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Attached is the third in a series of briefing papers on statistical issues of interest in hydrology.  
Each paper presents issues applicable to ongoing work in District offices, and represents 
activities either of the Branch of Systems Analysis or related work in the field of applied 
statistics. 

The third briefing paper, "Selection of Methods for the Detection and Estimation of Trends in 
Water Quality"  has been accepted for publication in Water Resources Research.  This paper 
discusses the major issues in choosing an appropriate trend detection procedure.  Specifically 
discussed are: 

1. Type of trend -- step trend vs. monotonic trend 
2. Type of assumptions -- parametric vs. nonparametric tests 
3. Type of data -- concentration vs. flux (load) 
4. Type of method -- removal of sources of variability other than trend 
5. Type of measurement scale -- censored vs. uncensored data. 

All procedures have been published in prior journals and books.  Therefore, citations to the 
original references listed in the briefing paper are appropriate.  The briefing paper itself is 
expected to appear later in 1991 in WRR, and may be referenced at that time.  These 
techniques have already been used in many published Survey reports, and so require only a 
clear statement of the method used with the appropriate reference. 

Questions on this topic have been, and should continue to be entered into the STATI 
continuum on QVARSA. 

Software 
Software for performing the Seasonal Kendall test is located on the RVARES Prime, in a 
directory accessible to the FTR command called  <Sysgrp>Common>Seaken .  In that 
directory is a file of documentation called    **read_me_first** .  This file provides instructions 
on obtaining the compiled runfile for the program, called  run_seaken.run,  plus example data 
sets, all of which are contained in the Seaken directory. 
 
A PC version of the Seasonal Kendall code is also available by Email request to JRSLACK. 
 
The rank-sum test (also called the Wilcoxon rank-sum test, the Mann-Whitney test, and the 
Mann-Whitney-Wilcoxon test) discussed here for step-trends is available on commercial 
statistical packages, including Minitab, P-Stat, and Statit.   
 



Discharge compensation by regression can also be performed by commercially-available 
statistical software.  Residuals from the regression relation between concentration and 
discharge, for example, can be stored in a file and used as input to run_seaken in order to 
perform the Seasonal Kendall test on flow-adjusted concentrations.  Or residuals can be stored 
within the package and analyzed by the rank-sum test to get a step-trend analysis of flow-
adjusted concentrations. 
 
LOWESS can be computed by some commercially-available statistical packages such as  
S (Unix), S+ (PC), and Systat (Macintosh and PC).   A Prime stand-alone program is also 
available on RVARES as the file   <Sysgrp>Common>Class>smooth3.run .   It too may be 
obtained through the FTR command.  The smooth3 program outputs 3 smooths, an upper, 
middle and lower smooth.  These correspond to lines of approximately 75th, 50th and 25th 
percentiles. Though all 3 lines are produced using a LOWESS technique, the middle smooth or 
50th percentile line is the only smooth referred to in the briefing paper. 
 
A package of "user friendly" menu-driven trend programs, collectively referred to as ESTREND 
(EStimate TREND), is also available.  ESTREND includes two trend testing procedures:  the 
Seasonal Kendall test (for use with uncensored or censored data) and the TOBIT procedure 
(for use with censored data-see BSA technical memorandum 90.1 for more on TOBIT).  
Discharge compensation can be performed within ESTREND prior to the Seasonal Kendall 
test either through linear regression or LOWESS.  ESTREND also includes data management 
routines and programs for the production of scatterplots, histograms, state maps, and 
statistical summary tables.  Complete documentation for ESTREND is available as WRI Report 
91-4040 "The computer program EStimate TREND (ESTREND), a system for the detection of 
trends in water quality data" by T.L. Schertz, R.B. Alexander, and D.J. Ohe.  The software 
resides in a large directory (about 9 files) named <BQA> TREND. PGMS on RCOLKA.  An 
instruction file called **READ ME FIRST in the TREND PGMS. directory should first be 
FTR'd to your system before copying the entire directory.  Send Email to Terry Schertz 
(Email:  TLSCHERTZ) in the Branch of Quality Assurance for additional information on 
ESTREND. 
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SELECTION OF METHODS FOR THE DETECTION AND ESTIMATION 

OF TRENDS IN WATER QUALITY 

Robert M. Hirsch, Richard B. Alexander, and Richard A. Smith 

Abstract 

One result of increased scientific and public interest in water quality over the past few 
decades has been the gradual accumulation of reliable long-term water-quality data records 
and an interest in examining these data for long-term trends.  This paper summarizes and 
examines some of the major issues and choices involved in detecting and estimating the 
magnitude of temporal trends in measures of stream-water quality.  The first issue is the type 
of trend hypothesis to examine: step trends versus monotonic trend.  The second relates to the 
general category of statistical methods to employ:  parametric versus non-parametric.  The 
third issue relates to the kind of data to analyze: concentration data versus flux data.  The 
fourth relates to issues of data manipulation to achieve the best results from the trend analysis.  
These issues include the use of mathematical transformations of the data and the removal of 
natural sources of variability in water quality due to seasonal and stream discharge variations.  
The final issue relates to the choice of a trend technique for the analysis of data records with 
censored or "less-than" values.  The authors' experiences during the past decade with the 
development of several trend detection techniques and application of these techniques to a 
large number of water-quality records provide insight into the issues related to a choice of a 
statistical test for trend in water quality.  



Introduction 

During the past decade, various nonparametric and semi-nonparametric techniques for the 
detection of trends in water-quality data were developed and applied by many U.S. Geological Survey 
investigators.  Theoretical investigations that compared the performance of these techniques with their 
parametric counterparts were conducted (Hirsch, et al., 1982; Hirsch and Slack, 1984; Hirsch, 1988).  
The trend methods were also applied to an extremely large number of stream water-quality and 
atmospheric deposition records as part of several investigations (Smith, et al., 1982; Smith et al., 1987; 
Alexander and Smith, 1988; Schertz and Hirsch, 1985; Hirsch and Gilroy, 1985).  The experiences 
gained during the development and application of these methods provide valuable insight into the 
various decisions related to the choice of a statistical test for trend in water-quality data.   

The purpose of this paper is to examine some of the major issues and choices involved in 
selecting a method for evaluating changes in stream-water quality over time.  The discussion draws 
heavily on the authors' experiences in conducting theoretical investigations of particular methodological 
choices, applying trend detection techniques to numerous water-quality records, and advising others on 
applications of trend techniques.  Specific statistical or data manipulation techniques for dealing with 
issues related to trend detection are either described or references on the methods are provided in the 
paper.  This discussion is not intended to provide a comprehensive review of trend detection 
methodologies.  Instead, the objective is to provide guidance in the selection and use of available 
statistical techniques for trend detection based on our experiences with a wide variety of trend detection 
methods. 

The choices involved in the selection of a trend detection method discussed here include:  1)  the 
type of trend hypothesis to examine (step trend versus monotonic trent), 2) the general category of 
statistical methods to employ (parametric versus nonparametric), 3) the kind of water-quality data to 
analyze (concentration versus flux), 4) various data manipulation choices related to the use of 
mathematical transformations and the removal of natural sources of variability (discharge, seasonality) 
in water quality, and 5) the choice of a trend detection technique for water-quality records with censored 
data.   

Sample Collection and Analytical Methods 

It is assumed for purposes of this examination that one or more sets of data, which were collected 
over a period of years in a consistent and reliable manner, are available to the investigator.  This means 
that the rules for the timing of sample collection must be known (convenience sampling is not 
acceptable), the methods of sample collection, handling, shipment, preservation, laboratory 



measurement, and data reporting conventions (rounding and reporting limits) must be constant over the 
period of record.  There can be exceptions to this requirement of constancy.  Specifically, if changes 
have been documented to have no effect on the resulting data, or if changes result in known biases and 
these biases are subsequently corrected in the data undergoing analysis, then the procedures described 
here may legitimately be used to examine the data for trend. 

Step-trend versus monotonic trend 

Two primary types of trends can be considered in hypothesis testing and in trend 
estimation.  One is the step-trend hypothesis.  This hypothesis assumes that the data collected 
before a specific time are from a distinctly different population than the data collected after that 
time.  The difference between the populations is assumed to be one of location (e.g. mean or 
median) but not necessarily of scale (e.g. variance or interquartile range).  The other trend 
hypothesis is that the population shifts monotonically (i.e. no reversals of direction) over time, 
but doesn't specify if this occurs continuously, linearly, in one or more discrete steps, or in any 
other specific pattern (see examples in Fig. 1).  The step-trend hypothesis is much more 
specific than the monotonic trend hypothesis.  It requires that a particular fact, the time of the 
change, is known prior to any examination of the data. 
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Figure 1(a).  A relatively continuous, monotonic increase (p<0.001) in total phosphorus concentrations 
for1972-89.  Trend test is Seasonal Kendall.  Solid line is regression estimate.  Dashed line is LOWESS.   
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Figure 1 (b).  An increase (p=0.003) is detected in dissolved solids concentrations for 1972-89.  
Within the overall increase there are notable decreases around 1974 and during the period 
1978-1983.  Trend test is Seasonal Kendall. 
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Figure 1(c).  An increase (p<0.001) is detected in sulfate concentrations for  
1972-89.  Much of this increase in sulfate concentration occurred as an abrupt rise in 1981.  
Trend test is Seasonal Kendall. 

 

Examples of techniques tailored to the step-trend alternative include parametric tests 
like the two sample t-test (Iman and Conover, 1983) and estimates of change magnitude 
based on the difference in sample means.  The non-parametric alternatives to these are the 
Mann-Whitney-Wilcoxon Rank Sum test (Bradley, 1968) and the associated Hodges-Lehmann 
estimator of trend magnitude (Hodges and Lehmann, 1963).  The parametric procedures for 
the monotonic trend alternative are regression analysis (Montgomery and Peck, 1982) of the 
water quality variable as a function of time.  Regression provides a measure of significance 
based on a hypothesis test on the slope coefficient (or alternatively the correlation coefficient) 
and a measure of magnitude, the estimated slope.  The non-parametric approach would be to 
use the Mann-Kendall test for trend (Mann, 1945; Kendall, 1975), which is functionally identical 
to Kendall's (tau) test for correlation (Kendall, 1975), and the associated slope estimate 
developed by Sen (1968).  Numerous variations are possible for each of the procedures 
mentioned.  Several of these are discussed below in the sections on seasonal variation and 
flow variation. 

The step trend procedures should only be used in two specific types of cases.  The first 
is when the record (or records) being analyzed are naturally broken into two distinct periods 
with a relatively long time gap between them.  There is no specific rule to determine how long 
the gap should be to make this the preferred procedure.  If the length of the gap is more than 
about one-third the entire period of data collection, then the step trend procedure may be best 
(see Fig. 2a) even if the actual trend was linear.  In general, if the within-period trends are 
small in comparison to the between-period differences, then the step trend procedures should 
be used.  The other situation is when there is a known event that occurred at a specific time 
during the record, and is likely to have resulted in a change in water quality.  The record should 
be divided into "before" and "after" periods at the time of this known event.  The event could be 
the introduction of a new source of contaminants, reduction in some contaminant due to 
completion of treatment plant  
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Figure 2(a).  For the Red River at Alexandria, Louisiana, nitrate-nitrite concentrations 
measured during 1988-89 are significantly (p=0.085) lower than those during 1977-81 when 
tested with a step trend procedure, the Mann-Whitney Rank Sum test.  A monotonic trend 
procedure, the Seasonal Kensall test, does not detect a significant trend (p=0.085) in 
concentration for 1977-89.  The Sen (1968) estimate of linear trend is shown as a solid line. 
improvements, or the closing of some facility (see example in Fig. 2b).  It is imperative that the 
decision to use step-trend procedures not be based on examination of the data (i.e. the analyst 
notices an apparent step but had no prior hypothesis that it should have occurred), or on a 
computation of the time which maximizes the difference between periods.  To use such a two-
step procedure would have the result of biasing the significance level of the test.  Step-trend 
procedures require a highly specific situation, and the decision to use them should be made 
prior to any examination of the data.   
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Figure 2(b).  A weakly significant (p=0.105) reduction in suspended sediment concentration in 
the Green River near Jensen, Utah followied completion of the Flaming Gorge reservoir 
(located 93 miles upstream of the station) in late 1962.  Monthly flow-weighted concentrations 
of suspended sediment were separated into pre-construction (1948-1962) and post-
construction (1963-1979) time periods and tested using Mann-Whitney Rank Sum test.. 
 

If there is no prior hypothesis of a time of change or if records from a variety of stations 
are being analyzed in a single study, the monotonic trend procedures are most appropriate.  In 
multiple record studies, even when some of the records have extensive but not identical gaps, 
the monotonic trend procedures are generally best because comparable periods of record can 
be more easily examined among all the records.  In fact, the frequent problem of multiple 
starting dates, ending dates, and gaps in a group of records presents a significant practical 
problem in trend analysis studies.  In order to correctly interpret the data, records examined in 
a multiple station study must be concurrent.  For example it is pointless to compare a 1975-
1985 trend at one station to a 1960-1980 trend at another.  The difficulty arises in selecting a 
period which is long enough to be meaningful but does not exclude too many shorter records.   



A further difficulty involves deciding just how complete a record must be to be included 
in the analysis.  For example, if the study is for 1970-1985 and there is a record that runs from 
1972 through 1985 it is probably prudent to include it in the study.  Furthermore, a one- or two-
year gap in the middle of the record this should not disqualify it from the analysis.  More 
difficult are questions such as inclusion of a 1976-1984 record, or inclusion of a record that 
covers 1970-1975 and 1982-1985.  One reasonable objective rule for deciding to include a 
record would be as follows:  1) divide the study period into thirds (three periods of equal 
length), 2) determine the coverage in each period (e.g. if the record is generally monthly, count 
the months for which there are data), 3) if any of the thirds has less than 20 percent of the total 
coverage then the record should not be included in the analysis. 

Parametric Versus Non-parametric Methods 

The parametric procedures for trend testing are regression in the case of monotonic 
trend and the two sample t-test (Iman and Conover, 1983) for step trends.  Associated 
estimators of trend magnitude are the regression slope and the difference in the means, 
respectively.  Non-parametric alternatives to these procedures are the Mann-Kendall test 
(Mann, 1945; Kendall, 1975) and the Rank-Sum test (Bradley, 1968), respectively, and their 
estimators of trend magnitude are the Sen (1968) slope estimator and the Hodges-Lehmann 
estimator (Hodges and Lehmann, 1963).  The Sen slope estimator is the median of all pairwise 
slopes in the data set.  The Hodges-Lehmann estimator is the median of all differences 
between data in the first data set and data in the second data set.  The parametric step trend 
procedures are special cases of the parametric monotonic trend procedures and similarly the 
non-parametric step trend procedures are special cases of the non-parametric monotonic trend 
procedures.  To apply the monotonic trend procedures in the step-trend case, the time variable 
is treated as a zero for the first data set, and one for the second data set. 

Deciding to use one procedure in preference to another should be based on 
considerations of power and efficiency in the kinds of cases one expects to encounter with 
actual data.  Power is the probability of rejecting the null hypothesis (of no trend) given a 
particular type and magnitude of actual trend.  Efficiency is a measure of estimation error.  In 
particular, a procedure's relative efficiency can be measured by the ratio of the mean square 
error of a competing procedure to the mean square error of the particular procedure under 
consideration.  For any given significance level, the most powerful test is the parametric 
procedure if residuals are normally distributed.  Similarly, the relative efficiency of these 
procedures is higher when the residuals are normally distributed.  However, what should be at 



issue in selecting a procedure is not performance under some ideal set of conditions (i.e. 
normality), but the range of performance abilities that occur for the types of distributions likely 
to exist in the data to be analyzed. 

Hirsch et al. (1982) demonstrated that water-quality data are commonly skewed.  It is 
widely recognized that non-parametric procedures can have significantly higher power (or 
efficiency) than parametric procedures in cases where there is a substantial departure from 
normality and the sample size is large (see for example, Helsel and Hirsch, 1988).  However, 
there is less confidence among water-quality statistics practitioners regarding the effectiveness 
of non-parametric procedures in cases of minor departures from normality and/or small sample 
sizes.  Many of these practitioners are inclined to consider the parametric procedure as the 
standard method and only use non-parametric procedures when the data clearly demonstrate 
that the normal distribution assumption is invalid.  Thus, it is particularly important to consider 
cases where the departure from normality is sufficiently small such that visual inspection of the 
data distribution or formal tests of normality are unlikely to provide evidence for the lack of 
normality. 

The following Monte Carlo analysis compares the performance of parametric and non-
parametric methods in cases of small departures from normality and/or small sample sizes.  
The results of the analysis illustrate that non-parametric methods show modest advantages in 
terms of efficiency and power over parametric methods for data sets that depart only slightly 
from normality.  For the experiment, the data are assumed to be distributed as a mixture of two 
normal distributions.  The predominant distribution has a mean of 10 and a standard deviation 
of 1, the second distribution has a mean of 11 and a standard deviation of 3.  Figure 3 displays 
the two individual distributions and Figure 4 displays a mixture consisting of 95 percent from 
the first distribution and 5 percent from the second.  Visual examination reveals only the 
slightest departure from symmetry.  Given the sampling variability that exists in an actual data 
sets, it would be unlikely that samples from this distribution would be identified as non-normal.  
Figure 5 displays a more substantial departure from normality; it is a mixture of 80 percent of 
the first distribution and 20 percent of the second.  There is a notable difference in the shape of 
the two tails of the distribution but, again, the non-normality is not highly noticeable. 
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Figure 3.  Normal distributions used in a Monte Carlo analysis of parametric and 
nonparametric monotonic trend procedures.  The first distribution has a mean of 10 and a 
standard deviation of 1; the second distribution has a mean of 11 and a standard deviation of 
3. 
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Figure 4.  A normal distribution used in a Monte Carlo analysis of monotonic trend procedures 
and consisting of a mixture of data from distribution 1 (95 percent) and from distribution 2 (20 
percent) shown in Figure 3. 
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Figure 5.  A normal distribution used in a Monte Carlo analysis of monotonic trend procedures 
and consisting of a mixture of data from distribution 1 (80 percent) and from distribution 2 (20 
percent) shown in Figure 3. 

Random samples were generated from each of several different mixture distributions 
denoted by the percentage of the second distribution in the mixture.  The mixtures considered 
were 0, 1, 2, 3, 4, 5, 7, 10, and 20 percent.  Sample sizes generated were either (N=) 6 or 36.  
Each sample was treated as a time series and for each series a slope of the data (versus a 
time index) was computed by each of two methods: regression and the Sen slope estimator.  
The population value of the slope of each series was zero so the root mean square error 
(RMSE) for each estimator is simply the square root of the sums of squares of the estimates 
over the 1000 Monte Carlo trials considered.  The results, expressed as the ratio of RMSE for 
the Sen estimator to the RMSE of the regression estimator, are shown in Figure 6.  These 
results show that for the larger sample size (N=36) the regression estimator is more efficient 
(by less than 10 percent) when the data are normal, but with even modest amounts of mixtures 
the Sen estimator becomes more efficient.  In fact, at a 20 percent mixture the Sen estimator is 
almost 20 percent more efficient.  Interestingly, when the sample size is very small (N=6, 



smaller than one would typically have in a trend study) the efficiency remains virtually identical 
for the two estimators. 
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Figure 6.  The relative efficiency of the Sen slope estimator as compared with a regression 
slope estimator.  The efficiency is expressed as the ratio of the RMSE of the Sen slope 
estimator to the RMSE of the regression estimator and expressed as a function of population 
mixture and record length. 

 

In light of these kinds of results, which show that the non-parametric procedures suffer 
only small disadvantages (in terms of efficiency or power) in the normal case, potentially 
modest advantages when the data depart slightly (perhaps imperceptibly) from normality, and 
large advantages when they depart a great deal from normality (see Hirsch et. al., 1982): we 
have chosen to apply non-parametric procedures routinely in studies involving multiple data 
sets.  It is often argued that one should attempt to transform the data to normality and then 
carry out the procedure on the transformed data.  Such transformations are not always 
possible (at least with the common, simple transformations) due to heavy tails on the 
distribution.  When such transformations are possible, it may be desirable to do so because 
the parametric approaches do allow one to consider simultaneously (through multiple 
regression or analysis of covariance) the effects of multiple exogenous effects such as flow 
variation or temperature, along with temporal trend.  Such simultaneous considerations of 
effects are difficult with non-parametric techniques.   



The use of parametric techniques on transformed data is not well-suited to analyses of 
multiple data sets.  The transformation appropriate to one data set may not be appropriate to 
another.  If different transformations are used on different data sets then comparisons among 
results is difficult, if not impossible.  Another reason to avoid the transformation to normality 
approach is that it contains an element of subjectivity (in the choice of transformation).  The 
argument of the skeptic that: "You can always reach the conclusion you want if you manipulate 
the data enough" is not without merit.  The credibility of results is enhanced if a single 
statistical method is used for all data sets in a study.  The parametric methods, to be properly 
applied require that judgements be made about model fit, undue influence of outliers, and 
distribution of residuals.  Use of non-parametric methods avoids both the effort and the 
potential for real or perceived biases being imparted by the data analyst.  Consequently, we 
have used non-parametric procedures in virtually all of the multi-record trend analysis studies 
we have conducted.  However, in an analysis of an individual record, parametric methods, 
including use of transformations, can be very suitable.  Their use requires careful checking of 
model fit and residuals.  They are often more informative than the non-parametric procedures 
in more complex applications. 

Concentration versus Flux 

Many time series of water-quality data consist of a sequence of instantaneous 
concentration measurements (generally of a large number of chemical species) and concurrent 
measurements of river discharge.  In fact, the existence of concurrent discharge data can be of 
great value in the interpretation of concentration data as will be discussed below under 
"removal of variance due to discharge."  If discharge and concentration are both available, 
then the choice can be made between examining trends in concentrations or trends in flux, the 
product of discharge and concentration.  Determination of which variable should be analyzed 
for trend depends on the question to be answered.  For example, if the question is one of 
ambient quality in the stream, then the concentration would certainly be the appropriate 
variable to evaluate for trends.  The exposure of organisms that reside in the stream to 
potentially harmful (or beneficial) chemicals is determined by concentrations and the time over 
which they persist.  Flux is of no concern in this example.  Similarly, if the question is one of 
exposure of some facility or population that withdraws water from the stream, then 
concentration is again the variable of interest. 

However, if storage of the water and its constituents is an important factor, then flux 
may well be the appropriate variable to analyze.  For example, the flux of relatively 



conservative constituents may be of interest in situations where the sampling site is upstream 
of a reservoir, lake, or estuary where the water has a long residence time (months to years) 
and the exposure to chemicals by aquatic organisms or populations that ingest the water is of 
concern.  Studies focused on mass-balances (changes in the sources and sinks of chemical 
species in watershed) should also lead to analyses of flux.  In addition, if rates of denudation of 
the landscape or rates of deposition in a large downstream water body are of interest then 
analyses of flux would be appropriate.   

It may be appropriate to evaluate trends in both concentration and flux if there are 
multiple objectives for the study.  Knowing the trends in one of these measures will not 
necessarily provide a clear indication of the trends one can expect in the other measure.  For 
example, one may find a general upwards trend in concentration in a case where there are 
large increases in concentration occurring at low discharges (associated with increased point 
source contributions of a contaminant), but at high flows the trends are either non-existent or 
so small that they are obscured by the high variability of concentrations typical of high flow 
conditions.  A trend analysis of flux would be dominated by the ambiguous high flow 
information and the large changes in concentration at low flow would be viewed as 
inconsequentially small. 

Transformation of variables 

One feature that is common to a great deal of water-quality data is that they depart 
substantially from a normal distribution.  In many cases, the concentration or flux data are 
positively skewed with many of the observations lying close to the lower bound of zero and a 
few observations lying one or more orders of magnitude above the lower values.  If the extent 
of the analysis to be undertaken is simply a test for trend over time, then the decision to make 
some monotonic transformation of the data (to render them more nearly normal) is of no 
consequence provided that a non-parametric test is used.  The non-parametric trend tests are 
invariant to monotonic transformation (such as the logarithm or square root).  That means that 
in terms of significance levels the test results will be identical whether the test was applied to 
the raw data or the transformed data.  The decision to transform data is, however, highly 
important in terms of fitting various models that are useful in trend analysis such as flow 
adjustment (discussed in a later section), for computing significance levels of a parametric test 
(see Fig. 7), and for computing and expressing slope or step size estimates.   

Although a monotonic trend is unlikely to approximate a linear pattern over time, one 
may still want to express as a single linear equation, the history of the trend.  This is true 



particularly in the context of a multiple station trend analysis where the comparison of trend 
slopes may be of interest.  If the actual trend is non-linear (say exponential or quadratic) it is 
quite possible that a linear trend line fitted to the data would predict negative values during 
some part of the period of record.  A fit of this type is certainly not a reasonable approximation 
of the long term trend.   
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For the highly skewed concentrations of total phosphorus in this example, a trend is not 
evident in the raw concentrations (p=0.432 for trend test based on regression).  A statistically 
significant decline (p=0.001) is detected using regression on log-transformed concentrations 
(as shown by the solid trend line). 
 

One way to ensure that this will not occur is to take a log transformation of the data prior 
to analysis of the trend.  The trend slope will then be expressed in log units.  A linear trend in 
the log units translates to an exponential trend in the original units.  To use the log 
transformation is not equivalent to asserting that the trend is exponential, rather it provides an 
exponential-trend approximation to the actual trend in the data (see example in Fig. 8 and 
Table 1).  To make these trend slopes more interpretable, these log concentration slopes can 
be expressed in percent per year.  If B is the estimated slope of a linear trend in natural log 



units then the percentage change from the beginning of any year to the end of that year will be 
(eB  - 1) x100.  If the trend is a step trend rather than a monotonic trend and the data were 
transformed prior to estimating the step size B, then the step size in percentage terms will be 
(eB  - 1) x 100.  If slopes or step sizes in original concentration units are preferred, then rather 
than multiply by 100 in these expressions one can multiply by some measure of central 
tendency in the data (a mean or median) to express the slope or step in the original units.  

1

10

100

1000

10000

1972 1974 1976 1978 1980 1982 1984 1986 1988 1990

Suspended Sediment Concentration
Eel River at Scotia, California

Seasonal Kendall test p=0.0001
C
O
N
C
E
N
T
R
A
T
I
O
N
 

M
G
/
L YEAR

 
Figure 8.  A linear trend fitted to log-transformed suspended sediment concentrations.  In real 
concentration units this results in an exponential trend.  A linear trend fit to the actual 
concentration data would result in negative fitted concentration values in the period 1986-1990.  
If the Seasonal Kendall test is used the significance of the trend is identical for tests of 
concentration or log-concentration. 

Our experience has been that more resistant and robust results can be obtained if log 
transformations are used for data that typically have ranges of more than an order of 
magnitude at a given station (see Figs. 7 and 8) .  We have used transformations in 
conjunction with parametric tests and with non-parametric tests when the range of variation is 
quite large.  However, in multiple record analyses, the decision to transform was made on the 
basis of the charactersitics of the class of variables being studied and not on a case-by-case 



analysis.  Variables on which log transforms should typically be taken include: concentrations 
of sediment; total concentration (suspended plus dissolved) for a constituent when the 
suspended fraction is substantial (for example phosphorus and some metals); concentrations 
or counts of organisms; concentrations of substances that arise from biological processes 
(such as chlorophyl); and flux for virtually any constituent. 
 
Table 1.  Predicted concentrations of suspended sediment for the Eel River at Scotia, 

California for selected years.  Predictive equations (computed according to Sen) are 
based upon actual and log-transformed concentrations for the 1972-1990 time period.  
Equation 1 provides a linear estimate of trend in the actual concentrations.  Equation 2 
is linear in the logarithms of concentration.  Note that equation 1 estimates a negative 
concentration in 1990.     

 
EQUATION PREDICTED CONCENTRATION MG/L 

 1972 1980 1990 
(1)  C  =  249.8 - 18.7  T* 249 100 -87 
(2)  ln C  =  6.924  -  0.279  T* 1016 109 7 

  T* is the difference in decimal years between the time of interest and the base year of 1972. 
 

Removal of Variance Due To Discharge 

In many cases a great deal of the variance in a water-quality variable (concentration or 
flux) is a function of river discharge.  This comes about as a result of two different kinds of 
physical phenomena.  One is dilution: a solute may be delivered to the stream at a reasonably 
constant rate (due to a point source or ground-water discharge to the stream) as discharge 
changes over time.  The result of this situation is a decrease in concentration with increasing 
flow (see Fig 9a).  This is typically seen in most of the major dissolved constituents (the major 
ions).  The other process is wash-off: a solute, sediment, or a constituent attached to sediment 
can be delivered to the stream primarily from overland flow from paved areas or cultivated 
fields, or from streambank erosion.  In these cases, concentrations as well as fluxes tend to 
rise with increasing discharge (see Fig. 9b).  Some constituents can exhibit combinations of 
both of these kinds of behavior.  One example is total phosphorus.  A portion of the 
phosphorus may come from point sources such as sewage treatment plants (dilution effect), 
but another portion may be derived from surface wash-off and be attached to sediment 
particles (see Fig. 9c).   
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Figure 9(a).  LOWESS curve showing concentrations of major ions released to the stream at a 
relatively constant rate, diluted by increases in stream discharge. 
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Figure 9(b).  LOWESS curve showing that concentrations of suspended sediment increasing 
stream discharge due to the wash-off and transport of larger quantities of suspended sediment 
with increasing flow. 
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Figure 9(c).  LOWESS curve showing that at low to moderate levels of flow, phosphorus is 
released to the stream at a relatively constant rate, and concentrations of total phosphorus are 
diluted with increasing discharge.  At higher levels of flow, the wash-off and transport of 
greater quantities of phosphorus lead to increases in concentrations of total phosphorus with 
increasing discharge. 

 
The power and efficiency of any procedure for detecting and estimating the magnitude 

of trends will be aided if the variance of the data can be decreased (see example in Fig. 10).  
This can be done by removing discharge effects either stagewise or simultaneously 
(Alley,1988).  In the case of the parametric procedure it is clearly preferable to simultaneously 
model the flow effect and the trend effect by using multiple regression (for monotonic trend) or 
analysis of covariance (for step trend).  In either case, one uses discharge (or some suitable 
transformation of discharge) as a covariate.  In the non-parametric case, the process must be 
conducted in stages.  The variation due to discharge is modeled by a regression against 



discharge (or some transformation of discharge) or by some robust curve fitting procedure 
such as LOWESS (locally weighted scatterplot smoothing, Cleveland, 1979).  Then the trend 
analysis is conducted on the residuals from this relationship (see Hirsch et. al., 1982; Alley, 
1988; Smith, et. al, 1982).  LOWESS and linear regression fits of concentration and stream 
discharge are compared for an example data set in Figure 11. 
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Figure 10(a).  A test for trend in dissolved solids concentrations with the Seasonal Kendall test 
is not statistically significant (p=0.47).  The Sen estimate of linear trend associated with the 
Seasonal Kendall test is shown. 
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Figure 10(b).  For the same data shown in Figure 10(a), following the removal of flow-related 
variability in dissolved solids concentrations, a test for trend with the Seasonal Kendall test is 
highly significant (p=0.0001).  The estimate of the magnitude of trend in flow-adjusted 
concentrations is about twice the estimate of the trend magnitude in raw concentrations.  For 
purposes of constructing the plot the residuals obtained from the concentration versus flow 
regression were added to the mean dissolved wolids concentration for the period of record. 

The results of such a trend analysis become, in effect, an analysis of trends in the 
discharge-water quality relationship.  If the discharge record is stationary (trend-free) then the 
results of such an analysis of residuals becomes an efficient means of detecting and 
estimating the magnitude of trends in the water quality variable of interest.  If the distribution of 
discharge has changed over the period of analysis, then trends in these residuals does not 
necessarily translate to a trend in the distribution of the water quality variable.  Thus, flow 
adjustment should not be used where human activity has altered the probability distribution of 
discharge, through changes in regulation, diversion, or consumption during the period of the 
trend analysis.  
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Figure 11.  A comparison of linear regression (solid line) and LOcally-WEighted Scatterplot 
Smoothing (LOWESS) (dashed line) fits of total phosphorus concentrations and stream 
discharge from the Klamath River at Klamath, California. 

 

Removal of Seasonal Variability 

An additional source of variation in water-quality data may be described as seasonal 
variation.  Some constituents are influenced by the changes in biological activity (both natural 
activity and managed activity such as agriculture) in the watershed and in the stream itself.  
This is certainly true of nutrients due to the seasonal application of fertilizers and the natural 
pattern of uptake and release by plants.  Sediment is also seasonally variable, due to different 
sources of water dominant at different times of the year.  For example, at a given discharge in 
the spring the source of water may be snow melt, but in the summer it may be intense rainfall.  
The seasonal rise and fall of ground water can also be influential.  A given discharge in one 
season may derive mostly from ground water while the same discharge during the season of 
low ground-water levels may derive from surface runoff or quick flow through shallow soil 
horizons.  The chemistry and sediment content of these two sources may be quite different. 
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12.  Multiple linear regression with trigonometric functions of time of year as a test for trend in 
concentration.  Total phosphorus concentrations, C, predicted from a multiple linear regression 
model involving time, T, and season are shown with a solid line.  A statistically significant 
(p<0.001) increase in concentration is detected by the model.  A linear regression model that 
does not account for seasonal variability in concentration also detects a significant increase in 
concentration, but with less statistical confidence (p=0.003). 
 

Some of the variation that may be initially viewed as seasonal variation can in fact be 
statistically explained in terms of variation in discharge.  However, in many cases even after the 
discharge effects have been removed, seasonality remains in the data (see Hirsch et al. 1982).  
Consequently, whether or not flow effects have been removed, it is desirable to attempt to limit 
seasonal variations in the data.  In parametric procedures this can be done by the use of 
trigonometric functions of time of year as explanatory variables to remove the effects of an annual 
cycle (see Fig. 12).  Another approach is the use of qualitative variables (0 or 1 values) to indicate 
if a particular data value is in a particular season.  In the non-parametric procedures one can 



remove the effects of seasonality without attempting to explicitly model it as is done in the 
parametric case.  This is accomplished by performing the test on each of the several individual 
seasons, summing the test statistics and summing their expectations and variances.  The overall 
test for trend can then be carried out by using the summed test statistic and its expectation and 
variance.  One application of this procedure is the Seasonal Kendall Test (Hirsch et al. 1982), and 
another is the Rank Sum Test on grouped data (Bradley, 1968).  The estimators of trend 
magnitude are constructed by taking all slopes (in the case of the Sen estimator) or all differences 
(in the case of the Hodges-Lehmann estimator) within a given season, and finding the median of 
all of these values over all of the seasons (see Hirsch, 1988 for a discussion of this seasonally 
based Hodges-Lehmann estimator).  

Tests for Trend in Censored Water-Quality Records 

Water-quality records of some metals and organic compounds (including pesticides) 
commonly have data values that are censored or reported as less than or equal to the reporting 
limit of a particular analytical method.  This complicates the use of the previously discussed 
parametric procedures and the stagewise methods for trend detection described by Alley (1988) 
because the arbitrary choice of a value to represent censored values (e.g., zero or the reporting 
limit) can give inaccurate results for hypothesis tests and biased estimates of trend slopes or 
estimates of change magnitude.   

A parametric approach to the detection of trends in censored water-quality data is the 
estimation of the parameters of a linear regression model relating water quality to time and other 
explanatory variables through the method of maximum likelihood estimation (MLE), also referred 
to as Tobit estimation (Hald, 1949; Cohen, 1950).  The effect of time, discharge, season, and 
group (in the case of step trends) on water quality may be modeled simultaneously in this 
approach as can be done in a conventional multiple regression.  Because the MLE method 
assumes a linear model with normally distributed errors, transformations (such as logarithms) of 
water-quality variables and discharge are frequently useful to make the data more nearly normal 
and improve the fit of the MLE regression.  Failure of the data to conform to these assumptions 
will tend to lower the statistical power of the test, and give unreliable estimates of the model 
parameters.  The Type I error of the test is, however, relatively insensitive to violations of the 
normality assumption.   

An extension of the MLE method was developed by Cohen (1976) to provide estimates of 
regression model parameters for data records with multiple censoring levels.  An adjusted MLE 
method for multiply-censored data that is less biased in certain applications than the MLE method 



of Cohen (1976) was also recently developed by Cohn (1988).  The availability of  multiply-
censored MLE methods is noteworthy for the analysis of lengthy water-quality records with 
censored values since these records frequently have multiple reporting limits that reflect 
improvements in the accuracy of analytical methods (and reductions in reporting limits) with time.     

The non-parametric procedures (namely the Seasonal Kendall and the Rank-Sum test) can 
be used for the detection of trend in censored water-quality data, but their use is restricted to the 
analysis of non-flow adjusted or raw data values since residuals cannot be computed for censored 
values in either a regression or a LOWESS smooth.  Because the Seasonal Kendall test and the 
Rank-Sum test involve ranked comparisons of data values, only records with a single reporting 
limit may be tested for trend.  However, these tests may be applied to water-quality records with 
multiple reporting limits if all censored and uncensored values less than or equal to the highest 
reporting limit in the record are considered to be tied with one another.  The application of the test 
under these circumstances may give unsatisfactory results for records where the maximum 
reporting limit exceeds many detected values in the record (as may occur if the reporting limit has 
changed significantly over time).  This is because the required recoding of data may significantly 
increase the amount of censored data, and possibly restrict the evaluation of trend to a range of 
concentrations that are rarely observed.   

While the sign of the Sen estimate of trend magnitude associated with the Seasonal 
Kendall test (and Hodges-Lehmann estimator for step trends) is accurate for data records with a 
large number of censored values, the magnitude of the slope estimate is likely to be in error for 
highly censored records.  The substitution of an arbitarily chosen value between zero and the 
reporting limit for censored values when applying one of these tests can give biased estimates of 
the trend slope.  While the amount of bias cannot be stated precisely, the presence of only a few 
nondetected values in a record (less than about five percent) is not likely to affect the accuracy of 
the trend slope magnitude significantly.   

Summary 

Statistical procedures for the detection of monotonic and step trends are summarized for 
uncensored data in Tables 2 and 3 and for censored data in Tables 4 and 5, respectively.  These 
tables provide a convenient summarization of the various combinations of the techniques 
described in this paper (although a few specific methods in the tables are not explicitly described 
in the body of the paper).   



The decision to examine water-quality data for a step trend (Tables 3 and 5) should be 
made prior to examination of the data and should not be based on the observation of an abrupt 
change during the period-of-record.  Analysis for step trends is most appropriate when a specific 
event occurred that is likely to have resulted in a change in water quality and the record may be 
clearly divided into a "pre" and "post" period.  Testing for step trends may also be suitable in 
situations where two distinct data collection periods exist separated by years during which data 
collection was discontinued.  In general, the monotonic trend procedures (Tables 2 and 4) are 
most appropriate for use if no prior hypothesis regarding the timing of a change is known or if 
multiple records that may be affected by different pollution sources are being analyzed.   

Both the monotonic and the step trend procedures in Tables 2-5 are differentiated on the 
basis of their parametric and non-parametric characteristics as well as by whether they remove 
variation due to discharge.  Those procedures classified as "mixed" in Tables 2 and 3 have both 
parametric and non-parametric components that are typically executed in separate steps.  In 
general, the non-parametric and mixed procedures perform appreciably better (greater power and 
efficiency) than the parametric procedures for the highly non-normal distributions commonly 
encountered for many water-quality constituents.  Even for small departures from normality, the 
performance of the non-parametric procedures is similar to or better than that for the parametric 
procedures.  The non-parametric and mixed techniques are particularly convenient to use in 
investigations of multiple data sets because exhaustive checking of distributional assumptions is 
not required.  Moreover, they offer greater comparability of trend results among multiple records 
than may exist in the use of the parametric procedures possibly requiring different 
transformations.  The parametric methods are frequently more suitable in detailed studies of an 
individual record where careful verification of the model fit and residuals can be made.   

The choice of a procedure involving flow adjustment should be based primarily on the study 
objectives.  If the purpose of the study is to assess the effect of trends in ambient concentrations 
on the suitability of water for use by humans or aquatic organisms rather than to investigate the 
cause of trend, then the removal of variability in concentration due to flow (or other natural 
causes) may not be desirable.   

Adjustment for seasonal variability is made in one of three possible ways in the tests for 
use with uncensored data described in Tables 2 and 3:  1) the use of trigonometric functions of the 
time of year for the fully parametric procedures; 2) the deseasonalization of concentration prior to 
trend testing for the non-flow adjusted mixed procedures; and 3) the summation of seasonal test 
results for the flow-adjusted mixed procedures and for the non-parametric procedures.   



The trend techniques for the analysis of censored data are classified as either fully 
parametric or non-parametric in Tables 4 and 5.  Mixed procedures involving the stagewise 
methods as described in Tables 2 and 3 are not applicable to censored records because residual 
values cannot be computed for censored data values.  For the same reason, censored data 
records cannot be flow adjusted with non-parametric procedures.  Flow adjustment is only 
possible with the parametric procedure, Tobit, through the inclusion of discharge as a regression 
model term.   Adjustment for seasonal variability is made either through the use of trigonometric 
functions of the time of year for the parametric procedure or through the summation of seasonal 
test results for the non-parametric procedures. 

Given the widespread interest in environmental quality, water-quality assessments will 
continue to be an important area of hydrologic investigation.  A part of such assesment activity is 
the collection of water-quality data using large networks of stations at which samples are collected 
and analyzed according to a standard protocol.  The proper interpretation of these data for trends 
requires strict standardization of methods, adequate quality assurance, and the proper application 
of statistical techniques suited to the characteristics of the data and to the public policy questions 
of interest.   

The statistical tests and estimators described here, along with the use of exploratory data 
analysis procedures (including some of the types of graphics shown in this paper), can be of great 
use in providing insights about water quality trends at a given site and about water quality trends 
over entire regions.  The techniques presented here, and suggestions about their applicability, are 
based on the authors' collective experience with a wide variety of data sets over a period of about 
a decade.  There will continue to be needs to develop and test new methods that improve on 
these.  Two particular issues that need additional development are: methods that make the best 
possible use of existing data (in light of potentially strong serial correlation in the data) in cases 
where sampling frequencies have changed substantially over time and robust approaches to 
analysis of data sets with multiple censoring thresholds.     

 

 

Table 2. Options for testing for monotonic trends in uncensored water-quality data. 
 
 

Not Flow Adjusted Flow Adjusted 



Fully Parametric Regression of C on Time & 
Season 

Regression of C on Time, 
Season, & Q 

Mixed Regression of 
Deseasonalized C  

 on Time 

Seasonal Kendall on 
Residuals from 
Regression of C on Q 

Non-Parametric Seasonal Kendall Seasonal Kendall on 
Residuals from LOWESS 
of C on Q 

 
NOTES 

C is Concentration 
Q is Streamflow (may use a transformation of flow) 
Regression on Season is using a periodic function of time of year 
Deseasonalizing can be done by subtracting seasonal medians 
Seasonal Kendall test is Mann-Kendall test for trend done for each season (the Seasonal 

Kendall test statistic is the sum of the several test statistics) 
LOWESS is locally weighted scatterplot smoothing 

 



Table 3. Options for testing for step trends in uncensored water-quality data. 
 
 

Not Flow Adjusted Flow Adjusted 

Fully Parametric Analysis of Covariance C 
on Season & Group 
(before and after) 

Analysis of Covariance C 
on Season, Q, & Group 

Mixed Two-sample T-test on 
Deseasonalized C 

 

Seasonal Rank-Sum on 
Residuals from 
Regression of C on Q 

Non-Parametric Seasonal Rank-Sum Seasonal Rank-Sum on 
Residuals from LOWESS 
of C on Q 

 
NOTES 

C is Concentration 
Q is Streamflow (may use a transformation of flow) 
Regression on Season is using a periodic function of time of year 
Deseasonalizing can be done by subtracting seasonal medians 
Seasonal Rank-Sum test is the Rank-Sum test done for each season (the Seasonal Rank-Sum 

test statistic is the sum of the several test statistics) 
LOWESS is locally weighted scatterplot smoothing 

 

 

Table 4.  Options for testing for monotonic trends in censored water-quality data.   

 Not Flow Adjusted Flow Adjusted 

Fully Parametric TOBIT regression of C on 
Time & Season 

TOBIT regression of C on 
Time, Season, & Q 

Non-Parametric Seasonal Kendall no test available  
 

NOTES 
C is Concentration 
Q is Streamflow (may use a transformation of flow) 
TOBIT Regression on Season is using a periodic function of time of year 



Seasonal Kendall test is Mann-Kendall test for trend done for each season (the Seasonal 
Kendall test statistic is the sum of the several test statistics) 

 

Table 5.  Options for testing for step trends in censored water-quality data.   

 Not Flow Adjusted Flow Adjusted 

Fully Parametric TOBIT Analysis of 
Covariance of C on 
Season & Group 

TOBIT Analysis of 
Covariance of C on 
Season, Q, & Group 

Non-Parametric Seasonal Rank-Sum no test available  
 

NOTES 
C is Concentration 
Q is Streamflow (may use a transformation of flow) 
TOBIT Regression on Season is using a periodic function of time of year 
Seasonal Rank-Sum test is the Rank-Sum test done for each season (the Seasonal Rank-Sum 

test statistic is the sum of the several test statistics) 
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