
BOTTLENOSE DOLPHIN (*Tursiops truncatus*): Gulf of Mexico Continental Shelf Edge and Continental Slope Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

This bottlenose dolphin stock is defined as the stock which occupies the outer edge of the U.S. Gulf of Mexico Outer Continental Shelf (OCS) and waters over the continental slope within the U.S. Exclusive Economic Zone (EEZ), from the latitude and longitude of the U.S. EEZ off the U.S.-Mexico border to the latitude of the U.S. EEZ south of Key West, Florida. Close observation by experienced NMFS observers from shipboard surveys conducted throughout much of its range (Fig. 1) indicates that most of the dolphins sighted during ship-based surveys over the continental shelf edge and continental slope were the relatively large and robust dolphins assumed to be of the deep water ecotype hypothesized by Hersh and Duffield (1990). These dolphins were reported to be larger and darker in color than bottlenose dolphins seen over the continental shelf closer to shore (NMFS unpublished data). This stock's range may extend into Mexican and Cuban waters; however, there are no estimates available for bottlenose dolphin abundance or mortality from those countries.

POPULATION SIZE

Preliminary estimates of abundance were derived using sampling analysis distance (Buckland et al. 1993) and the computer program DISTANCE (Laake et al. 1993) with sighting data collected during shipboard linetransect surveys conducted during the spring of 1992-1994 (Fig. 1). These surveys were conducted throughout the area from approximately the 200 m isobath along the U.S. coast to the seaward extent of the U.S. Exclusive Economic Zone. The seasonal GulfCet aerial surveys included only a small portion of the stock range and these data were not used for abundance estimation. bottlenose dolphin abundance over

Figure 1. Distribution of sightings of bottlenose dolphins during NOAA Ship Oregon II marine mammal surveys in the Gulf of Mexico outer continental shelf (OCS) edge and continental slope waters (filled circles). Sightings of the OCS bottlenose dolphin stock made during GOMEX regional aerial surveys (unfilled circles) are shown for comparison. The bottlenose dolphin on the OCS are believed to be a separate stock. The straight lines show transects during two ship surveys and are examples of typical ship survey transects. Isobaths are in 183 m (100 fm) intervals.

six surveys was estimated at 5,618 dolphins with coefficient of variation (CV) = 0.26. In this analysis, it was assumed that all of the bottlenose dolphins sighted during the ship-based surveys were of this stock. The survey area overlapped in some areas with the OCS stock which was assumed to occur from approximately 9 km seaward of the 18 m isobath to approximately 9 km seaward of the 183 m isobath; however, the amount of overlap is considered insignificant and its effect on the abundance estimate is not known.

Minimum Population Estimate

The minimum population estimate was based on the average bottlenose dolphin abundance estimate of 5,618 bottlenose dolphins (CV = 0.26). The minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the log-normally distributed abundance estimate. This is equivalent to the 20th percentile of the log-normal distribution as specified by Wade and Angliss (1997). The minimum population estimate is 4,530 bottlenose dolphins.

Current Population Trend

The data are insufficient to determine population trends.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Current and maximum net productivity rates are not known for this stock. The maximum net productivity rate was assumed to be 0.04. This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive life history (Barlow *et al.* 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential Biological Removal (PBR) is the product of minimum population size, one-half the maximum productivity rate, and a "recovery" factor (Wade and Angliss 1997). The "recovery " factor, which accounts for endangered, depleted, and threatened stocks, or stocks of unknown status relative to optimum sustainable population (OSP) is assumed to be 0.5 because this stock is of unknown status. PBR for this stock is 45 bottlenose dolphins.

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

There are no observed cases of human-caused mortality and serious injury in this stock; however, based on an observed non-lethal take in U.S. Atlantic waters in 1993 in the pelagic longline fishery, this stock may be subject to incidental take resulting in serious injury or mortality. Fishery interactions have been reported to occur between bottlenose dolphins and the longline swordfish/tuna fishery in the Gulf of Mexico [Southeast Fisheries Science Center (SEFSC) unpublished logbook data] and annual fishery-related mortality and serious injury to bottlenose dolphins is estimated to be 2.8 per year (CV = 0.74) during 1992-1993. This estimate could include bottlenose dolphins from the OCS stock.

Fishery Interaction

Pelagic swordfish, tunas, and billfish are the targets of the longline fishery operating in the U.S. Gulf of Mexico. Total longline effort for the Gulf of Mexico pelagic fishery, including OCS edge, continental slope, and Mexican territorial waters, based on mandatory logbook reporting, was 4,400 sets in 1991, 4,850 sets in 1992, and 3,260 sets in 1993 (Cramer 1994). This fishery has been monitored with about 5% observer coverage, in terms of trips observed, since 1992. Estimated take was based on a generalized linear model (Poisson error assumption) fit to the available observed incidental take and self-reported incidental take and effort data for the fishery. The following estimates were based on observed takes across the Atlantic longline swordfish/tuna fishery (which includes the Gulf of Mexico). All observed takes were used because the species occurs generally throughout the area of the fishery, but observed takes were infrequent in any given region of the fishery. There were no lethal takes of bottlenose dolphins observed or reported in 1992 and 1993, and only one non-lethal take was reported in 1993, which is assumed to have caused serious injury. The estimated level of fishery-related mortality and serious injury for the entire fishery, including waters outside of the Gulf of Mexico, in 1993 was 16 bottlenose dolphins (CV = 0.19). No take was observed in the Gulf of Mexico, but there are logbook reports of interactions between bottlenose dolphins and this fishery (SEFSC unpublished logbook data).

Given the fact that fishery interactions have been reported to occur between bottlenose dolphins and the longline swordfish/tuna fishery in the Gulf of Mexico, a probable level of fishery-related mortality and serious injury rate can be estimated. Under the assumption that the probability of an incidental take is proportional to fishing effort (number of sets), the estimated level of incidental mortality and serious injury partitioned to include only the Gulf of Mexico stock would be 5.5 bottlenose dolphins in 1993 (CV = 0.19). Average annual fishery-related mortality and serious injury during 1992-1993 would be 2.8 bottlenose dolphins (CV=0.74). This estimate could include dolphins from the OCS stock.

Pair trawl fishing gear has the potential to capture marine mammals, but there have been no reports of mortality or serious injury to marine mammals in the Gulf of Mexico. This fishery has not been observed by NMFS observers, and there are no other data available as to the extent of this fishery in the Gulf of Mexico. It is assumed that it is very limited in scope and duration.

A trawl fishery for butterfish was monitored by NMFS observers for a short period in the 1980's with no records of incidental take of marine mammals (Burn and Scott 1988; NMFS unpublished data), although an experimental NMFS set resulted in the death of two bottlenose dolphins (Burn and Scott 1988). There are no other data available.

Other Mortality

No direct or indirect human-caused mortality has been reported for this stock.

STATUS OF STOCK

The status of this stock relative to OSP is not known and the population trend cannot be determined due to insufficient data. This species is not listed as threatened or endangered under the Endangered Species Act. The total fishery-related mortality and serious injury for this stock is less than 10% of the calculated PBR and, therefore, can be considered to be insignificant and approaching zero mortality and serious injury rate. This is not a strategic stock because fishery-related mortality or serious injury does not exceed PBR.

REFERENCES

- Barlow, J., S.L. Swartz, T.C. Eagle, and P.R. Wade. 1995. U.S. Marine Mammal Stock Assessments: Guidelines for Preparation, Background and a Summary of the 1995 Assessments. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-6, 73 pp.
- Buckland, S. T., D. R. Anderson, K. P. Burnham, and J. L. Laake. 1993. Distance sampling: Estimating abundance of biological populations. Chapman & Hall, London, 446 pp.
- Burn, D. And G. P. Scott. 1988. Synopsis of available information on marine mammal-fisheries interactions in the southeastern United States: preliminary report. NMFS/SEFC, Miami Laboratory, Coastal resources Division, Contribution ML-CRG-87/88-26, 37 pp.
- Cramer, J. 1994. Large pelagic logbook newsletter 1993. NOAA Tech. Mem. NMFS-SEFSC-352, 19 pp.
- Hersh, S. L. and D. A. Duffield. 1990. Distinction between northwest Atlantic offshore and coastal bottlenose dolphins based on hemoglobin profile and morphometry. Pages 129-139 *in* S. Leatherwood and R. R. Reeves (editors), The bottlenose dolphin, Academic Press, San Diego, 653 pp.
- Laake, J. L., S. T. Buckland, D. R. Anderson, and K. P. Burnham. 1993. DISTANCE user's guide, V2.0. Colorado Cooperative Fish & Wildlife Research Unit, Colorado State University, Ft. Collins, Colorado, 72 pp.
- Wade, P.R., and R.P. Angliss. 1997. Guidelines for assessing marine mammal stocks: Report of the GAMMS Workshop April 3-5, Seattle, Washington. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-12, 93 pp.