclusive Economic Zone (EEZ; Figure 1).

Both "coastal/nearshore" and "offshore" ecotypes of bottlenose dolphins (Hersh and Duffield 1990) occur in the Gulf of Mexico (LeDuc and Curry 1998) but the distribution of each is not known. The offshore and nearshore ecotypes are genetically distinct using both mitochondrial and nuclear markers (Hoelzel et al. 1998). In the northwestern Atlantic Ocean, Torres et al. (2003) found a statistically significant break in the distribution of the ecotypes at 34 km from shore. The offshore ecotype was found exclusively seaward of 34 km and in waters deeper than 34 m . The continental shelf is much wider in the Gulf of Mexico and these results may not apply.

Based on research currently being conducted on bottlenose dolphins in the Gulf of Mexico, as well as the western North Atlantic Ocean, the structure of these stocks is uncertain, but appears to be complex. The multi-disciplinary research programs conducted over the last 3.5 decades (e.g., Wells 1994) are beginning to shed light on stock structures of bottlenose dolphins, though additional analyses are needed before stock structures can be elaborated on in the Gulf of Mexico. As research is completed, it may be necessary to revise stocks of bottlenose dolphins in the Gulf of Mexico.

POPULATION SIZE

Estimates of abundance were derived through the application of distance sampling analysis (Buckland et al. 2001) and the computer program DISTANCE (Thomas et al. 1998) to sighting data. Surveys were conducted during April/May from 1996 to 2001 (excluding 1998) in oceanic waters of the northern Gulf of Mexico, using NOAA ships Oregon II (1996, 1997, 1999) and Gordon Gunter (2000, 2001). Tracklines, which were perpendicular to the bathymetry, covered the waters from 200 m to the offshore extent of the U.S. EEZ. Estimates for all oceanic strata were summed, as survey effort was not uniformly distributed, to calculate a total estimate for the Gulf of Mexico oceanic waters (Figure 1; Mullin and Fulling 2004). Due to limited survey effort in any

Figure 1. Distribution of bottlenose dolphin sightings from SEFSC shipboard surveys during spring 1996-2001. All the on-effort sightings are shown, though not all were used to estimate abundance. Solid lines indicate the 200 m and 2,000 m isobaths, and the dotted line indicates the offshore extent of the U.S. EEZ. given year, survey effort was pooled across all years to develop an average abundance estimate.

The estimate of abundance for bottlenose dolphins in oceanic waters, pooled from 1996 to 2001, is 2,239 (CV=0.41) (Mullin and Fulling 2004), which is the best available abundance estimate for this species in the oceanic Gulf of Mexico.

Minimum Population Estimate

The minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the log-normal distributed abundance estimate. This is equivalent to the 20th percentile of the log-normal distributed abundance estimate as specified by Wade and Angliss (1997). The best estimate of abundance for bottlenose dolphins is 2,239 (CV=0.41) taken from Mullin and Fulling (2004). The minimum population estimate for the northern Gulf of Mexico oceanic stock is 1,607 bottlenose dolphins.

Current Population Trend

There are insufficient data to determine the population trends for this stock.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Current and maximum productivity rates are unknown for this stock. For purposes of this assessment, the maximum productivity rate was assumed to be 0.04 . This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive life history (Barlow et al. 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential biological removal level (PBR) is the product of minimum population size, one-half the maximum productivity rate and a recovery factor (MMPA Sec. 3. 16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size is $1,607(\mathrm{CV}=0.41)$. The maximum productivity rate is 0.04 , the default value for cetaceans. The "recovery" factor, which accounts for endangered, depleted, threatened stocks, or stocks of unknown status relative to optimum sustainable population (OSP) is assumed to be 0.5 because the stock is of unknown status. PBR for the Gulf of Mexico oceanic bottlenose dolphin is 16 .

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

Annual human-caused mortality and serious injury is unknown for this stock.

Fisheries Information

The level of past or current, direct, human-caused mortality of bottlenose dolphins in the Gulf of Mexico is unknown; however, interactions between bottlenose dolphins and fisheries have been observed in the Gulf of Mexico. There have been no reports of incidental mortality or injury associated with the shrimp trawl fishery in this area. Pelagic swordfish, tunas and billfish are the targets of the longline fishery operating in the U.S. Gulf of Mexico. There were no reports of mortality or serious injury to bottlenose dolphins in the Gulf of Mexico during 1998-2003 (Yeung 1999; Yeung 2001; Garrison 2003; Garrison and Richards 2004). Fishery interactions have previously been reported to occur between bottlenose dolphins and the longline swordfish/tuna fishery in the Gulf of Mexico (SEFSC unpublished logbook data), with annual fishery-related mortality and serious injury to bottlenose dolphins estimated to be 2.8 per year ($\mathrm{CV}=0.74$) during 1992-1993. This could include bottlenose dolphins from the continental shelf and oceanic stocks. One animal was hooked in the mouth and released by pelagic longline fishery in 1998 (Yeung 1999).

A trawl fishery for butterfish was monitored by NMFS observers for a short period in the 1980s with no records of incidental take of marine mammals (Burn and Scott 1988; NMFS unpublished data), although an experimental set by NMFS resulted in the death of 2 bottlenose dolphins (Burn and Scott 1988). There are no other data available with regard to this fishery.

Other Mortality

The use of explosives to remove oil rigs in portions of the continental shelf in the western Gulf of Mexico has the potential to cause serious injury or mortality to marine mammals. These activities have been closely monitored by NMFS observers since 1987 (Gitschlag and Herczeg 1994). There have been no reports of either serious injury or mortality to bottlenose dolphins in the oceanic Gulf of Mexico (NMFS unpublished data).

STATUS OF STOCK

The status of bottlenose dolphins, relative to OSP, in the U.S. Gulf of Mexico oceanic waters is unknown. The species is not listed as threatened or endangered under the Endangered Species Act. There are insufficient data to determine the population trends for this species. The total fishery-related mortality and serious injury for this stock is unknown, but assumed to be less than 10% of the calculated PBR and can be considered to be insignificant and approaching zero mortality and serious injury rate. This is not a strategic stock because annual fishery-related mortality and serious injury does not exceed PBR.

REFERENCES

Barlow, J., S.L. Swartz, T.C. Eagle, and P.R. Wade. 1995. U.S. marine mammal stock assessment: guidelines for preparation, background, and a summary of the 1995 assessments. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-6. National Marine Fisheries Service, Seattle, WA, 73 pp.
Buckland, S.T., D.R. Anderson, K P. Burnham, J.L. Laake, D.L. Borchers and L. Thomas. 2001. Introduction to distance sampling: Estimating abundance of biological populations. Oxford University Press, 432 pp .
Burn, D. And G.P. Scott. 1988. Synopsis of available information on marine mammal-fisheries interactions in the southeastern United States: preliminary report. U.S. Dep. Commer., Contribution ML-CRG-87/88-26, National Marine Fisheries Service, Miami, FL, 37 pp.
Garrison, L.P. 2003. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2001-2002. NOAA Tech. Memo. NMFS-SEFSC-515, 52 pp.
Garrison, L.P. and P.M. Richards. 2004. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2003. NOAA Tech. Memo. NMFS-SEFSC-527, 57 pp.
Gitschlag, G.R. and B.A. Herczeg. 1994. Sea turtle observations at explosive removals of energy structures. Mar. Fish. Rev. 56(2):1-8.
Hersh, S.L. and D.A. Duffield. 1990. Distinction between northwest Atlantic offshore and coastal bottlenose dolphins based on hemoglobin profile and morphometry. pp. 129-139. In: S. Leatherwood and R.R. Reeves (eds.) The bottlenose dolphin. Academic Press, San Diego, CA, 653 pp.
Hoelzel, A. R., C.W. Potter and P.B. Best. 1998. Genetic differentiation between parapatric 'nearshore' and 'offshore' populations of the bottlenose dolphin. Proc. R. Soc. Lond. B 265:1177-1183.
LeDuc, R.G. and B.E. Curry. 1998. Mitochondrial DNA sequence analysis indicates need for revision of the genus Tursiops. Rep. int. Whal. Commn 47:393.
Mullin, K.D. and G.L. Fulling. 2004. Abundance of cetaceans in the oceanic northern Gulf of Mexico. Mar. Mammal Sci. 20(4):787-807.
Thomas, L., J.L. Laake, J.F. Derry, S.T. Buckland, D.L. Borchers, D.R. Anderson, K.P. Burnham, S. Strindberg, S.L. Hedley, F.F.C. Marques, J.H. Pollard and R.M. Fewster. 1998. Distance 3.5. Research Unit for Wildlife Population Assessment, University of St. Andrews, St. Andrews, UK.
Torres, L.G., P.E. Rosel, C. D'Agrosa and A.J. Read. 2003. Improving management of overlapping bottlenose dolphin ecotypes through spatial analysis and genetics. Mar. Mammal Sci. 19(3):502-514.
Wade, P.R. and R.P. Angliss. 1997. Guidelines for assessing marine mammal stocks: Report of the GAMMS workshop April 3-5, 1996, Seattle, Washington. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-12, National Marine Fisheries Service, Seattle, WA, 93 pp.
Waring, G.T., J.M. Quintal, S.L. Swartz, P.J. Clapham, T.V.N. Cole, C.P. Fairfield, A. Hohn, D.L. Palka, M.C. Rossman, and C. Yeung. 2001. U.S. Atlantic and Gulf of Mexico marine mammal stock assessments-2001. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-NE-168. National Marine Fisheries Service, Woods Hole, MA, 310 pp.
Wells, R.S. 1994. Determination of bottlenose dolphin stock discreteness: Application of a combined behavioral and genetic approach. pp. 16-20. In: K.R. Wang, P.M. Payne and V.G. Thayer (compilers) Coastal Stock(s) of Atlantic Bottlenose Dolphin: Status Review and Management. Proceedings and Recommendations from a Workshop held in Beaufort, NC, 13-14 September 1993. NOAA Tech. Memo. NMFS-OPR-4, 120 pp.
Yeung, C. 1999. Estimates of marine mammal and marine turtle bycatch by the U.S. Atlantic pelagic longline fleet in 1998. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SEFSC-430, 26 pp. Available from: National Marine Fisheries Service, 75 Virginia Beach Dr., Miami, FL 33149.
Yeung, C. 2001. Estimates of marine mammal and marine turtle bycatch by the U.S. Atlantic pelagic longline fleet in 1999-2000. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SEFSC-467, 43 pp. Available from: NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.

BOTTLENOSE DOLPHIN (Tursiops truncatus): Gulf of Mexico Bay, Sound, and Estuarine Stocks

STOCK DEFINITION AND GEOGRAPHIC RANGE

Bottlenose dolphins are distributed throughout the bays, sounds and estuaries of the Gulf of Mexico (Mullin 1988). The identification of biologically-meaningful "stocks" of bottlenose dolphins in these waters is complicated by the high degree of behavioral variability exhibited by this species (Shane et al. 1986; Wells and Scott 1999; Wells 2003), and by the lack of requisite information for much of the region.

Distinct stocks are provisionally identified in each of 33 areas of contiguous, enclosed or semi-enclosed bodies of water adjacent to the Gulf of Mexico (Table 1, based on descriptions of relatively discrete dolphin "communities" in some of these areas. A "community" includes resident dolphins that regularly share large portions of their ranges, exhibit similar distinct genetic profiles, and interact with each other to a much greater extent than with dolphins in adjacent waters. The term, as adapted from Wells et al. (1987), emphasizes geographic, genetic and social relationships of dolphins. Bottlenose dolphin communities do not constitute closed demographic populations, as individuals from adjacent communities are known to interbreed. Nevertheless, the geographic nature of these areas and long-term stability of residency patterns suggest that many of these communities exist as functioning units of their ecosystems, and under the Marine Mammal Protection Act must be maintained as such. Also, the stable patterns of residency observed within communities suggest that long periods would be required to repopulate the home range of a community were it eradicated or severely depleted. Thus, in the absence of information supporting management on a larger scale, it is appropriate to adopt a risk-averse approach and focus management efforts at the level of the community rather than at some larger demographic scale. Biological support for this risk-averse approach derives from several sources. Long-term (year-round, multi-year) residency by at least some individuals has been reported from nearly every site where photographic identification or tagging studies have been conducted in the Gulf of Mexico. In Texas, some of the dolphins in the Matagorda-Espiritu Santo Bay area (Gruber 1981; Lynn and Würsig 2002), Aransas Pass (Shane 1977; Weller 1998), San Luis Pass (Maze and Würsig 1999; Irwin and Würsig 2004), and Galveston Bay (Bräger 1993; Bräger et al. 1994; Fertl 1994) have been reported as long-term residents. Hubard et al. (2004) reported sightings of dolphins tagged 12-15 years previously in Mississippi Sound. In Florida, long-term residency has been reported from Choctawhatchee Bay (19891993), Tampa Bay (Wells 1986a; Wells et al. 1996a), Sarasota Bay (Irvine and Wells 1972; Irvine et al. 1981; Wells 1986a, 1991; Scott et al. 1990; Wells et al. 1987; Wells 2003), Lemon Bay (Wells et al. 1996b) and Charlotte Harbor/Pine Island Sound (Shane 1990; Wells et al. 1996b, 1997; Shane 2004). In Louisiana, Miller (2004) concluded the bottlenose dolphin population in the Barataria Basin was relatively closed. In many cases, residents emphasize use of the bay, sound or estuary waters, with limited movements through passes to the Gulf of Mexico (Shane 1977, 1990; Gruber 1981; Irvine et al. 1981; Maze and Würsig 1999; Fazioli and Wells 1999; Lynn and Würsig 2002). These habitat use patterns are reflected in the ecology of the dolphins in some areas; for example, residents of Sarasota Bay, Florida, lacked squid in their diet, unlike non-resident dolphins stranded on nearby Gulf beaches (Barros and Wells 1998).

Genetic data also support the concept of relatively discrete bay, sound and estuary stocks. Analyses of mitochondrial DNA haplotype distributions indicate the existence of clinal variations along the Gulf of Mexico coastline (Duffield and Wells 2002). Differences in reproductive seasonality from site to site also suggest genetic-based distinctions between communities (Urian et al. 1996). Mitochondrial DNA analyses suggest finer-scale structural levels as well. For example, Matagorda Bay, Texas, dolphins appear to be a localized population, and differences in haplotype frequencies distinguish between adjacent communities in Tampa Bay, Sarasota Bay and Charlotte Harbor/Pine Island Sound, along the central west coast of Florida (Duffield and Wells 1991 2002). Examination of protein electrophoretic data resulted in similar conclusions for the Florida dolphins (Duffield and Wells 1986). Additionally, Sellas (2002) found significant genetic differentiation between Sarasota Bay resident dolphins and those occurring primarily in adjacent Gulf coastal waters.

The long-term structure and stability of at least some of these communities is exemplified by the residents of Sarasota Bay, Florida. This community has been observed since 1970 (Irvine and Wells 1972; Scott et al. 1990; Wells 1991). At least 4 generations of identifiable residents currently inhabit the region, including one-third of those first identified in 1970. Maximum immigration and emigration rates of about $2-3 \%$ have been estimated (Wells and Scott 1990).

Genetic exchange occurs between resident communities; hence the application of the demographically and behaviorally-based term "community" rather than "population" (Wells 1986a; Sellas et al. in review). Some of the calves in Sarasota Bay apparently have been sired by non-residents (Duffield and Wells 2002). A variety of potential exchange mechanisms occur in the Gulf. Small numbers of inshore dolphins traveling between regions have been reported, with patterns ranging from traveling through adjacent communities (Wells 1986b; Wells et al. 1996a,b) to movements over distances of several hundred km in Texas waters (Gruber 1981; Würsig and Lynn 1996). In many areas year-round residents co-occur with non-resident dolphins, providing potential opportunities for genetic exchange. About 17% of group sightings involving resident Sarasota Bay dolphins include at least 1 non-resident as well (Wells et al. 1987). Similar mixing of inshore residents and non-residents is seen off San Luis Pass, Texas (Maze and Würsig 1999), and Pine

Island Sound, Florida (Shane 2004). Non-residents exhibit a variety of patterns, ranging from apparent nomadism recorded as transience in a given area, to apparent seasonal or non-seasonal migrations. Passes, especially the mouths of the larger estuaries, serve as mixing areas. For example, several communities mix at the mouth of Tampa Bay, Florida (Wells 1986a), and most of the dolphins identified in the mouths of Galveston Bay and Aransas Pass, Texas, were considered transients (Henningsen 1991; Bräger 1993; Weller 1998).

Seasonal movements of dolphins into and out of some of the bays, sounds and estuaries provide additional opportunities for genetic exchange with residents, and complicate the identification of stocks in coastal and inshore waters. In small bay systems such as Sarasota Bay, Florida, and San Luis Pass, Texas, residents move into Gulf coastal waters in fall/winter, and return inshore in spring/summer (Irvine et al. 1981; Maze and Würsig 1999). In larger bay systems, seasonal changes in abundance suggest possible migrations, with increases in more northerly bay systems in summer, and in more southerly systems in winter. Fall/winter increases in abundance have been noted for Tampa Bay (Scott et al. 1989) and Charlotte Harbor/Pine Island Sound (Thompson 1981; Scott et al. 1989), and are thought to occur in Matagorda Bay (Gruber 1981; Lynn 1995; Würsig and Lynn 1996) and Aransas Pass (Shane 1977; Weller 1998). Spring/summer increases in abundance occur in Mississippi Sound (Hubard et al. 2004) and are thought to occur in Galveston Bay (Henningsen 1991; Bräger 1993; Fertl 1994).

Much uncertainty remains regarding the structure of bottlenose dolphin stocks in many of the Gulf of Mexico bays, sounds and estuaries. Given the apparent co-occurrence of resident and non-resident dolphins in these areas, and the demonstrated variations in abundance, it appears that consideration should be given to the existence of a complex of stocks, and to the roles of bays, sounds and estuaries for stocks emphasizing Gulf of Mexico coastal waters. A starting point for management strategy should be the protection of the long-term resident communities, with their multigenerational geographic, genetic, demographic and social stability. These localized units would be at greatest risk from geographically-localized impacts. Complete characterization of many of these basic units would benefit from additional photo-identification, telemetry and genetic research (Wells 1994).

The current provisional stocks follow the designations in Table 1, with a few revisions. Available information suggests that Block B35, Little Sarasota Bay, can be subsumed under Sarasota Bay, and B36, Caloosahatchee River, can be considered a part of Pine Island Sound. As more information becomes available, additional combination or division may be warranted. For example, a number of geographically and socially distinct subgroupings of dolphins in regions such as Tampa Bay, Charlotte Harbor, Pine Island Sound, Aransas Pass and Matagorda Bay have been identified, but the importance of these distinctions to stock designations remain undetermined (Shane 1977; Gruber 1981; Wells et al. 1996a,b, 1997; Lynn and Würsig 2002; Urian 2002).

Understanding the full complement of the stock complex using the bay, sound and estuarine waters of the Gulf of Mexico will require much additional information. The development of biologically-based criteria to better define and manage stocks in this region should integrate multiple approaches, including studies of ranging patterns, genetics, morphology, social patterns, distribution, life history, stomach contents, isozyme analyses and contaminant concentrations. Spatially-explicit population modeling could aid in evaluating the implications of community-based stock definition. As these studies provide new information on what constitutes a bottlenose dolphin "biological stock," current provisional definitions will likely need to be revised. As stocks are more clearly identified, it will be possible to conduct abundance estimates using standardized methodology across sites (thereby avoiding some of the previous problems of mixing results of aerial and boat-based surveys), identify fisheries and other human impacts relative to specific stocks and perform individual stock assessments. As recommended by the Atlantic Scientific Review Group (November 1998, Portland, Maine), an expert panel reviewed the stock structure for bottlenose dolphins in the Gulf of Mexico during a workshop in March 2000 (Hubard and Swartz 2002). The panel sought to describe the scope of risks faced by bottlenose dolphins in the Gulf of Mexico, and outline an approach by which the stock structure could most efficiently be investigated and integrated with data from previous and ongoing studies. The panel agreed that it was appropriate to use the precautionary approach and retain the stocks currently named until further studies are conducted, and made a variety of recommendations for future research (Hubard and Swartz 2002). As a result of this, efforts are being made to conduct research in new locations, such as the central Gulf, in addition to the ongoing studies in Texas and Florida.

Table 1. Previous bottlenose dolphin abundance ($\mathrm{N}_{\text {BEST }}$), coefficient of variation (CV) and minimum population estimate ($\mathrm{N}_{\mathrm{MIN}}$) in U.S. Gulf of Mexico bays, sounds and estuaries. Because they are based on data collected more than 8 years ago, all estimates are considered unknown for management purposes. Blocks refer to 33 aerial survey blocks illustrated in Figure 1. PBR - Potential Biological Removal; UNK - unknown.							
Blocks	Gulf of Mexico Estuary	$\mathrm{N}_{\text {BEST }}$	CV	$\mathrm{N}_{\text {MIN }}$	PBR	Year	Reference
B51	Laguna Madre	80	1.57	31	UNK	1992	A
B52	Nueces Bay, Corpus Christi Bay	58	0.61	36	UNK	1992	A
	Compano Bay, Aransas Bay, San Antonio Bay,						
B50	Redfish Bay, Espiritu Santo Bay	55	0.82	30	UNK	1992	A
	Matagorda Bay, Tres Palacios Bay, Lavaca Bay						
B54		61	0.45	42	UNK	1992	A
B55	West Bay	32	0.15	28	0.3	2000	E
B56	Galveston Bay, East Bay, Trinity Bay	152	0.43	107	UNK	1992	A
B57	Sabine Lake	$0{ }^{\text {a }}$	-		UNK	1992	A
B58	Calcasieu Lake	$0^{\text {a }}$	-		UNK	1992	A
	Vermillion Bay, West Cote Blanche Bay,						
B59	Atchafalaya Bay	$0^{\text {a }}$	-		UNK	1992	A
B60	Terrebonne Bay, Timbalier Bay	100	0.53	66	UNK	1993	A
B61	Barataria Bay	138	0.08	129	1.3	2001	D
B30	Mississippi River Delta	0^{1}	-		UNK	1993	A
B02-05, Bay Boudreau, Mississip29,31							
		1,401	0.13	1,256	UNK	1993	A
B06	Mobile Bay, Bonsecour Bay	122	0.34	92	UNK	1993	A
B07	Perdido Bay	$0^{\text {a }}$	-		UNK	1993	A
B08	Pensacola Bay, East Bay	33	0.80	18	UNK	1993	A
B09	Choctawhatchee Bay	242	0.31	188	UNK	1993	A
B10	St. Andrew Bay	124	0.57	79	UNK	1993	A
B11	St. Joseph Bay	$0{ }^{\text {a }}$	-		UNK	1993	A
	St. Vincent Sound, Apalachicola Bay, St. Georges Sound	387	0.34	293	UNK	1993	A
B14-15	Apalachee Bay	491	0.39	358	UNK	1993	A
B16	Waccasassa Bay, Withlacoochee Bay, Crystal Bay	100	0.85	54	UNK	1994	A
B17	St. Joseph Sound, Clearwater Harbor	37	1.06	18	UNK	1994	A
B32-34	Tampa Bay	559	0.24	458	UNK	1994	A
B20	Sarasota Bay	97	na ${ }^{\text {c }}$	97	UNK	1992	B
B35	Little Sarasota Bay	$2^{\text {b }}$	0.24	2	UNK	1985	C
B21	Lemon Bay	$0^{\text {a }}$	-		UNK	1994	A
B22-23	Pine Sound, Charlotte Harbor, Gasparilla Sound	209	0.38	153	UNK	1994	A
B36	Caloosahatchee River	$0^{\text {a,b }}$	-		UNK	1985	C
B24	Estero Bay	104	0.67	62	UNK	1994	A
	Chokoloskee Bay, Ten Thousand Islands,						
B25	Gullivan Bay	208	0.46	144	UNK	1994	A
B27	Whitewater Bay	242	0.37	179	UNK	1994	A
B28	Florida Keys (Bahia Honda to Key West)	29	1.00	14	UNK	1994	A
References: A- Blaylock and Hoggard 1994; B- Wells 1992; C- Scott et al. 1989; D- Miller 2003; E- Irwin and Würsig 2004							
Notes:							
	During earlier surveys (Scott et al. 1989), the range of seasonal abundances was as follows: B57, 0-2 (CV= $0.38)$; B58, 0-6 (0.34); B59, 0-0; B30, 0-182(0.14); B07, 0-0; B21, 0-15(0.43); and B36, 0-0.						
b	Block not surveyed during surveys reported in Blaylock and Hoggard 1994.						
	No CV because NBEST was a direct count of known individuals.						

Figure 1. U.S.A Gulf of Mexico bays and sounds. Each of the alpha-numerically designated blocks corresponds to one of the NMFS Southeast Fisheries Science Center logistical aerial survey areas listed in Table 1. The bottlenose dolphins inhabiting each bay and sound are considered to comprise a unique stock for purposes of this assessment.

POPULATION SIZE

Population size estimates for most of the stocks are greater than 8 years old and therefore the current population size for each stock is considered unknown (Wade and Angliss 1997). Recent mark-recapture population size estimates are available for West Bay, Texas, and Barataria Bay, Louisiana (Table 1). Previous population size (Table 1) was estimated from preliminary analyses of line-transect data collected during aerial surveys conducted in September-October 1992 in Texas and Louisiana; in September-October 1993 in Louisiana, Mississippi, Alabama and the Florida panhandle (Blaylock and Hoggard 1994); and in September-November 1994 along the west coast of Florida (NMFS unpublished data). Standard line-transect perpendicular sighting distance analytical methods (Buckland et al. 1993) and the computer program DISTANCE (Laake et al. 1993) were used. Stock size in Sarasota Bay, Florida, was obtained through direct count of known individuals (Wells 1992).

Minimum Population Estimate

The population size for most stocks is currently unknown. The recent or the previous minimum population estimates are given for each stock in Table 1. The minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the log-normally distributed abundance estimate. This is equivalent to the 20th percentile of the log-normal distribution as specified by Wade and Angliss (1997). The minimum population estimate was calculated for each block from the estimated population size and its associated coefficient of variation. Where the population size resulted from a direct count of known individuals, the minimum population size was identical to the estimated population size.

Current Population Trend

The data are insufficient to determine population trends for all of the Gulf of Mexico bay, sound and estuary bottlenose dolphin communities. The Sarasota Bay community, however, has been monitored since 1970 and has remained relatively constant through 1997 at approximately 105 animals (Wells 1998). Six anomalous mortality events have occurred among portions of these dolphin communities between 1990 and 2004; however, it is not possible to accurately partition the mortalities between bay and coastal stocks, thus the impact of these mortality events on communities is not known.

For Barataria Bay, Louisiana, Miller (2004) estimated a population size ranging from 138 to 238 bottlenose dolphins ($95 \% \mathrm{CI}=128-297$) using mark-recapture techniques with data collected from June 1999 to May 2002. The previous estimate for Barataria Bay from 1994, 219 dolphins, falls at the high end of this range. Irwin and Würsig (2004) estimated annual population sizes ranging from 28 to 38 dolphins during 1997-2001 for the San Luis Pass/Chocolate portion of West Bay, Texas, where the previous estimate from 1992 was 29 dolphins.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Current and maximum net productivity rates are not known for the dolphin communities that comprise these stocks. While productivity rates may be estimated for individual females within communities, such estimates are confounded at the stock level due to the influx of dolphins from adjacent areas which balance losses, and the unexplained loss of some individuals which offset births and recruitment (Wells 1998). Continued monitoring and expanded survey coverage will
be required to address and develop estimates of productivity for these dolphin communities. The maximum net productivity rate was assumed to be 0.04 . This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive life history (Barlow et al. 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential Biological Removal (PBR) is unknown for most stocks because the population size estimate is more than 8 years old. PBR is the product of minimum population size, one-half the maximum productivity rate and a "recovery" factor (Wade and Angliss 1997). The "recovery" factor, which accounts for endangered, depleted, and threatened stocks, or stocks of unknown status relative to optimum sustainable population (OSP), is assumed to be 0.5 because these stocks are of unknown status. PBR for those stocks with population size estimates less than 8 years old is given in Table 1 .

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

There are a number of difficulties associated with the interpretation of stranding data. It is possible that some or all of the stranded dolphins may have been from a nearby coastal stock; however, the proportion of stranded dolphins belonging to another stock cannot be determined because of the difficulty of determining from where the stranded carcasses originated. Stranding data probably underestimate the extent of fishery-related mortality and serious injury because not all of the dolphins which die or are seriously injured in fishery interactions wash ashore, nor will all of those that do wash ashore necessarily show signs of entanglement or other fishery-interaction. Finally, the level of technical expertise among stranding network personnel varies widely as does the ability to recognize signs of fishery interaction, and the condition of the carcass if badly decomposed can inhibit the interpretation of cause of death.

A total of 1,377 bottlenose dolphins were found stranded in the U.S. Gulf of Mexico from 1999 through 2003 (Table 2) (NMFS unpublished data). Of these, 73 or 11% showed evidence of human interactions as the cause of death (e.g., gear entanglement, mutilation, gunshot wounds). Bottlenose dolphins are known to become entangled in recreational and commercial fishing gear (Wells and Scott 1994; Wells et al. 1998; Gorzelany 1998) and some are struck by recreational and commercial vessels (Wells and Scott 1997). In 1998 alone, 2 resident bottlenose dolphins and an associated calf were killed by vessel strikes and a resident young-of-the-year died from entanglement in a crab-pot float line (R.S. Wells, pers. comm.).

The Gulf of Mexico menhaden fishery was observed to take 9 bottlenose dolphins (3 fatally) between 1992 and 1995 (NMFS unpublished data). During that period, there were 1,366 sets observed out of 26,097 total sets, which if extrapolated for all years suggests that as many as 172 bottlenose dolphins could have been taken in this fishery with up to 57 animals killed. Without an observer program it is not possible to obtain statistically reliable information for this fishery on the number of sets annually, the incidental take and mortality rates, and the communities from which bottlenose dolphins are being taken.

Some of the bay, sound and estuarine communities were the focus of a live-capture fishery for bottlenose dolphins which supplied dolphins to the U.S. Navy and to oceanaria for research and public display for more than 2 decades ending in 1989 (NMFS unpublished data). During the period 1972-89, 490 bottlenose dolphins, an average of 29 dolphins annually, were removed from a few locations in the Gulf of Mexico, including the Florida Keys. Mississippi Sound sustained the highest level of removals with 202 dolphins taken from this stock during this period, representing 41% of the total and an annual average of 12 dolphins (compared to a previous PBR of 13). The annual average number of removals never exceeded previous PBR levels, but it may be biologically significant that 73% of the dolphins removed during 198288 were females. The impact of those removals on the stocks is unknown.

Feeding or provisioning, and swimming with wild bottlenose dolphins have been documented in Florida, particularly near Panama City Beach in the Panhandle. Feeding wild dolphins is defined under the MMPA as a form of 'take' because it can alter their natural behavior and increase their risk of injury or death. Nevertheless, Samuels and Bejder (2004) observed a high rate of uncontrolled provisioning near Panama City Beach in 1998. The effects of swim-with activities on dolphins and their legality under the MMPA are less clear and are currently under review. Near Panama City Beach, Samuels and Bejder (2004) concluded that dolphins were amenable to swimmers due to provisioning.

Fishery Information

The commercial fisheries which potentially could interact with these stocks in the Gulf of Mexico are the shrimp trawl, blue crab trap/pot, stone crab trap/pot, menhaden and gillnet fisheries (Appendix I). Historically, there have been very low numbers of incidental mortality or injury in the stocks associated with the shrimp trawl fishery. Bottlenose dolphins have been reported stranded with polypropylene rope around their flukes (NMFS 1991; McFee and Brooks, Jr. 1998; NMFS unpublished data), indicating the possibility of entanglement with crab pot lines. The blue crab fishery has not been monitored by observers and there are no estimates of bottlenose dolphin mortality or serious injury for this fishery. There is no observer program data for the menhaden fishery but incidental mortality of bottlenose dolphins has been reported for this fishery (Reynolds 1985). No marine mammal mortalities associated with gillnet fisheries have been reported, but stranding data suggest that gillnet and marine mammal interaction does occur, causing mortality and serious
injury. In 1995, a Florida state constitutional amendment banned gillnets and large nets from bay, sounds, estuaries and other inshore waters.

Table 2. Bottlenose dolphin strandings in the U.S. Gulf of Mexico (West Florida to Texas) from 1999 to 2003. Data are from the Southeast Marine Mammal Stranding Database (SESUS). Percent of animals with human interactions were calculated based on animals which were determined as "yes" or "no" for human interactions. Animals that were "CBD" (could not be determined) were excluded from $\%$ with human interactions calculations.							
State		1999	2000	2001	2002	2003	Total
Florida							
	No. Stranded	156	130	57	$82^{\text {a }}$	$64^{\text {d }}$	483
	No. Human Interactions	5	8	2	6	7	28
	No. CBD	106	76	26	44	34	286
	\% With Human Interactions	10\%	15\%	6\%	16\%	23\%	14\%
Alabama							
	No. Stranded	12	15	17	12	7	63
	No. Human Interactions	0	0	2	0	1	3
	No. CBD	8	7	8	9	4	36
	\% With Human Interactions	0\%	0\%	22\%	0\%	33\%	11\%
Mississippi							
	No. Stranded	25	27	22	$21^{\text {b }}$	$37^{\text {e }}$	126
	No. Human Interactions	0	1	0	0	0	1
	No. CBD	17	15	8	6	29	75
	\% With Human Interactions	0\%	8\%	0\%	0\%	0\%	2\%
Louisiana							
	No. Stranded	25	14	0	2	$33^{\text {f }}$	69
	No. Human Interactions	1	0	-	0	0	1
	No. CBD	19	14	-	2	29	64
	\% With Human Interactions	17\%	CBD	-	CBD	0\%	20\%
Texas							
	No. Stranded	102	113	116	$154^{\text {c }}$	$154{ }^{\text {g }}$	636
	No. Human Interactions	2	7	6	15	10	40
	No. CBD	40	47	5	57	101	250
	\% With Human Interactions	3\%	11\%	5\%	15\%	19\%	10\%
Totals							
	No. Stranded	320	299	212	271	295	1377
	No. Human Interactions	8	16	10	21	18	73
	No. CBD	190	159	47	118	197	711
	\% With Human Interactions	6\%	11\%	6\%	14\%	18\%	11\%
a Florida mass stranding of 2 animals in December 2002	Florida mass stranding of 2 animals in December 2002						
b	Mississippi mass stranding of 2 animals in March 2002						
c	Texas mass strandings (2 animals in January 2002, 2 animals in March 2002)						
d	Florida mass stranding of 2 animals in May 2003						
e	Mississippi mass stranding of 2 animals in April 2003						
f	Louisiana mass stranding of 3 animals in July 2003						
	Texas mass stranding of 5 animals in March 2003						

Other Mortality

The nearshore habitat occupied by many of these stocks is adjacent to areas of high human population, and in some bays, such as Mobile Bay in Alabama and Galveston Bay in Texas, is highly industrialized. The area surrounding Galveston Bay, for example, has a coastal population of over 3 million people. More than 50% of all chemical products manufactured in the U.S. are produced there and 17% of the oil produced in the Gulf of Mexico is refined there
(Henningsen and Würsig 1991). Many of the enclosed bays in Texas are surrounded by agricultural lands which receive periodic pesticide applications.

Concentrations of chlorinated hydrocarbons and metals were examined in conjunction with an anomalous mortality event of bottlenose dolphins in Texas bays in 1990 and found to be relatively low in most; however, some had concentrations at levels of possible toxicological concern (Varanasi et al. 1992). No studies to date have determined the amount, if any, of indirect human-induced mortality resulting from pollution or habitat degradation. Since 1990, there have been 6 bottlenose dolphin die-offs in the northern Gulf of Mexico. From January through May 1990, a total of 367 bottlenose dolphins stranded in the northern Gulf of Mexico. Overall this represented a two-fold increase in the prior maximum recorded strandings for the same period, but in some locations (i.e., Alabama) strandings were 10 times the average number. The cause of the 1990 mortality event could not be determined (Hansen 1992). In March and April 1992, 111 bottlenose dolphins stranded in Texas; about 9 times the average number. Seven of 34 live-captured bottlenose dolphins (20%) in 1992 from Matagorda Bay, Texas, tested positive for previous exposure to cetacean morbillivirus, and it is possible that other estuarine resident stocks have been exposed to the morbillivirus (Duignan et al. 1996).

In 1992, NOAA Fisheries' Working Group on Unusual Marine Mortality Events was formalized and developed protocols to declare Unusual Mortality Events (UME) and respond to them. Since 1992, 4 UMEs involving bottlenose dolphins have been investigated in the Gulf of Mexico. In 1993-1994 a UME of bottlenose dolphins caused by morbillivirus started in the Florida Panhandle and spread west with most of the mortalities occurring in Texas (Lipscomb 1993; Lipscomb et al. 1994). In 1996 a UME was declared for bottlenose dolphins in Mississippi and while the cause was not determined, Karenia brevis (red tide) was suspected. Between August 1999 and February 2000, at least 120 bottlenose dolphins died coincident with K. brevis blooms and fish kills in the Florida Panhandle. In March and April 2004, in another Florida Panhandle UME possibly related to K. brevis blooms, 107 bottlenose dolphins stranded dead (NMFS 2004).

An old, sick dolphin died in a health assessment research project during 2002, the first such loss during capture/release research conducted over a 32 year period on Florida's west coast.

STATUS OF STOCK

The status of these stocks relative to OSP is unknown and this species is not listed as threatened or endangered under the Endangered Species Act. The occurrence of 6 anomalous mortality events among bottlenose dolphins along the U.S. Gulf of Mexico coast since 1990 (NMFS unpublished data) is cause for concern; however, the effects of the mortality events on stock abundance have not yet been determined.

The relatively high number of bottlenose dolphin deaths which occurred during the mortality events since 1990 suggests that some of these stocks may be stressed. Human-caused mortality and serious injury for each of these stocks is not known, but considering the evidence from stranding data (Table 2), the total human-caused mortality and serious injury exceeds 10% of the total known PBR or previous PBR, and, therefore, it is probably not insignificant and approaching the zero mortality and serious injury rate. For these reasons, each of these stocks is a strategic stock.

REFERENCES

Barlow, J., S.L. Swartz, T.C. Eagle and P.R. Wade. 1995. U.S. Marine Mammal Stock Assessments: Guidelines for Preparation, Background and a Summary of the 1995 Assessments. NOAA Tech. Memo. NMFS-OPR-6, 73 pp.
Barros, N.B. and R.S. Wells. 1998. Prey and feeding patterns of resident bottlenose dolphins (Tursiops truncatus) in Sarasota Bay, Florida. J. Mamm. 79(3):1045-1059.
Blaylock, R.A. and W. Hoggard. 1994. Preliminary estimates of bottlenose dolphin abundance in southern U.S. Atlantic and Gulf of Mexico continental shelf waters. NOAA Tech. Memo. NMFS-SEFSC-356, 10 pp.
Bräger, S. 1993. Diurnal and seasonal behavior patterns of bottlenose dolphins (Tursiops truncatus). Mar. Mammal Sci. 9:434-440.
Bräger, S., B. Würsig, A. Acevedo and T. Henningsen. 1994. Association patterns of bottlenose dolphins (Tursiops truncatus) in Galveston Bay, Texas. J. Mamm. 75(2):431-437.
Buckland, S.T., D.R. Anderson, K.P. Burnham and J.L. Laake. 1993. Distance sampling: Estimating abundance of biological populations. Chapman \& Hall, London. 446 pp.
Duffield, D. A. and R. S. Wells. 1986. Population structure of bottlenose dolphins: Genetic studies of bottlenose dolphins along the central west coast of Florida. Contract Report to National Marine Fisheries Service, Southeast Fisheries Center, Contract No. 45-WCNF-5-00366, 16 pp.
Duffield, D. A. and R. S. Wells. 1991. The combined application of chromosome, protein and molecular data for the investigation of social unit structure and dynamics in Tursiops truncatus. pp. 155-169. In: A.R. Hoelzel (ed.) Genetic Ecology of Whales and Dolphins. Rep. int. Whal. Commn (Special Issue) 13, Cambridge, U.K.
Duffield, D.A. and R.S. Wells. 2002. The molecular profile of a resident community of bottlenose dolphins, Tursiops truncatus. pp. 3-11. In: C. J. Pfeiffer (ed.) Cell and Molecular Biology of Marine Mammals. Krieger Publishing, Melbourne, FL.

Duignan, P.J., C. House, D.K. Odell, R.S. Wells, L. Hansen, M.T. Walsh, D.J. St. Aubin, B.K. Rima and J.R. Geraci. 1996. Morbillivirus infection in bottlenose dolphin: Evidence for recurrent epizootics in the Western Atlantic and Gulf of Mexico. Mar. Mammal Sci. 12(4):499-515.
Fazioli, K.L. and R.S. Wells. 1999. Stock structure of coastal bottlenose dolphins, Tursiops truncatus, near Sarasota, Florida. Final Contract Report to the National Marine Fisheries Service, Southeast Fisheries Science Center, Contract No. 40-WCNF701806. Available from: NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.
Fertl, D.C. 1994. Occurrence patterns and behavior of bottlenose dolphins (Tursiops truncatus) in the Galveston ship channel. Texas J. Sci. 46:299-317.
Gorzelany, J.F. 1998. Unusual deaths of two free-ranging Atlantic bottlenose dolphins (Tursiops truncatus) related to ingestion of recreational fishing gear. Mar. Mammal Sci. 14(3):614-617.
Gruber, J.A. 1981. Ecology of the Atlantic bottlenosed dolphin (Tursiops truncatus) in the Pass Cavallo area of Matagorda Bay, Texas. Masters thesis from Texas A\&M University, College Station. 182 pp.
Hansen, L.J. (ed.). 1992. Report on investigation of 1990 Gulf of Mexico bottlenose dolphin strandings. NOAA-NMFSSEFSC Contribution MIA-92/93-21. Available from: NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.
Henningsen, T. 1991. Zur Verbreitung und Ökologie des Großen Tümmlers (Tursiops truncatus) in Galveston, Texas. Diploma thesis from Christian-Albrechts-Universität, Kiel, Germany. 80 pp.
Henningsen, T. and B. Würsig. 1991. Bottle-nosed dolphins in Galveston Bay, Texas: Numbers and activities. pp. 36-38. In: P.G.H. Evans (ed.) European research on cetaceans - 5. Proceedings of the Fifth Annual Conference of the European Cetacean Society, Sandefjord, Norway, 21-23 February, 1991. Cambridge, UK.
Hubard, C.W. 1998. Abundance, distribution, and site fidelity of bottlenose dolphins in Mississippi Sound, Mississippi. Masters thesis from University of Alabama, Tuscaloosa. 101 pp .
Hubard, C.W. and S.L. Swartz. 2002. Gulf of Mexico bottlenose dolphin stock identification workshop: 14-15 March 2000, Sarasota, Florida. NOAA Tech. Memo. NMFS-SEFSC-473, 50 pp.
Hubard, C.W., K. Maze-Foley, K.D. Mullin and W.W. Schroeder. 2004. Seasonal abundance and site fidelity of bottlenose dolphins (Tursiops truncatus) in Mississippi Sound. Aquat. Mamm. 30:299-310.
Irvine, B. and R.S. Wells. 1972. Results of attempts to tag Atlantic bottlenose dolphins (Tursiops truncatus). Cetology 13:1-5.
Irvine, A.B., M.D. Scott, R.S. Wells and J.H. Kaufmann. 1981. Movements and activities of the Atlantic bottlenose dolphin, Tursiops truncatus, near Sarasota, Florida. Fish. Bull. 79:671-688.
Irwin, L.J. and B. Würsig. 2004. A small resident community of bottlenose dolphins, Tursiops truncatus, in Texas: Monitoring recommendations. G. Mex. Sci. 22(1):13-21.
Laake, J.L., S.T. Buckland, D.R. Anderson and K P. Burnham. 1993. DISTANCE user's guide, V2.0. Colorado Cooperative Fish \& Wildlife Research Unit, Colorado State University, Ft. Collins. 72 pp.
Lipscomb, T.P. 1993. Some answers to questions about morbillivirus. pp. 4-5. In: R.A. Blaylock, B. Mase and D.K. Odell (eds.) Strandings, Vol. 2, No. 3, SEFSC Miami Laboratory, Miami, Florida, 7 pp.
Lipscomb, T.P. 1994. Morbilliviral disease in an Atlantic bottlenose dolphin (Tursiops truncatus) from the Gulf of Mexico. J. Wildl. Dis. 30(4):572-576.
Lynn, S.K. 1995. Movements, site fidelity, and surfacing patterns of bottlenose dolphins on the central Texas coast. Masters thesis from Texas A\&M University, College Station. 92 pp.
Lynn, S.K. and B. Würsig. 2002. Summer movement patterns of bottlenose dolphins in a Texas bay. G. Mex. Sci. 20(1):25-37.
Maze, K.S. and B. Würsig. 1999. Bottlenose dolphins of San Luis Pass, Texas: Occurrence patterns, site fidelity, and habitat use. Aquat. Mamm. 25: 91-103.
McFee, W.E. and W. Brooks, Jr. 1998. Fact finding meeting of marine mammal entanglement in the crab pot fishery: A summary. U.S. Fish and Wildlife Service unpublished report. Available from: NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.
Miller, C. 2003. Abundance trends and environmental habitat usage patterns of bottlenose dolphins (Tursiops truncatus) in lower Barataria and Caminada Bays, Louisiana. Ph.D. dissertation from Louisiana State University, Baton Rouge. 125 pp.
Mullin, K.D. 1988. Comparative seasonal abundance and ecology of bottlenose dolphins (Tursiops truncatus) in three habitats of the north-central Gulf of Mexico. Ph.D. dissertation from Mississippi State University, Starkville. 135 pp .
NMFS [National Marine Fisheries Service]. 1991. Proposed regime to govern the interactions between marine mammals and commercial fishing operations after October 1, 1993. Draft Environmental Impact Statement, June 1991. Available from: NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.

NMFS [National Marine Fisheries Service]. 2004. Interim report on the bottlenose dolphin (Tursiops truncatus) unusual mortality event along the Panhandle of Florida, March-April 2004. 35 pp. Available from: NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.
Reynolds, J.E., III. 1985. Evaluation of the nature and magnitude of interactions between bottlenose dolphins, Tursiops truncatus, and fisheries and other human activities in coastal areas of the southeastern United States. National Technical Information Service PB86-162203, U.S. Department of Commerce, Springfield, VA 22161.
Samuels, A. and L. Bejder. 2004. Chronic interactions between human and free-ranging bottlenose dolphins near Panama City Beach, Florida, USA. J. Cetacean Res. Manage. 6: 69-77.
Sellas, A.B. 2002. Population structure and group relatedness of bottlenose dolphins (Tursiops truncatus) in the coastal Gulf of Mexico using mitochondrial DNA and nuclear microsatellite markers. Master's thesis from University of California, Santa Cruz.
Sellas, A., R.S. Wells and P.E. Rosel. (in review). Mitochondrial and nuclear DNA analyses reveal fine scale geographic structure in bottlenose dolphins (Tursiops truncatus) in the Gulf of Mexico. Submitted to Conservation Genetics.
Scott, G.P., D.M. Burn, L.J. Hansen and R.E. Owen. 1989. Estimates of bottlenose dolphin abundance in the Gulf of Mexico from regional aerial surveys. CRD 88/89-07. Available from: NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.
Scott, G.P. 1990. Management-oriented research on bottlenose dolphins by the Southeast Fisheries Center. pp. 623-639. In: S. Leatherwood and R. R. Reeves (eds.) The bottlenose dolphin. Academic Press, San Diego, CA. 653 pp.
Scott, M.D., R.S. Wells and A.B. Irvine. 1990. A long-term study of bottlenose dolphins on the west coast of Florida. pp. 235-244. In: S. Leatherwood and R.R. Reeves (eds.) The bottlenose dolphin. Academic Press, San Diego, CA. 653 pp .
Shane, S.H. 1977. The population biology of the Atlantic bottlenose dolphin, Tursiops truncatus, in the Aransas Pass area of Texas. Masters thesis from Texas A\&M University, College Station. 238 pp .
Shane, S.H. 1990. Behavior and ecology of the bottlenose dolphin at Sanibel Island, Florida. pp. 245-265. In: S. Leatherwood and R.R. Reeves (eds.) The bottlenose dolphin. Academic Press, San Diego, CA. 653 pp.
Shane, S.H., R.S. Wells and B. Würsig. 1986. Ecology, behavior, and social organization of the bottlenose dolphin: A review. Mar. Mammal Sci. 2(1):34-63.
Shane, S.H. 2004. Residence patterns, group characteristics, and association patterns of bottlenose dolphins near Sanibel Island, Florida. G. Mex. Sci. 22(1):1-12.
Thompson, N.B. 1981. Estimates of abundance of Tursiops truncatus in Charlotte Harbor, Florida. NOAA/NMFS/SEFSC/Miami Laboratory, Fishery Data Analysis Technical Report. Available from: NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.
Urian, K.W. 2002. Community structure of bottlenose dolphins (Tursiops truncatus) in Tampa Bay, Florida, USA. M.Sc. thesis, University of North Carolina, Wilmington. 26 pp.
Urian, K.W., D.A. Duffield, A.J. Read, R.S. Wells and D.D. Shell. 1996. Seasonality of reproduction in bottlenose dolphins, Tursiops truncatus. J. Mamm. 77:394-403.
Varanasi, U., K.L. Tilbury, D.W. Brown, M.M. Krahn, C.A. Wigren, R.C. Clark and S.L. Chan. 1992. pp. 56-86. In: L.J. Hansen (ed.) Report on Investigation of 1990 Gulf of Mexico Bottlenose Dolphin Strandings. Southeast Fisheries Science Center Contribution MIA-92/93-21, 219 pp.
Wade, P.R. and R.P. Angliss. 1997. Guidelines for assessing marine mammal stocks: Report of the GAMMS Workshop April 3-5, Seattle, Washington. NOAA Tech. Memo. NMFS-OPR-12, 93 pp.
Waring, G.T., D.L. Palka, K.D. Mullin, J.H.W. Hain, L.J. Hansen and K.D. Bisack. 1997. U.S. Atlantic and Gulf of Mexico Marine Mammal Stock Assessments -- 1996. NOAA Tech. Memo. NMFS-NE-114.
Weller, D.W. 1998. Global and regional variation in the biology and behavior of bottlenose dolphins. Ph. D. dissertation from Texas A\&M University, College Station. 142 pp.
Wells, R.S. 1986a. Population structure of bottlenose dolphins: Behavioral studies along the central west coast of Florida. Contract report to NMFS, SEFSC. Contract No. 45-WCNF-5-00366, 58 pp. Available from: NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.
Wells, R.S. 1986b. Structural aspects of dolphin societies. Ph. D. dissertation from University of California, Santa Cruz. 234 pp.
Wells, R.S. 1991. The role of long-term study in understanding the social structure of a bottlenose dolphin community. pp. 199-225. In: K. Pryor and K.S. Norris (eds.) Dolphin Societies: Discoveries and Puzzles. University of California Press, Berkeley. 397 pp.
Wells, R.S. 1992. The marine mammals of Sarasota Bay. pp. 9.1-9.23. In: Sarasota Bay: Framework for action. Sarasota Bay National Estuary Program, Sarasota, FL.
Wells, R.S. 1994. Determination of bottlenose dolphin stock discreteness: Application of a combined behavioral and genetic approach. pp. 16-20. In: K. R. Wang, P. M. Payne and V. G. Thayer (compilers) Coastal Stock(s) of Atlantic Bottlenose Dolphin: Status Review and Management. Proceedings and Recommendations from a Workshop held in Beaufort, NC, 13-14 September 1993. NOAA Tech. Memo. NMFS-OPR-4, 120 pp.

Wells, R.S. 1998. Progress report: Sarasota long-term bottlenose dolphin research. Unpublished contract report to the U.S. Department of Commerce, NOAA Fisheries, Southeast Fisheries Science Center, Miami, FL, 5 pp.

Wells, R.S. 2003. Dolphin social complexity: lessons from long-term study and life history. pp. 32-56. In: F.B.M. de Waal and P.L. Tyack (eds.) Animal social complexity: intelligence, culture, and individualized societies. Harvard University Press, Cambridge, MA.
Wells, R.S. and M.D. Scott. 1990. Estimating bottlenose dolphin population parameters from individual identification and capture-release techniques. pp. 407-415. In: P. S. Hammond, S. A. Mizroch and G. P. Donovan (eds.) Individual Recognition of Cetaceans: Use of Photo-Identification and Other Techniques to Estimate Population Parameters. Rep. int. Whal. Commn (Special Issue) 12, Cambridge, U.K.
Wells, R.S. and M.D. Scott. 1999. Bottlenose dolphins. pp. 137-182. In: S.H. Ridgway and R. Harrison (eds.) Handbook of Marine Mammals, Vol. 6, the Second Book of Dolphins and Porpoises. Academic Press, San Diego, CA.
Wells, R.S. and M.D. Scott. 1994. Incidence of gear entanglement for resident inshore bottlenose dolphins near Sarasota, Florida. Page 629. In: W.F. Perrin, G.P. Donovan and J. Barlow (eds.) Gillnets and cetaceans. Rep. int. Whal. Commn (Special Issue) 15, Cambridge, U.K..
Wells, R.S. and M.D. Scott. 1997. Seasonal incidence of boat strikes on bottlenose dolphins near Sarasota, Florida. Mar. Mammal Sci. 3:475-480.
Wells, R.S., S. Hofmann and T.L. Moors. 1998. Entanglement and mortality of bottlenose dolphins, Tursiops truncatus, in recreational fishing gear in Florida. Fish. Bull. 96(3):647-650.
Wells, R.S., M.D. Scott and A.B. Irvine. 1987. The social structure of free-ranging bottlenose dolphins. pp. 247-305. In: H. Genoways (ed.) Current Mammalogy, Vol. 1. Plenum Press, New York.

Wells, R.S., K.W. Urian, A.J. Read, M.K. Bassos, W.J. Carr and M.D. Scott. 1996a. Low-level monitoring of bottlenose dolphins, Tursiops truncatus, in Tampa Bay, Florida: 1988-1993. NOAA Tech. Memo. NMFS-SEFSC-385, 25 pp.
Wells, R. S., M. K. Bassos, K. W. Urian, W. J. Carr and M. D. Scott. 1996b. Low-level monitoring of bottlenose dolphins, Tursiops truncatus, in Charlotte Harbor, Florida: 1990-1994. NOAA Tech. Memo. NMFS-SEFSC$384,36 \mathrm{pp}$.
Wells, R. S., M. K. Bassos, K. W. Urian, S. H. Shane, E. C. G. Owen, C. F. Weiss, W. J. Carr and M. D. Scott. 1997. Low-level monitoring of bottlenose dolphins, Tursiops truncatus, in Pine Island Sound, Florida: 1996. Contract report to National Marine Fisheries Service, Southeast Fisheries Center. Contribution No. 40-WCNF601958. Available from: NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.
Würsig, B. and S. K. Lynn. 1996. Movements, site fidelity, and respiration patterns of bottlenose dolphins on the central Texas coast. NOAA Tech. Memo. NMFS-SEFSC-383, 43 pp.

ATLANTIC SPOTTED DOLPHIN (Stenella frontalis): Northern Gulf of Mexico Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

There are two species of spotted dolphin in the Atlantic Ocean, the Atlantic spotted dolphin (Stenella frontalis) and the pantropical spotted dolphin (S. attenuata) (Perrin et al. 1987). The Atlantic spotted dolphin occurs in two forms which may be distinct sub-species (Perrin et al. 1987, 1994; Rice 1998): the large, heavily spotted form which inhabits the continental shelf and is usually found inside or near the 200 m isobath; and the smaller, less spotted island and offshore form which occurs in the Atlantic Ocean but is not known to occur in the Gulf of Mexico (Fulling et al. 2003; Mullin and Fulling 2003; Mullin and Fulling 2004). Where they co-occur, the offshore form of the Atlantic spotted dolphin and the pantropical spotted dolphin can be difficult to differentiate at sea.

The Atlantic spotted dolphin is endemic to the Atlantic Ocean in temperate to tropical waters (Perrin et al. 1987, 1994). In the Gulf of Mexico, Atlantic spotted dolphins occur primarily from continental shelf waters $10-200 \mathrm{~m}$ deep to slope waters $<500 \mathrm{~m}$ deep (Fulling et al. 2003; Mullin and Fulling 2004). Atlantic spotted dolphins were seen in all seasons during GulfCet aerial surveys of the northern Gulf of Mexico from 1992 to 1998 (Hansen et al. 1996; Mullin and Hoggard 2003). It has been suggested that this species may move inshore seasonally during spring, but data supporting this hypothesis are limited (Caldwell and Caldwell 1966; Fritts et al. 1983).

In a recent study, Bero (2001) presented strong genetic support for differentiation between Gulf of Mexico and western North Atlantic management stocks using both mitochondrial and nuclear markers. However, this study did not test for further population subdivision within the Gulf of Mexico.

POPULATION SIZE

Estimates of abundance were derived through the application of distance sampling analysis (Buckland et al. 2001) and the computer program DISTANCE (Thomas et al. 1998) to sighting data. From 1991 through 1994, line-transect vessel surveys were conducted during spring in the northern Gulf of Mexico from the 200 m isobath to the seaward extent of the U.S. Exclusive Economic Zone (EEZ) (Hansen et al. 1995). Survey effort-weighted estimated average abundance of Atlantic spotted dolphins for all surveys combined was 3,213 (CV=0.44) (Hansen et al. 1995). This is probably an underestimate and should be considered a partial stock estimate because the continental shelf was not entirely covered during these surveys. As recommended in the GAMMS Workshop Report (Wade and Angliss 1997), estimates older than 8 years are deemed unreliable, and therefore should not be used for

Figure 1. Distribution of Atlantic spotted dolphin sightings from SEFSC spring and fall vessel surveys during 1996-2001. All the on-effort sightings are shown, though not all were used to estimate abundance. Solid lines indicate the 100 m and $1,000 \mathrm{~m}$ isobaths and the dotted line shows the offshore extent of the U.S. EEZ. PBR determinations.

Data were collected from 1996 to 2001 during spring and fall plankton surveys conducted from NOAA ships Oregon II $(1996,1997,1999,2000)$ and Gordon Gunter (1998, 2000, 2001). Tracklines, which were perpendicular to the bathymetry, covered shelf waters from the 20 m to the 200 m isobaths in the fall of 1998 and 1999 (Figure 1, Table 1; Fulling et al. 2003). Surveys were also conducted from April to May 1996 to 2001 (excluding 1998) in oceanic waters of the northern Gulf of Mexico from 200m to the offshore extent of the U.S. EEZ. Estimates for all oceanic strata were summed, as survey effort was not uniformly distributed, to calculate a total estimate for the entire northern Gulf of Mexico oceanic waters (Figure 1, Table 1; Mullin
and Fulling 2004). Due to limited survey effort in any given year, survey effort was pooled across all years to develop an average abundance estimate for both areas.

Table 1. Abundance estimates ($\mathrm{N}_{\text {best }}$) and Coefficient of Variation (CV) of Atlantic spotted dolphins in the northern U.S. Gulf of Mexico outer continental shelf (OCS) (waters 20-200m deep) during fall 1998-2001 and oceanic waters (200m to the offshore extent of the EEZ) during spring 1996-2001 (excluding 1998).			
Month/Year	Area	$\mathbf{N}_{\text {best }}$	CV
Fall 1998-2001	Outer Continental Shelf	30,772	0.27
Spring 1996-2001	Oceanic	175	0.84
Spring \& Fall 1996-2001	OCS \& Oceanic	$\mathbf{3 0 , 9 4 7}$	$\mathbf{0 . 2 7}$

The combined estimated abundance of Atlantic spotted dolphins, pooled from 1998 through 2001, for the outer continental shelf shipboard surveys was $30,772(\mathrm{CV}=0.27)$ (Fulling et al. 2003). The estimate of abundance for Atlantic spotted dolphins in oceanic waters, pooled from 1996 through 2001, is 175 (CV=0.84) (Mullin and Fulling 2004).

The best available abundance estimate for the Atlantic spotted dolphin in the northern Gulf of Mexico is the combined estimate of abundance for both the outer continental shelf and oceanic waters from 1996 to 2001, which is $30,947(\mathrm{CV}=0.27)$. This estimate is considered the best because these surveys have the most complete coverage of the species' habitat.

Minimum Population Estimate

The minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the log-normal distributed abundance estimate. This is equivalent to the 20th percentile of the log-normal distributed abundance estimate as specified by Wade and Angliss (1997). The best estimate of abundance for Atlantic spotted dolphins is 30,947 ($\mathrm{CV}=0.27$). The minimum population estimate for the northern Gulf of Mexico is 24,752 Atlantic spotted dolphins.

Current Population Trend

There are insufficient data to determine the population trends for this species.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Current and maximum net productivity rates are unknown for this stock. For purposes of this assessment, the maximum net productivity rate was assumed to be 0.04 . This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive history (Barlow et al. 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential biological removal level (PBR) is the product of the minimum population size, one half the maximum net productivity rate and a "recovery" factor (MMPA Sec. 3.16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size is 24,752 . The maximum productivity rate is 0.04 , the default value for cetaceans. The "recovery" factor, which accounts for endangered, depleted, threatened stocks, or stocks of unknown status relative to optimum sustainable population (OSP), is assumed to be 0.5 because the stock is of unknown status. PBR for the northern Gulf of Mexico Atlantic spotted dolphin is 248.

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

There has been no reported fishing-related mortality of a spotted dolphin during 1998-2003 (Yeung 1999; Yeung 2001; Garrison 2003; Garrison and Richards 2004).

Fisheries Information

The level of past or current, direct, human-caused mortality of Atlantic spotted dolphins in the northern Gulf of Mexico is unknown; however, interactions between spotted dolphins and fisheries have been observed in the northern Gulf of Mexico. Pelagic swordfish, tunas and billfish are the targets of the longline fishery operating in the U.S. Gulf of Mexico. There were 2 observed incidental takes and releases of spotted dolphins in the Gulf of Mexico during 1994, but no recent reported takes of Atlantic spotted dolphins by this fishery in the Gulf of Mexico. Either spotted dolphin species may have been involved in the observed fishery-related mortality and serious injury incidents, but because of the uncertainty in species identification by fishery observers, they cannot currently be separated. Estimated average annual
fishing-related mortality and serious injury of spotted dolphins attributable to this fishery during 1991-1993 was 1.5 annually ($\mathrm{CV}=0.33$).

Other Mortality

A total of 7 Atlantic spotted dolphins stranded in the Gulf of Mexico during 1999-2003 (Table 2). There were no indications of human interactions in any of these stranded animals. There were 2 documented strandings of Atlantic spotted dolphins in the northern Gulf of Mexico during 1987-1994 which were classified as likely caused by fishery interactions. Stranding data probably underestimate the extent of fishery-related mortality and serious injury because not all of the marine mammals which die or are seriously injured in fishery interactions wash ashore, not all that wash ashore are discovered, reported or investigated, nor will all of those that do wash ashore necessarily show signs of entanglement or other fishery-interaction. Finally, the level of technical expertise among stranding network personnel varies widely as does the ability to recognize signs of fishery interactions.

Table 2. Atlantic spotted dolphin (Stenella frontalis) strandings along the U.S. Gulf of Mexico coast,							
1999-2003.	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	$\mathbf{2 0 0 3}$	TOTAL	
State	0	0	0	0	1	1	
Alabama	2	2	0	0	1	5	
Florida	0	0	0	0	0	0	
Louisiana	0	0	0	0	0	0	
Mississippi	0	1	0	0	0	1	
Texas	0	3	0	0	2	7	
Total	2						

STATUS OF STOCK

The status of Atlantic spotted dolphins in the northern Gulf of Mexico, relative to OSP, is unknown. The species is not listed as threatened or endangered under the Endangered Species Act. There are insufficient data to determine the population trends for this species. The total fishery-related mortality and serious injury for this stock is unknown, but assumed to be less than 10% of the calculated PBR and can be considered to be insignificant and approaching zero mortality and serious injury rate. This is not a strategic stock because average annual fishery-related mortality and serious injury does not exceed PBR.

REFERENCES

Barlow, J., S. L. Swartz, T. C. Eagle and P. R. Wade. 1995. U.S. Marine mammal stock assessments: Guidelines for preparation, background, and a summary of the 1995 assessments. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-6, 73pp.
Bero, D. 2001. Population structure of the Atlantic spotted dolphin (Stenella frontalis) in the Gulf of Mexico and western North Atlantic. Masters Thesis from University of Charleston. 101 pp.
Buckland, S. T., D. R. Anderson, K. P. Burnham, J. L. Laake, D. L. Borchers and L. Thomas. 2001. Introduction to distance sampling: Estimating abundance of biological populations. Oxford University Press, 432 pp .
Caldwell, D. K. and M. C. Caldwell. 1966. Observations on the distribution, coloration, behavior and audible sound production of the spotted dolphin, Stenella plagiodon (Cope). Los Angeles County Museum Contribution to Science, 104: 1-28.
Fritts, T. H., A. B. Irvine, R. D. Jennings, L. A. Collum, W. Hoffman and M. A. McGehee. 1983. Turtles, birds, and mammals in the northern Gulf of Mexico and nearby Atlantic waters. U.S. Fish and Wildlife Service, Division of Biological Services, Washington, D.C., FWS/OBS-82/65, 455 pp.
Fulling, G. L., K. D. Mullin and C. W. Hubard. 2003. Abundance and distribution of cetaceans in outer continental shelf waters of the U.S. Gulf of Mexico. Fish. Bull. 101:923-932.
Garrison, L. P. 2003. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2001-2002. NOAA Tech. Memo. NMFS-SEFSC-515, 52 pp.
Garrison, L. P. and P. M. Richards. 2004. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2003. NOAA Tech. Memo. NMFS-SEFSC-527, 57 pp.

Hansen, L. J., K. D. Mullin and C. L. Roden. 1995. Estimates of cetacean abundance in the northern Gulf of Mexico from vessel surveys. NMFS-SEFSC Contribution No. MIA-94/95-25, 9 pp. Available from: NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.
Hansen, L. J., K. D. Mullin, T. A. Jefferson and G. P. Scott. 1996. Visual surveys aboard ships and aircraft. pp. 55-132. In: R. W. Davis and G. S. Fargion (eds.) Distribution and abundance of marine mammals in the north-central and western Gulf of Mexico: Final report. Volume II: Technical report. OCS Study MMS 96-0027. Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA.
Mullin, K. D. and G. L. Fulling. 2003. Abundance and distribution of cetaceans in the southern U.S. Atlantic Ocean during summer 1998. Fish. Bull. 101:603-613.
Mullin, K. D. and G. L. Fulling. 2004. Abundance of cetaceans in the oceanic northern Gulf of Mexico. Mar. Mammal Sci. 20(4):787-807.
Mullin, K. D. and W. Hoggard. 2000. Visual surveys of cetaceans and sea turtles from aircraft and ships. pp. 111-172. In: R. W. Davis, W. E. Evans and B. Würsig (eds.) Cetaceans, sea turtles and seabirds in the northern Gulf of Mexico: Distribution, abundance and habitat associations. Volume II: Technical report. OCS Study MMS 2000003. U.S. Department of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA.
Perrin, W. F., E. D. Mitchell, J. G. Mead, D. K. Caldwell, M. C. Caldwell, P. J. H. van Bree and W. H. Dawbin. 1987. Revision of the spotted dolphins, Stenella spp. Mar. Mammal Sci. 3(2):99-170.
Perrin, W. F., D. K. Caldwell and M. C. Caldwell. 1994. Atlantic spotted dolphin Stenella frontalis (G. Cuvier, 1829). pp. 173-190. In: S. H. Ridgway and R. Harrison (eds.) Handbook of marine mammals, Vol. 5: The first book of dolphins. Academic Press, London, 416 pp.
Rice, D. W. 1998. Marine mammals of the world, systematics and distribution. Spec. Publ. No 4. The Society for Marine Mammalogy, Lawrence, KS, 231 pp.
Thomas, L., J. L. Laake, J. F. Derry, S. T. Buckland, D. L. Borchers, D. R. Anderson, K. P. Burnham, S. Strindberg, S. L. Hedley, F. F. C. Marques, J. H. Pollard and R. M. Fewster. 1998. Distance 3.5. Research Unit for Wildlife Population Assessment, University of St. Andrews, St. Andrews, UK.
Wade, P. R. and R. P. Angliss. 1997. Guidelines for assessing marine mammal stocks: Report of the GAMMS Workshop April 3-5, 1996, Seattle, WA. U.S. Dep. Commer., NOAA Tech Memo. NMFS-OPR-12, 93 pp.
Yeung, C. 1999. Estimates of marine mammal and marine turtle bycatch by the U.S. Atlantic pelagic longline fleet in 1998. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SEFSC-430, 26 pp. Available from: NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.
Yeung, C. 2001. Estimates of marine mammal and marine turtle bycatch by the U.S. Atlantic pelagic longline fleet in 1999-2000. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SEFSC-467, 43 pp. Available from: NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.

PANTROPICAL SPOTTED DOLPHIN (Stenella attenuata): Northern Gulf of Mexico Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

There are two species of spotted dolphin in the Atlantic Ocean, the Atlantic spotted dolphin (Stenella frontalis) and the pantropical spotted dolphin (S. attenuata) (Perrin et al. 1987). The Atlantic spotted dolphin occurs in two forms which may be distinct sub-species (Perrin et al. 1987, 1994; Rice 1998): the large, heavily spotted form which inhabits the continental shelf and is usually found inside or near the 200 m isobath; and the smaller, less spotted island and offshore form which occurs in the Atlantic Ocean but is not known to occur in the Gulf of Mexico (Fulling et al. 2003; Mullin and Fulling 2003; Mullin and Fulling 2004). Where they co-occur, the offshore form of the Atlantic spotted dolphin and the pantropical spotted dolphin can be difficult to differentiate at sea.

The pantropical spotted dolphin is distributed worldwide in tropical and some sub-tropical oceans (Perrin et al. 1987; Perrin and Hohn 1994). Sightings of this species occur in oceanic waters of the northern Gulf of Mexico (Mullin and Fulling 2004). Pantropical spotted dolphins were seen in all seasons during GulfCet aerial surveys of the northern Gulf of Mexico between 1992 and 1998 (Hansen et al. 1996; Mullin and Hoggard 2000).

Some of the Pacific Ocean populations have been divided into different geographic stocks based on morphological characteristics (Perrin et al. 1987; Perrin and Hohn 1994). The Gulf of Mexico population is provisionally being considered a separate stock for management purposes, although there is currently no information to differentiate this stock from the Atlantic Ocean stock(s). Additional morphological, genetic and/or behavioral data are needed to provide further information on stock delineation.

POPULATION SIZE

Estimates of abundance were derived through the application of distance sampling analysis (Buckland et al. 2001) and the computer program DISTANCE (Thomas et al. 1998) to sighting data. From 1991 through 1994, linetransect vessel surveys were conducted during spring in the northern Gulf of Mexico from the 200 m isobath to the seaward extent of the U.S. Exclusive Economic Zone (EEZ) (Hansen et al. 1995). Survey effort-weighted estimated average abundance of pantropical spotted dolphins for all surveys combined was $31,320 \quad(\mathrm{CV}=0.20)$ (Hansen et al. 1995). As recommended in the GAMMS Workshop Report (Wade and Angliss 1997), estimates older than 8 years are deemed unreliable, and therefore should not be used for PBR determinations.

Similar surveys were conducted during April/May from 1996 to 2001 (excluding 1998) in oceanic waters of the northern Gulf of Mexico, using NOAA ships Oregon II $(1996,1997,1999)$ and Gordon Gunter (2000, 2001). Estimates for all oceanic strata were summed, as survey effort was not uniformly distributed, to calculate a total estimate for the entire northern Gulf of Mexico oceanic waters (Figure 1; Mullin and Fulling 2004). Due to limited survey effort in any given year, survey effort was pooled across all years to develop an average abundance estimate.

The estimate of abundance for pantropical spotted dolphins in oceanic waters, pooled from 1996 to 2001, is 91,321 ($\mathrm{CV}=0.16$) (Mullin and Fulling 2004), which is the best available abundance estimate for this species in the northern Gulf of Mexico.

Minimum Population Estimate

The minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the log-normal distributed abundance estimate. This is equivalent to the 20th percentile of the log-normal distributed abundance estimate as specified by Wade and Angliss (1997). The best estimate of abundance for pantropical spotted dolphins is 91,321 $(\mathrm{CV}=0.16)$. The minimum population estimate for the northern Gulf of Mexico is 79,879 pantropical spotted dolphins.

Current Population Trend

There are insufficient data to determine the population trends for this species. The pooled abundance estimate for 1996-2001 of 91,321 ($\mathrm{CV}=0.16$) and that for 1991-1994 of $31,320(\mathrm{CV}=0.20)$ are significantly different $(\mathrm{P}<0.05)$. This change in abundance is difficult to interpret without a Gulf of Mexico-wide understanding of pantropical spotted dolphin abundance. Sixty-five percent of the oceanic waters in the Gulf of Mexico are south of the U.S. EEZ, and a shift in distribution across this boundary would not be detected.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Current and maximum net productivity rates are unknown for this stock. For purposes of this assessment, the maximum net productivity rate was assumed to be 0.04 . This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive history (Barlow et al. 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential biological removal level (PBR) is the product of the minimum population size, one half the maximum net productivity rate, and a recovery factor (MMPA Sec. 3.16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size is $79,879(\mathrm{CV}=0.16)$. The maximum productivity rate is 0.04 , the default value for cetaceans. The "recovery" factor, which accounts for endangered, depleted, threatened stocks, or stocks of unknown status relative to optimum sustainable population (OSP), is assumed to be 0.5 because the stock is of unknown status. PBR for the northern Gulf of Mexico pantropical spotted dolphin is 799.

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

There was 1 documented stranding of a pantropical spotted dolphin in the northern Gulf of Mexico during 1987-1994 which was classified as likely caused by fishery interactions. There has been no reported fishing-related mortality of pantropical spotted dolphins during 1998-2003 (Yeung 1999; Yeung 2001; Garrison 2003; Garrison and Richards 2004).

Fisheries Information

The level of past or current, direct, human-caused mortality of pantropical spotted dolphins in the northern Gulf of Mexico is unknown. Pelagic swordfish, tunas and billfish are the targets of the longline fishery operating in the U.S. Gulf of Mexico. There were no reports of mortality or serious injury to pantropical spotted dolphins by this fishery during 1998-2003.

Other Mortality

Four pantropical spotted dolphins stranded in the Gulf of Mexico during 1999-2003 (Table 1). There was no evidence of human interactions for the stranded animals. Stranding data probably underestimate the extent of fisheryrelated mortality and serious injury because not all of the marine mammals which die or are seriously injured in fishery interactions wash ashore, not all that wash ashore are discovered, reported or investigated, nor will all of those that do wash ashore necessarily show signs of entanglement or other fishery interaction. Finally, the level of technical expertise among stranding network personnel varies widely as does the ability to recognize signs of fishery interactions.

Table 1. Pantropical spotted dolphin (Stenella attenuata) strandings along the U.S. Gulf of Mexico coast, 1999-2003.

State	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	$\mathbf{2 0 0 3}$	TOTAL
Alabama	0	0	0	0	0	0
Florida	0	0	0	1	1	2
Louisiana	0	0	0	0	0	0
Mississippi	0	0	0	0	0	0
Texas	1	0	1	0	0	2
Total	1	0	1	1	1	4

STATUS OF STOCK

The status of pantropical spotted dolphins in the northern Gulf of Mexico, relative to OSP, is unknown. The species is not listed as threatened or endangered under the Endangered Species Act. There are insufficient data to determine the population trends for this species. The total fishery-related mortality and serious injury for this stock is unknown, but assumed to be less than 10% of the calculated PBR and can be considered to be insignificant and approaching zero mortality and serious injury rate. This is not a strategic stock because average annual fishery-related mortality and serious injury does not exceed PBR.

REFERENCES

Barlow, J., S. L. Swartz, T. C. Eagle and P. R. Wade. 1995. U.S. Marine mammal stock assessments: Guidelines for preparation, background, and a summary of the 1995 assessments. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-6, 73 pp.
Buckland, S. T., D. R. Anderson, K. P. Burnham, J. L. Laake, D. L. Borchers and L. Thomas. 2001. Introduction to distance sampling: estimating abundance of biological populations. Oxford University Press, 432 pp .
Fulling, G. L., K. D. Mullin and C. W. Hubard. 2003. Abundance and distribution of cetaceans in outer continental shelf waters of the U.S. Gulf of Mexico. Fish. Bull. 101: 923-932.
Garrison, L. P. 2003. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2001-2002. NOAA Tech. Memo. NMFS-SEFSC-515, 52 pp.
Garrison, L. P. and P. M. Richards. 2004. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2003. NOAA Tech. Memo. NMFS-SEFSC-527, 57 pp.
Hansen, L. J., K. D. Mullin and C. L. Roden. 1995. Estimates of cetacean abundance in the northern Gulf of Mexico from vessel surveys. Southeast Fisheries Science Center, Miami Laboratory, Contribution No. MIA-94/95-25, 9 pp. Available from: NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.
Hansen, L. J., K. D. Mullin, T. A. Jefferson and G. P. Scott. 1996. Visual surveys aboard ships and aircraft. pp. 55-132. In: R. W. Davis and G. S. Fargion (eds.) Distribution and abundance of marine mammals in the north-central and western Gulf of Mexico: Final report. Volume II: Technical report. OCS Study MMS 96-0027. Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA.
Mullin, K. D. and G. L. Fulling. 2003. Abundance and distribution of cetaceans in the southern U.S. Atlantic Ocean during summer 1998. Fish. Bull. 101: 603_613.
Mullin, K. D. and G. L. Fulling. 2004. Abundance of cetaceans in the oceanic northern Gulf of Mexico. Mar. Mammal Sci. 20(4):787-807.
Mullin, K. D. and W. Hoggard. 2000. Visual surveys of cetaceans and sea turtles from aircraft and ships. pp. 111-172. In: R. W. Davis, W. E. Evans and B. Würsig (eds.) Cetaceans, sea turtles and seabirds in the northern Gulf of Mexico: distribution, abundance and habitat associations. Volume II: Technical report. OCS Study MMS 2000003. U.S. Department of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA.
Perrin, W. F., E. D. Mitchell, J. G. Mead, D. K. Caldwell, M. C. Caldwell, P. J. H. van Bree and W. H. Dawbin. 1987. Revision of the spotted dolphins, Stenella spp. Mar. Mammal Sci. 3(2):99-170.
Perrin, W. F. and. A. A. Hohn. 1994. Pantropical spotted dolphin Stenella attenuata (Meyen, 1833). pp. 129-159. In: S. H. Ridgway and R. Harrison (eds.) Handbook of marine mammals, Vol. 5: The first book of dolphins. Academic Press, London, 416 pp.
Perrin, W . F., D. K . Caldwell and M. C. Caldwell. 1994. Atlantic spotted dolphin. pp.173-190. In: S. H. Ridgway and R. Harrison (eds.) Handbook of marine mammals, Volume 5: The first book of dolphins. Academic Press, San Diego, 418 pp .
Rice, D. W. 1998. Marine mammals of the world, systematics and distribution. Spec. Publ. No 4. The Society for Marine Mammalogy, Lawrence, KS, 231 pp.
Thomas, L., J. L. Laake, J. F. Derry, S. T. Buckland, D. L. Borchers, D. R. Anderson, K. P. Burnham, S. Strindberg, S. L. Hedley, F. F. C. Marques, J. H. Pollard and R. M. Fewster. 1998. Distance 3.5. Research Unit for Wildlife Population Assessment, University of St. Andrews, St. Andrews, UK.
Wade, P. R. and R. P. Angliss. 1997. Guidelines for assessing marine mammal stocks: Report of the GAMMS Workshop April 3-5, 1996, Seattle, WA. U.S. Dep. Commer., NOAA Tech Memo. NMFS-OPR-12, 93 pp.
Yeung, C. 1999. Estimates of marine mammal and marine turtle bycatch by the U.S. Atlantic pelagic longline fleet in 1998. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SEFSC-430, 26 pp. Available from: NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.
Yeung, C. 2001. Estimates of marine mammal and marine turtle bycatch by the U.S. Atlantic pelagic longline fleet in 1999-2000. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SEFSC-467, 43 pp. Available from: NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.

STRIPED DOLPHIN (Stenella coeruleoalba): Northern Gulf of Mexico Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

The striped dolphin is distributed worldwide in tropical to temperate oceanic waters (Leatherwood and Reeves 1983; Perrin et al. 1994). Sightings of these animals in the northern Gulf of Mexico occur in oceanic waters (Mullin and Fulling 2004). Striped dolphins were seen in all seasons during GulfCet aerial surveys of the northern Gulf of Mexico between 1992 and 1998 (Hansen et al. 1996; Mullin and Hoggard 2000).

The Gulf of Mexico population is provisionally being considered a separate stock for management purposes, although there is currently no information to differentiate this stock from the Atlantic Ocean stock(s). Additional morphological, genetic and/or behavioral data are needed to provide further information on stock delineation.

POPULATION SIZE

Estimates of abundance were derived through the application of distance sampling analysis (Buckland et al. 2001) and the computer program DISTANCE (Thomas et al. 1998) to sighting data. From 1991 through 1994, line-transect vessel surveys were conducted during spring in the northern Gulf of Mexico from the 200 m isobath to the seaward extent of the U.S. Exclusive Economic Zone (EEZ) (Hansen et al. 1995). Survey effort-weighted estimated average abundance of striped dolphins for all surveys combined was $4,858 \quad(\mathrm{CV}=0.44)$ (Hansen et al. 1995). As recommended in the GAMMS Workshop Report (Wade and Angliss 1997), estimates older than 8 years are deemed unreliable, and therefore should not be used for PBR determinations.

Figure 1. Distribution of striped dolphin sightings from SEFSC spring vessel surveys during 1996-2001. All the on-effort sightings are shown, though not all were used to estimate abundance. Solid lines indicate the 100 m and $1,000 \mathrm{~m}$ isobaths and the dotted line indicates the offshore extent of the U.S. EEZ. during April/May from 1996 to 2001 (excluding 1998) in oceanic waters of the northern Gulf of Mexico, using NOAA ships Oregon II (1996, 1997, $1999)$ and Gordon Gunter (2000, 2001). Estimates for all oceanic strata were summed, as survey effort was not uniformly distributed, to calculate a total estimate for the entire northern Gulf of Mexico oceanic waters (Figure 1; Mullin and Fulling 2004). Due to limited survey effort in any given year, survey effort was pooled across all years to develop an average abundance estimate.

The estimate of abundance for striped dolphins in oceanic waters, pooled from 1996 to 2001 , is 6,505 $(\mathrm{CV}=0.43)$ (Mullin and Fulling 2004), which is the best available abundance estimate for this species in the northern Gulf of Mexico.

Minimum Population Estimate

The minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the lognormal distributed abundance estimate. This is equivalent to the 20 th percentile of the log-normal distributed abundance estimate as specified by Wade and Angliss (1997). The best estimate of abundance for striped dolphins is $6,505(\mathrm{CV}=0.43)$. The minimum population estimate for the northern Gulf of Mexico is 4,599 striped dolphins.

Current Population Trend

There are insufficient data to determine the population trends for this species. The pooled abundance estimate for 1996-2001 of $6,505(\mathrm{CV}=0.43)$ and that for 1991-1994 of $4,858(\mathrm{CV}=0.44)$ are not significantly different ($\mathrm{P}>0.05$), but due to the precision of the estimates, the power to detect a difference is low.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Current and maximum net productivity rates are unknown for this stock. For purposes of this assessment, the maximum net productivity rate was assumed to be 0.04 . This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive history (Barlow et al. 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential biological removal level (PBR) is the product of the minimum population size, one half the maximum net productivity rate and a recovery factor (MMPA Sec. 3.16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size is $4,599(\mathrm{CV}=0.43)$. The maximum productivity rate is 0.04 , the default value for cetaceans. The "recovery" factor, which accounts for endangered, depleted, threatened stocks, or stocks of unknown status relative to optimum sustainable population (OSP), is assumed to be 0.5 because the stock is of unknown status. PBR for the northern Gulf of Mexico striped dolphin is 46 .

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

There has been no reported fishing-related mortality of striped dolphins during 1998-2003 (Yeung 1999; Yeung 2001; Garrison 2003; Garrison and Richards 2004).

Fisheries Information

The level of past or current, direct, human-caused mortality of striped dolphins in the northern Gulf of Mexico is unknown. Pelagic swordfish, tunas and billfish are the targets of the longline fishery operating in the U.S. Gulf of Mexico. There were no reports of mortality or serious injury to striped dolphins by this fishery.

Other Mortality

There was 1 reported stranding of a striped dolphin in the Gulf of Mexico during 1999-2003. There was no evidence of human interaction for this stranded animal. Stranding data probably underestimate the extent of fisheryrelated mortality and serious injury because not all of the marine mammals which die or are seriously injured in fishery interactions wash ashore, not all that wash ashore are discovered, reported or investigated, nor will all of those that do wash ashore necessarily show signs of entanglement or other fishery interaction. Finally, the level of technical expertise among stranding network personnel varies widely as does the ability to recognize signs of fishery interactions.

STATUS OF STOCK

The status of striped dolphins in the northern Gulf of Mexico, relative to OSP, is unknown. The species is not listed as threatened or endangered under the Endangered Species Act. There are insufficient data to determine the population trends for this species. The total fishery-related mortality and serious injury for this stock is unknown, but assumed to be less than 10% of the calculated PBR and can be considered to be insignificant and approaching zero mortality and serious injury rate. This is not a strategic stock because average annual fishery-related mortality and serious injury does not exceed PBR.

REFERENCES

Barlow, J., S. L. Swartz, T. C. Eagle and P. R. Wade. 1995. U.S. Marine mammal stock assessments: Guidelines for preparation, background, and a summary of the 1995 assessments. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-6, 73 pp.
Buckland, S. T., D. R. Anderson, K. P. Burnham, J. L. Laake, D. L. Borchers and L. Thomas. 2001. Introduction to distance sampling: Estimating abundance of biological populations. Oxford University Press, 432 pp .
Garrison, L. P. 2003. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2001-2002. NOAA Tech. Memo. NMFS-SEFSC-515, 52 pp.
Garrison, L. P. and P. M. Richards. 2004. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2003. NOAA Tech. Memo. NMFS-SEFSC-527, 57 pp.

Hansen, L. J., K. D. Mullin and C. L. Roden. 1995. Estimates of cetacean abundance in the northern Gulf of Mexico from vessel surveys. Southeast Fisheries Science Center, Miami Laboratory, Contribution No. MIA-94/95-25, 9 pp. Available from: NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.
Hansen, L. J., K. D. Mullin, T. A. Jefferson and G. P. Scott. 1996. Visual surveys aboard ships and aircraft. pp. 55132. In: R. W. Davis and G. S. Fargion (eds.) Distribution and abundance of marine mammals in the north-central and western Gulf of Mexico: Final report. Volume II: Technical report. OCS Study MMS 96- 0027. Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA.
Leatherwood, S. and R. R. Reeves. 1983. The Sierra Club handbook of whales and dolphins. Sierra Club Books, San Francisco, 302 pp.
Mullin, K. D. and G. L. Fulling. 2004. Abundance of cetaceans in the oceanic northern Gulf of Mexico. Mar. Mammal Sci. 20(4):787-807.
Mullin, K. D. and W. Hoggard. 2000. Visual surveys of cetaceans and sea turtles from aircraft and ships. pp. 111172. In: R. W. Davis, W. E. Evans and B. Würsig (eds.) Cetaceans, sea turtles and seabirds in the northern Gulf of Mexico: Distribution, abundance and habitat associations. Volume II: Technical report. OCS Study MMS 2000-003. U.S. Department of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA.
Perrin, W. F., C. E. Wilson and F. I. Archer II. 1994. Striped dolphin Stenella coeruleoalba (Meyen, 1833). pp. 129-159. In: S. H. Ridgway and R. Harrison (eds.) Handbook of marine mammals, Vol. 5: The first book of dolphins. Academic Press, London, 416 pp.
Thomas, L., J. L. Laake, J. F. Derry, S. T. Buckland, D. L. Borchers, D. R. Anderson, K. P. Burnham, S. Strindberg, S. L. Hedley, F. F. C. Marques, J. H. Pollard and R. M. Fewster. 1998. Distance 3.5. Research Unit for Wildlife Population Assessment, University of St. Andrews, St. Andrews, UK.
Wade, P. R. and R. P. Angliss. 1997. Guidelines for assessing marine mammal stocks: Report of the GAMMS Workshop April 3-5, 1996, Seattle, WA. U.S. Dep. Commer., NOAA Tech Memo. NMFS-OPR-12, 93 pp.
Yeung, C. 1999. Estimates of marine mammal and marine turtle bycatch by the U.S. Atlantic pelagic longline fleet in 1998. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SEFSC-430, 26 pp. Available from: NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.
Yeung, C. 2001. Estimates of marine mammal and marine turtle bycatch by the U.S. Atlantic pelagic longline fleet in 1999-2000. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SEFSC-467, 43 pp. Available from: NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.

SPINNER DOLPHIN (Stenella longirostris): Northern Gulf of Mexico Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

The spinner dolphin is distributed worldwide in tropical to temperate oceanic waters (Leatherwood and Reeves 1983; Perrin and Gilpatrick 1994). Sightings of these animals in the northern Gulf of Mexico occur in oceanic waters (Mullin and Fulling 2004). Spinner dolphins were seen in all seasons during GulfCet aerial surveys of the northern Gulf of Mexico between 1992 and 1998 (Hansen et al. 1996; Mullin and Hoggard 2000).

The Gulf of Mexico population is provisionally being considered a separate stock for management purposes, although there is currently no information to differentiate this stock from the Atlantic Ocean stock(s). Additional morphological, genetic and/or behavioral data are needed to provide further information on stock delineation.

POPULATION SIZE

Estimates of abundance were derived through the application of distance sampling analysis (Buckland et al. 2001) and the computer program DISTANCE (Thomas et al. 1998) to sighting data. From 1991 through 1994, line-transect vessel surveys were conducted during spring in the northern Gulf of Mexico from the 200 m isobath to the seaward extent of the U.S. Exclusive Economic Zone (EEZ) (Hansen et al. 1995). Survey effort-weighted estimated average abundance of spinner dolphins for all surveys combined was 6,316 (CV=0.43) (Hansen et al. 1995). As recommended in the GAMMS Workshop Report (Wade and Angliss 1997), estimates older than 8 years are deemed unreliable, and therefore should not be used for PBR determinations.

Similar surveys were conducted during April/May from 1996 to 2001 (excluding 1998) in oceanic waters of the northern Gulf of Mexico, using NOAA ships Oregon II (1996, 1997, 1999) and Gordon Gunter (2000, 2001). Estimates for all oceanic strata

Figure 1. Distribution of spinner dolphin sightings from SEFSC spring vessel surveys during 1996-2001. All the on-effort sightings are shown, though not all were used to estimate abundance. Solid lines indicate the 100 m and 1,000 m isobaths and the dotted line indicates the offshore extent of the U.S. EEZ. were summed, as survey effort was not uniformly distributed, to calculate a total estimate for the entire northern Gulf of Mexico oceanic waters (Figure 1; Mullin and Fulling 2004). Due to limited survey effort in any given year, survey effort was pooled across all years to develop an average abundance estimate.

The estimate of abundance for spinner dolphins in oceanic waters, pooled from 1996 to 2001, is 11,971 (CV=0.71) (Mullin and Fulling 2004), which is the best available abundance estimate for this species in the northern Gulf of Mexico.

Minimum Population Estimate

The minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the log-normal distributed abundance estimate. This is equivalent to the 20th percentile of the log-normal distributed abundance estimate as specified by Wade and Angliss (1997). The best estimate of abundance for spinner dolphins is 11,971 (CV=0.71). The minimum population estimate for the northern Gulf of Mexico is 6,990 spinner dolphins.

Current Population Trend

There are insufficient data to determine the population trends for this species. The pooled abundance estimate for 1996-2001 of $11,971(\mathrm{CV}=0.71)$ and that for 1991-1994 of $6,316(\mathrm{CV}=0.43)$ are not significantly different $(\mathrm{P}>0.05)$, but due to the precision of the estimates, the power to detect a difference is low.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Current and maximum net productivity rates are unknown for this stock. For purposes of this assessment, the maximum net productivity rate was assumed to be 0.04 . This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive history (Barlow et al. 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential biological removal level (PBR) is the product of the minimum population size, one half the maximum net productivity rate and a recovery factor (MMPA Sec. 3.16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size is $6,990(\mathrm{CV}=0.71)$. The maximum productivity rate is 0.04 , the default value for cetaceans. The "recovery" factor, which accounts for endangered, depleted, threatened stocks, or stocks of unknown status relative to optimum sustainable population (OSP), is assumed to be 0.5 because the stock is of unknown status. PBR for the northern Gulf of Mexico spinner dolphin is 70 .

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

There has been no reported fishing-related mortality of spinner dolphins during 1998-2003 (Yeung 1999; Yeung 2001; Garrison 2003; Garrison and Richards 2004).

Fisheries Information

The level of past or current, direct, human-caused mortality of spinner dolphins in the northern Gulf of Mexico is unknown. Pelagic swordfish, tunas and billfish are the targets of the longline fishery operating in the U.S. Gulf of Mexico. There were no reports of mortality or serious injury to spinner dolphins by this fishery.

Other Mortality

There were 5 reported strandings of spinner dolphins in the Gulf of Mexico during 1999-2003 (Table 1). There was evidence of human interaction for 1 of the 2003 Texas stranded animals. Stranding data probably underestimate the extent of fishery-related mortality and serious injury because not all of the marine mammals which die or are seriously injured in fishery interactions wash ashore, not all that wash ashore are discovered, reported or investigated, nor will all of those that do wash ashore necessarily show signs of entanglement or other fishery interaction. Finally, the level of technical expertise among stranding network personnel varies widely as does the ability to recognize signs of fishery interactions.

Table 1. Spinner dolphin (Stenella longirostris) strandings along the U.S. Gulf of Mexico coast, 19992003.						
State	1999	2000	2001	2002	2003	TOTAL
Alabama	0	0	0	0	2	2
Florida	0	0	0	0	0	0
Louisiana	0	0	0	0	0	0
Mississippi	0	0	0	0	0	0
Texas	0	1	0	0	2	3
Total	0	1	0	0	4	5

STATUS OF STOCK

The status of spinner dolphins in the northern Gulf of Mexico, relative to OSP, is unknown. The species is not listed as threatened or endangered under the Endangered Species Act. There are insufficient data to determine the population trends for this species. The total fishery-related mortality and serious injury for this stock is unknown, but assumed to be less than 10% of the calculated PBR and can be considered to be insignificant and approaching zero mortality and serious injury rate. This is not a strategic stock because average annual fishery-related mortality and serious injury does not exceed PBR.

REFERENCES

Barlow, J., S. L. Swartz, T. C. Eagle and P. R. Wade. 1995. U.S. Marine mammal stock assessments: Guidelines for preparation, background, and a summary of the 1995 assessments. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-6, 73 pp.
Buckland, S. T., D. R. Anderson, K. P. Burnham, J. L. Laake, D. L. Borchers and L. Thomas. 2001. Introduction to distance sampling: Estimating abundance of biological populations. Oxford University Press, 432 pp .
Garrison, L. P. 2003. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2001-2002. NOAA Tech. Memo. NMFS-SEFSC-515, 52 pp.
Garrison, L. P. and P. M. Richards. 2004. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2003. NOAA Tech. Memo. NMFS-SEFSC-527, 57 pp.
Hansen, L. J., K. D. Mullin and C. L. Roden. 1995. Estimates of cetacean abundance in the northern Gulf of Mexico from vessel surveys. Southeast Fisheries Science Center, Miami Laboratory, Contribution No. MIA-94/95-25, 9 pp. Available from: NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.
Hansen, L. J., K. D. Mullin, T. A. Jefferson and G. P. Scott. 1996. Visual surveys aboard ships and aircraft. pp. 55-132. In: R. W. Davis and G. S. Fargion (eds.) Distribution and abundance of marine mammals in the north-central and western Gulf of Mexico: Final report. Volume II: Technical report. OCS Study MMS 96-0027. Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA.
Leatherwood, S. and R. R. Reeves. 1983. The Sierra Club handbook of whales and dolphins. Sierra Club Books, San Francisco, CA, 302 pp.
Mullin, K. D. and G. L. Fulling. 2004. Abundance of cetaceans in the oceanic northern Gulf of Mexico. Mar. Mammal Sci. 20(4):787-807.
Mullin, K. D. and W. Hoggard. 2000. Visual surveys of cetaceans and sea turtles from aircraft and ships. pp. 111-172. In: R. W. Davis, W. E. Evans and B. Würsig (eds.) Cetaceans, sea turtles and seabirds in the northern Gulf of Mexico: distribution, abundance and habitat associations. Volume II: Technical report. OCS Study MMS 2000003. U.S. Department of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA.
Perrin, W. F. and J. W. Gilpatrick, Jr. 1994. Spinner dolphin Stenella longirostris (Gray, 1828). pp. 99-128. In: S. H. Ridgway and R. Harrison (eds.) Handbook of marine mammals, Vol. 5: The first book of dolphins. Academic Press, London, 416 pp.
Thomas, L., J. L. Laake, J. F. Derry, S. T. Buckland, D. L. Borchers, D. R. Anderson, K. P. Burnham, S.
Strindberg, S. L. Hedley, F. F. C. Marques, J. H. Pollard and R. M. Fewster. 1998. Distance 3.5. Research Unit for Wildlife Population Assessment, University of St. Andrews, St. Andrews, UK.
Wade, P. R. and R. P. Angliss. 1997. Guidelines for assessing marine mammal stocks: Report of the GAMMS Workshop April 3-5, 1996, Seattle, WA. U.S. Dep. Commer., NOAA Tech Memo. NMFS-OPR-12, 93 pp.
Yeung, C. 1999. Estimates of marine mammal and marine turtle bycatch by the U.S. Atlantic pelagic longline fleet in 1998. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SEFSC-430, 26 pp. Available from: NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.
Yeung, C. 2001. Estimates of marine mammal and marine turtle bycatch by the U.S. Atlantic pelagic longline fleet in 1999-2000. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SEFSC-467, 43 pp. Available from: NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.

ROUGH-TOOTHED DOLPHIN (Steno bredanensis): Northern Gulf of Mexico Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

The rough-toothed dolphin is distributed worldwide in tropical to warm temperate waters (Leatherwood and Reeves 1983; Miyazaki and Perrin 1994). Rough-toothed dolphins occur in both oceanic and continental shelf waters in the northern Gulf of Mexico (Fulling et al. 2003; Mullin and Fulling 2004). Rough-toothed dolphins were seen in all seasons during GulfCet aerial surveys of the northern Gulf of Mexico between 1992 and 1998 (Hansen et al. 1996; Mullin and Hoggard 2000).

The Gulf of Mexico population is provisionally being considered 1 stock for management purposes, although there is currently no information to differentiate this stock from the Atlantic Ocean stock(s). Additional morphological, genetic and/or behavioral data are needed to provide further information on stock delineation.

POPULATION SIZE

Estimates of abundance were derived through the application of distance sampling analysis (Buckland et al. 2001) and the computer program DISTANCE (Thomas et al. 1998) to sighting data. From 1991 through 1994, line-transect vessel surveys were conducted during spring in the northern Gulf of Mexico from the 200 m isobath to the seaward extent of the U.S. Exclusive Economic Zone (EEZ) (Hansen et al. 1995). Survey effort-weighted estimated average abundance of rough-toothed dolphins for all surveys combined was 852 (CV=0.31) (Hansen et al. 1995). This was probably an underestimate and should be considered a partial stock estimate because the continental shelf areas were not entirely covered by either the vessel or GulfCet aerial surveys. As recommended in the GAMMS Workshop Report (Wade and Angliss 1997), estimates older than 8 years are deemed unreliable, and therefore should not be used for PBR determinations.

Data were collected from 1996 to 2001 during spring and fall plankton surveys conducted from NOAA ships Oregon II (1996, 1997, 1999, 2000) and Gordon Gunter (1998, 1999, 2000, 2001). Tracklines, which were perpendicular to the bathymetry, covered shelf waters from 20 to 200 m deep in the fall of 1998 and 1999 (Figure 1 and Table 1; Fulling et al. 2003). Surveys were also conducted during April/May from 1996 to 2001 (excluding 1998) in oceanic waters of the northern Gulf of Mexico from 200m to the offshore extent of the U.S. EEZ. Estimates for all oceanic strata were summed, as survey effort was not uniformly distributed, to calculate a total estimate for the entire northern Gulf of Mexico oceanic waters (Figure 1 and Table 1; Mullin and Fulling 2004). Due to limited survey effort in any given year, survey effort was pooled across all years to develop an average abundance estimate for both continental shelf and oceanic waters.

Table 1. Abundance estimates ($\mathrm{N}_{\text {best }}$) and Coefficient of Variation (CV) of rough-toothed dolphins in the			
northern U.S. Gulf of Mexico outer continental shelf (OCS) (waters 20-200 m deep) during fall			
1998-2001 and oceanic waters (200m to the offshore extent of the EEZ) during spring 1996-2001			
(excluding 1998).			
Month/Year	Area	$\mathbf{N}_{\text {best }}$	$\mathbf{C V}$
Fall 1998-2001	Outer Continental Shelf	1,238	0.65
Spring 1996-2001	Oceanic	985	0.44
Spring \& Fall 1996-2001	OCS \& Oceanic	$\mathbf{2 , 2 2 3}$	$\mathbf{0 . 4 1}$

The combined estimated abundance of rough-toothed dolphins, pooled from 1998 through 2001, for the outer continental shelf shipboard surveys was $1,238(\mathrm{CV}=0.65)$ (Fulling et al. 2003). The estimate of abundance for roughtoothed dolphins in oceanic waters, pooled from 1996 through 2001, is 985 (CV=0.44) (Mullin and Fulling 2004).

The best available abundance estimate for the rough-toothed dolphin in the northern Gulf of Mexico is the combined estimate of abundance for both the outer continental shelf and oceanic waters from 1996 to 2001, which is 2,223 ($\mathrm{CV}=0.41$). This estimate is considered the best because these surveys have the most complete coverage of the species' habitat. This species was observed in shelf waters, with 2 sightings occurring off the coast of Texas and 1 sighting off the southern Florida Panhandle (Fulling et al. 2003). Group sizes recorded for rough-toothed dolphins in shelf waters were 8, 11 and 20 individuals.

Minimum Population Estimate

The minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the log-normal distributed abundance estimate. This is equivalent to the 20th percentile of the log-normal distributed abundance estimate as specified by Wade and Angliss (1997). The best estimate of abundance for rough-toothed dolphins is 2,223 (CV=0.41). The minimum population estimate for the northern Gulf of Mexico is 1,595 rough-toothed dolphins.

Current Population Trend

There are insufficient data to determine the population trends for this species.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Current and maximum net productivity rates are unknown for this stock. For purposes of this assessment, the maximum net productivity rate was assumed to be 0.04 . This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive history (Barlow et al. 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential biological removal level (PBR) is the product of the minimum population size, one half the maximum net productivity rate and a "recovery" factor (MMPA Sec. 3.16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size is 1,595 . The maximum productivity rate is 0.04 , the default value for cetaceans. The "recovery" factor, which accounts for endangered, depleted, threatened stocks, or stocks of unknown status relative to optimum sustainable population (OSP) is assumed to be 0.5 because the stock is of unknown status. PBR for the northern Gulf of Mexico rough-toothed dolphin is 16 .

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

There were 2 documented strandings of rough-toothed dolphins in the northern Gulf of Mexico during 1987-1994 which were classified as likely caused by fishery interactions. There has been no reported fishing-related mortality of rough-toothed dolphins during 1998-2003 (Yeung 1999; Yeung 2001; Garrison 2003; Garrison and Richards 2004).

Fisheries Information

The level of past or current, direct, human-caused mortality of rough-toothed dolphins in the northern Gulf of Mexico is unknown. Pelagic swordfish, tunas and billfish are the targets of the longline fishery operating in the U.S. Gulf of Mexico. There were no reports of mortality or serious injury to rough-toothed dolphins by this fishery in the Gulf of Mexico during 1998-2003 (Yeung 1999; Yeung 2001; Garrison 2003; Garrison and Richards 2004).

Other Mortality

There were 22 stranded rough-toothed dolphins in the northern Gulf of Mexico during 1999-2003, including 1 mass stranding of 19 animals in February 2001 (Table 2). There was no evidence of human interactions for these stranded animals. Stranding data probably underestimate the extent of fishery-related mortality and serious injury because not all of the marine mammals which die or are seriously injured in fishery interactions wash ashore, not all that wash ashore are discovered, reported or investigated, nor will all of those that do wash ashore necessarily show signs of entanglement or other fishery interaction. Finally, the level of technical expertise among stranding network personnel varies widely as does the ability to recognize signs of fishery interactions.

Table 2. Rough-toothed dolphin (Steno bredanensis) strandings along the U.S. Gulf of Mexico coast, 1999-2003.						
State	1999	2000	2001	2002	2003	TOTAL
Alabama	0	0	0	0	0	0
Florida	0	1	$19^{\text {a }}$	1	1	22
Louisiana	0	0	0	0	0	0
Mississippi	0	0	0	0	0	0
Texas	0	0	0	0	0	0
Total	0	1	19	1	1	22
a Florida mass stranding of 19 animals in February 2001						

STATUS OF STOCK

The status of rough-toothed dolphins in the northern Gulf of Mexico, relative to OSP, is unknown. The species is not listed as threatened or endangered under the Endangered Species Act. There are insufficient data to determine the population trends for this species. The total fishery-related mortality and serious injury for this stock is unknown, but assumed to be less than 10% of the calculated PBR and can be considered to be insignificant and approaching zero mortality and serious injury rate. This is not a strategic stock because average annual fishery-related mortality and serious injury does not exceed PBR

REFERENCES

Barlow, J., S. L. Swartz, T. C. Eagle and P. R. Wade. 1995. U.S. Marine mammal stock assessments: Guidelines for preparation, background, and a summary of the 1995 assessments. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-6, 73 pp .
Buckland, S. T., D. R. Anderson, K. P. Burnham, J. L. Laake, D. L. Borchers and L. Thomas. 2001. Introduction to distance sampling: Estimating abundance of biological populations. Oxford University Press, 432 pp .
Fulling, G. L., K. D. Mullin and C. W. Hubard. 2003. Abundance and distribution of cetaceans in outer continental shelf waters of the U.S. Gulf of Mexico. Fish. Bull. 101: 923-932.
Garrison, L. P. 2003. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2001-2002. NOAA Tech. Memo. NMFS-SEFSC-515, 52 pp.
Garrison, L. P. and P. M. Richards. 2004. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2003. NOAA Tech. Memo. NMFS-SEFSC-527, 57 pp.
Hansen, L. J., K. D. Mullin and C. L. Roden. 1995. Estimates of cetacean abundance in the northern Gulf of Mexico from vessel surveys. Southeast Fisheries Science Center, Miami Laboratory, Contribution No. MIA-94/95-25, 9 pp. Available from: NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.
Hansen, L. J., K. D. Mullin, T. A. Jefferson and G. P. Scott. 1996. Visual surveys aboard ships and aircraft. pp. 55-132. In: R. W. Davis and G. S. Fargion (eds.) Distribution and abundance of marine mammals in the north-central and western Gulf of Mexico: Final report. Volume II: Technical report. OCS Study MMS 96-0027. Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA.
Leatherwood, S. and R. R. Reeves. 1983. The Sierra Club handbook of whales and dolphins. Sierra Club Books, San Francisco, CA, 302 pp.

Miyazaki, N. and W. F. Perrin. 1994. Rough-toothed dolphin Steno bredanensis (Lesson, 1828). pp. 1-21. In: S. H. Ridgway and R. Harrison (eds.) Handbook of marine mammals, Vol. 5: The first book of dolphins. Academic Press, London, 416 pp.
Mullin, K. D. and G. L. Fulling. 2004. Abundance of cetaceans in the oceanic northern Gulf of Mexico. Mar. Mammal Sci. 20(4):787-807
Mullin, K. D. and W. Hoggard. 2000. Visual surveys of cetaceans and sea turtles from aircraft and ships. pp. 111-172. In: R. W. Davis, W. E. Evans and B. Würsig (eds.) Cetaceans, sea turtles and seabirds in the northern Gulf of Mexico: distribution, abundance and habitat associations. Volume II: Technical report. OCS Study MMS 2000003. U.S. Department of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA.
Thomas, L., J. L. Laake, J. F. Derry, S. T. Buckland, D. L. Borchers, D. R. Anderson, K. P. Burnham, S. Strindberg, S. L. Hedley, F. F. C. Marques, J. H. Pollard and R. M. Fewster. 1998. Distance 3.5. Research Unit for Wildlife Population Assessment, University of St. Andrews, St. Andrews, UK.
Wade, P. R. and R. P. Angliss. 1997. Guidelines for assessing marine mammal stocks: Report of the GAMMS Workshop April 3-5, 1996, Seattle, WA. U.S. Dep. Commer., NOAA Tech Memo. NMFS-OPR-12, 93 pp.
Yeung, C. 1999. Estimates of marine mammal and marine turtle bycatch by the U.S. Atlantic pelagic longline fleet in 1998. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SEFSC-430, 26 pp. Available from: NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.
Yeung, C. 2001. Estimates of marine mammal and marine turtle bycatch by the U.S. Atlantic pelagic longline fleet in 1999-2000. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SEFSC-467, 43 pp. Available from: NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.

CLYMENE DOLPHIN (Stenella clymene): Northern Gulf of Mexico Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

The Clymene dolphin is endemic to tropical and sub-tropical waters of the Atlantic (Leatherwood and Reeves 1983; Perrin and Mead 1994). Sightings of these animals in the northern Gulf of Mexico occur primarily over the deeper waters off the continental shelf (Mullin et al. 1994). Clymene dolphins were seen in the winter, spring and summer during GulfCet aerial surveys of the northern Gulf of Mexico during 1992 to 1998 (Hansen et al. 1996; Mullin and Hoggard 2000).

The Gulf of Mexico population is provisionally being considered a separate stock for management purposes, although there is currently no information to differentiate this stock from the Atlantic Ocean stock(s). Additional morphological, genetic and/or behavioral data are needed to provide further information on stock delineation.

POPULATION SIZE

Estimates of abundance were derived through the application of distance sampling analysis (Buckland et al. 2001) and the computer program DISTANCE (Thomas et al. 1998) to sighting data. From 1991 through 1994, line-transect vessel surveys were conducted during spring in the northern Gulf of Mexico from the 200 m isobath to the seaward extent of the U.S. Exclusive Economic Zone (EEZ) (Hansen et al. 1995). Survey effort-weighted estimated average abundance of Clymene dolphins for all surveys combined was 5,571 (CV=0.37) (Hansen et al. 1995). As recommended in the GAMMS Workshop Report (Wade and Angliss 1997), estimates older than 8 years are deemed unreliable, and therefore should not be used for PBR determinations.

Similar surveys were conducted during April/May from 1996 to 2001 (excluding 1998) in oceanic waters of

Figure 1. Distribution of Clymene's dolphin sightings from SEFSC shipboard spring surveys during spring between 1996-2001. All the on-effort sightings are shown, though not all were used to estimate abundance. Solid lines indicate the 100 m and 1,000 m isobaths and the dotted line indicates the offshore extent of the U.S. EEZ. the northern Gulf of Mexico, using NOAA ships Oregon II $(1996,1997,1999)$ and Gordon Gunter $(2000,2001)$. Estimates for all oceanic strata were summed, as survey effort was not uniformly distributed, to calculate a total estimate for the entire northern Gulf of Mexico oceanic waters (Figure 1; Mullin and Fulling 2004). Due to limited survey effort in any given year, survey effort was pooled across all years to develop an average abundance estimate.

The estimate of abundance for Clymene dolphins in oceanic waters, pooled from 1996 to 2001, is 17,355 (CV=0.65) (Mullin and Fulling 2004), which is the best available abundance estimate for this species in the northern Gulf of Mexico.

Minimum Population Estimate

The minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the log-normal distributed abundance estimate. This is equivalent to the 20th percentile of the log-normal distributed abundance estimate as specified by Wade and Angliss (1997). The best estimate of abundance for Clymene's dolphins is 17,355 (CV=0.65). The minimum population estimate for the northern Gulf of Mexico is 10,528 Clymene dolphins.

Current Population Trend

There are insufficient data to determine the population trends for this species. The pooled abundance estimate for 1996-2001 of $17,355(\mathrm{CV}=0.65)$ and that for 1991-1994 of $5,571(\mathrm{CV}=0.37)$ are not significantly different ($\mathrm{P}>0.05$), but due to the precision of the estimates, the power to detect a difference is low.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Current and maximum net productivity rates are unknown for this stock. For purposes of this assessment, the maximum net productivity rate was assumed to be 0.04 . This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive history (Barlow et al. 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential biological removal level (PBR) is the product of the minimum population size, one half the maximum net productivity rate and a recovery factor (MMPA Sec. 3.16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size is $10,528(\mathrm{CV}=0.65)$. The maximum productivity rate is 0.04 , the default value for cetaceans. The "recovery" factor, which accounts for endangered, depleted, threatened stocks, or stocks of unknown status relative to optimum sustainable population (OSP), is assumed to be 0.5 because the stock is of unknown status. PBR for the northern Gulf of Mexico Clymene dolphin is 105 .

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

There has been no reported fishing-related mortality of Clymene dolphins during 1998-2003 (Yeung 1999; Yeung 2001; Garrison 2003; Garrison and Richards 2004).

Fisheries Information

The level of past or current, direct, human-caused mortality of Clymene dolphins in the northern Gulf of Mexico is unknown. Pelagic swordfish, tunas and billfish are the targets of the longline fishery operating in the U.S. Gulf of Mexico. There were no reports of mortality or serious injury to Clymene dolphins by this fishery.

Other Mortality

There were 2 reported stranding events of Clymene dolphins in the Gulf of Mexico during 1999-2003. One animal stranded in Florida in July 2002, and 2 animals mass stranded in Louisiana in September 2003. There were no indications of human interactions for these stranded animals. Stranding data probably underestimate the extent of fishery-related mortality and serious injury because not all of the marine mammals which die or are seriously injured in fishery interactions wash ashore, not all that wash ashore are discovered, reported or investigated, nor will all of those that do wash ashore necessarily show signs of entanglement or other fishery-interaction. Finally, the level of technical expertise among stranding network personnel varies widely as does the ability to recognize signs of fishery interactions.

STATUS OF STOCK

The status of Clymene dolphins in the northern Gulf of Mexico, relative to OSP, is unknown. The species is not listed as threatened or endangered under the Endangered Species Act. There are insufficient data to determine the population trends for this species. The total fishery-related mortality and serious injury for this stock is unknown, but assumed to be less than 10% of the calculated PBR and can be considered to be insignificant and approaching zero mortality and serious injury rate. This is not a strategic stock because average annual fishery-related mortality and serious injury does not exceed PBR.

REFERENCES

Barlow, J., S. L. Swartz, T. C. Eagle and P. R. Wade. 1995. U.S. Marine mammal stock assessments: Guidelines for preparation, background, and a summary of the 1995 assessments. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-6, 73 pp.
Buckland, S. T., D. R. Anderson, K. P. Burnham, J. L. Laake, D. L. Borchers and L. Thomas. 2001. Introduction to distance sampling: Estimating abundance of biological populations. Oxford University Press, 432 pp .
Garrison, L. P. 2003. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2001-2002. NOAA Tech. Memo. NMFS-SEFSC-515, 52 pp.
Garrison, L. P. and P. M. Richards. 2004. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2003. NOAA Tech. Memo. NMFS-SEFSC-527, 57 pp.
Hansen, L. J., K. D. Mullin and C. L. Roden. 1995. Estimates of cetacean abundance in the northern Gulf of Mexico from vessel surveys. Southeast Fisheries Science Center, Miami Laboratory, Contribution No. MIA-94/95-25, 9 pp. Available from: NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.

Hansen, L. J., K. D. Mullin, T. A. Jefferson and G. P. Scott. 1996. Visual surveys aboard ships and aircraft. pp. 55-132. In: R.W. Davis and G.S. Fargion (eds.) Distribution and abundance of marine mammals in the north-central and western Gulf of Mexico: Final report. Volume II: Technical report. OCS Study MMS 96-0027. Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA.
Leatherwood, S. and R. R. Reeves. 1983. The Sierra Club handbook of whales and dolphins. Sierra Club Books, San Fransisco, 302 pp.
Mullin, K. D. and G. L. Fulling. 2004. Abundance of cetaceans in the oceanic northern Gulf of Mexico. Mar. Mammal Sci. 20(4):787-807.
Mullin, K. D., L. V. Higgins, T. A. Jefferson and L. J. Hansen. 1994. Sightings of the Clymene dolphin (Stenella clymene) in the Gulf of Mexico. Mar. Mammal Sci. 10(4):464-470.
Mullin, K. D. and W. Hoggard. 2000. Visual surveys of cetaceans and sea turtles from aircraft and ships. pp. 111-172. In: R. W. Davis, W. E. Evans and B. Würsig (eds.) Cetaceans, sea turles and seabirds in the northern Gulf of Mexico: Distribution, abundance and habitat associations. Volume II: Technical report. OCS Study MMS 2000003. U.S. Department of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA.
Perrin, W. F. and J. G. Mead. 1994. Clymene dolphin Stenella clymene (Gray, 1846). pp. 161-171. In: S. H. Ridgway and R. Harrison (eds.) Handbook of marine mammals, Vol. 5: The first book of dolphins. Academic Press, London, 416 pp .
Thomas, L., J. L. Laake, J. F. Derry, S. T. Buckland, D. L. Borchers, D. R. Anderson, K. P. Burnham, S. Strindberg, S. L. Hedley, F. F. C. Marques, J. H. Pollard and R. M. Fewster. 1998. Distance 3.5. Research Unit for Wildlife Population Assessment, University of St. Andrews, St. Andrews, UK.
Wade, P. R. and R. P. Angliss. 1997. Guidelines for assessing marine mammal stocks: Report of the GAMMS Workshop April 3-5, 1996, Seattle, WA. U.S. Dep. Commer., NOAA Tech Memo. NMFS-OPR-12, 93 pp.
Yeung, C. 1999. Estimates of marine mammal and marine turtle bycatch by the U.S. Atlantic pelagic longline fleet in 1998. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SEFSC-430, 26 pp. Available from: NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.
Yeung, C. 2001. Estimates of marine mammal and marine turtle bycatch by the U.S. Atlantic pelagic longline fleet in 1999-2000. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SEFSC-467, 43 pp. Available from: NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.

FRASER'S DOLPHIN (Lagenodelphis hosei): Northern Gulf of Mexico Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

Fraser's dolphin is distributed worldwide in tropical waters (Perrin et al. 1994). Sightings in the northern Gulf of Mexico occur in oceanic waters ($>200 \mathrm{~m}$) (Figure 1). Fraser's dolphins have been observed in the northern Gulf of Mexico during all seasons (Leatherwood et al. 1993; Hansen et al. 1996; Mullin and Hoggard 2000).

The Gulf of Mexico population is provisionally being considered 1 stock for management purposes, although there is currently no information to differentiate this stock from the Atlantic Ocean stock(s). Additional morphological, genetic and/or behavioral data are needed to provide further information on stock delineation.

POPULATION SIZE

Estimates of abundance were derived through the application of distance sampling analysis (Buckland et al. 2001) and the computer program DISTANCE (Thomas et al. 1998) to sighting data. From 1991 through 1994, line-transect vessel surveys were conducted during spring in the northern Gulf of Mexico from the 200 m isobath to the seaward extent of the U.S. Exclusive Economic Zone (EEZ) (Hansen et al. 1995). Survey effort-weighted estimated average abundance of Fraser's dolphins for all surveys combined was 127 (CV=0.90) (Hansen et al. 1995). As recommended in the GAMMS Workshop Report (Wade and Angliss 1997), estimates older than 8 years are deemed unreliable, and therefore should not be used for PBR determinations. Similar surveys were conducted during April/May from 1996 to 2001 (excluding 1998) in oceanic waters of the northern Gulf of Mexico, using NOAA ships Oregon II (1996, 1997, 1999) and Gordon Gunter (2000, 2001). Estimates for all

Figure 1. Distribution of Fraser's dolphin sightings from SEFSC spring vessel surveys during 1996-2001. All the on-effort sightings are shown, though not all were used to estimate abundance. Solid lines indicate the 100 m and $1,000 \mathrm{~m}$ isobaths and the dotted line indicates the offshore extent of the U.S. EEZ. oceanic strata were summed, as survey effort was not uniformly distributed, to calculate a total estimate for the entire northern Gulf of Mexico oceanic waters (Mullin and Fulling 2004). Due to limited survey effort in any given year, survey effort was pooled across all years to develop an average abundance estimate.

The estimate of abundance for Fraser's dolphins in oceanic waters, pooled from 1996 to 2001, is 726 (CV=0.70) (Mullin and Fulling 2004), which is the best available abundance estimate for this species in the northern Gulf of Mexico.

Minimum Population Estimate

The minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the log-normal distributed abundance estimate. This is equivalent to the 20th percentile of the log-normal distributed abundance estimate as specified by Wade and Angliss (1997). The best estimate of abundance for Fraser's dolphins is 726 (CV=0.70). The minimum population estimate for the northern Gulf of Mexico is 427 Fraser's dolphins.

Current Population Trend

There are insufficient data to determine the population trends for this species. The pooled abundance estimate for 1996-2001 of $726(\mathrm{CV}=0.70)$ and that for 1991-1994 of $127(\mathrm{CV}=0.89)$ are not significantly different $(\mathrm{P}>0.05)$, but due to the precision of the estimates, the power to detect a difference is low.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Current and maximum net productivity rates are unknown for this stock. For purposes of this assessment, the maximum net productivity rate was assumed to be 0.04 . This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive history (Barlow et al. 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential biological removal level (PBR) is the product of the minimum population size, one half the maximum net productivity rate and a recovery factor (MMPA Sec. 3.16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size is $427(C V=0.70)$. The maximum productivity rate is 0.04 , the default value for cetaceans. The "recovery" factor, which accounts for endangered, depleted, threatened stocks, or stocks of unknown status relative to optimum sustainable population (OSP), is assumed to be 0.5 because the stock is of unknown status. PBR for the northern Gulf of Mexico Fraser's dolphin is 4.3.

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

There has been no reported fishing-related mortality of a Fraser's dolphin during 1998-2003 (Yeung 1999, Yeung 2001; Garrison 2003; Garrison and Richards 2004).

Fisheries Information

The level of past or current, direct, human-caused mortality of Fraser's dolphins in the northern Gulf of Mexico is unknown. Pelagic swordfish, tunas and billfish are the targets of the longline fishery operating in the U.S. Gulf of Mexico. There were no reports of mortality or serious injury to Fraser's dolphins by this fishery.

Other Mortality

There was 1 reported stranding event of Fraser's dolphins in the Gulf of Mexico during 1999-2003. Ten animals mass stranded in Florida during April 2003. There was no evidence of human interaction for these stranded animals. Stranding data probably underestimate the extent of fishery-related mortality and serious injury because not all of the marine mammals which die or are seriously injured in fishery interactions wash ashore, not all that wash ashore are discovered, reported or investigated, nor will all of those that do wash ashore necessarily show signs of entanglement or other fishery-interaction. Finally, the level of technical expertise among stranding network personnel varies widely as does the ability to recognize signs of fishery interactions.

STATUS OF STOCK

The status of Fraser's dolphins in the northern Gulf of Mexico, relative to OSP, is unknown. The species is not listed as threatened or endangered under the Endangered Species Act. There are insufficient data to determine the population trends for this species. The total fishery-related mortality and serious injury for this stock is unknown, but assumed to be less than 10% of the calculated PBR and can be considered to be insignificant and approaching zero mortality and serious injury rate. This is not a strategic stock because average annual fishery-related mortality and serious injury does not exceed PBR.

REFERENCES

Barlow, J., S. L. Swartz, T. C. Eagle and P. R. Wade. 1995. U.S. Marine mammal stock assessments: Guidelines for preparation, background, and a summary of the 1995 assessments. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-6, 73 pp.
Buckland, S. T., D. R. Anderson, K. P. Burnham, J. L. Laake, D. L. Borchers and L. Thomas. 2001. Introduction to distance sampling: Estimating abundance of biological populations. Oxford University Press, 432 pp .
Garrison, L. P. 2003. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2001-2002. NOAA Tech. Memo. NMFS-SEFSC-515, 52 pp.
Garrison, L. P. and P. M. Richards. 2004. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2003. NOAA Tech. Memo. NMFS-SEFSC-527, 57 pp.
Hansen, L. J., K. D. Mullin and C. L. Roden. 1995. Estimates of cetacean abundance in the northern Gulf of Mexico from vessel surveys. Southeast Fisheries Science Center, Miami Laboratory, Contribution No. MIA-

94/95-25, 9 pp. Available from: NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.

Hansen, L. J., K. D. Mullin, T. A. Jefferson and G. P. Scott. 1996. Visual surveys aboard ships and aircraft. pp. 55-132. In: R. W. Davis and G. S. Fargion (eds.) Distribution and abundance of marine mammals in the north-central and western Gulf of Mexico: Final report. Volume II: Technical report. OCS Study MMS 96-0027. Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA.
Leatherwood, S., T. A. Jefferson, J. C. Norris, W. E. Stevens, L. J. Hansen and K. D. Mullin. 1993. Occurrence and sounds of Fraser's dolphin in the Gulf of Mexico. Texas J. Sci. 45(4): 349-354.
Mullin, K. D. and G. L. Fulling. 2004. Abundance of cetaceans in the oceanic northern Gulf of Mexico. Mar. Mammal Sci. 20(4):787-807.
Mullin, K. D. and W. Hoggard. 2000. Visual surveys of cetaceans and sea turtles from aircraft and ships. pp. 111-172. In: R. W. Davis, W. E. Evans and B. Würsig (eds.) Cetaceans, sea turtles and seabirds in the northern Gulf of Mexico: Distribution, abundance and habitat associations. Volume II: Technical report. OCS Study MMS 960027. Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA.

Perrin, W. F., S. Leatherwood and A. Collet. 1994. Fraser's dolphin Lagenodelphis hosei (Fraser 1956). pp. 225-240. In: S. H. Ridgway and R. Harrison (eds.) Handbook of marine mammals, Vol. 5: The first book of dolphins. Academic Press, London, 416 pp.
Thomas, L., J. L. Laake, J. F. Derry, S. T. Buckland, D. L. Borchers, D. R. Anderson, K. P. Burnham, S. Strindberg, S. L. Hedley, F. F. C. Marques, J. H. Pollard and R. M. Fewster. 1998. Distance 3.5. Research Unit for Wildlife Population Assessment, University of St. Andrews, St. Andrews, UK.
Wade, P. R. and R. P. Angliss. 1997. Guidelines for assessing marine mammal stocks: Report of the GAMMS Workshop April 3-5, 1996, Seattle, WA. U.S. Dep. Commer., NOAA Tech Memo. NMFS-OPR-12, 93 pp.
Yeung, C. 1999. Estimates of marine mammal and marine turtle bycatch by the U.S. Atlantic pelagic longline fleet in 1998. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SEFSC-430, 26 pp. Available from: NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.
Yeung, C. 2001. Estimates of marine mammal and marine turtle bycatch by the U.S. Atlantic pelagic longline fleet in 1999-2000. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SEFSC-467, 43 pp. Available from: NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.

KILLER WHALE (Orcinus orca): Northern Gulf of Mexico Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

The killer whale is distributed worldwide from tropical to polar regions (Leatherwood and Reeves 1983). Sightings of these animals in the northern Gulf of Mexico during 1951-1995 occurred primarily in oceanic waters ranging from 256 to $2,652 \mathrm{~m}$ (averaging 1,242m) in the north-central Gulf of Mexico (O'Sullivan and Mullin 1997). Despite extensive shelf surveys (O'Sullivan and Mullin 1997), no killer whales have been reported on the Gulf of Mexico shelf waters other than those reported in 1921, 1985 and 1987 by Katona et al. (1988). Killer whales were seen only in the summer during GulfCet aerial surveys of the northern Gulf of Mexico between 1992 and 1998 (Hansen et al. 1996; Mullin and Hoggard 2000), were reported from May through June during vessel surveys (Mullin and Fulling 2004) and recorded in May, August, September and November by earlier opportunistic ship-based sources (O'Sullivan and Mullin 1997).

Different stocks were identified in the northeastern Pacific based on morphological, behavioral and genetic characteristics (Bigg et al. 1990; Hoelzel 1991). There is no information on stock differentiation for the Atlantic Ocean population, although an analysis of vocalizations of killer whales from Iceland and Norway indicated that whales from these areas may represent different stocks (Moore et al. 1988). Thirty-two individuals have been photographically identified to date, with 6 individuals having been sighted over a 5 year period, and 1 whale resighted over 10 years. Three animals have been sighted over a range of more than 1,100km (O'Sullivan and Mullin 1997). The Gulf of Mexico population is provisionally being considered a separate stock for management purposes, although there is currently no information to differentiate this stock from the Atlantic Ocean stock(s). Additional morphological, genetic and/or behavioral data are needed to provide further information on stock delineation.

POPULATION SIZE

Estimates of abundance were derived through the application of distance sampling analysis (Buckland et al. 2001) and the computer program DISTANCE (Thomas et al. 1998) to sighting data. From 1991 through 1994, line-transect vessel surveys were conducted during summer in the northern Gulf of Mexico from the 200 m isobath to the seaward extent of the U.S. Exclusive Economic Zone (EEZ) (Hansen et al. 1995). Survey effort-weighted estimated average abundance of killer whales for all surveys combined was 277 (CV=0.42) (Hansen et al. 1995). As recommended in the GAMMS Workshop Report (Wade and Angliss 1997), estimates older than 8 years are deemed unreliable, and therefore should not be used for PBR determinations.

Similar surveys were conducted during April/May from 1996 to 2001 (excluding 1998) in oceanic waters of

Figure 1. Distribution of killer whale sightings from SEFSC spring vessel surveys during 1996-2001. All the on-effort sightings are shown, though not all were used to estimate abundance. Solid lines indicate the 100 m and 1,000 m isobaths and the dotted line indicates the offshore extent of the U.S. EEZ. the northern Gulf of Mexico, using NOAA ships Oregon II $(1996,1997,1999)$ and Gordon Gunter $(2000,2001)$. Estimates for all oceanic strata were summed, as survey effort was not uniformly distributed, to calculate a total estimate for the entire northern Gulf of Mexico oceanic waters (Figure 1; Mullin and Fulling 2004). Due to limited survey effort in any given year, survey effort was pooled across all years to develop an average abundance estimate.

The estimate of abundance for killer whales in oceanic waters, pooled from 1996 to 2001, is 133 (CV=0.49) (Mullin and Fulling 2004), which is the best available abundance estimate for this species in the northern Gulf of Mexico.

Minimum Population Estimate

The minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the log-normal distributed abundance estimate. This is equivalent to the 20th percentile of the log-normal distributed abundance estimate as specified by Wade and Angliss (1997). The best estimate of abundance for killer whales is 133 (CV=0.49). The minimum population estimate for the northern Gulf of Mexico is 90 killer whales.

Current Population Trend

There are insufficient data to determine the population trends for this species. The pooled abundance estimate for 1996-2001 of $133(\mathrm{CV}=0.49)$ and that for 1991-1994 of $277(\mathrm{CV}=0.42)$ are not significantly different $(\mathrm{P}>0.05)$, but due to the precision of the estimates, the power to detect a difference is low.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Current and maximum net productivity rates are unknown for this stock. For purposes of this assessment, the maximum net productivity rate was assumed to be 0.04 . This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive history (Barlow et al. 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential biological removal level (PBR) is the product of the minimum population size, one half the maximum net productivity rate and a recovery factor (MMPA Sec. 3.16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size is $90(\mathrm{CV}=0.40)$. The maximum productivity rate is 0.04 , the default value for cetaceans. The "recovery" factor, which accounts for endangered, depleted, threatened stocks, or stocks of unknown status relative to optimum sustainable population (OSP), is assumed to be 0.5 because the stock is of unknown status. PBR for the northern Gulf of Mexico killer whale is 0.9 .

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

There has been no reported fishing-related mortality of a killer whale during 1998-2003 (Yeung 1999; Yeung 2001; Garrison 2003; Garrison and Richards 2004).

Fisheries Information

The level of past or current, direct, human-caused mortality of killer whales in the northern Gulf of Mexico is unknown. Pelagic swordfish, tunas and billfish are the targets of the longline fishery operating in the U.S. Gulf of Mexico. There were no reports of mortality or serious injury to killer whales by this fishery.

Other Mortality

There were no reported strandings of killer whales in the Gulf of Mexico during 1999-2003.
Stranding data probably underestimate the extent of fishery-related mortality and serious injury because not all of the marine mammals which die or are seriously injured in fishery interactions wash ashore, not all that wash ashore are discovered, reported or investigated, nor will all of those that do wash ashore necessarily show signs of entanglement or other fishery interaction. Finally, the level of technical expertise among stranding network personnel varies widely as does the ability to recognize signs of fishery interactions.

STATUS OF STOCK

The status of killer whales in the northern Gulf of Mexico, relative to OSP, is unknown. The species is not listed as threatened or endangered under the Endangered Species Act. There are insufficient data to determine the population trends for this species. The total fishery-related mortality and serious injury for this stock is unknown, but assumed to be less than 10% of the calculated PBR and can be considered to be insignificant and approaching zero mortality and serious injury rate. This is not a strategic stock because average annual fishery-related mortality and serious injury does not exceed PBR.

REFERENCES

Barlow, J., S.L. Swartz, T.C. Eagle and P.R. Wade. 1995. U.S. Marine mammal stock assessments: Guidelines for preparation, background, and a summary of the 1995 assessments. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-6, 73 pp .
Bigg, M.A., P.F. Olesiuk, G.M. Ellis, J.K.B. Ford and K.C. Balcomb. 1990. Social organization and genealogy of resident killer whales (Orcinus orca) in the coastal waters of British Columbia and Washington State. pp. 383-405. In: P.S. Hammond, S.A. Mizroch and G.P. Donovan (eds.) Individual recognition of cetaceans: Use of
photoidentification and other techniques to estimate population parameters. Rep. int. Whal. Commn (Special Issue) 12, Cambridge, 440 pp .
Buckland, S.T., D.R. Anderson, K.P. Burnham, J.L. Laake, D.L. Borchers and L. Thomas. 2001. Introduction to distance sampling: estimating abundance of biological populations. Oxford University Press, 432 pp .
Garrison, L.P. 2003. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2001-2002. NOAA Tech. Memo. NMFS-SEFSC-515, 52 pp.
Garrison, L.P. and P.M. Richards. 2004. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2003. NOAA Tech. Memo. NMFS-SEFSC-527, 57 pp.
Hansen, L.J., K.D. Mullin and C.L. Roden. 1995. Estimates of cetacean abundance in the northern Gulf of Mexico from vessel surveys. Southeast Fisheries Science Center, Miami Laboratory, Contribution No. MIA-94/95-25, 9 pp. Available from: NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.
Hansen, L.J., K.D. Mullin, T.A. Jefferson and G. P. Scott. 1996. Visual surveys aboard ships and aircraft. pp. 55-132. In: R. W. Davis and G. S. Fargion (eds.) Distribution and abundance of marine mammals in the north-central and western Gulf of Mexico: Final report. Volume II: Technical report. OCS Study MMS 96- 0027. Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA.
Hoelzel, A.R. 1991. Analysis of regional mitochondrial DNA variation in the killer whale; implications for conservation. pp. 225-233. In: A. R. Hoelzel (ed.) Genetic ecology of whales and dolphins. Rep. int. Whal. Commn (Special Issue) 13, Cambridge, 311 pp .
Katona, S.K., J.A. Beard, P.E. Girton, and F. Wenzel. 1988. Killer whales (Orcinus orca) from the Bay of Fundy to the equator, including the Gulf of Mexico. Rit Fiskideild. 11:205-224.
Leatherwood, S. and R.R. Reeves. 1983. The Sierra Club handbook of whales and dolphins. Sierra Club Books, San Francisco, CA, 302 pp.
Moore, S.E., J.K. Francine, A.E. Bowles and K.B. Ford. 1988. Analysis of calls of killer whales, Orcinus orca, from Iceland and Norway. Rit. Fiskideild. 11:225-250.
Mullin, K.D. and G.L. Fulling. 2004. Abundance of cetaceans in the oceanic northern Gulf of Mexico. Mar. Mammal Sci. 20(4):787-807.
Mullin, K.D. and W. Hoggard. 2000. Visual surveys of cetaceans and sea turtles from aircraft and ships. pp. 111-172. In: R.W. Davis, W.E. Evans and B. Würsig (eds.) Cetaceans, sea turtles and seabirds in the northern Gulf of Mexico: Distribution, abundance and habitat associations. Volume II: Technical report. OCS Study MMS 96-0027. Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA.
O'Sullivan, S. and K.D. Mullin. 1997. Killer whales (Orcinus orca) in the northern Gulf of Mexico. Mar. Mammal Sci. 13(1):141-147.
Thomas, L., J.L. Laake, J.F. Derry, S.T. Buckland, D.L. Borchers, D.R. Anderson, K.P. Burnham, S. Strindberg, S.L. Hedley, F.F.C. Marques, J.H. Pollard and R.M. Fewster. 1998. Distance 3.5. Research Unit for Wildlife Population Assessment, University of St. Andrews, St. Andrews, UK.
Wade, P.R. and R.P. Angliss. 1997. Guidelines for assessing marine mammal stocks: Report of the GAMMS Workshop April 3-5, 1996, Seattle, WA. U.S. Dep. Commer., NOAA Tech Memo. NMFS-OPR-12, 93 pp.
Yeung, C. 1999. Estimates of marine mammal and marine turtle bycatch by the U.S. Atlantic pelagic longline fleet in 1998. U.S. Dep. Commer., NOAA Tech. Memo. NMFS_SEFSC_430, 26 pp. Available from: NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.
Yeung, C. 2001. Estimates of marine mammal and marine turtle bycatch by the U.S. Atlantic pelagic longline fleet in 1999-2000. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SEFSC-467, 43 pp. Available from: NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.

FALSE KILLER WHALE (Pseudorca crassidens): Northern Gulf of Mexico Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

The false killer whale is distributed worldwide throughout warm temperate and tropical oceans (Leatherwood and Reeves 1983). Sightings of this species in the northern Gulf of Mexico occur in oceanic waters (Figure 1; Mullin and Fulling 2004). False killer whales were seen only in the spring and summer during GulfCet aerial surveys of the northern Gulf of Mexico between 1992 and 1998 (Hansen et al. 1996; Mullin and Hoggard 2000) and in the spring during vessel surveys (Mullin and Fulling 2004).

The Gulf of Mexico population is provisionally being considered 1 stock for management purposes, although there is currently no information to differentiate this stock from the Atlantic Ocean stock(s). Additional morphological, genetic and/or behavioral data are needed to provide further information on stock delineation.

POPULATION SIZE

Estimates of abundance were derived through the application of distance sampling analysis (Buckland et al. 2001) and the computer program DISTANCE (Thomas et al. 1998) to sighting data. From 1991 through 1994, line-transect vessel surveys were conducted during spring in the northern Gulf of Mexico from the 200 m isobath to the seaward extent of the U.S. Exclusive Economic Zone (EEZ) (Hansen et al. 1995). Survey effort-weighted estimated average abundance of false killer whales for all surveys combined was 381 ($\mathrm{CV}=0.62$) (Hansen et al. 1995). As recommended in the GAMMS Workshop Report (Wade and Angliss 1997), estimates older than 8 years are deemed unreliable, and therefore should not be used for PBR determinations.

Similar surveys were conducted

Figure 1. Distribution of false killer whale sightings from SEFSC spring vessel surveys during 1996-2001. All the on-effort sightings are shown, though not all were used to estimate abundance. Solid lines indicate the 100 m and $1,000 \mathrm{~m}$ isobaths and the dotted line indicates the offshore extent of the U.S. EEZ. during April/May from 1996 to 2001 (excluding 1998) in oceanic waters of the northern Gulf of Mexico, using NOAA ships Oregon II (1996, 1997, 1999) and Gordon Gunter (2000, 2001). Estimates for all oceanic strata were summed, as survey effort was not uniformly distributed, to calculate a total estimate for the entire northern Gulf of Mexico oceanic waters (Figure 1; Mullin and Fulling 2004). Due to limited survey effort in any given year, survey effort was pooled across all years to develop an average abundance estimate.

The estimate of abundance for false killer whales in oceanic waters, pooled from 1996 to 2001, is 1,038 (CV=0.71) (Mullin and Fulling 2004), which is the best available abundance estimate for this species in the northern Gulf of Mexico.

Minimum Population Estimate

The minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the log-normal distributed abundance estimate. This is equivalent to the 20th percentile of the log-normal distributed abundance estimate as specified by Wade and Angliss (1997). The best estimate of abundance for false killer whales is 1,038 (CV=0.71). The minimum population estimate for the northern Gulf of Mexico is 606 false killer whales.

Current Population Trend

There are insufficient data to determine the population trends for this species. The pooled abundance estimate for 1996-2001 of $1,038(\mathrm{CV}=0.71)$ and that for 1991-1994 of $381(\mathrm{CV}=0.62)$ are not significantly different $(\mathrm{P}>0.05)$, but due to the precision of the estimates, the power to detect a difference is low.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Current and maximum net productivity rates are unknown for this stock. For purposes of this assessment, the maximum net productivity rate was assumed to be 0.04 . This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive history (Barlow et al. 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential biological removal level (PBR) is the product of the minimum population size, one half the maximum net productivity rate and a recovery factor (MMPA Sec. 3.16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size is $606(\mathrm{CV}=0.71)$. The maximum productivity rate is 0.04 , the default value for cetaceans. The "recovery" factor, which accounts for endangered, depleted, threatened stocks, or stocks of unknown status relative to optimum sustainable population (OSP), is assumed to be 0.5 because the stock is of unknown status. PBR for the northern Gulf of Mexico false killer whale is 6.1 .

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

There has been 1 reported fishing-related mortality of a false killer whale during 1998-2003, which was a stranding in 1999 classified as likely caused by fishery interactions or other human-related causes due to mutilation of limbs (Yeung 1999; Yeung 2001; Garrison 2003; Garrison and Richards 2004).

Fisheries Information

The level of past or current, direct, human-caused mortality of false killer whales in the northern Gulf of Mexico is unknown. Pelagic swordfish, tunas and billfish are the targets of the longline fishery operating in the U.S. Gulf of Mexico. There were no reports of mortality or serious injury to false killer whales by this fishery.

Other Mortality

There was 1 reported stranding of a false killer whale in the Gulf of Mexico during 1999-2003. This animal, which stranded in Alabama in 1999, was classified as likely caused by fishery interactions or other human-related causes. The fins and flukes of the animal had been amputated. Stranding data probably underestimate the extent of fishery-related mortality and serious injury because not all of the marine mammals which die or are seriously injured in fishery interactions wash ashore, not all that wash ashore are discovered, reported or investigated, nor will all of those that do wash ashore necessarily show signs of entanglement or other fishery interaction. Finally, the level of technical expertise among stranding network personnel varies widely as does the ability to recognize signs of fishery interactions.

STATUS OF STOCK

The status of false killer whales in the northern Gulf of Mexico, relative to OSP, is unknown. The species is not listed as threatened or endangered under the Endangered Species Act. There are insufficient data to determine the population trends for this species. The total fishery-related mortality and serious injury for this stock is unknown, but assumed to be less than 10% of the calculated PBR and can be considered to be insignificant and approaching zero mortality and serious injury rate. This is not a strategic stock because average annual fishery-related mortality and serious injury does not exceed PBR.

REFERENCES

Barlow, J., S. L. Swartz, T. C. Eagle and P. R. Wade. 1995. U.S. Marine mammal stock assessments: Guidelines for preparation, background, and a summary of the 1995 assessments. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-6, 73 pp.
Buckland, S. T., D. R. Anderson, K. P. Burnham, J. L. Laake, D. L. Borchers and L. Thomas. 2001. Introduction to distance sampling: Estimating abundance of biological populations. Oxford University Press, 432 pp .
Garrison, L. P. 2003. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2001-2002. NOAA Tech. Memo. NMFS-SEFSC-515, 52 pp.
Garrison, L. P. and P. M. Richards. 2004. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2003. NOAA Tech. Memo. NMFS-SEFSC-527, 57 pp.

Hansen, L. J., K. D. Mullin and C. L. Roden. 1995. Estimates of cetacean abundance in the northern Gulf of Mexico from vessel surveys. Southeast Fisheries Science Center, Miami Laboratory, Contribution No. MIA-94/95-25, 9 pp. Available from: NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.
Hansen, L. J., K. D. Mullin, T. A. Jefferson and G. P. Scott. 1996. Visual surveys aboard ships and aircraft. pp. 55-132. In: R. W. Davis and G. S. Fargion (eds.) Distribution and abundance of marine mammals in the north-central and western Gulf of Mexico: Final report. Volume II: Technical report. OCS Study MMS 96-0027. Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA.
Leatherwood, S. and R. R. Reeves. 1983. The Sierra Club handbook of whales and dolphins. Sierra Club Books, San Francisco, 302 pp.
Mullin, K. D. and G. L. Fulling. 2004. Abundance of cetaceans in the oceanic northern Gulf of Mexico. Mar. Mammal Sci. 20(4):787-807.
Mullin, K. D. and W. Hoggard. 2000. Visual surveys of cetaceans and sea turtles from aircraft and ships. pp. 111-172. In: R. W. Davis, W. E. Evans and B. Würsig (eds.) Cetaceans, sea turtles and seabirds in the northern Gulf of Mexico: Distribution, abundance and habitat associations. Volume II: Technical report. OCS Study MMS 960027. Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA.

Thomas, L., J. L. Laake, J. F. Derry, S. T. Buckland, D. L. Borchers, D. R. Anderson, K. P. Burnham, S. Strindberg, S. L. Hedley, F. F. C. Marques, J. H. Pollard and R. M. Fewster. 1998. Distance 3.5. Research Unit for Wildlife Population Assessment, University of St. Andrews, St. Andrews, UK.
Wade, P. R. and R. P. Angliss. 1997. Guidelines for assessing marine mammal stocks: Report of the GAMMS Workshop April 3-5, 1996, Seattle, WA. U.S. Dep. Commer., NOAA Tech Memo. NMFS-OPR-12, 93 pp.
Yeung, C. 1999. Estimates of marine mammal and marine turtle bycatch by the U.S. Atlantic pelagic longline fleet in 1998. U.S. Dep. Commer., NOAA Tech. Memo. NMFS_SEFSC_430, 26 pp. Available from: NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.
Yeung, C. 2001. Estimates of marine mammal and marine turtle bycatch by the U.S. Atlantic pelagic longline fleet in 1999-2000. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SEFSC-467, 43 pp. Available from: NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.

PYGMY KILLER WHALE (Feresa attenuata): Northern Gulf of Mexico Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

The pygmy killer whale is distributed worldwide in tropical and subtropical waters (Ross and Leatherwood 1994). Sightings of these animals in the northern Gulf of Mexico occur in oceanic waters (Mullin and Fulling 2004). Sightings of pygmy killer whales were documented in all seasons during GulfCet aerial surveys of the northern Gulf of Mexico between 1992 and 1998 (Hansen et al. 1996; Mullin and Hoggard 2000).

The Gulf of Mexico population is provisionally being considered a separate stock for management purposes, although there is currently no information to differentiate this stock from the Atlantic Ocean stock(s). Additional morphological, genetic and/or behavioral data are needed to provide further information on stock delineation.

POPULATION SIZE

Estimates of abundance were derived through the application of distance sampling analysis (Buckland et al. 2001) and the computer program DISTANCE (Thomas et al. 1998) to sighting data. From 1991 through 1994, line-transect vessel surveys were conducted during spring in the northern Gulf of Mexico from the 200 m isobath to the seaward extent of the U.S. Exclusive Economic Zone (EEZ) (Hansen et al. 1995). Survey effort-weighted estimated average abundance of pygmy killer whales for all surveys combined was 518 (CV=0.81) (Hansen et al. 1995). As recommended in the GAMMS Workshop Report (Wade and Angliss 1997), estimates older than 8 years are deemed unreliable, and therefore should not be used for PBR determinations.

Figure 1. Distribution of pygmy killer whale sightings from SEFSC spring vessel surveys during 1996-2001. All the on-effort sightings are shown, though not all were used to estimate abundance. Solid lines indicate the 100 m and $1,000 \mathrm{~m}$ isobaths and the dotted line indicates the offshore extent of the U.S. EEZ.

Similar surveys were conducted during April/May from 1996 to 2001 (excluding 1998) in oceanic waters of the northern Gulf of Mexico, using NOAA ships Oregon II (1996, 1997 , 1999) and Gordon Gunter $(2000,2001)$. Estimates for all oceanic strata were summed, as survey effort was not uniformly distributed, to calculate a total estimate for the entire northern Gulf of Mexico oceanic waters (Figure 1; Mullin and Fulling 2004). Due to limited survey effort in any given year, survey effort was pooled across all years to develop an average abundance estimate.

The estimate of abundance for pygmy killer whales in oceanic waters, pooled from 1996 to 2001, is 408 (CV=0.60) (Mullin and Fulling 2004), which is the best available abundance estimate for this species in the northern Gulf of Mexico.

Minimum Population Estimate

The minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the log-normal distributed abundance estimate. This is equivalent to the 20th percentile of the log-normal distributed abundance estimate as specified by Wade and Angliss (1997). The best estimate of abundance for pygmy killer whales is 408 (CV=0.60). The minimum population estimate for the northern Gulf of Mexico is 256 pygmy killer whales.

Current Population Trend

There are insufficient data to determine the population trends for this species. The pooled abundance estimate for 1996-2001 of $408(\mathrm{CV}=0.60)$ and that for 1991-1994 of $518(\mathrm{CV}=0.81)$ are not significantly different $(\mathrm{P}>0.05)$, but due to the precision of the estimates, the power to detect a difference is low.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Current and maximum net productivity rates are unknown for this stock. For purposes of this assessment, the maximum net productivity rate was assumed to be 0.04 . This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive history (Barlow et al. 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential biological removal level (PBR) is the product of the minimum population size, one half the maximum net productivity rate and a recovery factor (MMPA Sec. 3.16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size is $256(\mathrm{CV}=0.60)$. The maximum productivity rate is 0.04 , the default value for cetaceans. The "recovery" factor, which accounts for endangered, depleted, threatened stocks, or stocks of unknown status relative to optimum sustainable population (OSP), is assumed to be 0.5 because the stock is of unknown status. PBR for the northern Gulf of Mexico pygmy killer whale is 2.6 .

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

There has been no reported fishing-related mortality of a pygmy killer whale during 1998-2003 (Yeung 1999; Yeung 2001; Garrison 2003; Garrison and Richards 2004).

Fisheries Information

The level of past or current, direct, human-caused mortality of pygmy killer whales in the northern Gulf of Mexico is unknown. There has historically been some take of this species in small cetacean fisheries in the Caribbean (Caldwell and Caldwell 1971). Pelagic swordfish, tunas and billfish are the targets of the longline fishery operating in the U.S. Gulf of Mexico. There were no reports of mortality or serious injury to pygmy killer whales by this fishery.

Other Mortality

There was 1 reported stranding of a pygmy killer whale in the Gulf of Mexico during 1999-2003. There was no evidence of human interaction for this stranded animal. Stranding data probably underestimate the extent of fisheryrelated mortality and serious injury because not all of the marine mammals which die or are seriously injured in fishery interactions wash ashore, not all that wash ashore are discovered, reported or investigated, nor will all of those that do wash ashore necessarily show signs of entanglement or other fishery interaction. Finally, the level of technical expertise among stranding network personnel varies widely as does the ability to recognize signs of fishery interactions.

STATUS OF STOCK

The status of pygmy killer whales in the northern Gulf of Mexico, relative to OSP, is unknown. The species is not listed as threatened or endangered under the Endangered Species Act. There are insufficient data to determine the population trends for this species. The total fishery-related mortality and serious injury for this stock is unknown, but assumed to be less than 10% of the calculated PBR and can be considered to be insignificant and approaching zero mortality and serious injury rate. This is not a strategic stock because average annual fishery-related mortality and serious injury does not exceed PBR.

REFERENCES

Barlow, J., S. L. Swartz, T. C. Eagle and P. R. Wade. 1995. U.S. Marine mammal stock assessments: Guidelines for preparation, background, and a summary of the 1995 assessments. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-6, 73 pp.
Buckland, S. T., D. R. Anderson, K. P. Burnham, J. L. Laake, D. L. Borchers and L. Thomas. 2001. Introduction to distance sampling: Estimating abundance of biological populations. Oxford University Press, 432 pp .
Caldwell, D. K. and M. C. Caldwell. 1971. The pygmy killer whale, Feresa attenuata, in the western Atlantic, with a summary of world records. J. Mamm. 52:206-209.
Garrison, L. P. 2003. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2001-2002. NOAA Tech. Memo. NMFS-SEFSC-515, 52 pp.
Garrison, L. P. and P. M. Richards. 2004. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2003. NOAA Tech. Memo. NMFS-SEFSC-527, 57 pp.

Hansen, L. J., K. D. Mullin and C. L. Roden. 1995. Estimates of cetacean abundance in the northern Gulf of Mexico from vessel surveys. Southeast Fisheries Science Center, Miami Laboratory, Contribution No. MIA-94/95-25, 9 pp. Available from: NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.
Hansen, L. J., K. D. Mullin, T. A. Jefferson and G. P. Scott. 1996. Visual surveys aboard ships and aircraft. pp. 55-132. In: R.W. Davis and G.S. Fargion (eds.) Distribution and abundance of marine mammals in the north-central and western Gulf of Mexico: Final report. Volume II: Technical report. OCS Study MMS 96-0027. Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA.
Mullin, K. D. and G. L. Fulling. 2004. Abundance of cetaceans in the oceanic northern Gulf of Mexico. Mar. Mammal Sci. 20(4):787-807.
Mullin, K. D. and W. Hoggard. 2000. Visual surveys of cetaceans and sea turtles from aircraft and ships. pp. 111-172. In: R. W. Davis, W. E. Evans and B. Würsig (eds.) Cetaceans, sea turtles and seabirds in the northern Gulf of Mexico: Distribution, abundance and habitat associations. Volume II: Technical report. OCS Study MMS 2000003. U.S. Department of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA.
Ross, G. J. B. and S. Leatherwood. 1994. Pygmy killer whale Feresa attenuata (Gray, 1874). pp. 387-404. In: S. H. Ridgway and R. Harrison (eds.) Handbook of marine mammals, Vol. 5: The first book of dolphins. Academic Press, London, 416 pp.
Thomas, L., J. L. Laake, J. F. Derry, S. T. Buckland, D. L. Borchers, D. R. Anderson, K. P. Burnham, S. Strindberg, S. L. Hedley, F. F. C. Marques, J. H. Pollard and R. M. Fewster. 1998. Distance 3.5. Research Unit for Wildlife Population Assessment, University of St. Andrews, St. Andrews, UK.
Wade, P. R. and R. P. Angliss. 1997. Guidelines for assessing marine mammal stocks: Report of the GAMMS Workshop April 3-5, 1996, Seattle, WA. U.S. Dep. Commer., NOAA Tech Memo. NMFS-OPR-12, 93 pp.
Yeung, C. 1999. Estimates of marine mammal and marine turtle bycatch by the U.S. Atlantic pelagic longline fleet in 1998. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SEFSC-430, 26 pp. Available from: NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.
Yeung, C. 2001. Estimates of marine mammal and marine turtle bycatch by the U.S. Atlantic pelagic longline fleet in 1999-2000. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SEFSC-467, 43 pp. Available from: NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.

DWARF SPERM WHALE (Kogia sima): Northern Gulf of Mexico Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

The dwarf sperm whale appears to be distributed worldwide in temperate to tropical waters (Caldwell and Caldwell 1989). Sightings of these animals in the northern Gulf of Mexico occur primarily in oceanic waters (Figure 1; Mullin et al. 1991; Mullin and Fulling 2004). Dwarf sperm whales and pygmy sperm whales (Kogia breviceps) are difficult to differentiate at sea, and sightings of either species are usually categorized as Kogia spp. Sightings of this category were documented in all seasons during GulfCet aerial surveys of the northern Gulf of Mexico from 1992 to 1998 (Hansen et al. 1996; Mullin and Hoggard 2000). The difficulty in sighting dwarf and pygmy sperm whales may be exacerbated by their avoidance reaction towards ships, and change in behavior towards approaching survey aircraft (Würsig et al. 1998).

In a study using hematological and stable-isotope data, Barros et al. (1998) speculated that dwarf sperm whales may have a more pelagic distribution than pygmy sperm whales and/or dive deeper during feeding bouts. The Gulf of Mexico population is provisionally being considered a separate stock for management purposes, although there is currently no information to differentiate this stock from the Atlantic Ocean stock(s). Additional morphological, genetic and/or behavioral data are needed to provide further information on stock delineation.

POPULATION SIZE

Estimates of abundance were derived through the application of distance sampling analysis (Buckland et al. 2001) and the computer program DISTANCE (Thomas et al. 1998) to sighting data. From 1991 through 1994, line-transect vessel surveys were conducted during spring in the northern Gulf of Mexico from the 200 m isobath to the seaward extent of the U.S. Exclusive Economic Zone (EEZ) (Hansen et al. 1995). Survey effort-weighted estimated average abundance of dwarf and pygmy sperm whales for all surveys combined was 547 (CV =0.28) (Hansen et al. 1995). As recommended in the GAMMS Workshop Report (Wade and Angliss 1997), estimates older than 8 years are deemed unreliable, and therefore should not be used for PBR determinations.

Similar surveys were

Figure 1. Distribution of dwarf and pygmy sperm whale sightings from SEFSC spring vessel surveys during 1996-2001. All the on-effort sightings are shown, though not all were used to estimate abundance. Solid lines indicate the 100 m and $1,000 \mathrm{~m}$ isobaths and the dotted line indicates the offshore extent of the U.S. EEZ. conducted during April/May from 1996 to 2001 (excluding 1998) in oceanic waters of the northern Gulf of Mexico, using NOAA ships Oregon II $(1996,1997,1999)$ and Gordon Gunter (2000, 2001). Estimates for all oceanic strata were summed, as survey effort was not uniformly distributed, to calculate a total estimate for the entire northern Gulf of Mexico oceanic waters (Figure 1; Mullin and Fulling 2004). Due to limited survey effort in any given year, survey effort was pooled across all years to develop an average abundance estimate.

The estimate of abundance for dwarf and pygmy sperm whales in oceanic waters, pooled from 1996 to 2001, is 742 ($\mathrm{CV}=0.29$) (Mullin and Fulling 2004), which is the best available abundance estimate for these species in the northern Gulf of Mexico. A separate estimate of abundance for dwarf sperm whales cannot be estimated due to uncertainty of species identification at sea.

Minimum Population Estimate

The minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the log-normal distributed abundance estimate. This is equivalent to the 20th percentile of the log-normal distributed abundance estimate as specified by Wade and Angliss (1997). The best estimate of abundance for dwarf and pygmy sperm whales is 742 ($\mathrm{CV}=0.29$). It is not possible to determine the minimum population estimate for only dwarf sperm whales. The minimum population estimate for the northern Gulf of Mexico is 584 dwarf and pygmy sperm whales.

Current Population Trend

There are insufficient data to determine the population trends for this species.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Current and maximum net productivity rates are unknown for this stock. For purposes of this assessment, the maximum net productivity rate was assumed to be 0.04 . This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive history (Barlow et al. 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential biological removal level (PBR) is the product of the minimum population size, one half the maximum net productivity rate and a recovery factor (MMPA Sec. 3.16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size for dwarf and pygmy sperm whales is $574(\mathrm{CV}=0.29)$. The maximum productivity rate is 0.04 , the default value for cetaceans. The "recovery" factor, which accounts for endangered, depleted, threatened stocks, or stocks of unknown status relative to optimum sustainable population (OPSP), is assumed to be 0.5 because the stock is of unknown status. PBR for the northern Gulf of Mexico dwarf and pygmy sperm whales is 5.8. It is not possible to determine the PBR for only dwarf sperm whales.

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

There has been no reported fishing-related mortality of dwarf or pygmy sperm whales during 1998-2003 (Yeung 1999; Yeung 2001; Garrison 2003; Garrison and Richards 2004).

Fisheries Information

The level of past or current, direct, human-caused mortality of dwarf sperm whales in the northern Gulf of Mexico is unknown. Pelagic swordfish, tunas and billfish are the targets of the longline fishery operating in the U.S. Gulf of Mexico. There were no reports of mortality or serious injury to dwarf sperm whales by this fishery.

Other Mortality

There were no documented strandings of dwarf sperm whales in the northern Gulf of Mexico during 1999-2003 which were classified as likely caused by fishery interactions, but there have been stranding investigation reports of dwarf sperm whales which may have died as a result of other human-related causes. At least 7 dwarf sperm whale strandings were documented in the northern Gulf of Mexico from 1999 through 2003 (Table 1; 5 showed no signs of human interaction and 2 were designated "could not be determined"). An additional 5 Kogia spp. stranded during this same period. Stranding data probably underestimate the extent of fishery-related mortality and serious injury because not all of the marine mammals which die or are seriously injured in fishery interactions wash ashore, not all that wash ashore are discovered, reported or investigated, nor will all of those that do wash ashore necessarily show signs of entanglement or other fishery-interaction. Finally, the level of technical expertise among stranding network personnel varies widely as does the ability to recognize signs of fishery interactions.

Table 1. Dwarf sperm whale (Kogia sima) strandings along the U.S. Gulf of Mexico coast, 1999-2003.						
State	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	$\mathbf{2 0 0 3}$	TOTAL
Alabama	0	0	0	0	0	0
Florida	0	2	0	3	1	6
Louisiana	0	0	0	0	0	0
Mississippi	0	0	0	0	0	0
Texas	0	0	0	1	0	1
Total	0	2	0	4	1	7

STATUS OF STOCK

The status of dwarf sperm whales in the northern Gulf of Mexico, relative to OSP, is unknown. The species is not listed as threatened or endangered under the Endangered Species Act. There are insufficient data to determine the population trends for this species. The total fishery-related mortality and serious injury for this stock is unknown, but assumed to be less than 10% of the calculated PBR and can be considered to be insignificant and approaching zero mortality and serious injury rate. This is not a strategic stock because average annual fishery-related mortality and serious injury does not exceed PBR.

REFERENCES

Barlow, J., S. L. Swartz, T. C. Eagle and P. R. Wade. 1995. U.S. Marine mammal stock assessments: Guidelines for preparation, background, and a summary of the 1995 assessments. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-6, 73 pp.
Barros, N. B., D. A. Duffield, P. H. Ostrom, D. K. Odell and V. R. Cornish. 1998. Nearshore vs. offshore ecotype differentiation of Kogia breviceps and K. sima based on hemoglobin, morphometric and dietary analyses. Abstracts. World Marine Mammal Science Conference. Monaco. 20-24 January.
Buckland, S. T., D. R. Anderson, K. P. Burnham, J. L. Laake, D. L. Borchers and L. Thomas. 2001. Introduction to distance sampling: Estimating abundance of biological populations. Oxford University Press, 432 pp .
Caldwell, D. K. and M. C. Caldwell. 1989. Pygmy sperm whale Kogia breviceps (de Blainville, 1838): Dwarf sperm whale Kogia sima Owen, 1866. pp. 235-260. In: S. H. Ridgway and R. Harrison (eds.) Handbook of marine mammals, Vol. 4: River dolphins and the larger toothed whales. Academic Press, San Diego, CA.
Garrison, L. P. 2003. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2001-2002. NOAA Tech. Memo. NMFS-SEFSC-515, 52 pp.
Garrison, L. P. and P. M. Richards. 2004. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2003. NOAA Tech. Memo. NMFS-SEFSC-527, 57 pp.
Hansen, L. J., K. D. Mullin and C. L. Roden. 1995. Estimates of cetacean abundance in the northern Gulf of Mexico from vessel surveys. NMFS-SEFSC, Miami Laboratory, Contribution No. MIA-94/95-25, 9 pp. Available from: NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.
Hansen, L. J., K. D. Mullin, T. A. Jefferson and G. P. Scott. 1996. Visual surveys aboard ships and aircraft. pp. 55-132. In: R. W. Davis and G. S. Fargion (eds.) Distribution and abundance of marine mammals in the north-central and western Gulf of Mexico: Final report. Volume II: Technical report. OCS Study MMS 96-0027. Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA.
Mullin, K. D. and G. L. Fulling. 2004. Abundance of cetaceans in the oceanic northern Gulf of Mexico. Mar. Mammal Sci. 20(4):787-807.
Mullin, K. D. and W. Hoggard. 2000. Visual surveys of cetaceans and sea turtles from aircraft and ships. pp. 111-172. In: R. W. Davis, W. E. Evans and B. Würsig (eds.) Cetaceans, sea turtles and seabirds in the northern Gulf of Mexico: Distribution, abundance and habitat associations. Volume II: Technical report. OCS Study MMS 960027. Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA.

Mullin, K., W. Hoggard, C. Roden, R. Lohoefener, C. Rogers and B. Taggart. 1991. Cetaceans on the upper continental slope in the north-central Gulf of Mexico. OCS Study/MMS 91-0027. U.S. Dep. Interior, Minerals Management Service, Gulf of Mexico OCS Regional Office, New Orleans, LA, 108 pp.
Thomas, L., J. L. Laake, J. F. Derry, S. T. Buckland, D. L. Borchers, D. R. Anderson, K. P. Burnham, S. Strindberg, S. L. Hedley, F. F. C. Marques, J. H. Pollard and R. M. Fewster. 1998. Distance 3.5. Research Unit for Wildlife Population Assessment, University of St. Andrews, St. Andrews, UK.
Wade, P. R. and R. P. Angliss. 1997. Guidelines for assessing marine mammal stocks: Report of the GAMMS Workshop April 3-5, 1996, Seattle, WA. U.S. Dep. Commer., NOAA Tech Memo. NMFS-OPR-12, 93pp.
Würsig, B., S. K. Lynn, T. A. Jefferson and K. D. Mullin. 1998. Behavior of cetaceans in the northern Gulf of Mexico relative to survey ships and aircraft. Aquat. Mamm. 24: 41-50.
Yeung, C. 1999. Estimates of marine mammal and marine turtle bycatch by the U.S. Atlantic pelagic longline fleet in 1998. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SEFSC-430, 26 pp. Available from: NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.
Yeung, C. 2001. Estimates of marine mammal and marine turtle bycatch by the U.S. Atlantic pelagic longline fleet in 1999-2000. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SEFSC-467, 43 pp. Available from: NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.

PYGMY SPERM WHALE (Kogia breviceps): Northern Gulf of Mexico Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

The pygmy sperm whale appears to be distributed worldwide in temperate to tropical waters (Caldwell and Caldwell 1989). Sightings of these animals in the northern Gulf of Mexico occur primarily in oceanic waters (Figure 1; Mullin et al. 1991; Mullin and Fulling 2004). Pygmy sperm whales and dwarf sperm whales (Kogia sima) are difficult to differentiate at sea, and sightings of either species are often categorized as Kogia sp. Sightings of this category were documented in all seasons during GulfCet aerial surveys of the northern Gulf of Mexico from 1992 to 1998 (Hansen et al. 1996; Mullin and Hoggard 2000). The difficulty in sighting pygmy and dwarf sperm whales may be exacerbated by their avoidance reaction towards ships, and change in behavior towards approaching survey aircraft (Würsig et al. 1998).

In a study using hematological and stable-isotope data, Barros et al. (1998) speculated that dwarf sperm whales may have a more pelagic distribution than pygmy sperm whales, and/or dive deeper during feeding bouts. The Gulf of Mexico population is provisionally being considered a separate stock for management purposes, although there is currently no information to differentiate this stock from the Atlantic Ocean stock(s). Additional morphological, genetic and/or behavioral data are needed to provide further information on stock delineation.

POPULATION SIZE

Estimates of abundance were derived through the application of distance sampling analysis (Buckland et al. 2001) and the computer program DISTANCE (Thomas et al. 1998) to sighting data. From 1991 through 1994, line-transect vessel surveys were conducted during spring in the northern Gulf of Mexico from the 200 m isobath to the seaward extent of the U.S. Exclusive Economic Zone (EEZ) (Hansen et al. 1995). Survey effort-weighted estimated average abundance of pygmy and dwarf sperm whales for all surveys combined was 547 ($\mathrm{CV}=0.28$) (Hansen et al. 1995). As recommended in the GAMMS Workshop Report (Wade and Angliss 1997), estimates older than 8 years are deemed unreliable, and therefore should not be used for PBR determinations.

Similar surveys were conducted during April/May from 1996 to 2001 (excluding 1998) in oceanic waters of the northern Gulf of Mexico,

Figure 1. Distribution of pygmy and dwarf sperm whale sightings from SEFSC spring vessel surveys during 1996-2001. All the on-effort sightings are shown, though not all were used to estimate abundance. Solid lines indicate the 100 m and $1,000 \mathrm{~m}$ isobaths and the dotted line indicates the offshore extent of the U.S. EEZ. using NOAA ships Oregon II (1996, 1997, 1999) and Gordon Gunter (2000, 2001). Estimates for all oceanic strata were summed, as survey effort was not uniformly distributed, to calculate a total estimate for the entire northern Gulf of Mexico oceanic waters (Figure 1; Mullin and Fulling 2004). Due to limited survey effort in any given year, survey effort was pooled across all years to develop an average abundance estimate.

The estimate of abundance for pygmy and dwarf sperm whales in oceanic waters, pooled from 1996 to 2001, is 742 ($\mathrm{CV}=0.29$) (Mullin and Fulling 2004), which is the best available abundance estimate for these species in the northern Gulf of Mexico. A separate estimate of abundance for pygmy sperm whales cannot be estimated due to uncertainty of species identification at sea.

Minimum Population Estimate

The minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the log-normal distributed abundance estimate. This is equivalent to the 20th percentile of the log-normal distributed abundance estimate as specified by Wade and Angliss (1997). The best estimate of abundance for pygmy and dwarf sperm whales is 742 ($\mathrm{CV}=0.29$). It is not possible to determine the minimum population estimate for only pygmy sperm whales. The minimum population estimate for the northern Gulf of Mexico is 584 pygmy and dwarf sperm whales.

Current Population Trend

There are insufficient data to determine the population trends for this species.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Current and maximum net productivity rates are unknown for this stock. For purposes of this assessment, the maximum net productivity rate was assumed to be 0.04 . This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive history (Barlow et al. 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential biological removal level (PBR) is the product of the minimum population size, one half the maximum net productivity rate and a recovery factor (MMPA Sec. 3.16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size for pygmy and dwarf sperm whales is $584(\mathrm{CV}=0.29)$. The maximum productivity rate is 0.04 , the default value for cetaceans. The "recovery" factor, which accounts for endangered, depleted, threatened stocks, or stocks of unknown status relative to optimum sustainable population (OSP), is assumed to be 0.5 because the stock is of unknown status. PBR for the northern Gulf of Mexico pygmy and dwarf sperm whales is 5.8. It is not possible to determine the PBR for only pygmy sperm whales.

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

There has been no reported fishing-related mortality of dwarf or pygmy sperm whales during 1998-2003 (Yeung 1999; Yeung 2001; Garrison 2003; Garrison and Richards 2004).

Fisheries Information

The level of past or current, direct, human-caused mortality of dwarf sperm whales in the northern Gulf of Mexico is unknown. Pelagic swordfish, tunas and billfish are the targets of the longline fishery operating in the U.S. Gulf of Mexico. There were no reports of mortality or serious injury to dwarf sperm whales by this fishery.

Other Mortality

At least 12 pygmy sperm whale strandings were documented in the northern Gulf of Mexico during 1999-2003 (Table 1; 11 showed no signs of human interaction and 1 was designated "could not be determined"). Two animals mass stranded in Florida during January 2001. An additional 5 Kogia spp. stranded during 1999-2003. Stranding data probably underestimate the extent of fishery-related mortality and serious injury because not all of the marine mammals which die or are seriously injured in fishery interactions wash ashore, not all that wash ashore are discovered, reported or investigated, nor will all of those that do wash ashore necessarily show signs of entanglement or other fishery interaction. Finally, the level of technical expertise among stranding network personnel varies widely as does the ability to recognize signs of fishery interactions.

Table 1. Pygmy sperm whale (Kogia breviceps) strandings along the U.S. Gulf of Mexico coast, 1999-2003.

State	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	$\mathbf{2 0 0 3}$	TOTAL
Alabama	0	0	0	0	0	0
Florida	0	0	$2^{\text {a }}$	2	3	7
Louisiana	0	0	0	0	0	0
Mississippi	0	0	0	0	0	0
Texas	0	1	1	2	1	5
Total	0	1	3	4	4	12
a Florida mass stranding of 2 animals in January 2001						

STATUS OF STOCK

The status of pygmy sperm whales in the northern Gulf of Mexico, relative to OSP, is unknown. The species is not listed as threatened or endangered under the Endangered Species Act. There are insufficient data to determine the population trends for this species. The total fishery-related mortality and serious injury for this stock is unknown, but assumed to be less than 10% of the calculated PBR and can be considered to be insignificant and approaching zero mortality and serious injury rate. This is not a strategic stock because average annual fishery-related mortality and serious injury does not exceed PBR.

REFERENCES

Barlow, J., S. L. Swartz, T. C. Eagle and P. R. Wade. 1995. U.S. Marine mammal stock assessments: Guidelines for preparation, background, and a summary of the 1995 assessments. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-6, 73 pp .
Barros, N. B., D. A. Duffield, P. H. Ostrom, D. K. Odell and V. R. Cornish. 1998. Nearshore vs. offshore ecotype differentiation of Kogia breviceps and K. sima based on hemoglobin, morphometric and dietary analyses. Abstracts. World Marine Mammal Science Conference. Monaco. 20-24 January.
Buckland, S. T., D. R. Anderson, K. P. Burnham, J. L. Laake, D. L. Borchers and L. Thomas. 2001. Introduction to distance sampling: Estimating abundance of biological populations. Oxford University Press, 432 pp .
Caldwell, D. K. and M. C. Caldwell. 1989. Pygmy sperm whale Kogia breviceps (de Blainville, 1838): Dwarf sperm whale Kogia sima Owen, 1866. pp. 235-260. In: S. H. Ridgway and R. Harrison (eds.) Handbook of marine mammals, Vol. 4: River dolphins and the larger toothed whales. Academic Press, San Diego, CA.
Garrison, L. P. 2003. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2001-2002. NOAA Tech. Memo. NMFS-SEFSC-515, 52 pp.
Garrison, L. P. and P. M. Richards. 2004. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2003. NOAA Tech. Memo. NMFS-SEFSC-527, 57 pp.
Hansen, L. J., K. D. Mullin and C. L. Roden. 1995. Estimates of cetacean abundance in the northern Gulf of Mexico from vessel surveys. Southeast Fisheries Science Center, Miami Laboratory, Contribution No. MIA-94/95-25, 9 pp. Available from: NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.
Hansen, L. J., K. D. Mullin, T. A. Jefferson and G. P. Scott. 1996. Visual surveys aboard ships and aircraft. pp. 55-132. In: R. W. Davis and G. S. Fargion (eds.) Distribution and abundance of marine mammals in the north-central and western Gulf of Mexico: Final report. Volume II: Technical report. OCS Study MMS 96- 0027. Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA.
Mullin, K. D. and G. L. Fulling. 2004. Abundance of cetaceans in the oceanic northern Gulf of Mexico. Mar. Mammal Sci. 20(4):787-807.
Mullin, K. D. and W. Hoggard. 2000. Visual surveys of cetaceans and sea turtles from aircraft and ships. pp. 111-172. In: R. W. Davis, W. E. Evans and B. Würsig (eds.) Cetaceans, sea turtles and seabirds in the northern Gulf of Mexico: Distribution, abundance and habitat associations. Volume II: Technical report. OCS Study MMS 960027. Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA.

Mullin, K., W. Hoggard, C. Roden, R. Lohoefener, C. Rogers and B. Taggart. 1991. Cetaceans on the upper continental slope in the north-central Gulf of Mexico. OCS Study/MMS 91-0027. U.S. Dep. Interior, Minerals Management Service, Gulf of Mexico OCS Regional Office, New Orleans, LA. 108 pp.
Thomas, L., J. L. Laake, J. F. Derry, S. T. Buckland, D. L. Borchers, D. R. Anderson, K. P. Burnham, S.
Strindberg, S. L. Hedley, F. F. C. Marques, J. H. Pollard and R. M. Fewster. 1998. Distance 3.5. Research Unit for Wildlife Population Assessment, University of St. Andrews, St. Andrews, UK.
Wade, P. R. and R. P. Angliss. 1997. Guidelines for assessing marine mammal stocks: Report of the GAMMS Workshop April 3-5, 1996, Seattle, WA. U.S. Dep. Commer., NOAA Tech Memo. NMFS-OPR-12, 93 pp.
Würsig, B., S. K. Lynn, T. A. Jefferson and K. D. Mullin. 1998. Behavior of cetaceans in the northern Gulf of Mexico relative to survey ships and aircraft. Aquat. Mamm. 24:41-50.
Yeung, C. 1999. Estimates of marine mammal and marine turtle bycatch by the U.S. Atlantic pelagic longline fleet in 1998. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SEFSC-430, 26 pp. Available from: NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.
Yeung, C. 2001. Estimates of marine mammal and marine turtle bycatch by the U.S. Atlantic pelagic longline fleet in 1999-2000. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SEFSC-467, 43 pp. Available from: NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.

MELON-HEADED WHALE (Peponocephala electra): Northern Gulf of Mexico Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

The melon-headed whale is distributed worldwide in tropical to sub-tropical waters (Jefferson et al. 1994). Sightings in the northern Gulf of Mexico occur in oceanic waters (Mullin et al. 1994; Mullin and Fulling 2004). Sightings of melonheaded whales were documented in all seasons during GulfCet aerial surveys of the northern Gulf of Mexico between 1992 and 1998 (Hansen et al. 1996; Mullin and Hoggard 2000).

The Gulf of Mexico population is provisionally being considered 1 stock for management purposes, although there is currently no information to differentiate this stock from the Atlantic Ocean stock(s). Additional morphological, genetic and/or behavioral data are needed to provide further information on stock delineation.

POPULATION SIZE

Estimates of abundance were derived through the application of distance sampling analysis (Buckland et al. 2001) and the computer program DISTANCE (Thomas et al. 1998) to sighting data. From 1991 through 1994, linetransect vessel surveys were conducted during spring in the northern Gulf of Mexico from the 200 m isobath to the seaward extent of the U.S. Exclusive Economic Zone (EEZ) (Hansen et al. 1995) Survey effort-weighted estimated average abundance of melon-headed whales for all surveys combined was 3,965 (CV=0.39) (Hansen et al. 1995). As recommended in the GAMMS Workshop Report (Wade and Angliss 1997), estimates older than 8 years are deemed unreliable, and therefore should not be used for PBR determinations

Similar surveys were conducted

Figure 1. Distribution of melon-headed whale sightings from SEFSC spring vessel surveys during 1996-2001. All the on-effort sightings are shown, though not all were used to estimate abundance. Solid lines indicate the 100 m and $1,000 m$ isobaths and the dotted line indicates the offshore extent of the U.S. EEZ. during April/May from 1996 to 2001 (excluding 1998) in oceanic waters of the northern Gulf of Mexico, using NOAA ships Oregon II $(1996,1997,1999)$ and Gordon Gunter (2000, 2001). Estimates for all oceanic strata were summed, as survey effort was not uniformly distributed, to calculate a total estimate for the entire northern Gulf of Mexico oceanic waters (Figure 1; Mullin and Fulling 2004). Due to limited survey effort in any given year, survey effort was pooled across all years to develop an average abundance estimate.

The estimate of abundance for melon-headed whales in oceanic waters, pooled from 1996 to 2001 , is 3,451 ($\mathrm{CV}=0.55$) (Mullin and Fulling 2004), which is the best available abundance estimate for this species in the northern Gulf of Mexico.

Minimum Population Estimate

The minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the log-normal distributed abundance estimate. This is equivalent to the 20th percentile of the log-normal distributed abundance estimate as specified by Wade and Angliss (1997). The best estimate of abundance for melon-headed whales is 3,451 (CV=0.55). The minimum population estimate for the northern Gulf of Mexico is 2,238 melon-headed whales.

Current Population Trend

There are insufficient data to determine the population trends for this species. The pooled abundance estimate for 1996-2001 of $3,451(\mathrm{CV}=0.55)$ and that for 1991-1994 of $3,965(\mathrm{CV}=0.39)$ are not significantly different ($\mathrm{P}>0.05$), but due to the precision of the estimates, the power to detect a difference is low.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Current and maximum net productivity rates are unknown for this stock. For purposes of this assessment, the maximum net productivity rate was assumed to be 0.04 . This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive history (Barlow et al. 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential biological removal level (PBR) is the product of the minimum population size, one half the maximum net productivity rate and a recovery factor (MMPA Sec. 3.16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size is $2,238(\mathrm{CV}=0.55)$. The maximum productivity rate is 0.04 , the default value for cetaceans. The "recovery" factor, which accounts for endangered, depleted, threatened stocks, or stocks of unknown status relative to optimum sustainable population (OPSP), is assumed to be 0.5 because the stock is of unknown status. PBR for the northern Gulf of Mexico melon-headed whale is 22 .

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

There has been no reported fishing-related mortality of a melon-headed whale during 1998-2003 (Yeung 1999; Yeung 2001; Garrison 2003; Garrison and Richards 2004).

Fisheries Information

The level of past or current, direct, human-caused mortality of melon-headed whales in the northern Gulf of Mexico is unknown. There has historically been some take of this species in small cetacean fisheries in the Caribbean (Caldwell et al. 1976). Pelagic swordfish, tunas and billfish are the targets of the longline fishery operating in the U.S. Gulf of Mexico. There were no reports of mortality or serious injury to melon-headed whales by this fishery.

Other Mortality

There were 6 reported strandings of melon-headed whales in the Gulf of Mexico during 1999-2003. There was no evidence of human interactions for these stranded animals. Stranding data probably underestimate the extent of fisheryrelated mortality and serious injury because not all of the marine mammals which die or are seriously injured in fishery interactions wash ashore, not all that wash ashore are discovered, reported or investigated, nor will all of those that do wash ashore necessarily show signs of entanglement or other fishery-interaction. Finally, the level of technical expertise among stranding network personnel varies widely as does the ability to recognize signs of fishery interactions.

Table 1. Melon-headed whale (Peponocephala electra) strandings along the U.S. Gulf of							
Mexico coast, 1999 -2003.							

STATUS OF STOCK

The status of melon-headed whales in the northern Gulf of Mexico, relative to OSP, is unknown. The species is not listed as threatened or endangered under the Endangered Species Act. There are insufficient data to determine the population trends for this species. The total fishery-related mortality and serious injury for this stock is unknown, but
assumed to be less than 10% of the calculated PBR and can be considered to be insignificant and approaching zero mortality and serious injury rate. This is not a strategic stock because average annual fishery-related mortality and serious injury does not exceed PBR.

REFERENCES

Barlow, J., S. L. Swartz, T. C. Eagle and P. R. Wade. 1995. U.S. Marine mammal stock assessments: Guidelines for preparation, background, and a summary of the 1995 assessments. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-6, 73 pp .
Buckland, S. T., D. R. Anderson, K. P. Burnham, J. L. Laake, D. L. Borchers and L. Thomas. 2001. Introduction to distance sampling: Estimating abundance of biological populations. Oxford University Press, 432 pp .
Caldwell, D. K., M. C. Caldwell and R. V. Walker. 1976. First records for Fraser's dolphin (Lagenodelphis hosei) in the Atlantic and the melon-headed whale (Peponocephala electra) in the western Atlantic. Cetology 25: 1-4.
Garrison, L. P. 2003. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2001-2002. NOAA Tech. Memo. NMFS-SEFSC-515, 52 pp.
Garrison, L. P. and P. M. Richards. 2004. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2003. NOAA Tech. Memo. NMFS-SEFSC-527, 57 pp.
Hansen, L. J., K. D. Mullin and C. L. Roden. 1995. Estimates of cetacean abundance in the northern Gulf of Mexico from vessel surveys. Southeast Fisheries Science Center, Miami Laboratory, Contribution No. MIA-94/95-25, 9 pp. Available from: NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.
Hansen, L. J., K. D. Mullin, T. A. Jefferson and G. P. Scott. 1996. Visual surveys aboard ships and aircraft. pp. 55-132. In: R. W. Davis and G. S. Fargion (eds.) Distribution and abundance of marine mammals in the north-central and western Gulf of Mexico: Final report. Volume II: Technical report. OCS Study MMS 96-0027. Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA.
Jefferson, T. A., S. Leatherwood, and M. A. Weber. 1994. Marine mammals of the world. FAO, Rome, 320 pp.
Mullin, K. D. and G. L. Fulling. 2004. Abundance of cetaceans in the oceanic northern Gulf of Mexico. Mar. Mammal Sci. 20(4):787-807.
Mullin, K. D. and W. Hoggard. 2000. Visual surveys of cetaceans and sea turtles from aircraft and ships. pp. 111-172. In: R. W. Davis, W. E. Evans and B. Würsig (eds.) Cetaceans, sea turtles and seabirds in the northern Gulf of Mexico: Distribution, abundance and habitat associations. Volume II: Technical report. OCS Study MMS 960027. Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA.

Mullin, K. D., T. A. Jefferson, L. J. Hansen and W. Hoggard. 1994. First sightings of melon-headed whales (Peponocephala electra) in the Gulf of Mexico. Mar. Mammal Sci. 10(3):342-348.
Thomas, L., J. L. Laake, J. F. Derry, S. T. Buckland, D. L. Borchers, D. R. Anderson, K. P. Burnham, S.
Strindberg, S. L. Hedley, F. F. C. Marques, J. H. Pollard and R. M. Fewster. 1998. Distance 3.5. Research Unit for Wildlife Population Assessment, University of St. Andrews, St. Andrews, UK.
Wade, P. R. and R. P. Angliss. 1997. Guidelines for assessing marine mammal stocks: Report of the GAMMS Workshop April 3-5, 1996, Seattle, WA. U.S. Dep. Commer., NOAA Tech Memo. NMFS-OPR-12, 93 pp.
Yeung, C. 1999. Estimates of marine mammal and marine turtle bycatch by the U.S. Atlantic pelagic longline fleet in 1998. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SEFSC-430, 26 pp. Available from: NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.
Yeung, C. 2001. Estimates of marine mammal and marine turtle bycatch by the U.S. Atlantic pelagic longline fleet in 1999-2000. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SEFSC-467, 43 pp. Available from: NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.

RISSO'S DOLPHIN (Grampus griseus): Northern Gulf of Mexico Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

Risso's dolphin is distributed worldwide in tropical to warm temperate waters (Leatherwood and Reeves 1983). Risso's dolphins in the northern Gulf of Mexico occur throughout oceanic waters but are concentrated in continental slope waters (Baumgartner 1997). Risso's dolphins were seen in all seasons during GulfCet aerial surveys of the northern Gulf of Mexico between 1992 and 1998 (Hansen et al. 1996; Mullin and Hoggard 2000) .

The Gulf of Mexico population is provisionally being considered a separate stock for management purposes, although there is currently no information to differentiate this stock from the Atlantic Ocean stock(s). Additional morphological, genetic and/or behavioral data are needed to provide further information on stock delineation.

POPULATION SIZE

Estimates of abundance were derived through the application of distance sampling analysis (Buckland et al. 2001) and the computer program DISTANCE (Thomas et al. 1998) to sighting data. From 1991 through 1994, line-transect vessel surveys were conducted during spring in the northern Gulf of Mexico from the 200 m isobath to the seaward extent of the U.S. Exclusive Economic Zone (EEZ) (Hansen et al. 1995). Survey effort-weighted estimated average abundance of Risso's dolphins for all surveys combined was 2,749 (CV=0.27) (Hansen et al. 1995). As recommended in the GAMMS Workshop Report (Wade and Angliss 1997), estimates older than 8 years are deemed unreliable, and therefore should not be used for PBR determinations.

Figure 1. Distribution of Risso's dolphin sightings from SEFSC vessel surveys during 1996-2001. All the on-effort sightings are shown, though not all were used to estimate abundance. Solid lines indicate the 100 m and $1,000 \mathrm{~m}$ isobaths and the dotted line indicates the offshore extent of the U.S. EEZ.

Similar surveys were conducted during April/May from 1996 to 2001 (excluding 1998) in oceanic waters of the northern Gulf of Mexico, using NOAA ships Oregon II (1996, 1997 , 1999) and Gordon Gunter $(2000,2001)$. Estimates for all oceanic strata were summed, as survey effort was not uniformly distributed, to calculate a total estimate for the entire northern Gulf of Mexico oceanic waters (Figure 1; Mullin and Fulling 2004). Due to limited survey effort in any given year, survey effort was pooled across all years to develop an average abundance estimate.

The estimate of abundance for Risso's dolphins in oceanic waters, pooled from 1996 to 2001, is 2,169 (CV=0.32) (Mullin and Fulling 2004), which is the best available abundance estimate for this species in the northern Gulf of Mexico.

Minimum Population Estimate

The minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the log-normal distributed abundance estimate. This is equivalent to the 20th percentile of the log-normal distributed abundance estimate as specified by Wade and Angliss (1997). The best estimate of abundance for Risso's dolphins is 2,169 (CV=0.32). The minimum population estimate for the northern Gulf of Mexico is 1,668 Risso's dolphins.

Current Population Trend

There are insufficient data to determine the population trends for this species. The pooled abundance estimate for 1996-2001 of 1,777 (CV=0.34) and that for 1991-1994 of 2,749 (CV=0.27) are not significantly different ($\mathrm{P}>0.05$), but due to the precision of the estimates, the power to detect a difference is relatively low.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Current and maximum net productivity rates are unknown for this stock. For purposes of this assessment, the maximum net productivity rate was assumed to be 0.04 . This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive history (Barlow et al. 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential biological removal level (PBR) is the product of the minimum population size, one half the maximum net productivity rate and a recovery factor (MMPA Sec. 3.16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size is 1,668 . The maximum productivity rate is 0.04 , the default value for cetaceans. The "recovery" factor, which accounts for endangered, depleted, threatened stocks, or stocks of unknown status relative to optimum sustainable population (OSP), is assumed to be 0.5 because the stock is of unknown status. PBR for the northern Gulf of Mexico Risso's dolphin is 17 .

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

There has been no reported fishing-related mortality of a Risso's dolphin during 1998-2003 (Yeung 1999; Yeung 2001; Garrison 2003; Garrison and Richards 2004).

Fisheries Information

The level of past or current, direct, human-caused mortality of Risso's dolphins in the northern Gulf of Mexico is unknown. This species has been taken in the U.S. longline swordfish/tuna fishery in the northern Gulf of Mexico and in the U.S. Atlantic (Lee et al. 1994). Pelagic swordfish, tunas and billfish are the targets of the longline fishery operating in the U.S. Gulf of Mexico. There were no reports of mortality or serious injury to Risso's dolphins by this fishery during 1998-2003 (Yeung 1999; Yeung 2001; Garrison 2003; Garrison and Richards 2004). One Risso's dolphin was observed taken and released alive during 1992; the extent of injury to the animal was unknown (SEFSC, unpublished data). One lethal take of a Risso's dolphin by the fishery was observed in the Gulf of Mexico during 1993 (SEFSC, unpublished data). Estimated average annual fishery-related mortality and serious injury attributable to the longline swordfish/tuna fishery in the Gulf of Mexico during 1992-1993 was 19 Risso's dolphins ($\mathrm{CV}=0.20$).

Other Mortality

There were 2 reported strandings of Risso's dolphin in the Gulf of Mexico during 1999-2003. There was no evidence of human interactions for these stranded animals. Stranding data probably underestimate the extent of fishery-related mortality and serious injury because not all of the marine mammals which die or are seriously injured in fishery interactions wash ashore, not all that wash ashore are discovered, reported or investigated, nor will all of those that do wash ashore necessarily show signs of entanglement or other fishery interaction. Finally, the level of technical expertise among stranding network personnel varies widely as does the ability to recognize signs of fishery interactions.

STATUS OF STOCK

The status of Risso's dolphins in the northern Gulf of Mexico, relative to OSP, is unknown. The species is not listed as threatened or endangered under the Endangered Species Act. There are insufficient data to determine the population trends for this species. The total fishery-related mortality and serious injury for this stock is unknown, but assumed to be less than 10% of the calculated PBR and can be considered to be insignificant and approaching zero mortality and serious injury rate. This is not a strategic stock because average annual fishery-related mortality and serious injury does not exceed PBR.

REFERENCES

Barlow, J., S. L. Swartz, T. C. Eagle and P. R. Wade. 1995. U.S. Marine mammal stock assessments: Guidelines for preparation, background, and a summary of the 1995 assessments. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-6, 73 pp.
Baumgartner, M. F. 1997. The distribution of Risso's dolphin (Grampus griseus) with respect to physiography in the northern Gulf of Mexico. Mar. Mammal Sci. 13:614-638.
Buckland, S. T., D. R. Anderson, K. P. Burnham, J. L. Laake, D. L. Borchers and L. Thomas. 2001. Introduction to distance sampling: Estimating abundance of biological populations. Oxford University Press, 432 pp .
Garrison, L. P. 2003. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2001-2002. NOAA Tech. Memo. NMFS-SEFSC-515, 52 pp.
Garrison, L. P. and P. M. Richards. 2004. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2003. NOAA Tech. Memo. NMFS-SEFSC-527, 57 pp.

Hansen, L. J., K. D. Mullin and C. L. Roden. 1995. Estimates of cetacean abundance in the northern Gulf of Mexico from vessel surveys. Southeast Fisheries Science Center, Miami Laboratory, Contribution No. MIA-94/95-25, 9 pp. Available from: NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.
Hansen, L. J., K. D. Mullin, T. A. Jefferson and G. P. Scott. 1996. Visual surveys aboard ships and aircraft. pp. 55-132. In: R.W. Davis and G.S. Fargion (eds.) Distribution and abundance of marine mammals in the north-central and western Gulf of Mexico: Final report. Volume II: Technical report. OCS Study MMS 96-0027. Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA.
Leatherwood, S. and R. R. Reeves. 1983. The Sierra Club handbook of whales and dolphins. Sierra Club Books, San Francisco, 302 pp.
Lee, D. W., C. J. Brown, A. J. Catalano, J. R. Grubich, T. W. Greig, R. J. Miller and M.T. Judge. 1994. SEFSC pelagic longline observer program data summary for 1992-1993. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SEFSC-347, 19 pp. Available from: NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.
Mullin, K. D. and G. L. Fulling. 2004. Abundance of cetaceans in the oceanic northern Gulf of Mexico. Mar. Mammal Sci. 20(4):787-807.
Mullin, K. D. and W. Hoggard. 2000. Visual surveys of cetaceans and sea turtles from aircraft and ships. pp. 111-172. In: R. W. Davis, W. E. Evans and B. Würsig (eds.) Cetaceans, sea turtles and seabirds in the northern Gulf of Mexico: Distribution, abundance and habitat associations. Volume II: Technical report. OCS Study MMS 960027. Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA.

Thomas, L., J. L. Laake, J. F. Derry, S. T. Buckland, D. L. Borchers, D. R. Anderson, K. P. Burnham, S. Strindberg, S. L. Hedley, F. F. C. Marques, J. H. Pollard and R. M. Fewster. 1998. Distance 3.5. Research Unit for Wildlife Population Assessment, University of St. Andrews, St. Andrews, UK.
Wade, P. R. and R. P. Angliss. 1997. Guidelines for assessing marine mammal stocks: Report of the GAMMS Workshop April 3-5, 1996, Seattle, WA. U.S. Dep. Commer., NOAA Tech Memo. NMFS-OPR-12, 93 pp.
Yeung, C. 1999. Estimates of marine mammal and marine turtle bycatch by the U.S. Atlantic pelagic longline fleet in 1998. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SEFSC-430, 26 pp. Available from: NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.
Yeung, C. 2001. Estimates of marine mammal and marine turtle bycatch by the U.S. Atlantic pelagic longline fleet in 1999-2000. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SEFSC-467, 43 pp. Available from: NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.

SHORT-FINNED PILOT WHALE (Globicephala macrorhynchus): Northern Gulf of Mexico Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

The short-finned pilot whale is distributed worldwide in tropical to temperate waters (Leatherwood and Reeves 1983). Sightings of these animals in the northern Gulf of Mexico occur primarily on the continental slope (Mullin and Fulling 2004). Short-finned pilot whales were seen in all seasons during GulfCet aerial surveys of the northern Gulf of Mexico between 1992 and 1998 (Hansen et al. 1996; Mullin and Hoggard 2000).

The Gulf of Mexico population is provisionally being considered a separate stock for management purposes, although there is currently no information to differentiate this stock from the Atlantic Ocean stock(s). Additional morphological, genetic and/or behavioral data are needed to provide further information on stock delineation.

POPULATION SIZE

Estimates of abundance were derived through the application of distance sampling analysis (Buckland et al. 2001) and the computer program DISTANCE (Thomas et al. 1998) to sighting data. From 1991 through 1994, line-transect vessel surveys were conducted during spring in the northern Gulf of Mexico from the 200 m isobath to the seaward extent of the U.S. Exclusive Economic Zone (EEZ) (Hansen et al. 1995). Survey effortweighted estimated average abundance of short-finned pilot whales for all surveys combined was 353 ($\mathrm{CV}=0.89$) (Hansen et al. 1995). As recommended in the GAMMS Workshop Report (Wade and Angliss 1997), estimates older than 8 years are deemed unreliable, and therefore should not be used for PBR determinations.

Similar surveys were conducted during April/May from 1996 to 2001 (excluding 1998) in oceanic waters of

Figure 1. Distribution of short-finned pilot whale sightings from SEFSC spring vessel surveys during 1996-2001. All the on-effort sightings are shown, though not all were used to estimate abundance. Solid lines indicate the 100 m and 1,000 m isobaths and the dotted line indicates the offshore extent of the U.S. EEZ. the northern Gulf of Mexico, using NOAA ships Oregon II (1996, 1997, 1999) and Gordon Gunter (2000, 2001). Estimates for all oceanic strata were summed, as survey effort was not uniformly distributed, to calculate a total estimate for the entire northern Gulf of Mexico oceanic waters (Figure 1; Mullin and Fulling 2004). Due to limited survey effort in any given year, survey effort was pooled across all years to develop an average abundance estimate.

The estimate of abundance for short-finned pilot whales in oceanic waters, pooled from 1996 to 2001 , is 2,388 ($\mathrm{CV}=0.48$) (Mullin and Fulling 2004), which is the best available abundance estimate for this species in the northern Gulf of Mexico.

Minimum Population Estimate

The minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the log-normal distributed abundance estimate. This is equivalent to the 20th percentile of the log-normal distributed abundance estimate as specified by Wade and Angliss (1997). The best estimate of abundance for short-finned pilot whales is 2,388 ($\mathrm{CV}=0.48$). The minimum population estimate for the northern Gulf of Mexico is 1,628 short-finned pilot whales.

Current Population Trend

There are insufficient data to determine the population trends for this species. The pooled abundance estimate for 1996-2001 of $2,388(\mathrm{CV}=0.48)$ and that for 1991-1994 of $353(\mathrm{CV}=0.52)$ are not significantly different $(\mathrm{P}>0.05)$, but due to the precision of the estimates, the power to detect a difference is low.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Current and maximum net productivity rates are unknown for this stock. For purposes of this assessment, the maximum net productivity rate was assumed to be 0.04 . This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive history (Barlow et al. 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential biological removal level (PBR) is the product of the minimum population size, one half the maximum net productivity rate and a recovery factor (MMPA Sec. 3.16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size is $1,628(\mathrm{CV}=0.48)$. The maximum productivity rate is 0.04 , the default value for cetaceans. The "recovery" factor, which accounts for endangered, depleted, threatened stocks, or stocks of unknown status relative to optimum sustainable population (OSP), is assumed to be 0.5 because the stock is of unknown status. PBR for the northern Gulf of Mexico short-finned pilot whale is 16 .

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

There has been no reported fishing-related mortality of short-finned pilot whales during 1998-2003 (Yeung 1999; Yeung 2001; Garrison 2003; Garrison and Richards 2004).

Fisheries Information

The level of past or current, direct, human-caused mortality of short-finned pilot whales in the northern Gulf of Mexico is unknown. Pelagic swordfish, tunas and billfish are the targets of the longline fishery operating in the U.S. Gulf of Mexico. There were no recent reports of mortality or serious injury to short-finned pilot whales by this fishery. There was 1 logbook report of a fishery-related injury of a pilot whale in the northern Gulf of Mexico in 1991.

Other Mortality

There were 2 reported mass strandings of short-finned pilot whales in the Gulf of Mexico during 1999-2003. Both mass strandings occurred in Florida. Two animals mass stranded in May 1999, and 9 animals in October 2001. One of the 9 animals from 2001 displayed evidence of human interactions; for the remaining animals there was no evidence of human interactions. Stranding data probably underestimate the extent of fishery-related mortality and serious injury because not all of the marine mammals which die or are seriously injured in fishery interactions wash ashore, not all that wash ashore are discovered, reported or investigated, nor will all of those that do wash ashore necessarily show signs of entanglement or other fishery interaction. Finally, the level of technical expertise among stranding network personnel varies widely as does the ability to recognize signs of fishery interactions.

Table 1. Short-finned pilot whale (Globicephala macrorhynchus) strandings along the U.S. Gulf of Mexico coast, 1999-2003.						
State	1999	2000	2001	2002	2003	TOTAL
Alabama	0	0	0	0	0	0
Florida	$2^{\text {a }}$	0	$9{ }^{\text {b }}$	0	0	11
Louisiana	0	0	0	0	0	0
Mississippi	0	0	0	0	0	0
Texas	0	0	0	0	0	0
Total	2	0	9	0	0	11
Florida mass stranding of 2 animals in May 1999 Florida mass stranding of 9 animals in October 2001						

STATUS OF STOCK

The status of short-finned pilot whales in the northern Gulf of Mexico, relative to OSP, is unknown. The species is not listed as threatened or endangered under the Endangered Species Act. There are insufficient data to determine the population trends for this species. The total fishery-related mortality and serious injury for this stock is unknown, but assumed to be less than 10% of the calculated PBR and can be considered to be insignificant and approaching zero mortality and serious injury rate. This is not a strategic stock because average annual fishery-related mortality and serious injury does not exceed PBR.

REFERENCES

Barlow, J., S. L. Swartz, T. C. Eagle and P. R. Wade. 1995. U.S. Marine mammal stock assessments: Guidelines for preparation, background, and a summary of the 1995 assessments. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-6, 73 pp .
Buckland, S. T., D. R. Anderson, K. P. Burnham, J. L. Laake, D. L. Borchers and L. Thomas. 2001. Introduction to distance sampling: estimating abundance of biological populations. Oxford University Press, 432 pp .
Garrison, L. P. 2003. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2001-2002. NOAA Tech. Memo. NMFS-SEFSC-515, 52 pp.
Garrison, L. P. and P. M. Richards. 2004. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2003. NOAA Tech. Memo. NMFS-SEFSC-527, 57 pp.
Hansen, L. J., K. D. Mullin and C. L. Roden. 1995. Estimates of cetacean abundance in the northern Gulf of Mexico from vessel surveys. Southeast Fisheries Science Center, Miami Laboratory, Contribution No. MIA-94/95-25, 9 pp. Available from: NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.
Hansen, L. J., K. D. Mullin, T. A. Jefferson and G. P. Scott. 1996. Visual surveys aboard ships and aircraft. pp. 55-132. In: R. W. Davis and G. S. Fargion (eds.) Distribution and abundance of marine mammals in the north-central and western Gulf of Mexico: Final report. Volume II: Technical report. OCS Study MMS 96-0027. Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA.
Leatherwood, S. and R. R. Reeves. 1983. The Sierra Club handbook of whales and dolphins. Sierra Club Books, San Francisco, CA, 302 pp.
Mullin, K. D. and G. L. Fulling. 2004. Abundance of cetaceans in the oceanic northern Gulf of Mexico. Mar. Mammal Sci. 20(4):787-807.
Mullin, K. D. and W. Hoggard. 2000. Visual surveys of cetaceans and sea turtles from aircraft and ships. pp. 111-172. In: R. W. Davis, W. E. Evans and B. Würsig (eds.) Cetaceans, sea turtles and seabirds in the northern Gulf of Mexico: distribution, abundance and habitat associations. Volume II: Technical report. OCS Study MMS 2000003. U.S. Department of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA.
Thomas, L., J. L. Laake, J. F. Derry, S. T. Buckland, D. L. Borchers, D. R. Anderson, K. P. Burnham, S. Strindberg, S. L. Hedley, F. F. C. Marques, J. H. Pollard and R. M. Fewster. 1998. Distance 3.5. Research Unit for Wildlife Population Assessment, University of St. Andrews, St. Andrews, UK.
Wade, P. R. and R. P. Angliss. 1997. Guidelines for assessing marine mammal stocks: Report of the GAMMS Workshop April 3-5, 1996, Seattle, WA. U.S. Dep. Commer., NOAA Tech Memo. NMFS-OPR-12, 93 pp.
Yeung, C. 1999. Estimates of marine mammal and marine turtle bycatch by the U.S. Atlantic pelagic longline fleet in 1998. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SEFSC-430, 26 pp. Available from: NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.
Yeung, C. 2001. Estimates of marine mammal and marine turtle bycatch by the U.S. Atlantic pelagic longline fleet in 1999-2000. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SEFSC-467, 43 pp. Available from: NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.

APPENDIX V: West Indian manatees stock assessments - Florida and Antilles stocks

WEST INDIAN MANATEE (Trichechus manatus latirostris): FLORIDA STOCK
 U.S. Fish and Wildlife Service, Jacksonville, Florida

STOCK DEFINITION AND GEOGRAPHIC RANGE

Manatees are typically found in the temperate and equatorial waters of the southeastern U.S., the Caribbean basin, northern and northeastern South America, and equatorial West Africa. Their near relative, the dugong (Dugong dugon), is found in the Indo-Pacific region. At present, manatees of the genus Trichechus are represented by three allopatric species: T. senegalensis, the West African manatee, T. inunguis, the Amazonian manatee, and T. manatus, the West Indian manatee. The West Indian species is subdivided into two subspecies, the Antillean manatee (Trichechus manatus manatus) and the Florida manatee (Trichechus manatus latirostris) (U.S. Fish and Wildlife Service, 1989). Such subspeciation may reflect reproductive isolation brought on by the intemperate northern coast of the Gulf of Mexico and characteristically strong currents found in the Straits of Florida (Domning and Hayek, 1986).

Historically, the winter range of the Florida manatee (Trichechus manatus latirostris) was thought to focus on south Florida, with some animals ranging north of Charlotte Harbor on Florida's west coast and north of Sebastian on Florida's east coast. Extralimital movements occurred and were typically seasonal, with animals travelling north during warmer periods and travelling south as temperatures declined. While most manatees wintered in south Florida, some were known to winter in natural spring areas to the north (Hartman, 1974). With the advent of artificial warm water refugia, the spread of exotic submerged aquatic vegetation, and increased protective measures, the manatee's winter range has expanded significantly (Beeler and O'Shea, 1988). On the east coast, manatees are now known to winter as far north as southeastern Georgia and, on the west coast, as far north as Crystal River, Florida. Documentation of manatee movements between Gulf and Atlantic coast populations in far south Florida is lacking, presumably because lack of suitable habitat in Florida Bay is not conducive to such movements, but significant genetic variation between coastal populations has not been demonstrated (McClenaghan and O'Shea 1988). Range extremes extend north to Virginia on the Atlantic coast and west to Louisiana on the Gulf coast. The number of sighting reports outside of Florida has increased in recent years.

POPULATION SIZE

Minimum Population Estimate

The exact population size for Florida manatees is unknown but the minimum population is estimated at 1,822 animals, based on intensive statewide winter aerial surveys at warm-water refuges coordinated by the Florida Department of Environmental Protection in early February of 1995 (FDEP 1995). A previous high count of 1856 manatees was obtained in a survey conducted in 1992 (Ackerman, 1992). While not a statistical estimate, this count provides the best available data on the minimum size of the population.

Population Trends

Manatee population trends are poorly known but, based on the results of a carcass recovery program, deaths have increased by an average of 5.9 percent per year in Florida from 1976 through 1992 (Ackerman et al. In press). Garrott et al.'s (1994) analysis of trends at winter aggregation sites suggest a mean annual increase of $7-12$ percent in adjusted counts at sites on the east coast from 1978-1992, noting that this figure exceeds Packard's conservative estimate of maximum potential rate of increase for manatees of 2-7 percent annually (Packard 1985). Reynolds and Wilcox (1994) reported a decline in the percentage and number of calves seen at power plant aggregation sites during recent winter aerial surveys. It is not clear at this time whether this is related to increases in perinatal mortality or to some other factor.

Marmontel (1994) conducted a population viability analysis through computer simulations using 16 years of data and material collected by the carcass recovery program. This study yielded information on age-related aspects of mortality and reproduction for the Florida manatee population. A scenario, calculated from the data, having an initial population size of 2,000 individuals resulted in a gradually declining population $(r=-0.003)$, a probability of persistence of 44 percent in 1,000 years, and a mean final population size of less than 10 percent of the original value. When adult mortality was reduced by 10 percent in the model, population growth improved considerably, but when adult mortality was increased by 10 percent the population quickly dwindled. These results clearly indicate that the Florida manatee population is still at high risk of extinction in the long term. Any negative change in the population parameters, caused by environmental changes or a catastrophe, might tip the balance towards greater risk of extinction.

ANNUAL HUMAN-CAUSED MORTALITY

Manatee deaths resulting from human activities are well documented through a carcass recovery program, initiated in 1974. Causes of death include collisions with large and small boats, crushing by barges and man made water control structures (flood gates/canal locks), entanglement in nets and lines, entrapment in culverts, poaching, entanglement in, and ingestion of marine debris (e.g., monofilament), and others (Ackerman et al., In press).

From 1974 through 1994, 2,456 manatee carcasses were recovered in the southeastern U.S. Eight hundred and two (33 percent) were attributed to human-related causes. Of these, 613 were caused by collisions with watercraft, 111 were flood gate/canal lock-related, and another 78 were categorized as other human-related.

In Florida, human-related mortality accounted for the greatest proportion of deaths with identifiable causes (45 percent, with another 24 percent of deaths resulting from undetermined causes) from 1986-1992. Collisions with watercraft accounted for 83 percent of human-related causes of death during this period (Ackerman et al. 1994, Wright et al. 1994). Watercraft-related deaths increased by an average of 9.3 percent per year from 1974 to 1992, increasing as a percentage of total deaths from 21 percent in 1976-1980 to 28 percent from 1986-1992 (Ackerman et al., In press). Overall, watercraft collisions account for approximately 25% of all manatee deaths.

The highest known annual mortality for the Florida manatee in any given year occurred in 1990 when 214 deaths (206 of which occurred in Florida) were recorded (Ackerman et al. 1994). In 1994, the second highest annual level of mortality on record occurred, when 193 carcasses were recovered (FDEP 1995).

FISHERIES INFORMATION

Manatee deaths have been attributed to inshore and nearshore commercial fishing activity. Fisheries gear involved in these incidents include shrimp nets, crab trap lines, hoop nets, and a trotline (National Marine Fisheries Service, 1992; Beck, C.A. and N.B. Barros, 1991). Recreational fishing activities have also been implicated in manatee deaths; manatees have died as a result of ingesting monofilament line and fishing tackle and from entanglement in monofilament line, crab trap lines, and cast nets. Non-lethal entanglement associated with these gear types, sometimes resulting in the loss of a flipper due to constriction, is also known to occur. Collisions with fishing boats probably occur; however, it is not possible to determine the extent to which this occurs.

While fisheries have been implicated in the deaths of manatees, the number of such incidents is low. The manatee carcass recovery program has identified 17 manatee deaths which are directly attributable to commercial fisheries gear (FDEP Manatee Mortality Database, 1994). Fishing gear is suspected in three additional deaths. "Because total annual manatee mortality is increasing, the population is small, and reproduction is low, incidental mortality from commercial fisheries, when added to other human-related mortality, could be significant if not critical to the manatee population" (Young et al., 1993).

The majority of the manatee deaths attributed to commercial fisheries involve the shrimping industry. Mortalities have occurred in northeast Florida (Duval County), east central Florida (Volusia County), and the Florida Panhandle area (Franklin County), as well as in coastal waters of Georgia and South Carolina where shrimping is permitted. Other fishery interactions have occurred throughout the manatee's range in Florida. No distinct seasonality has been associated with these events (FDEP Manatee Mortality Database, 1994).

STATUS OF STOCK

The Florida manatee is listed as "endangered" under provisions of the Endangered Species Act of 1973 (16 U.S.C. 1531 et seq.), as amended. The manatee is considered a "strategic stock" as defined in Section 12 of the Marine Mammal Protection Act of 1972, as amended. The basis for this designation is the high level of documented mortality (natural and human-related) relative to the estimated population level and continuing, severe threats to critical manatee habitats in the southeastern U.S.

POTENTIAL BIOLOGICAL REMOVAL

Because of its endangered status, the recovery factor for the Florida manatee should be 0.1 , the lowest allowable figure. Given a minimum population estimate of 1,822 and an $\mathrm{R}_{\max }$ (maximum net productivity rate) of 0.04 , the Potential Biological Removal (PBR) rate for manatees is as follows:

$$
\operatorname{PBR}=(1822)\left(.02 \text {, or } 1 / 2 \mathrm{R}_{\max }\right)(.1)=3
$$

The calculated PBR level is greatly exceeded by known human-related manatee mortality (primarily watercraft collisions and water control structure deaths) every year in Florida. For this reason, and because current efforts of the Florida Manatee Recovery Team focus intensively on the reduction of these major types of mortality, the determination of the PBR level for manatees is of limited value. The excessive level of documented manatee mortality and the resulting unlikelihood of attaining Optimum Sustainable Population (OSP) make the calculation of meaningful PBR for manatees a difficult exercise. Marmontel's (1994) estimate of net productivity is essentially zero (-0.003). Substituting this value for the default value for maximum net productivity rate (0.04) in the above equation results in a PBR level of 0 .

The U.S. Fish and Wildlife Service has consistently concluded in Section 7 Biological Opinions, pursuant to the Endangered Species Act, that the take of a single manatee would "jeopardize the continued existence" of the species. We
therefore believe that designating any level of take for manatees would be inappropriate and inconsistent with the revised Florida Manatee Recovery Plan.

REFERENCES

Ackerman, B.B., S.D. Wright, R.K. Bonde, D.K. Odell, and D.J. Banowetz. (In press). Trends and patterns in mortality in Florida, 1974-1992. In T.J. O'Shea, B.B. Ackerman, and H. F. Percival, editors. Population Biology of the Florida manatee (Trichechus manatus latirostris). National Biological Service, Biological Report.
Ackerman, B.B. 1992. Ongoing manatee aerial survey programs: a progress report. In: O'Shea, T.J., B.B. Ackerman, and H.F. Percival (eds.). 1992. Interim report of the technical workshop on manatee population biology. Manatee Population Research Report No. 10. Florida Cooperative Fish and Wildlife Research Unit. University of Florida, Gainesville, FL 83 pp .
Beck, C.A. and N.B. Barros. 1991. The impact of debris on the Florida manatee. Marine Pollution Bulletin 22(10): 508510.

Beeler, I.E. and T.J. O'Shea. 1988. Distribution and mortality of the West Indian Manatee (Trichechus manatus) in the Southeastern United States: a compilation and review of recent information. Natl. Tech. Inf. Ser., PB88207980/AS: Springfield, VA. Two volumes, 613 pp.
Domning, D.P. and L.C. Hayek. 1986. Interspecific and intraspecific morphological variation in manatees (Sirenia: Trichechus), Mar. Mammal Sci. 2:87-144.
Florida Department of Environmental Protection. 1995. Manatee mortality database, 1974-1994. Florida Marine Research Institute, Marine Mammal Pathobiology Laboratory.
Florida Department of Environmental Protection. Press Release, February 9, 1995.
Garrott, R.A., B.B. Ackerman, J.R. Cary, D. M. Heisey, J.E. Reynolds, III, P.M. Rose, and J.R. Wilcox. 1994. 15-year trends in counts of Florida manatees at winter aggregation sites. J. of Wildl. Manage. 58 (4):642-654.
Hartman, D.S. 1974. Distribution, status, and conservation of the manatee in the United States. Natl. Tech. Inf. Ser., PB81-140725, Springfield, VA. 246 pp.
Marmontel, M. (In press). Age and reproductive parameter estimates in female Florida manatees. In: T.J. O'Shea, B.B. Ackerman, and H.F. Percival, eds. Population biology of the Florida manatee (Trichechus manatus latirostris). National Biological Service, Biological Report.
McClenaghan, L.R. and T.J. O'Shea. 1988. Genetic variability in the Florida manatee (Trichechus manatus). J. Mamm., 69 (3):481-488.
National Marine Fisheries Service. 1992. Proposed Regime to Govern Interactions Between Marine Mammals and Commercial Fishing Operations. Silver Spring, MD. 96 pp.
O'Shea, T.J., G.B. Rathbun, R.K. Bonde, C.D. Buergelt, and D.K. Odell. 1991. An epizootic of Florida manatees associated with a dinoflagellate bloom. Mar. Mammal Sci. 7(2):165-179.
Packard, J.M. 1985. Preliminary assessment of uncertainty involved in modeling manatee populations. Manatee population Research Report No. 9. Technical Report No. 8-9. Florida Cooperative Fish and Wildlife Research Unit. University of Florida, Gainesville, Florida. 19 pp.
Reynolds, J.E., III and J.R. Wilcox. 1994. Observations of Florida manatees (Trichechus manatus latirostris) around selected power plants in winter. Mar. Mammal Sci. 10(2):143-177.
U.S. Fish and Wildlife Service. 1989. Florida Manatee (Trichechus manatus latirostris) Recovery Plan. Prepared by the Florida Manatee Recovery Team for the U.S. Fish and Wildlife Service, Atlanta, GA. 98 pp.
Wright, S.D., B.B. Ackerman, R.K. Bonde, C.A. Beck, and D.J. Banowetz. (In press). Analysis of watercraft-related mortalities of manatees in Florida, 1979-1991. In T.J. O'Shea, B.B. Ackerman, and H. F. Percival, editors. Population Biology of the Florida manatee (Trichechus manatus latirostris). National Biological Service, Biological Report.
Young, N.M., S. Iudicello, K. Evans, and D. Baur. 1993. The incidental capture of marine mammals in U.S. fisheries: problems and solutions. Center for Marine Conservation, Washington, D.C. 415 pp.

WEST INDIAN MANATEE ((Trichechus manatus manatus) ANTILLEAN STOCK
 U.S. Fish and Wildlife Service, Jacksonville, Florida

STOCK DEFINITION AND GEOGRAPHIC RANGE

Manatees are typically found in the temperate and equatorial waters of the southeastern U.S., the Caribbean basin, northern and northeastern South America, and equatorial West Africa. Their nearest relative, the dugong (Dugong dugon), is found in the Indo-Pacific region. At present, manatees of the genus Trichechus are represented by three allopatric species: T. senegalensis, the West African manatee, T. inunguis, the Amazonian manatee, and T. manatus, the West Indian manatee (U.S. Fish and Wildlife Service, 1986). The West Indian species is subdivided into two subspecies, the Antillean manatee (Trichechus manatus manatus) and the Florida manatee (Trichechus manatus latirostris). Such subspeciation may reflect reproductive isolation brought on by the intemperate northern coast of the Gulf of Mexico and characteristically strong currents found in the Straits of Florida (Domning and Hayek, 1986).

The Antillean manatee is found in eastern Mexico, Central America, northern and eastern South America, and in the Greater Antilles (Lefebvre et al., 1989). In Puerto Rico, the manatee is most abundant along the south and east coasts, particularly in the area of Fajardo and Ceiba (Roosevelt Roads Naval Station) and in the Jobos Bay area between Guayama and Salinas. In general, manatees are not abundant on the north coast although they are infrequently seen in areas immediately to the west of San Juan (Mignucci Giannoni, 1989, Caribbean Stranding Network, unpubl. data). Manatees are rarely seen near Culebra Island and are generally absent from Mona Island and the Virgin Islands (Caribbean Stranding Network, unpubl. data). The U.S. has jurisdictional responsibilities for the Antillean subspecies only in Puerto Rico and the U.S. Virgin Islands.

POPULATION SIZE

The exact number of Antillean manatees known to occur in Puerto Rico is unknown but, based on aerial surveys conducted on July 16 and 17, 1994, this population includes at least 86 individuals (Oland, pers. comm.). Manatees are virtually unknown from the U.S. Virgin Islands (Lefebvre et al., 1989). A rare sighting and stranding was reported here in 1988 (Caribbean Stranding Network, unpubl. data).

Population Trends

Quantitative information is limited regarding trends in the abundance of the Antillean manatee, although "[h]istorical accounts indicate that manatees were once more common and that hunting has been responsible for declining numbers throughout much of their range" (Lefebvre et al., 1989).

In Puerto Rico, efforts have been made to assess the status of the Antillean manatee by conducting aerial surveys and by means of a carcass salvage program. Aerial surveys were initiated in 1978 and have continued sporadically to the present. Carcass salvage efforts were initiated in April 1974, by the U.S. Fish and Wildlife Service (Rathbun et al., 1986). In 1989, the Caribbean Stranding Network initiated a dedicated salvage, rescue, and rehabilitation program and has assumed responsibility for all carcass recovery efforts in Puerto Rico. Despite these assessments, limited information exists by which to determine trends in this population of manatees.

Based largely on historical accounts and increasing human pressures, the Antillean manatee as a subspecies appears to be in decline. However, efforts to quantify population levels and trends are preliminary and there are no conclusive indications as to whether or not the population of Antillean manatees is stable, increasing, or decreasing either in Puerto Rico or throughout its range.

ANNUAL HUMAN-CAUSED MORTALITY

Since the inception of Puerto Rico's manatee carcass salvage program, 70 manatee deaths have been recorded from that area (Caribbean Stranding Network, unpubl. data). Many of the deaths have been attributed to human-related causes. Carcass collection efforts have documented mortalities associated with nets and watercraft ($\mathrm{N}=37$). Many netrelated mortalities involve poaching and are not substantiated by the presence of a carcass (Rathbun et al., 1985). From 1974 until 1988, 41.5 percent of the documented mortality was attributed to poaching. Watercraft-related mortalities are increasing. During the period 1988 to 1991, watercraft-related mortalities accounted for 43 percent of the known mortalities (U.S. Fish and Wildlife Service, 1992).

FISHERIES INFORMATION

In Puerto Rico, fisheries interactions have been documented through the carcass recovery program and in numerous anecdotal reports. Manatees are captured primarily in gill and/or turtle nets either intentionally or inadvertently during fishing activities. Reports indicate that manatee meat is sold to ready buyers, although the extent to which this occurs is unknown (Mignucci et al., 1993). Given the scarcity of detailed information, little is known about capture sites, seasonality of occurrence, etc. (Rathbun et al., 1985). Because these deaths account for a substantial proportion of known
human-related mortalities (and because of the prevalence of fishery reports), it is apparent that fisheries interactions significantly affect the status of the manatee in Puerto Rico.

STATUS OF STOCK

The manatee is listed as "endangered" under provisions of the Endangered Species Act of 1973 (16 U.S.C. 1531 et seq.), as amended. The manatee is considered a "strategic stock" as defined in Section 12 of the Marine Mammal Protection Act of 1972, as amended. The basis for this designation is the high level of documented mortality relative to the estimated population level and continuing, severe threats to critical manatee habitats throughout its range.

POTENTIAL BIOLOGICAL REMOVAL

Because of its endangered status, the recovery factor for the Antillean manatee in Puerto Rico should be 0.1, the lowest allowable figure. Given a minimum population estimate of 86 and an $\mathrm{R}_{\max }$ (maximum net productivity rate) of 0.04 , the Potential Biological Removal (PBR) rate for Antillean manatees in Puerto Rico and the U.S. Virgin Islands is as follows:

$$
\operatorname{PBR}=(86)\left(.02, \text { or } 1 / 2 \mathrm{R}_{\max }\right)(.1)=0
$$

We currently have insufficient knowledge of the Puerto Rican manatee population to determine the Optimum Sustainable Population. Inadequate information on population size and net productivity rate for manatees in Puerto Rico render the calculation of a PBR level for this population an exercise of limited value. Marmontel (1994) estimated net productivity for the Florida manatee population. This estimate, based largely on a long term sex and age dataset for that population, suggested that the net productivity was essentially zero (-0.003). When the default value above (0.2) is replaced with this empirical value, the equation results in a PBR level of zero.

The U.S. Fish and Wildlife Service has consistently concluded in Section 7 Biological Opinions, pursuant to the Endangered Species Act, that the take of a single manatee would "jeopardize the continued existence" of the species. We therefore believe that designating any level of take for Antillean manatees would be inappropriate and inconsistent with manatee recovery plans.

REFERENCES

Ackerman, B.B., S.D. Wright, R.K. Bonde, D.K. Odell, and D.J. Banowetz.(In press). Trends and patterns in mortality in Florida, 1974-1992. In: T.J. O'Shea, B.B. Ackerman, and H. F. Percival, editors. Population Biology of the Florida manatee (Trichechus manatus latirostris). National Biological Service, Biological Report.
Domning, D.P. and L.C. Hayek. 1986. Interspecific and intraspecific morphological variation in manatees (Sirenia: Trichechus). Mar. Mammal Sci. 2:87-144.
Freeman, J. and H. Quintero. 1990. The distribution of West Indian manatees (Trichechus manatus) in Puerto Rico: 1988-1989. NTIS PB91-137240. Springfield, VA. 43 pp.
Lefebvre, L.W., T.J. O'Shea, G.B. Rathbun and R.C. Best. 1989. Distribution, status, and biogeography of the West Indian manatee. Biogeography of the West Indies, 1989: 567-610.
Marmontel, M. (In press). Age and reproductive parameter estimates in female Florida manatees. In: T.J. O'Shea, B.B. Ackerman, and H.F. Percival, eds. Population biology of the Florida manatee (Trichechus manatus latirostris). National Biological Service, Biological Report.
Mignucci Giannoni, A.A. 1989. Zoogeography of marine mammals in Puerto Rico and the Virgin Islands. Unpublished master's thesis, The University of Rhode Island, Kingston, RI.
Mignucci Giannoni, A.A. 1990. Manatee mortality in Puerto Rico: urgent need for assessment and preventive action. Whalewatcher, Journal of the American Cetacean Society, 24(1): 10-12.
Mignucci Giannoni, A.A., E.H. Williams, B. Pinto Rodríguez and R.A. Montoya Ospina. 1991. Marine mammal mortality assessment in the Caribbean and the established Caribbean Stranding Network. Presented at the Ninth Biennial Conference on the Biology of Marine Mammals, Chicago, IL, 7 December.
Mignucci Giannoni, A.A., B. Pinto-Rodriguez, R.A. Montoya-Ospina, D.P. Moore, and E.H. Williams. 1993. Stranding and mortality assessment of marine mammals in Puerto Rico and the Virgin Islands. Presented at the Tenth Biennial Conference on the Biology of Marine Mammals, Galveston, TX, 11-16 November.
National Marine Fisheries Service. 1992. Proposed Regime to Govern Interactions Between Marine Mammals and Commercial Fishing Operations. Silver Spring, MD. 96 pp.
Oland, J.P. 1994. Personal communication, July 19, 1994. From: James P. Oland, Supervisor, FWS Caribbean Field Office, Boqueron, PR. To: Robert O. Turner, Manatee Recovery Coordinator, FWS Jacksonville Field Office, Jacksonville, FL.
Rathbun, G.B., Carr, N., Carr, T., and C.A. Woods. 1985. The distribution of manatees and sea turtles in Puerto Rico, with emphasis on Roosevelt Roads Naval Station. NTIS PB 85-151847 AS. Springfield, VA. 83 pp.
U.S. Fish and Wildlife Service. 1986. Recovery plan for the Puerto Rico population of the West Indian manatee (Trichechus manatus manatus L.). Prepared by: G.B. Rathbun and E. Possardt for the U.S. Fish and Wildlife Service, Atlanta, GA. 28 pp.
U.S. Fish and Wildlife Service. 1992. Letter dated June 4, 1992, to the U.S. Army Corps of Engineers from the FWS Caribbean Field Office, Boqueron, PR.
Young, N.M., S. Iudicello, K. Evans, and D. Baur. 1993. The incidental capture of marine mammals in U.S. fisheries: problems and solutions. Center for Marine Conservation, Washington, D.C. 415 pp .

INDEX

Alabama, 159, 282, 305, 306, 315, 317, 318, 319, $324,327,333,337,349,355,358,361,367$
arctic, $5,6,16,114,119,126,127,132,275,277$
area closure, $105,117,129,143,145,147,152$
Atlantic herring, 49, 50, 61, 62, 72, 73, 103, 116, $146,147,148,149,150,160,161$
Atlantic mackerel, 21, 40, 54, 66, 71, 85, 145, 146, $147,148,155$
Atlantic spotted dolphin, 3, 4, 5, 152, 153, 158, 246, $247,248,249,251,301,322,323,324,325,326$, 328
Balaenoptera acutorostrata, 2, 5, 29, 30, 31, 32, 33, $34,35,36,37,140,150,151,152$
Balaenoptera borealis, 2, 140, 211, 212, 213
Balaenoptera edeni, 285
Balaenoptera musculus, 140, 275, 276
Balaenoptera physalus, 2, 25, 26, 27, 28, 140, 211
Barataria Bay, 314, 315
Basque whalers, 7
Bay Boudreau, 314
Bay of Fundy, 3, 6, 7, 10, 11, 12, 15, 18, 20, 21, 23, $28,29,30,32,37,38,39,43,46,47,49,55,58$, $59,61,67,69,70,73,74,76,83,88,100,101$, $102,104,105,106,110,111,112,113,114,116$, $119,120,123,136,143,144,149,215,216,219$, 221, 222, 225, 226, 233, 234, 237, 239, 240, 247, $249,251,252,254,256,257,259,278,279,280$, 347
billfish, 152, 158, 160, 282, 286, 289, 293, 297, 301, $310,323,327,330,333,336,340,343,346,349$, 352, 355, 358, 361, 364, 367
biopsy, 7, 16, 90, 91, 270, 300
Blainville's beaked whale, 243, 292
blue whale, 140, 275, 276
Bonsecour Bay, 314
bottlenose dolphin, $3,4,5,51,63,89,90,91,92,93$, $94,95,96,97,98,99,143,145,152,153,154$, $155,158,159,264,270,271,272,273,274,300$, $301,302,303,304,305,306,307,308,309,310$, $311,312,313,315,316,317,318,319,320,321$
bottom trawl fishery, $31,50,72,74,104,116,129$, 140, 146, 147, 258
Bryde's whale, 285
Calcasieu Lake, 314
Canada, 5, 10, 11, 20, 21, 26, 31, 32, 36, 37, 42, 49, $50,52,54,55,61,62,64,66,67,74,75,76,80$, $87,88,100,107,110,111,112,114,116,117$, $118,119,121,122,123,124,125,126,127,130$, $132,133,134,135,136,144,211,214,218,219$, 220, 237, 243, 258, 259, 275, 276, 278
Canadian East Coast, 2, 29, 30, 34, 35, 140
Canadian fisheries, 32, 74, 102, 104
Cape Cod Bay, 7, 12, 21, 36, 238

Cape Hatteras, 19, 25, 29, 38, 39, 40, 45, 46, 49, 57, $58,61,70,78,82,83,89,90,102,145,156,211$, $214,215,216,222,226,230,232,233,238,239$, 244, 246, 247, 248, 251, 252, 253, 256, 257, 258, 261, 264, 267, 270, 271, 277, 280
Chesapeake Bay, 21, 91, 108, 154, 246
chlorinated hydrocarbons, 56, 68, 306, 318
Clearwater Harbor, 314
clymene dolphin, 3, 4, 51, 63, 264, 265, 339, 340, 341
Clymene Dolphin, 264, 339
coastal gillnet, 41, 48, 50, 60, 62, 93, 94, 103, 106, $108,112,116,117,123,161,227,241,248,253$, 267, 272, 273
cod traps, 10, 19, 32, 49, 61, 79, 116, 123
common dolphin, $3,51,63,82,83,84,85,86,87,88$, 143, 145, 146, 147, 152, 156
Compano Bay, 314
Connecticut, 42, 52, 64, 75, 86, 109, 118, 124, 129, 135, 144, 147
contaminants, $8,53,55,65,67,96,100,113$
Crystal Bay, 314
Crystal River, 369
Cuvier's beaked whale, 232, 236, 237, 242, 288, 290, 292, 296
Cystophora cristata, 3, 5, 127, 130, 132, 133, 134, 135, 136, 143
Davis Strait, 29, 78, 132, 275, 279
DDE, 53, 65, 218
DDT, 53, 65, 218, 306, 307
Delaware, 15, 42, 52, 64, 75, 86, 91, 93, 96, 108, 109, 118, 124, 129, 135, 214, 227, 272
Delphinus delphis, 3, 51, 63, 82, 83, 84, 85, 86, 87, 88, 143, 145, 146, 147, 152, 156
Denmark Strait, 132
drift gillnet, $10,19,31,40,48,60,67,71,73,76,93$, $95,97,99,102,104,141,143,144,153,155,160$, 161, 201, 202, 203, 204, 205, 217, 223, 235, 236, 241, 242, 243, 248, 253, 258, 259, 267, 268, 272, 273, 277, 280
dwarf sperm whale, $2,4,5,51,63,221,222,223$, 224, 225, 228, 354, 355, 356, 357, 358, 359
East Bay, 314
ecotype, 224, 228, 272, 300, 303, 309, 356, 359
entanglement, $5,9,10,13,18,19,20,21,26,27,31$, $32,33,34,35,36,42,53,65,74,79,87,95,98$, $100,104,107,108,109,118,140,141,142,151$, $154,156,157,160,212,218,223,228,231,236$, 242, 245, 248, 253, 262, 265, 268, 282, 286, 289, 293, 297, 304, 306, 308, 316, 319, 321, 324, 327, $330,333,337,340,343,346,349,352,355,358$, 361, 364, 367, 370
estuaries, $89,92,98,312,313,317$

Eubalaena glacialis, 2, 5, 6, 7, 9, 10, 11, 12, 13, 14, $19,140,150,153,156,159,211$
false killer whale, $4,55,67,348,349$
Feresa attenuata, 2, 4, 230, 231, 351, 352, 353
fin whale, 2, 25, 26, 27, 28, 140, 211, 276
Florida, 6, 10, 16, 32, 38, 39, 42, 46, 47, 51, 52, 53, $54,55,58,59,63,64,65,66,67,82,83,86,89$, $91,92,93,95,96,97,98,99,100,109,114,118$, $132,134,142,151,152,153,155,157,158,159$, $160,196,197,198,199,200,216,217,218,222$, 223, 224, 226, 227, 228, 231, 232, 233, 234, 235, 236, 238, 239, 240, 241, 242, 247, 248, 249, 251, 252, 253, 254, 257, 258, 262, 264, 267, 268, 270, 271, 274, 275, 282, 289, 290, 292, 293, 296, 297, $300,303,305,306,307,308,312,313,314,315$, $316,317,318,319,320,321,324,327,333,336$, $337,340,343,355,358,361,367,369,370,371$, 372, 373
foreign fishing, $32,40,48,49,50,60,61,62,72,74$, $104,155,212,223,248,253$
Fraser's dolphin, 261, 262, 263, 342, 344, 362
Galveston Bay, 312, 313, 314, 317, 318, 319
Georges Bank, 6, 15, 16, 17, 19, 21, 24, 25, 29, 30, $31,38,45,46,48,49,53,57,60,61,65,69,70$, $71,72,76,80,82,83,100,101,143,147,148$, $150,151,156,211,214,215,217,232,233,238$, 239, 240, 251, 256, 258, 270, 271, 279
Georgia, 6, 42, 51, 52, 63, 64, 86, 89, 90, 91, 92, 96, 97, 99, 151, 153, 160, 223, 227, 230, 231, 248, 249, 254, 262, 268, 369, 370
gillnet, 10, 13, 19, 20, 21, 31, 32, 37, 40, 55, 67, 71, $73,74,77,79,81,85,93,94,95,97,98,102,103$, $104,105,106,107,108,111,112,113,116,117$, $119,122,125,128,129,133,134,136,141,143$, $144,152,153,154,156,159,160,217,223,227$, 235, 236, 237, 241, 242, 243, 248, 250, 253, 254, 258, 259, 267, 268, 272, 273, 277, 278, 280, 306, 316
Globicephala macrorhynchus, 5, 45, 49, 51, 53, 54, $57,61,63,65,66,146,152,366,367,368$
Globicephala melas, 45, 46, 49, 50, 51, 52, 53, 54, $55,56,57,58,61,62,63,64,65,66,67,143,146$, 148, 152
Grampus griseus, 38, 41, 42, 51, 63, 363, 364
gray seal, $3,115,118,119,121,122,123,124,125$, $133,143,145,146,151$
Great South Channel, 6, 8, 12, 13, 48, 53, 60, 65, 156, 211
Greenland, 5, 6, 15, 29, 45, 49, 61, 69, 73, 74, 78, $100,105,114,116,123,126,127,132,133,217$, 275, 279
groundfish, $10,19,32,49,61,73,79,102,103,104$, $105,106,116,123,134,143,145,146$
Gulf menhaden, 160, 308
Gulf of Maine, $2,3,5,6,10,15,16,17,18,19,20$, $22,23,24,25,28,29,30,37,38,43,45,46,49$,
$51,55,58,61,63,67,69,70,71,72,76,78,80$, $82,83,88,100,101,102,103,105,111,112,113$, $115,116,117,118,120,125,130,133,135,136$, $140,143,146,147,148,150,151,211,213,215$, 219, 224, 229, 233, 237, 239, 243, 247, 249, 251, 254, 256, 259, 265, 274, 276, 277
Gulf of Mexico, v, 1, 3, 4, 5, 6, 13, 29, 41, 49, 57, 61, $66,67,89,140,141,142,151,152,156,157,158$, $159,160,162,206,207,208,209,210,219,224$, 227, 228, 230, 231, 232, 238, 244, 245, 246, 248, 251, 253, 254, 256, 259, 261, 262, 264, 265, 267, 268, 270, 272, 275, 278, 281, 282, 283, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, $307,308,309,310,311,312,313,314,315,316$, $317,318,319,320,322,323,324,325,326,327$, $328,329,330,331,332,333,334,335,336,337$, $338,339,340,341,342,343,344,345,346,347$, $348,349,350,351,352,353,354,355,356,357$, $358,359,360,361,362,363,364,365,366,367$, 368, 369, 372
Gulf of St. Lawrence, 15, 17, 25, 29, 30, 37, 38, 39, $45,46,47,54,57,58,59,66,69,70,76,79,83$, $100,101,105,111,112,113,116,121,122,123$, $124,125,126,132,135,150,215,216,222,226$, 233, 234, 239, 240, 246, 247, 251, 252, 256, 257, 275, 276
Gulf Stream, 30, 38, 39, 43, 45, 46, 56, 58, 68, 70, $82,83,88,214,215,216,220,222,226,232,233$, $237,238,239,240,243,246,247,250,251,252$, 256, 257, 260, 269, 271
gunshot wounds, 96, 304, 316
Halichoerus grypus, 3, 115, 118, 119, 121, 122, 123, $124,125,133,143,145,146,151$
harbor porpoise, $3,5,23,28,37,43,51,55,63,67$, $76,88,100,101,102,103,104,105,106,107$, $108,109,110,111,112,113,116,118,123,125$, $128,130,133,135,143,144,145,150,152,219$, 224, 229, 237, 243, 249, 254, 259, 265, 274
harbor seal, $3,36,111,114,115,116,117,118,119$, $120,124,125,126,133,143,145,146,147,151$
harp seal, $3,5,126,127,128,129,130,131,132$, $133,135,143,145,146,147$
haul seine, 93, 95, 154
health assessment, 318
herring weirs, $10,32,74,105,106,112,116,123$, 149
hooded seal, $3,5,127,130,132,133,134,135,136$, 143
humpback whale, $2,5,15,16,17,18,19,20,21,22$, $23,24,25,26,30,140,156,276$
hunting, 79, 117, 122, 124, 126, 372
Hyperoodon ampullatus, 2, 279, 280
Indian/Banana River, 270
Key West, 96, 153, 303, 314
killer whale, 2, 4, 230, 231, 277, 278, 345, 346, 347,

348, 349, 351, 352, 353
Kogia breviceps, 2, 4, 5, 51, 63, 152, 221, 224, 225, 226, 227, 228, 354, 355, 356, 357, 358, 359
Kogia sima, 2, 4, 5, 51, 63, 221, 222, 223, 224, 225, 228, 354, 355, 356, 357, 358, 359
Kogia simus, 228
Lagenodelphis hosei, 261, 262, 263, 342, 344, 362
Lagenorhynchus acutus, 3, 51, 63, 69, 70, 71, 72, 73, $74,75,76,77,78,79,80,88$
Lagenorhynchus albirostris, 3, 55, 67, 69, 76, 78, 79, 80, 81
Long Island, $11,21,31,51,63,89,93,114,217,219$
long-finned pilot whale, $45,46,49,50,51,52,53$, $54,55,56,57,58,61,62,63,64,65,66,67,143$, 146, 148, 152
longline fishery, $31,50,62,141,142,151,152,156$, 157, 158, 161, 162, 196, 197, 198, 199, 200, 206, 207, 208, 209, 210, 222, 226, 248, 253, 272, 282, 286, 289, 293, 297, 301, 310, 323, 327, 330, 333, $336,340,343,346,349,352,355,358,361,364$, 367
Louisiana, 159, 254, 282, 283, 303, 305, 306, 312, $315,317,319,324,327,333,337,340,355,358$, 361, 367, 369
mackerel, 16, 21, 40, 48, 49, 50, 60, 61, 62, 71, 72, $73,84,85,94,105,142,144,145,146,148,151$, 155, 157, 158, 272
Maine, $6,10,15,16,17,18,19,20,22,23,24,31$, $36,51,53,63,65,69,71,74,75,79,86,100,101$, $103,107,108,114,115,117,118,119,121,122$, $124,126,129,132,134,135,140,142,147,150$, 151, 211, 213, 217, 219, 224, 227, 229, 230, 237, 243, 249, 254, 258, 259, 262, 265, 268, 274, 277
manatee, v, 369, 370, 371, 372, 373, 374
mark-recapture, $16,17,24,92,126,130,214,315$
Massachusetts, 6, 12, 16, 23, 25, 28, 34, 36, 42, 49, $51,52,53,55,56,61,63,64,68,74,75,78,79$, $80,86,93,102,103,108,109,113,114,116,118$, $119,121,122,124,125,129,135,145,146,151$, $156,160,212,218,223,235,236,237,241,242$, 248, 249, 258, 277
Matagorda Bay, 304, 306, 312, 313, 314, 318, 319
Megaptera novaeangliae, 2, 5, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 30, 140, 156, 276
melon-headed whale, 4, 244, 245, 360, 361, 362
menhaden, 94, 96, 99, 305, 306, 316
Mesoplodon beaked whales, 5, 51, 63, 156, 232, 233, $234,235,236,238,240,241,243,288,292,293$, 294, 296, 297, 298
Mesoplodon bidens, 51, 63, 243, 294, 298
Mesoplodon densirostris, 243, 292
Mesoplodon europaeus, 296
Mesoplodon mirus, 238
Mesoplodon spp., 5, 156, 232, 233, 234, 235, 236, 238, 240, 241, 243, 288, 292, 293, 296, 297
metals, 53, 55, 65, 67, 100, 218, 219, 306, 318
minke whale, $2,5,29,30,31,32,33,34,35,36,37$, 140, 150, 151, 152
Mississippi, 159, 282, 283, 301, 303, 305, 306, 307, $308,312,313,314,315,316,317,318,319,324$, 327, 333, 337, 355, 358, 361, 367
Mississippi Sound, 312, 313, 314, 316, 319
Mobile Bay, 301, 314, 317
morbillivirus, 306, 307, 318, 319
mutilation, 96, 108, 273, 304, 316, 349
New England, 6, 7, 10, 13, 16, 19, 25, 29, 31, 32, 33, $40,48,49,60,61,71,72,74,76,78,85,99,104$, $107,111,114,116,117,118,119,120,121,122$, $124,125,126,132,133,142,143,145,146,147$, $148,150,151,155,157,214,218,238,246,256$, 272, 273, 277, 280
New Jersey, 22, 42, 45, 52, 53, 64, 65, 72, 75, 86, 89, $96,97,100,104,108,109,114,116,118,119$, $123,124,126,129,135,151,152,227,271,272$, 274
New York, 18, 27, 31, 42, 48, 51, 52, 54, 60, 63, 64, $66,75,76,78,79,80,86,87,93,96,97,98,99$, $100,107,108,109,114,116,118,119,124,128$, $129,130,135,141,144,212,218,219,224,227$, $228,236,242,249,254,259,265,273,276,280$, 321
North Carolina, 6, 15, 22, 29, 38, 39, 42, 45, 46, 48, $51,52,53,57,58,60,63,64,65,69,70,75,78$, $82,83,86,89,90,91,92,93,94,95,96,97,98$, $99,100,107,108,109,112,116,117,118,123$, $124,128,129,134,141,142,144,145,146,150$, $151,154,155,156,160,211,215,216,218,222$, 223, 226, 227, 230, 231, 232, 233, 236, 238, 239, 242, 244, 246, 247, 248, 249, 251, 252, 253, 254, 256, 257, 262, 264, 267, 268, 271, 272, 320
northern bottlenose whale, $2,279,280$
Orcinus orca, 2, 4, 230, 231, 277, 278, 345, 346, 347, $348,349,351,352,353$
organochlorines, 219
Pagophilus groenlandica, 3, 5, 126, 127, 128, 129, 130, 131, 132, 133, 135, 143, 145, 146, 147
pair trawl, $41,48,49,50,60,61,62,67,72,73,76$, 84, 147, 148, 156, 160, 243, 248, 253, 259, 267, 268, 272, 277, 280
pantropical spotted dolphin, $3,4,51,63,246,248$, 251, 252, 253, 254, 322, 326, 327, 328
Pantropical spotted dolphin, 152, 158
PCBs, 53, 65, 100, 218
Peponocephala electra, 4, 244, 245, 360, 361, 362
Perdido Bay, 314
Phoca vitulina, 3, 36, 111, 114, 115, 116, 117, 118, $119,120,124,125,126,133,143,145,146,147$, 151
Phocoena phocoena, 3, 5, 23, 28, 37, 43, 51, 55, 63, $67,76,88,100,101,102,103,104,105,106,107$, $108,109,110,111,112,113,116,118,123,125$, $128,130,133,135,143,144,145,150,152,219$,

224, 229, 237, 243, 249, 254, 259, 265, 274
photo-identification, $7,8,17,89,90,99,276,303$, 313
Physeter macrocephalus, 22, 214, 218, 219, 237, 243, 281, 282, 283
Pine Sound, 314
pinger, 73, 106, 143
Plymouth, 7, 21
polychlorinated biphenyls, 53, 56, 65, 68, 308
population growth rate, $8,10,17,18,102$
pound net, $51,63,86,93,95,146,154$
Pseudorca crassidens, 4, 55, 67, 348, 349
Puerto Rico, 15, 51, 52, 63, 64, 132, 142, 223, 227, 230, 231, 237, 243, 245, 253, 254, 262, 267, 268, 372, 373, 374
pygmy killer whale, $2,4,230,231,351,352,353$
pygmy sperm whale, $2,4,5,51,63,152,221,224$, 225, 226, 227, 228, 354, 355, 356, 357, 358, 359
Redfish Bay, 314
right whale, $2,5,6,7,9,10,11,12,13,14,19,140$, $150,153,156,159,211$
Risso's dolphin, 38, 41, 42, 51, 63, 363, 364
Sabine Lake, 314
salmon gillnets, 32, 49, 61, 116, 123
Sarasota Bay, 303, 312, 313, 314, 315, 318, 320
Scotian Shelf, 6, 11, 15, 17, 22, 29, 38, 46, 57, 70, $82,87,125,211,214,215,220,232,239,259$, 270, 274
sei whale, $2,140,211,212,213$
shark, $93,94,95,97,99,118,120,141,142,151$, $152,153,157,159,160,161,201,202,203,204$, 205, 235, 241
ship strikes, $5,9,10,11,19,20,22,27,31,34,35$, 142, 212, 217, 218, 236, 242
short-finned pilot whale, $5,45,49,51,52,53,54,57$, $61,63,64,65,66,146,152,366,367,368$
shrimp, $93,96,141,155,157,159,301,306,310$, 316, 370
sink gillnet, $20,21,31,41,71,73,76,85,94,102$, $103,104,105,106,111,112,116,117,118,120$, $122,125,128,129,130,133,134,135,143,144$, $161,241,248,253,267,272,273,277,280$
South Carolina, 41, 42, 49, 52, 54, 61, 64, 66, 84, 89, 92, $93,95,98,218,223,227,230,231,235,236$, 241, 242, 249, 254, 262, 267, 268, 370
sperm whale, $22,55,67,156,214,215,216,217$, $218,219,220,221,222,223,224,225,226,227$, $228,237,243,281,282,283,354,355,356,357$, 358, 359
spinner dolphin, $3,4,267,268,332,333,334$
squid, $40,48,55,60,67,84,85,145,146,151,155$, $158,218,227,272,312$
St. Andrew Bay, 314
St. Joseph Bay, 314
Stellwagen Bank, 16, 20, 31, 211
Stenella attenuata, 3, 4, 51, 63, 152, 158, 246, 248, 251, 252, 253, 254, 322, 326, 327, 328
Stenella clymene, 3, 4, 51, 63, 264, 265, 339, 340, 341
Stenella coeruleoalba, 3, 4, 152, 156, 256, 257, 258, 259, 329, 330, 331
Stenella frontalis, 3, 4, 5, 152, 153, 158, 246, 247, 248, 249, 251, 301, 322, 323, 324, 325, 326, 328
Stenella longirostris, 3, 4, 267, 268, 332, 333, 334
Strait of Belle Isle, 7, 275
striped dolphin, $3,4,152,156,256,257,258,259$, 329, 330, 331
swordfish, 67, 151, 152, 155, 157, 158, 160, 243, 259, 268, 282, 286, 289, 293, 297, 301, 310, 323, 327, 330, 333, 336, 340, 343, 346, 349, 352, 355, 358, 361, 364, 367
take reduction plan, 103, 104, 141, 143, 145, 154
Tampa Bay, 99, 306, 312, 313, 314, 320, 321
telemetry, $6,89,90,112,113,313$
Ten Thousand Islands, 314
Texas, 14, 97, 99, 142, 157, 158, 159, 224, 228, 262, 267, 282, 287, 291, 295, 299, 303, 305, 306, 307, $308,312,313,315,317,318,319,320,321,324$, 327, 333, 336, 337, 344, 355, 358, 361, 367
Trichechus manatus latirostris, 369, 371, 372, 373
Trinity Bay, 314
tunas, $31,40,48,49,60,61,67,150,151,152,155$, 156, 157, 158, 160, 243, 259, 268, 277, 282, 286, 289, 293, 297, 301, 310, 323, 327, 330, 333, 336, $340,343,346,349,352,355,358,361,364,367$
Tursiops truncatus, 3, 4, 5, 51, 63, 89, 90, 91, 92, 93, $94,95,96,97,98,99,143,145,152,153,154$, $155,158,159,264,270,271,272,273,274,300$, $301,302,303,304,305,306,307,308,309,310$, $311,312,313,315,316,317,318,319,320,321$
Vermillion Bay, 314
West Bay, 314, 315
West Cote Blanche Bay, 314
white-beaked dolphin, $3,55,67,69,76,78,79,80$, 81
white-sided dolphin, $3,51,63,69,70,71,72,73,74$, $75,76,77,78,79,80,88$
Whitewater Bay, 314
Ziphius cavirostris, 232, 236, 237, 242, 288, 290, 292, 296

Manuscript Qualification

This series represents a secondary level of scientific publishing in the National Marine Fisheries Service (NMFS). For all issues, the series employs thorough internal scientific review, but not necessarily external scientific review. For most issues, the series employs rigorous technical and copy editing. Manuscripts that may warrant a primary level of scientific publishing should be initially submitted to one of NMFS's primary series (i.e., Fishery Bulletin, NOAA Professional Paper NMFS, or Marine Fisheries Review).

Identical, or fundamentally identical, manuscripts should not be concurrently submitted to this and any other publication series. Manuscripts which have been rejected by any primary series strictly because of geographic or temporal limitations may be submitted to this series.

Manuscripts by Northeast Fisheries Science Center (NEFSC) authors will be published in this series upon approval by the NEFSC's Deputy Science \& Research Director. Manuscripts by non-NEFSC authors may be published in this series if: 1) the manuscript serves the NEFSC's mission; 2) the manuscript meets the Deputy Science \& Research Director's approval; and 3) the author arranges for the printing and binding funds to be transferred to the NEFSC's Research Communications Branch account from another federal account. For all manuscripts submitted by non-NEFSC authors and published in this series, the NEFSC will disavow all responsibility for the manuscripts' contents; authors must accept such responsibility.

The ethics of scientific research and scientific publishing are a serious matter. All manuscripts submitted to this series are expected to adhere -- at a minimum -- to the ethical guidelines contained in Chapter 2 ("Publication Policies and Practices") of the Scientific Style and Format: the CSE Manual for Authors, Editors, and Publishers, seventh edition (Reston VA: Council of Science Editors). Copies of the manual are available at virtually all scientific libraries.

Manuscript Preparation

Organization: Manuscripts must have an abstract, table of contents, and -- if applicable -- lists of tables, figures, and acronyms. As much as possible, use traditional scientific manuscript organization for sections: "Introduction," "Study Area," "Methods \& Materials," "Results," "Discussion" and/ or "Conclusions," "Acknowledgments," and "References Cited."

Style: All NEFSC publication and report series are obligated to conform to the style contained in the most recent
edition of the United States Government Printing Office Style Manual. That style manual is silent on many aspects of scientific manuscripts. NEFSC publication and report series rely more on the CSE Style Manual, seventh edition.

For in-text citations, use the name-date system. A special effort should be made to ensure that the list of cited works contains all necessary bibliographic information. For abbreviating serial titles in such lists, use the guidance of the International Standards Organization; such guidance is easily accessed through the various Cambridge Scientific Abstracts' serials source lists (see http:// www.public.iastate.edu/~CYBERSTACKS/JAS.htm). Personal communications must include date of contact and full name and mailing address of source.

For spelling of scientific and common names of fishes, mollusks, and decapod crustaceans from the United States and Canada, use Special Publications No. 29 (fishes), 26 (mollusks), and 17 (decapod crustaceans) of the American Fisheries Society (Bethesda MD). For spelling of scientific and common names of marine mammals, use Special Publication No. 4 of the Society for Marine Mammalogy (Lawrence KS). For spelling in general, use the most recent edition of Webster's Third New International Dictionary of the English Language Unabridged (Springfield MA: G. \& C. Merriam).

Typing text, tables, and figure captions: Text, tables, and figure captions should be converted to Word. In general, keep text simple (e.g., do not switch fonts and type sizes, do not use hard returns within paragraphs, do not indent except to begin paragraphs). Also, do not use an automatic footnoting function; all notes should be indicated in the text by simple numerical superscripts, and listed together in an "Endnotes" section prior to the "References Cited" section. Especially, do not use a graphics function for embedding tables and figures in text.

Tables should be prepared with a table formatting function. Each figure should be supplied in digital format (preferably GIF or JPG), unless there is no digital file of a given figure. Except under extraordinary circumstances, color will not be used in illustrations.

Manuscript Submission

Authors must submit separate digital files of the manuscript text, tables, and figures. The manuscript must have cleared NEFSC's online internal review system. Non-NEFSC authors who are not federal employees will be required to sign a "Release of Copyright" form.

Send all materials and address all correspondence to: Jarita A. Davis (Editor), Editorial Office, NMFS Northeast Fisheries Science Center, 166 Water Street, Woods Hole, MA 02543-1026.

Northeast Fisheries Science Center Operations, Management \& Information Division Research Communications Branch Editorial Office

Publications and Reports of the

Northeast Fisheries Science Center

The mission of NOAA's National Marine Fisheries Service (NMFS) is "stewardship of living marine resources for the benefit of the nation through their science-based conservation and management and promotion of the health of their environment." As the research arm of the NMFS's Northeast Region, the Northeast Fisheries Science Center (NEFSC) supports the NMFS mission by "conducting ecosystem-based research and assessments of living marine resources, with a focus on the Northeast Shelf, to promote the recovery and long-term sustainability of these resources and to generate social and economic opportunities and benefits from their use." Results of NEFSC research are largely reported in primary scientific media (e.g., anonymously-peer-reviewed scientific journals). However, to assist itself in providing data, information, and advice to its constituents, the NEFSC occasionally releases its results in its own media. Currently, there are three such media:

NOAA Technical Memorandum NMFS-NE -- This series is issued irregularly. The series typically includes: data reports of long-term field or lab studies of important species or habitats; synthesis reports for important species or habitats; annual reports of overall assessment or monitoring programs; manuals describing program-wide surveying or experimental techniques; literature surveys of important species or habitat topics; proceedings and collected papers of scientific meetings; and indexed and/or annotated bibliographies. All issues receive internal scientific review and most issues receive technical and copy editing.

Northeast Fisheries Science Center Reference Document -- This series is issued irregularly. The series typically includes: data reports on field and lab studies; progress reports on experiments, monitoring, and assessments; background papers for, collected abstracts of, and/or summary reports of scientific meetings; and simple bibliographies. Issues receive internal scientific review, but no technical or copy editing.

Resource Survey Report (formerly Fishermen's Report) -- This information report is a quick-turnaround report on the distribution and relative abundance of selected living marine resources as derived from each of the NEFSC's periodic research vessel surveys of the Northeast's continental shelf. There is no scientific review, nor any technical or copy editing, of this report.

[^4]
[^0]: ${ }^{a}$ Nelson, JS; Crossman, EJ; Espinosa-Pérez, H; Findley, LT; Gilbert, CR; Lea, RN; Williams, JD. 2004. Common and scientific names of fishes from the United States, Canada, and Mexico. 6th ed. Amer. Fish. Soc. Spec. Publ. 29; 386 p.
 ${ }^{\text {b }}$ Robins, CR (chair); Bailey, RM; Bond, CE; Brooker, JR; Lachner, EA; Lea, RN; Scott, WB. 1991. World fishes important to North Americans. Amer. Fish. Soc. Spec. Publ. 21; 243 p.
 ${ }^{\text {c }}$ Turgeon, DD (chair); Quinn, JF, Jr; Bogan, AE; Coan, EV; Hochberg, FG; Lyons, WG; Mikkelsen, PM; Neves, RJ; Roper, CFE; Rosenberg, G; Roth, B; Scheltema, A; Thompson, FG; Vecchione, M; Williams, JD. 1998. Common and scientific names of aquatic invertebrates from the United States and Canada: mollusks. 2nd ed. Amer. Fish. Soc. Spec. Publ. 26; 526 p.
 ${ }^{d}$ McLaughlin, PA; Camp, DK; Angel, MV; Bousfield, EL; Brunel, P; Brusca, RC; Cadien, D; Cohen, AC; Conlan, K; Eldredge, LG; Felder, DL; Goy, JW; Haney, T; Hann, B; Heard, RW; Hendrycks, EA; Hobbs, HH, III; Holsinger, JR; Kensley, B; Laubitz, DR; LeCroy, SE; Lemaitre, R; Price, RW; Reid, JW; Robertson, A; Rogers, DC; Ross, A; Schotte, M; Schram, FR; Shih, C-T; Watling, L; Wilson, GDF; Turgeon, DD. 2005. Common and scientific names of aquatic invertebrates from the United States and Canada: crustaceans. 2nd ed. Amer. Fish. Soc. Spec. Publ. 31; 545 p.
 ${ }^{\mathrm{e}}$ Rice, DW. 1998. Marine mammals of the world: systematics and distribution. Soc. Mar. Mammal. Spec. Publ. 4; 231 p.

[^1]: They are a product of bycatch rates predicted by covariates in a model framework and effort reported by commercial fishermen on mandatory vessel logbooks. This method differs from the previous method used to estimate mortality in these fisheries prior to 2000. Therefore, the estimates reported prior to 2000 can not be compared to estimates during 2000-2004. In addition, the fisheries listed in Table 2 reflect new definitions defined by the proposed List of Fisheries for 2005 (FR Vol. 69, No. 231, 2004). The 'North Atlantic bottom trawl' fishery is now referred to as the 'Northeast bottom trawl. The Illex, Loligo and Mackerel fisheries are now part of the 'Mid-Atlantic bottom trawl fishery.
 e NA=No joint venture or TALFF fishing effort for Atlantic herring.
 ${ }^{f}$ Three foreign vessels and seven American vessels.
 g During joint venture fishing operations, nets that are transferred from the domestic vessel to the foreign vessels for processing are observed on board the foreign vessel. There may be nets fished by domestic vessels that do not get transferred to a foreign vessel for processing and therefore would not be observed. During TALFF fishing operations all nets fished by the foreign vessel are observed.
 h 2000 mortality estimates were taken from Yeung (2001), 2001and 2002 from Garrison (2003), 2003 from Garrison and Richards (2004) and 2004 from Garrison (2005).
 An experimental program to test effects of gear characteristics, environmental factors, and fishing practices on marine turtle bycatch rates in the Northeast Distant (NED-E) water component of the fishery was conducted from June 1, 2001-December 31, 2003. Observer coverage was 100% during this experimental fishery. Summaries are provided for the pelagic longline EXCLUDING the NED-E area in one row and for ONLY the NED in the second row. No mortalities or serious injuries were observed for pilot whales in the NED-E, though 1 pilot whale was caught alive and released without injury (Garrison, 2003; Garrison and Richards, 2004).

[^2]: They are a product of bycatch rates predicted by covariates in a model framework and effort reported by commercial fishermen on mandatory vessel logbooks. This method differs from the previous method used to estimate mortality in these fisheries prior to 2000. Therefore, the estimates reported prior to 2000 can not be compared to estimates during 2000-2004. In addition, the fisheries listed in Table 2 reflect new definitions defined by the proposed List of Fisheries for 2005 (FR Vol. 69, No. 231, 2004). The 'North Atlantic bottom trawl' fishery is now referred to as the 'Northeast bottom trawl'. The Illex, Loligo and Mackerel fisheries are now part of the 'mid-Atlantic bottom trawl' fishery.
 e NA=No joint venture or TALFF fishing effort for Atlantic herring.
 f Three foreign vessels and seven American vessels.
 g During joint venture fishing operations, nets that are transferred from the domestic vessel to the foreign vessels for processing are observed on board the foreign vessel. There may be nets fished by domestic vessels that do not get transferred to a foreign vessel for processing and therefore would not be observed. During TALFF fishing operations all nets fished by the foreign vessel are observed.
 h 2000 mortality estimates were taken from Yeung (2001), 2001and 2002 from Garrison (2003), 2003 from Garrison and Richards (2004) and 2004 from Garrison (2005).
 An experimental program to test effects of gear characteristics, environmental factors, and fishing practices on marine turtle bycatch rates in the Northeast Distant (NED-E) water component of the fishery was conducted from June 1, 2001-December 31, 2003. Observer coverage was 100% during this experimental fishery. Summaries are provided for the pelagic longline EXCLUDING the NED-E area in one row and for ONLY the NED in the second row. No mortalities or serious injuries were observed for pilot whales in the NED-E, though 1 pilot whale was caught alive and released without injury (Garrison, 2003; Garrison and Richards, 2004).

[^3]: ${ }^{\text {a }}$ This represents the first estimate for the offshore Atlantic spotted dolphin.
 ${ }^{\mathrm{b}}$ This is the combined estimate for the two survey regions
 ${ }^{c}$ This estimate is a recalculation of the same data reported in previous SARs. For more details see Mullin and Fulling 2003.

[^4]: OBTAINING A COPY: To obtain a copy of a NOAA Technical Memorandum NMFS-NE or a Northeast Fisheries Science Center Reference Document, or to subscribe to the Resource Survey Report, either contact the NEFSC Editorial Office (166 Water St., Woods Hole, MA 02543-1026; 508-495-2228) or consult the NEFSC webpage on "Reports and Publications" (http://www.nefsc. noaa.gov/nefsc/publications/).

 ANY USE OF TRADE OR BRAND NAMES IN ANY NEFSC PUBLICATION OR REPORT DOES NOT IMPLY ENDORSEMENT.

