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Hydrogeology, Water Quality, and Water-Supply Potential
of the Lower Floridan Aquifer, Coastal Georgia, 1999-2002

By W. Fred Falls, Larry G. Harrelson, Kevin J. Conlon, and Matthew D. Petkewich

Abstract

The hydrogeology and water quality of the upper
permeable and Fernandina permeable zones of the Lower
Floridan aquifer were studied at seven sites in the 24-county
study area encompassed by the Georgia Coastal Sound
Science Initiative. Although substantially less than the Upper
Floridan aquifer in coastal Georgia, transmissivities for the
Lower Floridan aquifer are in the same range as other water-
supply aquifers in Georgia and South Carolina and could meet
the needs of public drinking-water supply. Water of the upper
permeable zone of the Lower Floridan aquifer exceeds the
Federal secondary drinking-water standards for sulfate and
total dissolved solids at most coastal Georgia sites and the
Federal secondary drinking-water standard for chloride at the
Shellman Bluff site.

The top of the Lower Floridan aquifer correlates within
50 feet of the previously reported top, except at the St Simons
Island site where the top is more than 80 feet higher. Based
on the hydrogeologic characteristics, the seven sites are
divided into the northern sites at Shellman Bluff, Richmond
Hill, Pembroke, and Pineora; and southern sites at St Marys,
Brunswick, and St Simons Island. At the northern sites, the
Lower Floridan aquifer does not include the Fernandina
permeable zone, is thinner than the overlying Upper Floridan
aquifer, and consists of only strata of the middle Eocene
Avon Park Formation. Transmissivities in the Lower Floridan
aquifer are 8,300 feet squared per day at Richmond Hill and
6,000 feet squared per day at Shellman Bluff, generally one
tenth the transmissivity of the Upper Floridan aquifer at these
sites. At the southern sites, the upper permeable zone of the
Lower Floridan aquifer is thicker than the Upper Floridan
aquifer and consists of porous limestone and dolomite
interbedded with nonporous strata of the middle Eocene Avon
Park and early Eocene Oldsmar Formations. Transmissivities
for the upper permeable zone of the Lower Floridan aquifer
are 500 feet squared per day at the St Simons Island site and
13,000 feet squared per day at the St Marys site. The Lower
Floridan aquifer at the Brunswick and St Marys sites includes
the Fernandina permeable zone, which consists of saltwater-
bearing dolomite.

Hydrographs of Coastal Sound Science Initiative wells
and other nearby wells open to the Upper Floridan aquifer,
and the upper permeable and Fernandina permeable zones of
the Lower Floridan aquifer have similar trends. Water levels
in wells open to the Upper and Lower Floridan aquifers are
below land surface at the northern sites and the St Simons
Island site, and above land surface at the Brunswick and St
Marys sites, as of January 1, 2004.

Freshwater is present in the Lower Floridan aquifer
at Pineora, Pembroke, and St Marys, and from 1,259 to
1,648 feet below land surface at Brunswick. Slightly saline
water is present in the Lower Floridan aquifer at Richmond
Hill, Shellman Bluff, St Simons Island, and from 1,679 to
1,970 feet below land surface in well 34H495 at Brunswick.
The upper permeable zone of the Lower Floridan aquifer
contains bicarbonate water at the Pembroke site, sulfate-
bicarbonate water at the Brunswick site, and sulfate water
at the St Simons Island, Shellman Bluff, St Marys, and
Richmond Hill sites. The bicarbonate, sulfate-bicarbonate, and
sulfate waters are saturated relative to calcite and dolomite,
and undersaturated with gypsum and anhydrite.

The Fernandina permeable zone in well 34H495 includes
moderately saline water, very saline water, and brine. The Fer-
nandina permeable zone of the Lower Floridan aquifer beneath
downtown Brunswick contains chloride water that is slightly
undersaturated to saturated with gypsum and anhydrite.
Concentrations of total dissolved solids, sulfate, and chloride
exceeded the Federal secondary drinking-water standards. The
chloride-contaminated plumes beneath downtown Brunswick
would require at least a 12- to 20-percent contribution of very
saline water from the Fernandina permeable zone to result in
observed concentrations in the Upper Floridan aquifer.

Waters from the upper permeable zone of the Lower
Floridan aquifer at the St Marys, Brunswick, Richmond
Hill, and Pembroke sites had carbon-14 concentrations and
stable oxygen and hydrogen isotopic compositions that were
similar to waters from the Upper Floridan aquifer at these
respective sites. The data indicate that waters in both aquifers
at a specific well site probably entered the recharge area under
similar climatic conditions and, therefore, could have similar
ages. Two freshwater samples from the upper permeable zone
of the Lower Floridan aquifer at Pembroke and St Marys have
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strontium isotope ratios that fall in the range of Oligocene

or Miocene seawaters. Four ground-water samples from

the upper permeable zone of the Lower Floridan aquifer at
Shellman Bluff, Richmond Hill, and St Simons Island, and St
Marys well 33D074 have strontium isotope ratios in the range
of Eocene seawater.

Introduction

Since the 1880s, coastal counties in Georgia (GA) and
adjacent coastal counties in South Carolina (SC) and Florida
(FL) have developed the freshwater resource of the Floridan
aquifer system for municipal and industrial water supplies.
This development has resulted in substantial water-level
declines, particularly in the Upper Floridan aquifer, and in
documented saltwater intrusion in Beaufort County, SC,
Glynn County, GA, and Duval County, FL (Gill and Mitchell,
1979; Krause and Randolph, 1989; Clarke and others, 1990;
Smith, 1993; Spechler, 1994; Landmeyer and Belval, 1996;
Phelps and Spechler, 1997; Krause and Clarke, 2001). For
more than a century, the abundant yield of high-quality water
from the Upper Floridan aquifer has provided most of the
water pumped in the coastal counties of Georgia, and until the
late 1990s, generally limited the need to explore the Lower
Floridan aquifer as a water supply (Miller, 1986; Krause and
Randolph, 1989; Clarke and others, 1990; Clarke and Krause,
2000).

The Coastal Sound Science Initiative (CSSI) was
implemented by the Georgia Environmental Protection
Division (GaEPD) and coordinated with the South Carolina
Department of Health and Environmental Control as a series
of scientific and feasibility studies to support the development
of Georgia’s final water-management strategy for mitigating
saltwater intrusion and the development of water-resource
alternatives to the Upper Floridan aquifer in 24 coastal coun-
ties in Georgia, Beaufort and Jasper Counties, SC, and Duval
and Nassau Counties, FL. (Georgia Environmental Protection
Division, 1997; fig. 1). As part of the CSSI, the State of
Georgia funded an investigation in cooperation with the U.S.
Geological Survey (USGS) to assess the hydrogeology of the
Lower Floridan aquifer and its water quality in the 24-county
study area of coastal Georgia from 1999 to 2002.

Several previous investigations described the hydro-
geology of the permeable zones of the Floridan aquifer
system in the 24 coastal counties of the CSSI study area
(Miller, 1986; Krause and Randolph, 1989; Clarke and others,
1990); however, Miller (1986) was the only investigator to
map the altitude of the top of the Lower Floridan aquifer
in all 24 coastal counties in Georgia. For this investigation,
the USGS designed the construction of wells to evaluate the
hydrogeology and water quality of the Lower Floridan aquifer,
as delineated by Miller (1986). The upper permeable zone of
the Lower Floridan aquifer was examined as a potential water
supply. The Fernandina permeable zone of the Lower Floridan

aquifer is a known saltwater-bearing zone beneath parts of
Glynn County, GA, and Duval County, FL, and is a potential
saltwater source for contamination of freshwater zones of the
Upper and Lower Floridan aquifers (fig. 2). This investigation
examined the water quality and extent of the Fernandina
permeable zone beneath the coastal counties of Georgia.

Purpose and Scope

The purpose of this report is to document the results of
a hydrogeologic field investigation of the Lower Floridan
aquifer and to compare the Lower Floridan aquifer to the
Upper Floridan aquifer as an alternative water supply in the
CSSI 24-county study area. These results provide GaEPD and
other water managers in the study area with field verification
of the hydrogeology and the water quality of the upper perme-
able and Fernandina permeable zones of the Lower Floridan
aquifer beneath the 24-county study area. The results also
support the USGS efforts to develop ground-water flow and
solute-transport models of the study area, which are integral
to help the State develop Georgia’s final water-management
strategy for the water resources of the Floridan aquifer
system. This investigation makes an important contribution
to the understanding of coastal-zone issues of water use and
saltwater intrusion that affect water resources in Georgia and
elsewhere in the Nation (U.S. Geological Survey, 1999).

This report summarizes the hydrogeology, hydraulic
properties, and water quality for the Upper Floridan aquifer
and the upper permeable and Fernandina permeable zones of
the Lower Floridan aquifer, based on data collected from 10
wells at seven sites in the CSSI 24-county study area (fig. 1).
The hydrogeology of the Floridan aquifer system, as delin-
eated by Miller (1986), was used to design wells for investiga-
tion of the Lower Floridan aquifer. Eight wells were drilled
at six sites: well 34S011 at the Pineora site in Effingham
County; well 33R045 at the Pembroke site and wells 35P109
and 35P110 at the Richmond Hill site in Bryan County; well
35L085 at the Shellman Bluff site in McIntosh County; wells
34H495 and 34H500 at the Brunswick site in Glynn County;
and well 33D073 at the St Marys site in Camden County
(fig. 1; table 1). These eight wells were installed as part of the
CSSI between 1999 and 2002 as monitoring wells to obtain
hydrogeologic and water-quality data for the Floridan aquifer
system. Also as part of this study, the State of Georgia and the
USGS coordinated with Glynn County to explore the water
resources of the Lower Floridan aquifer in well 35H068 at
the St Simons Island site in 2002. In 2002, the St Johns River
Water Management District of Florida drilled well 33D074
to investigate the Floridan aquifer system at the St Marys site
in Georgia, and made available the hydrogeologic, geophysi-
cal, and water-quality results for the interval from 1,500 to
2,126 feet (ft) below land surface for inclusion in this report.

The field investigation, conducted from 1999 to 2002,
included the collection of rock samples (cuttings), water
levels, water-quality samples, and geophysical logs during
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drilling and installation of each well. The investigation also
included aquifer tests at selected wells. Water-level data are
presented from well completion through January 1, 2004.
Water-level and water-quality data collected at other wells
open to the Upper Floridan aquifer in the Georgia part of the
study area are used for comparison of water levels and water
quality between the Upper and Lower Floridan aquifers.
Aquifer test results are presented in this report, but details of
field methods and data analysis are presented in Harrelson and
Falls (2003).

Location of the Study Area

The study area is in the Coastal Plain Physiographic
Province and includes the 24-county study area in Georgia
(fig. 1). The CSSI study area is bound by the Savannah River
to the north and the St Marys River to the south and includes
the six Georgia counties on the Atlantic coast and 18 inland
counties. Although the discussion of the Floridan aquifer
system includes relevant published information from Jasper
and Beaufort Counties, SC, and Nassau and Duval Counties,
FL, the field investigation did not extend into these counties.

Previous Investigations

The geology, hydrology, hydraulic properties, water
quality, and water-supply potential of the Floridan aquifer
system in Georgia have been documented in several regional
studies (Miller, 1986; Bush and Johnston, 1988; Krause and
Randolph, 1989; Sprinkle, 1989; Clarke and others, 1990;
Garza and Krause, 1996; Clarke and others, 2004). The reports
for these studies also document the extensive list of publica-
tions that correlate and name the aquifers at regional and local
scales, and the history and the effects of saltwater intrusion on
the Floridan aquifer system in coastal Georgia and in adjacent
States.

The results of county-scale investigations of the Upper
Floridan aquifer provide details about the local hydrogeology
and the issue of saltwater intrusion in Beaufort and Jasper
Counties, SC, and in Chatham County, GA (Warren, 1944;
Counts and Donsky, 1963; McCollum and Counts, 1964;
Siple, 1965; Hayes, 1979; Hassen, 1985; Burt and others,
1987; Smith, 1988, 1993; Hughes and others, 1989; Clarke
and others, 1990; Burt, 1993; Landmeyer and Belval, 1996;
U.S. Army Corps of Engineers, 1998; Ransom and White,
1999; Warner and Aulenbach, 1999); in Glynn and Camden
Counties, GA (Wait and Gregg, 1973; Gregg and Zimmerman,
1974; Maslia and Prowell, 1990; Jones and Maslia, 1994,
Warner and Aulenbach, 1999; Rose, 2001; Jones and others,
2002); and in Nassau and Duval Counties, FL. (Fairchild and
Bentley, 1977; Frazee and McClaugherty, 1979; Brown, 1980;
Brown and others, 1984; Brown and others, 1985; Spechler,
1994; German and Taylor, 1995; Phelps and Spechler, 1997;
Phelps, 2001). Hydraulic properties have been summarized
for the Upper and Lower Floridan aquifers in coastal Georgia,
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including the CSSI Upper and Lower Floridan aquifer test
results (Harrelson and Falls, 2003; Clarke and others, 2004).

Well-ldentification System

Each well installed as part of this investigation and other
Georgia wells discussed in this report were assigned a Georgia
well name and a 15-digit USGS site identification number
(table 1). The location of each CSSI well was determined by
using a global positioning system to accurately assign well
identification numbers.

The Georgia well name is based on the USGS index of
topographic maps of Georgia. Beginning in the southeastern
corner of the topographic grid, the 7.5-minute topographic
quadrangles are numbered consecutively from “1” eastward
along the horizontal axis of the grid and alphabetized consecu-
tively from “A” northward along the vertical axis. Wells in
each quadrangle are numbered in the order in which they are
inventoried. Thus, the Lower and Upper Floridan wells (wells
35P109 and 35P110, respectively) installed at Richmond
Hill site, Bryan County, GA, are both in the Richmond Hill
7.5-minute quadrangle (designated quadrangle 35P), and were
the 109th and 110th wells inventoried in this quadrangle.

The 15-digit ground-water site identification number is
composed of the 6 digits of latitude and 7 digits of longitude
in degrees, minutes, and seconds for the well site, and a
2-digit sequential well number for wells drilled at that same
latitude and longitude. For example, wells 35P109 and
35P110 at Richmond Hill were drilled at latitude 31°54'43"
N. and longitude 081°18'59" W.; thus, the wells were
assigned site identification numbers 315443081185901 and
315443081185902, respectively, in the USGS Ground-Water
Site Inventory database.
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Methods of Data Collection and
Analysis

During the drilling of the Floridan aquifer system and the
construction of each well, the USGS collected rock cuttings,
and monitored changes in drill-bit penetration rates, water
levels or pressures, and water quality. Water samples were
collected from the boreholes of CSSI and non-CSSI wells and
analyzed to characterize the quality of water discharged from
the Lower Floridan aquifer and compared to the water quality
of the Upper Floridan aquifer. Geophysical logs also were
collected upon completion of the open boreholes.

Test Well Drilling and Completion

To obtain data on the hydrogeology and water-quality
characteristics of the Lower Floridan aquifer for comparison
with the Upper Floridan aquifer, eight monitoring wells were
installed at six sites in the CSSI 24-county study area as part
of this investigation (fig. 1; table 1). A well open to the upper
permeable zone of the Lower Floridan aquifer, as defined by
Miller (1986), was installed at each of these sites. In addition,
wells 34H495 and 35P110 were installed to monitor and
sample the Fernandina permeable zone at the Brunswick site
and the Upper Floridan aquifer at the Richmond Hill site,
respectively. Wells 35H068 and 33D074 were installed by
Glynn County at the St Simons Island site in Glynn County
and by the SJRWMD at the St Marys site.

Reverse-air rotary drilling was used to drill the limestone
and dolomite rocks of the Floridan aquifer system. Each of the
wells open to the upper permeable zone of the Lower Floridan
aquifer at the six sites was constructed in four stages (table 2).
Well 35P110 in Bryan County and well 34H495 in Glynn
County were completed in three and five stages, respectively.

Well 35H068 at the St Simons Island site was constructed
as a production well by Glynn County, and was designed to
have an open-borehole interval in the upper permeable zones
of the Lower Floridan aquifer. As part of the CSSI investiga-
tion, the open borehole of the Lower Floridan aquifer was
explored in an effort to determine the depth to the saline water
of the Fernandina permeable zone. Well 33D074 was part of
an investigation by SJRWMD to determine the thickness of the
freshwater in the upper permeable zone of the Lower Floridan
aquifer, the depth to the top of the Fernandina permeable zone,
and the presence or absence of saline water near the top of the
Fernandina permeable zone at the St Marys site. Well 33D074

was drilled approximately 25 ft southwest of CSSI well
33D073 at the St Marys site.

Hydrogeologic Data Collection

The USGS collected rock cuttings and monitored drill-bit
penetration rates during drilling of the Upper and Lower
Floridan aquifers for hydrogeologic interpretations. Reflected-
light microscopy was used to describe the mineralogy and
texture of rock cuttings. Changes in drill-bit penetration rates
were compared to lithologic changes observed in cuttings to
determine contacts between rock units and voids, including
solution cavities or fracture zones, in the subsurface.

To characterize head relations of the permeable zones
in the Floridan aquifer system, water levels or pressures
were monitored during drilling and after completion of the
wells. Water levels in non-flowing wells were measured and
recorded with an electric tape before daily drilling activities
commenced. Water levels in flowing wells were determined by
sealing the wellhead with a watertight cap at the end of each
day and measuring water pressure with a calibrated pressure
gage through a sampling port in the cap each morning before
removing the cap. Following completion of the eight CSSI
wells at the six sites, the USGS installed and maintained
equipment for continuous monitoring of ground-water levels
(Coffin and others, 2004). Equipment installed at each well
measured hourly water levels, which were used to calculate
the daily mean water levels for all CSSI and non-CSSI wells
discussed in this report and denoted in table 1. The period of
record used in this report for each CSSI well begins following
completion of the well and ends January 1, 2004. Water levels
were not monitored in well 35HO068 at the St Simons Island
site and in well 33D074 at the St Marys site.

The USGS, with the assistance of a contract drilling crew,
planned and conducted single-well aquifer tests in four CSSI
wells. Aquifer tests were completed to estimate transmis-
sivity for the Upper Floridan aquifer in CSSI well 35P110
at Richmond Hill and for the upper permeable zone of the
Lower Floridan aquifer in CSSI wells 35P109 at Richmond
Hill, 35L085 at Shellman Bluff, and 33D073 at St Marys,

GA. For each single-well test, water levels were monitored for
a 24-hour drawdown period and a 24-hour recovery period.
Water-level data from the drawdown period were used to
calculate transmissivity (Theis, 1935; Cooper and Jacob, 1946;
Hantush, 1961). The calculated transmissivities from these
aquifer tests are included in the descriptions of the Upper and
Lower Floridan aquifers in this report. The details of field
procedures, data collection, and analysis for these four aquifer
tests were previously published (Harrelson and Falls, 2003).

For the purpose of interpreting the hydrogeologic
distribution of water quality, specifically chloride, the specific
conductance of the discharge water was monitored with
a calibrated water-quality meter to determine changes in
borehole water quality as drilling progressed. After drilling the
length of each drill pipe, which ranged in length from 28 to
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Table 2. Construction details for the Coastal Sound Science Initiative and St Simons Island wells used in this investigation, Georgia.

[ft, feet]
Georgia well Start— Nominal diameters and depth below land surface of horehole/casing
name, . in each stage of well construction
. completion
commur_llty, e o
county (fig. 1) age 1 Stage 2 Stage 3 Stage 4 Stage 5
33D073 09/21/1999— 21-inch borehole  15-inch borehole  11-inch borehole  7-inch borehole
St Marys, 12/08/1999 to 80 ft/16-inch to 563 ft/12- to 1,365 ft/8- from 1,365 to
Camden County casing to 78 ft inch casing to inch casing to 1,500 ft/no
560 ft 1,360 ft casing
34H495 02/07/2000— 30-inch borehole  21-inch borehole  15-inch borehole  11-inch borehole to  7-inch borehole
Brunswick, 08/04/2000 to 120 ft/24- to 604 ft/16- to 1,405 ft/12- 2,089 ft/8-inch from 2,089 to
Glynn County inch casing to inch casing to inch casing to casing to 2,084 ft 2,720 ft/no
103 ft 584 ft 1,396 ft casing
34H500 08/21/2000- 20-inch borehole  15.75-inch 11-inch borehole  7-inch borehole
Brunswick, 10/10/2000 to 120 ft/16- borehole to 590 to 1,217 ft/8- from 1,217 to
Glynn County inch casing to ft/12-inch cas- inch casing to 1,400 ft/no cas-
104 ft ing to 584 ft 1,212 ft ing
35H068 01/28/2002—- 30-inch borehole  23-inch borehole  17-inch borehole  11-inch borehole
St Simons 05/21/2002 to 108 ft/24- to 645 ft/18- to 1,394 ft/12- from 1,391 to
Island, inch casing to inch casing to inch casing to 2,200 ft/grouted
Glynn County 105 ft 640 ft 1,391 ft from 1,591 to
2,200 ft/open
hole from 1,391
to 1,591 ft
35L.085 11/08/2000— 21-inch borehole  15-inch borehole  11-inch borehole  7-inch borehole
Shellman Bluff, 02/16/2001 to 85 ft/16-inch to 500 ft/12- to 1,148 ft/8- from 1,148 to
MclIntosh County casing to 81 ft inch casing to inch casing to 1,863 ft/grouted
488 ft 1,144 ft from 1,422 to
1,863 ft/open
hole from 1,148
to 1,422 ft
35P109 0110/2000- 21-inch borehole  15-inch borehole  11-inch borehole  7-inch borehole
Richmond Hill, 03/15/2000 to 84 ft/16-inch to 328 ft/12- to 1,015 ft/8- from 1,015 to
Bryan County casing 81.5 ft inch casing to inch casing to 1,677 ft/grouted
324 ft 1,010 ft from 1,275 to
1,677 ft/open
hole from 1,015
to 1,275 ft
35P110 03/22/2000- 16-inch borehole  11-inch borehole  7-inch borehole
Richmond Hill, 04/05/2000 to 84 ft/12-inch to 320 ft/8-inch from 320 to
Bryan County casing to 82 ft casing to 315 ft 440 ft/no
casing
33R045 09/17/2001- 21-inch borehole  15-inch borehole  11-inch borehole  7-inch borehole
Pembroke, 10/29/2001 to 127 ft/16- to 359 ft/12- to 745 ft/8-inch from 745 to 994
Bryan County inch casing to inch casing to casing 741 ft ft/no casing
121 ft 354 ft
345011 11/15/2001- 21-inch borehole  15-inch borehole  11-inch borehole  7-inch borehole
Pineora, 12/19/2001 to 83 ft/16-inch to 295 ft/12- to 654 ft/8-inch from 654 to 870
Effingham casing to 80 ft inch casing to casing 651 ft ft/no casing

County

290 ft
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31 ft, water samples were collected from reverse-air discharge
water for chloride analysis.

Water-Quality Sampling

For a more complete analysis of water quality of an
aquifer or a permeable zone of the Floridan aquifer system,
samples were collected to document the bulk water quality
of the open-borehole interval or of a specific depth in the
borehole. Wells were developed with reverse-air rotary
discharge, pumps, or artesian flow prior to the collection of
water samples. Water samples included 16 samples collected
from eight CSSI wells and 9 samples collected from seven
non-CSSI wells (table 1). Samples were analyzed to determine
the ion concentrations and the stable hydrogen and oxygen
isotopic compositions of the water, and the carbon-14 and
stable carbon isotopic compositions of the dissolved inorganic
carbon (DIC) in the water. Water samples from four non-CSSI
wells and one CSSI well were analyzed for tritium. Water
samples from four non-CSSI wells and seven CSSI wells
were analyzed for strontium isotopes. Concentrations of total
dissolved solids were computed based on ionic compositions.
Quality-control samples included duplicate samples collected
from the Upper Floridan aquifer in well 33D054 and the upper
permeable zone of the Lower Floridan aquifer in well 35H068.

Several methods were used to collect water-quality
samples from the open-borehole intervals and specific zones
within the open-borehole intervals. Submersible and turbine
pumps were used to withdraw water for seven samples
and two duplicate samples. A peristaltic pump was used to
withdraw and bottle water discharging from well 33H188, a
flowing well near Brunswick, GA.

In addition to pumps, a wireline water sampler was
used to collect water samples at specific depths in the open
boreholes. The wireline water sampler was lowered in the
open boreholes of eight wells and opened at specific depths to
collect 13 water samples. To collect two water samples from
well 34H495, the wireline sampler was lowered into the drill
pipe with the drill bit at 2,243 and 2,720 ft, respectively. After
retrieving the wireline sampler from the drill pipe, a peristaltic
pump was used to pump water from the wireline sampler into
sample bottles.

Prior to collecting water samples for carbon-14 analysis,
the wireline water sampler was purged with laboratory-grade
nitrogen gas to eliminate atmospheric carbon dioxide from the
sample chamber. For all carbon-14 samples, a 1-liter sample
bottle also was purged with nitrogen gas and filled with water
from the bottom of the bottle to displace the nitrogen gas and
minimize the potential for contamination of the sample with
atmospheric carbon-14.

Water samples for ion analysis were filtered using
0.45-micrometer capsule filters and analyzed at the USGS
laboratory in Ocala, FL. Unfiltered water samples collected
for stable hydrogen and oxygen isotopic analysis and filtered
water samples collected for carbon-14 and stable carbon

isotopic analysis of the DIC in the water were analyzed by the
USGS Isotope Fractionation Laboratory in Reston, Virginia,
and a laboratory under contract to the USGS National Water
Quality Laboratory in Denver, Colorado, respectively.
Unfiltered water samples were collected at selected wells

and analyzed for tritium and strontium isotopes (strontium-
87/strontium-86) by a USGS laboratory in Menlo Park,
California.

Geophysical Logging

Geophysical logs were collected in the open boreholes
of the third, fourth, and fifth stages of well construction. The
geophysical logs included natural gamma, spontaneous-
potential, borehole-fluid resistivity and temperature, single-
point resistance, formation-resistivity, and caliper logs. The
natural-gamma log was used to correlate hydrogeologic units
in the wells at the CSSI and St Simons Island sites.

The spontaneous-potential, single-point resistance, and
formation-resistivity logs are of minimal use in this investiga-
tion because of borehole effects. The boreholes produced by
reverse-air rotary drilling of the Floridan aquifer system are
filled with formation waters from the permeable limestone
and dolomite beds encountered during drilling. When the
salinities in the permeable zones and the borehole are similar,
a straight-line or minimum response on the spontaneous-
potential log can result (Keys, 1988). Therefore, the log does
not always reflect changes in spontaneous potential caused by
formation water quality and lithology. The boreholes also can
have considerable variation in diameter; this has a noticeable
effect on the response of formation-resistivity logs (Keys,
1988). High- and low-resistivity responses of the logs at the
CSSI wells commonly correlated to intervals of minimum- and
expanded-borehole diameter, respectively, and not to true vari-
ability in formation resistivity associated with water quality
and permeability. This was particularly noticeable in wells
34H495 and 34H500 in Glynn County and wells 33D073 and
33D074 in Camden County, where interbedded dolomite and
limestone, and solution cavities in the Lower Floridan aquifer
resulted in considerable variation in the borehole diameter.

Hydrogeologic Setting

The Coastal Plain strata beneath the CSSI study area
range in age from Cretaceous through Holocene (Gohn, 1988;
Weems and others, 2004; fig. 2). Several aquifers and aquifer
systems are recognized in these strata; however, the abundant
supply of potable water from the Eocene and Oligocene
strata of the Upper Floridan aquifer generally has limited the
need for exploration of other water resources in older strata.
Consequently, the availability of data to study these older
strata is limited, particularly in the pre-Tertiary strata beneath
most of the coastal counties of the CSSI study area.



Investigators in the 1970s and 1980s recognized and
correlated Early and Late Cretaceous strata beneath the
Floridan aquifer system in the study area (Maher, 1971;
Hathaway and others, 1979; Scholle, 1979; Chowns and
Williams, 1983; Gohn, 1988; Miller, 1992). Weems and
others (2004) reassigned all Cretaceous strata beneath eastern
Georgia and western South Carolina to the Late Cretaceous.
The Cretaceous strata and aquifers below the Floridan aquifer
system are not the subject of this report and are not discussed
in further detail.

The Tertiary and Quaternary strata are partially pen-
etrated by thousands of wells in the CSSI study area, which
provided earlier investigators with an abundance of subsurface
data for the interpretation and correlation of geologic strata
and the hydrogeologic units, including the surficial aquifer, the
upper confining unit, and the Upper Floridan aquifer (fig. 2).
Miller (1986) mapped the stratigraphic boundaries of the
Paleocene, Eocene, Oligocene, Miocene, and post-Miocene
strata in the southeastern United States as a framework for
regional correlation of hydrogeologic units in and above
the Floridan aquifer system. Detailed lithostratigraphy,
stratigraphic type sections, and stratigraphic nomenclature for
the Oligocene and younger strata in Georgia were described
by Huddlestun (1988, 1993). Subsequent work by Weems and
Edwards (2001) modified the stratigraphy of the Oligocene
and younger strata in the CSSI study area on the basis of
paleontological results from sediment.

Surficial Aquifer and Upper Confining Unit

As mapped by Miller (1986), the hydrogeologic units
in the Tertiary and Quaternary strata of the CSSI study area
included the surficial aquifer in the post-Miocene strata, the
upper confining unit in the Miocene strata, and the aquifers
of the Floridan aquifer system in the Late Cretaceous through
Oligocene strata (fig. 2). Miller (1986) reported that the
Oligocene strata, depending on its hydraulic properties, locally
functioned as part of the upper confining unit or the Upper
Floridan aquifer.

The surficial aquifer generally consists of Pliocene,
Pleistocene, and Holocene formations of sand and clay that
overlie the upper confining unit (Miller, 1986; Krause and
Randolph, 1989; Clarke and others, 1990). These strata
include the unsaturated zone and the water table in the study
area. The surficial aquifer also includes the semiconfined
permeable zone or zones in the late Miocene strata (Clarke and
others, 1990; Leeth, 1999; Weems and Edwards, 2001; Leeth
and others, 2003). The semiconfining units and permeable
zones of the surficial aquifer generally are present in the clay
and sand of the late Miocene (Weems and Edwards, 2001),
although these strata have been identified as the middle
Miocene in previous reports (Clarke and others, 1990; Leeth,
1999; fig. 2).

The strata of the upper confining unit in most of the study
area were originally interpreted as middle and late Miocene
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strata, and locally included the Oligocene (Miller, 1986;
Krause and Randolph, 1989; fig. 2). Weems and Edwards
(2001) reassigned these strata to the early and middle Eocene,
and early and late Oligocene. The early and middle Miocene
strata are predominantly sand, silt, and clay with a few thin
layers of limestone and dolomite. The early and late Oligocene
strata consist of limestone and sandy limestone, respectively
(Miller, 1986; Weems and Edwards, 2001).

The upper confining unit includes permeable zones of
sand and limestone and is a water-supply source in parts of the
study area, but with less yield of freshwater than the Upper
Floridan aquifer (Hayes, 1979; Clarke and others, 1990;
Spechler, 1994; fig. 2). The upper and lower Brunswick aqui-
fers, as described in Georgia, are used as an alternate water
supply to the Upper Floridan aquifer in Camden and Glynn
Counties for residential and commercial water use (Clarke and
others, 1990). A low-yield permeable zone in Miocene strata
of South Carolina is known locally as the Hawthorn aquifer
and correlates to the upper Brunswick aquifer of Georgia
(Hayes, 1979; Clarke and others, 1990). The upper confining
unit in northeastern Florida is referred to as the intermediate
confining unit, and contains permeable layers and lenses
of limestone and sand, which locally are used as low-yield
aquifers for residential-water supply (Spechler, 1994).

Floridan Aquifer System

The Floridan aquifer system, as defined by Miller
(1986), is a continuous vertical section of carbonate strata that
includes the Eocene strata and all or part of the Oligocene
strata in coastal Georgia, and also includes Paleocene and
Cretaceous carbonate strata in Glynn and Camden Counties,
GA, and in northeastern Florida (Miller, 1986; Clarke and
others, 1990; Spechler, 1994; Phelps and Spechler, 1997;
Jones and others, 2002; fig. 2). The Floridan aquifer system
predominantly consists of limestone and dolomite rock strata,
but locally includes thin beds of clay and nodules of gypsum
and chert. For the following section, the hydrogeologic units
and names of Miller (1986) are used.

At the CSSI and St Simons Island sites, the top of the
Floridan aquifer system is defined as the top of the early
Oligocene, except at the St Marys site (pl. 1; tables 3, 4). In
the absence of the early Oligocene at the St Marys site, the top
of the Floridan aquifer system correlates to the top of the late
Eocene strata.

Permeable zones in the Floridan aquifer system are
grouped into the Upper and Lower Floridan aquifers (Miller,
1986; Krause and Randolph, 1989; Clarke and others, 1990).
Five permeable zones were recognized in flowmeter studies
of production wells drilled near Savannah, GA, and were
successfully correlated beneath parts of Chatham County,
GA, and Beaufort County, SC (McCollum and Counts, 1964).
The permeable zones, numbered from 1 to 5 in descending
order, were not consistently grouped into the Upper and Lower
Floridan aquifers by previous investigators (fig. 2). In Glynn
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Table 3. Geology of the Coastal Sound Science Initiative and St Simons Island sites, Georgia.

[Altitudes in feet above and below (-) North American Vertical Datum of 1988]

Georgia well' name, Top_ of early Top of late Top of middle
community, Land Oligocene Top of early Top of Top of clay
Eocene Ocala  Eocene Avon
county surface Suwannee . . Eocene Paleocene below marl
. . Limestone Park Formation
(fig. 1) Limestone

33D073/33D074 8.8 not present -504 -806 -1,844 not not
St Marys, penetrated penetrated
Camden County

34H495/34H500 9.0 -531 -595 -870 -1,860 -2,150 not
Brunswick, penetrated
Glynn County

35H068 20.0 -598 -652 915 -1,894 top of marl -2,170
St Simons -2,044
Island,
Glynn County

35L085 9.0 -412 -475 -718 top of marl not -1,841
Shellman Bluff, -1,409 interpreted
MclIntosh County

35P109/35P110 9.5/10.0 -319 -385 -575 top of marl not -1,615
Richmond Hill, -1,284 interpreted
Bryan County

33R045 84.0 -242 -273 -449 not not not
Pembroke, penetrated penetrated penetrated
Bryan County

345011 79.0 -197 -210 -385 top of marl not not
Pineora, =737 penetrated penetrated
Eftingham County

and Camden Counties, GA, upper and lower permeable zones
are recognized in the Upper and Lower Floridan aquifers
(Miller 1986; Krause and Randolph, 1989; Clarke and others,
1990; Jones and others, 2002).

The Upper Floridan aquifer generally consists of perme-
able zones in the upper part of the middle Eocene and in the
late Eocene and, where permeable, the overlying Oligocene
carbonates (Miller, 1986; Krause and Randolph, 1989). The
late Eocene Ocala Limestone consists of interbedded porous
and nonporous limestone and generally has greater than
10-percent interparticle pores in one or more porous
stratigraphic intervals. Compared with the overlying Suwan-
nee Limestone and underlying Avon Park Formation, the
Ocala Limestone generally does not contain glauconite and
phosphate and, therefore, has the lowest counts per second
(0 to 10 cps) on the natural gamma logs of these three
formations. As in the late Eocene strata, the upper part of the
middle Eocene Avon Park Formation in the Upper Floridan
aquifer also consists of interbedded porous and nonporous
limestone, but also includes thin and thick beds of dolomite
in Georgia and Florida. The dolomite varies in texture from
nonporous to porous and has intercrystalline and moldic pores.
In South Carolina, the Upper Floridan aquifer correlates to
the permeable zone near the top of the late Eocene beneath
Jasper and Beaufort Counties and simply is referred to as the

upper permeable unit of the Floridan aquifer system or as the
principal artesian aquifer (Hayes, 1979; Hughes and others,
1989; Ransom and White, 1999).

The middle confining unit predominantly consists of
low-porosity, low-permeability strata that divide the porous,
permeable strata of the Floridan aquifer system into the
Upper and Lower Floridan aquifers (pl. 1). This unit consists
of limestone and dolomite in the middle Eocene Avon Park
Formation. From the Atlantic coastline to its western bound-
ary, the extent of the middle confining unit includes 12 of
the 24 coastal counties in Georgia, the two South Carolina
counties, and the two Florida counties in the CSSI study
area, and defines the extent of the underlying Lower Floridan
aquifer (Miller, 1986).

The Lower Floridan aquifer beneath the northern coastal
counties of Georgia, including McIntosh, Liberty, Bryan, and
Chatham Counties, generally consists of a permeable zone in
the lower part of the middle Eocene that contains saline water
with a total dissolved solids concentration greater than 1,000
milligrams per liter (mg/L; Miller, 1986; U.S. Army Corps of
Engineers, 1998; Falls and others, 2001; fig. 2). The altitude
of the top of the Lower Floridan aquifer, as mapped by Miller
(1986), correlates approximately in Chatham County to the
top of permeable zone 5 of McCollum and Counts (1964).
The Lower Floridan aquifer in Glynn and Camden Counties,
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Table 4. Hydrogeology of the Coastal Sound Science Initiative and St Simons Island sites, Georgia.
[Altitudes in feet above and below (-) North American Vertical Datum of 1988]
Top of Lower Floridan aquifer
Georgia well name, sul-::ge Top of ::0::;::: Base of
community, : f' upper q o Upper Top of Base of Top of_ Bas_e of Base of
county su:fii)c?al confining sl‘;s e:: Floridan upper upper Fernandina Florl.dan marl/
(fig. 1) L T pp aquifer permeable permeable permeable aquifer top of
aquifer Floridan zone zone zone system clay
aquifer
33D073/33D074 8.8 -84 -504 -1,220 -1,260 -2,021 -2,106 not not
St Marys, penetrated  penetrated
Camden County
34H495/34H500 9.0 -94 -531 -1,187 -1,240 -1,961 -2,078 not not
Brunswick, penetrated  penetrated
Glynn County
35H068 20.0 -85 -598 -1,103 -1,325 -1,925 not -2,044 -2,170
St Simons present
Island,
Glynn County
35L085 9.0 -69 -412 -819 -1,181 -1,409 not -1,409 -1,841
Shellman Bluff, present
Mclntosh County
35P109/35P110 9.5/10.0 -90 -319 -794 -941 -1,284 not -1,284 -1,615
Richmond Hill, present
Bryan County
33R045 84.0 -26 -242 -636 -684 =777 not not not
Pembroke, present penetrated penetrated
Bryan County
345011 79.0 -6 -197 -541 -581 -738 not -738 not
Pineora, present penetrated
Effingham County

GA, and Duval and Nassau Counties, FL, includes at least
two permeable zones. The upper permeable zone is in the
limestone and dolomite strata of the early and middle Eocene
beneath the middle confining unit and can include multiple
fresh and saline water zones. The Fernandina permeable zone
of the Lower Floridan aquifer is correlated to predominantly
dolomite in the early Eocene Oldsmar Formation and Paleo-
cene Cedar Keys Formation, and also includes dolomite of
the Cretaceous Lawson Limestone in parts of Glynn County,
GA (Miller, 1986; Clarke and others, 1990; Falls and others,
2001; fig. 2). The Fernandina is a known saltwater-bearing
zone beneath Glynn County, GA, and a known freshwater- and
saltwater-bearing zone beneath Duval and Nassau Counties,
FL (Phelps and Spechler, 1997; Jones and others, 2002).

Ground-Water Supply

Water use from the Lower Floridan aquifer historically
has been small compared to water use from the Upper Floridan
aquifer; however, the tremendous quantity of water withdrawn
from the Upper Floridan aquifer has affected water levels in
the Upper and Lower Floridan aquifers. The Upper Floridan

aquifer initially was developed in Georgia in the late 1880s
near Savannah and became the principal source of ground-
water supply in most of the counties of the CSSI study area
during the 20th century. Water use is limited from the Lower
Floridan aquifer in the South Carolina and Georgia parts of the
CSSI study area and more extensively developed in Duval and
Nassau Counties, FL (Krause and Randolph, 1989; Marella,
1999).

Ground-water use from the Upper Floridan aquifer
steadily increased from 1887 to the late 1930s in the CSSI
study area along with increasing population, commerce,
and agriculture, all of which affected water levels locally.
Beginning in the late 1930s, further development of water
resources primarily from the Upper Floridan aquifer expanded,
particularly with industrial development in Chatham, Glynn,
Camden, and Wayne Counties, GA, and Duval and Nassau
Counties, FL (Krause and Randolph, 1989; Clarke and others,
1990; Spechler, 1994; Krause and Clarke, 2001).

In the Georgia part of the CSSI study area, total ground-
water use, most of which is from the Upper Floridan aquifer,
has decreased in the 24 counties from 385 million gallons per
day (Mgal/d) in 1980 to 347 Mgal/d in 1997 (Fanning, 1999).
Of the 347 Mgal/d in 1997, five counties—Chatham, Glynn,
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Liberty, Camden, and Wayne Counties—used 263 Mgal/d.
These five counties historically have been the dominant

users of ground water from the Floridan aquifer system in

the 24-county study area. The paper and chemical industries,
operating in these five counties from the 1930s to 1950s,
quickly became the dominant ground-water users. When
compared with the other counties, total ground-water use in
1997 was greatest in Chatham County at 76 Mgal/d, which
was down from peak usage of approximately 85 Mgal/d in the
late 1980s and early 1990s (Clarke and others, 1990; Fanning,
1999). Total ground-water use in Glynn County was as high as
122 Mgal/d in the 1960s but declined to 100 Mgal/d in 1980
and to 65 Mgal/d in 1997 (Wait and Gregg, 1973; Krause

and others, 1984; Fanning, 1999). Total ground-water use in
Wayne County declined from 74 Mgal/d in 1980 to 64 Mgal/d
in 1997. Camden County had a slight increase in water use
from 37 Mgal/d in 1980 to 40 Mgal/d in 1997; however, the
county’s water use decreased by 35 Mgal/d with the closure of
a paper mill in October 2002 (Peck and others, 2005).

In Nassau and Duval Counties, FL, more than 90 percent
of the ground-water use in 1995 was derived from the Floridan
aquifer system. Total ground-water use in Nassau County
peaked at 66 Mgal/d in 1978 and ranged from 40 to 50 Mgal/d
from 1983 to 2000 (Frick and others, 2002). Since 1940, the
pulp and paper industry at the northern end of Fernandina
Beach in Nassau County has been the dominant ground-water
user in the county. This industry used more than 90 percent
of the 44.5 Mgal/d total ground-water use reported in 1995
(Marella, 1999). In Duval County, ground-water use peaked
at about 170 Mgal/d in 1970, declined to 167 Mgal/d in 1988,
and declined further to 145 Mgal/d in 1995 (Spechler, 1994).
Unlike Nassau County, industrial ground-water use in Duval
County equaled only about 22 percent in 1995, including
industrial use from public- and self-supplied industries
(Marella, 1999).

In Beaufort and Jasper Counties, SC, ground-water use
from the Upper Floridan aquifer is small compared with
ground-water use in the previously mentioned Georgia and
Florida counties. The Upper Floridan aquifer also is the
principal source of ground water for public and domestic
supply. Ground-water use began in the late 1880s in Beaufort
County and equaled 6.8 Mgal/d by 1980 and 17.5 Mgal/d by
1990 (Hayes, 1979; South Carolina Water Resources Com-
mission, 1983, 1992). Ground-water use in Jasper County was
1.2 Mgal/d in 1980 and 1.8 Mgal/d in 1990.

Historical Water Levels

Ground-water use in the CSSI study area has resulted in
regional declines in water levels and localized depressions in
the potentiometric surface of the Upper Floridan aquifer in
the CSSI study area (fig. 3). Water-level data from numerous
Upper Floridan wells in the study area were used by previous
investigators to document the potentiometric surface at
specific time periods in all or parts of the CSSI study area

(Warren, 1944; Counts and Donsky, 1963; Hayes, 1979;
Johnston and others, 1981; Burtell, 1990; Clarke and others,
1990; Peck, 1991; Ransom and White, 1999; Peck and others,
1999; Peck and McFadden, 2004). The effects of regional
declines in water levels were particularly noticeable in the
coastal counties of the CSSI study area where artesian flow
ceased as water levels, previously above land surface, progres-
sively declined below land surface (Johnston and others, 1981;
Krause and Randolph, 1989).

In addition to regional water-level declines, localized
depressions formed in the Upper Floridan aquifer potentiomet-
ric surface (fig. 3). These depressions centered on industrial-
municipal well fields near Savannah, Brunswick, and Jesup,
GA, and the combined area of St Marys, GA, and Fernandina
Beach, FL (Johnston and others, 1981; Krause and Randolph,
1989; Clarke and others, 1990). A subtle depression centered
on the well field in Jacksonville, FL, is noticeable on some
regional maps of the Upper Floridan potentiometric surface;
however, the transmissivity of the Floridan aquifer system is
so large in Duval County when compared with transmissivities
in Georgia and South Carolina that, even considering the
largest rate of ground-water use in the study area, the scale of
the depression in Duval County is small and generally requires
a smaller contour interval to be delineated (Burtell, 1990).

Ground-Water Flow, Salinity, and Potential for
Saltwater Contamination

Occurrences of saltwater contamination of the Upper
Floridan aquifer in the CSSI study area have been documented
in Beaufort County, SC, Glynn County, GA, and Duval
County, FL. (Wait and Gregg, 1973; Krause and Randolph,
1989; Spechler, 1994; Landmeyer and Belval, 1996; Phelps
and Spechler, 1997). The hydrogeology and the presence of a
saltwater source have been constant; however, since the 1880s,
regional and local declines in head in the Upper Floridan
aquifer have altered the horizontal and vertical head gradients
within the Floridan aquifer system and between the surficial
and Upper Floridan aquifers (fig. 4). As a consequence, these
changes in the head gradients resulted in the local occurrence
of saltwater contamination of the freshwater resources in the
Upper Floridan aquifer.

The distribution of freshwater and saltwater prior to
the 1880s was controlled by the confining units within and
above the Floridan aquifer system, the flow potential created
by horizontal and vertical head gradients in the ground-water
flow system, and water density. The head gradient was west
to east beneath the onshore CSSI study area and the offshore
continental shelf (Krause and Randolph, 1989; figs. 3, 4).
The head gradient between the surficial and Upper Floridan
aquifers generally was downward in most of the inland
counties of the CSSI study area, with the exception of river
valleys. In river valleys and counties bordering the Atlantic
Ocean, the head gradient was upward. The freshwater of the
confined Upper and Lower Floridan aquifers was bounded
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Figure 3.

(A) Estimated altitudes of predevelopment (pre-1880s) and (B) May 1980 potentiometric surfaces of the Upper Floridan

aquifer in the Coastal Sound Science Initiative study area, Georgia, Florida, and South Carolina (from Johnston and others, 1980;

1981).

along its eastern margins by saltwater beneath the continental
shelf (fig. 4). Except for the area north of Port Royal Sound
in Beaufort County, SC, the freshwater/saltwater interface
in the confined Upper Floridan aquifer was held seaward of
the coastline by the freshwater head in the Floridan aquifer
system. The upward flow potential from the Upper Floridan
aquifer to the overlying surficial aquifer created upward
leakage of freshwater from the Upper Floridan aquifer, and
prohibited the downward leakage of saline water from surface
water and the surficial aquifer.

With onshore development of the freshwater resource of
the Upper Floridan aquifer, water levels generally declined
in all the coastal counties. Development altered head

gradients within the Floridan aquifer system and between the
Upper Floridan aquifer and the overlying surficial aquifer
(Krause and Randolph, 1989; figs. 3, 4). In Beaufort County,
SC, changes in head gradient resulted in the potential for
downward leakage of modern saltwater through breaches in
the upper confining unit and lateral encroachment of relict
saltwater along the freshwater/saltwater interface in the
Floridan aquifer system beneath Port Royal Sound (Krause
and Randolph, 1989; Landmeyer and Belval, 1996). In Glynn
County, GA, and Duval County, FL, changes in head gradients
resulted in upward intrusion of saltwater from the Fernandina
permeable zone along vertical fractures or faults, contaminat-
ing freshwater in the Upper Floridan aquifer (Wait and Gregg,
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1973; Krause and Randolph, 1989; Maslia and Prowell, 1990;
Spechler, 1994; Phelps and Spechler, 1997; fig. 4).

Hydrogeology of the Lower Floridan
Aquifer

Hydrogeologic data for the Lower Floridan aquifer
collected at the six CSSI sites and the St Simons Island site
were compiled to create a hydrogeologic cross section for the
study area from wells 33D073 and 33D074 at the St Marys
site to well 34S011 at the Pineora site (tables 3, 4; pl. 1). The
altitudes of the top of the Lower Floridan aquifer and the base
of the Floridan aquifer system at each site were compared with
the altitudes of hydrogeologic contacts of the Floridan aquifer
system mapped by Miller (1986).

The semiconfined permeable zones of the surficial aqui-
fer and the upper and lower Brunswick aquifers in the upper
confining unit were not evaluated as part of this investigation
at the CSSI and St Simons Island sites. Therefore, the surficial
aquifer, as presented in the cross section, represents only the
unconfined surficial aquifer at each site (pl. 1; table 4). The
upper confining unit includes the semiconfined part of the
surficial aquifer and the upper and lower Brunswick aquifers,
although the permeable zones and aquifers are not represented
on the cross section.

The following discussion focuses on the hydrogeology of
the carbonate strata of the Lower Floridan aquifer. The strata
containing the surficial aquifer and upper confining unit are
not discussed in further detail.

Upper Permeable Zone

The top of the upper permeable zone of the Lower
Floridan aquifer does not correlate to a specific formation
contact but correlates lithologically to the top of the porous
carbonate strata in the middle Eocene Avon Park Formation
below the relatively nonporous strata of the middle confining
unit at all seven sites (table 4; pl. 1). The top of the upper
permeable zone at the six CSSI sites correlates within 50 ft
of the top of the Lower Floridan aquifer, as mapped by
Miller (1986; fig. 5). The top of the porous strata of the upper
permeable zone at the St Simons Island site, however, was
more than 80 ft higher than Miller’s top of the Lower Floridan
aquifer, based on the distribution of porous strata observed in
well 35H068.

The six CSSI sites were easily divided into the northern
sites (Shellman Bluff to Pineora) and the southern sites (St
Marys and Brunswick) based on stratigraphic and hydrogeo-
logic characteristics of the Lower Floridan aquifer and its
relation to underlying carbonate and non-carbonate strata. The
upper permeable zone of the Lower Floridan aquifer at the
St Marys and Brunswick sites in this report refers only to the
porous-permeable carbonate strata with relatively low-chloride
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(less than 500 mg/L) water, excluding the saltwater-bearing
strata of the Fernandina permeable zone. The hydrogeology

of the Floridan aquifer system at the St Simons Island site

has stratigraphic and lithologic characteristics of both the
southern and northern sites; however, the upper permeable
zone of the Lower Floridan aquifer at the St Simons Island site
is lithologically similar to the upper permeable zone at the St
Marys and Brunswick sites. As a result, the St Simons Island
site is included as one of the southern sites.

Northern Sites

The upper permeable zone at the northern sites from
Shellman Bluff to Pineora consists of strata of the middle
Eocene Avon Park Formation, based on the lithologies
observed in cuttings and the altitude of the top of the early
Eocene Oldsmar Formation, as mapped by Miller (1986).

The base of the upper permeable zone of the Lower Floridan
aquifer correlates to the base of the carbonate strata of the
Floridan aquifer system (pl. 1; fig. 6).

At the Pineora and Pembroke sites, the upper permeable
zone consists of strata dominated by nonporous limestone
and dolomitic limestone with only a few beds of porous
dolomite. The Lower Floridan aquifer at Pineora is a 157-ft-
thick interval of carbonate strata from the base of the middle
confining unit to the base of the Floridan aquifer system, but
includes only three beds of porous dolomite with a cumulative
thickness of 38 ft. The porous dolomite beds range from 8 to
18 ft thick and represent approximately 24 percent of the total
thickness of the Lower Floridan aquifer at the Pineora site.
Well 33R045 at the Pembroke site was drilled to a total depth
of 994 ft but did not penetrate the base of the Floridan aquifer
system. Based on the penetrated strata in well 33R045, the
Lower Floridan aquifer is at least a 93-ft-thick interval with
four dolomite beds. The four dolomite beds have a cuamulative
thickness of 41 ft and represent approximately 44 percent of
the total thickness of the Lower Floridan aquifer. Intercrystal-
line porosity in the dolomite varies from 10 to 20 percent at
the Pembroke site and is less than 10 percent at the Pineora
site. At both sites, the nonporous limestone interbedded with
the dolomite generally is fine grained and fossiliferous with 1
to 3 percent glauconite, as is typical of the Avon Park Forma-
tion at the other northern sites.

Agquifer tests were not conducted at the Pineora and
Pembroke sites, but the ability of the aquifer to yield water can
be inferred from observations made during the drilling of both
wells. Reverse-air rotary discharge for the drill rig at these two
sites was estimated to be 100 to 120 gallons per minute during
routine drilling. In reverse-air rotary drilling, potable water
is added to the well if the formation does not yield adequate
water to return the cuttings. For the open borehole in the
fourth stage of well 33R045 at Pembroke, potable water was
added during the drilling of the first two porous dolomite beds
from 684 to 695 ft and from 711 to 719 ft below the North
American Vertical Datum of 1988 (NAVD 88); however, these
two dolomite beds provided an adequate supply of water to
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the borehole to complete the drilling of the remainder of the
open interval in the fourth stage without adding potable water
to the well. Potable water was added during the drilling of the
entire Lower Floridan aquifer interval in the fourth stage of
well 345011 at the Pineora site because the strata of the Lower
Floridan aquifer could not yield enough water to the borehole
to maintain the reverse-air rotary discharge for drilling, even
with the borehole open to all three dolomite beds.

The Lower Floridan aquifer is 343 ft thick at the Rich-
mond Hill site and 228 ft thick at the Shellman Bluff site. The
predominantly porous limestone strata at the top of the upper
permeable zone of the Lower Floridan aquifer are 140 ft thick
at the Richmond Hill site and 35 ft thick at the Shellman Bluff
site. The porous limestone at Richmond Hill is dolomitic and
nondolomitic with minor amounts of chert and generally only
5- to 10-percent interparticle porosity, although a few intervals
have as much as 20-percent interparticle porosity. The porous
limestone at the Shellman Bluff site is nondolomitic and fos-
siliferous and has only 5- to 10-percent interparticle porosity.
The porous limestone at the top of the Lower Floridan aquifer
is separated from the base of the Floridan aquifer system by
203 and 213 ft of nonporous and low-porosity limestone at
the Richmond Hill and Shellman Bluff sites, respectively.

The nonporous limestone is dolomitic, sandy, and glauconitic
near the base of the Floridan aquifer system and also includes
intervals with chert. The altitude of the top of the Lower
Floridan aquifer of Miller (1986) approximates the altitudes
of the tops of the Lower Floridan aquifer at the Richmond Hill
and Shellman Bluff sites and the top of permeable zone 5 of
McCollum and Counts (1964) in Chatham County. Therefore,
the Lower Floridan aquifer at Richmond Hill and Shellman
Bluff, as recognized in this report, correlates to only perme-
able zone 5 of McCollum and Counts (1964).

Transmissivities calculated for the upper permeable zone
of the Lower Floridan aquifer were 8,300 feet squared per day
(ft¥/d) in well 35P109 at the Richmond Hill site and 6,000 ft*>/d
in well 35L.085 at the Shellman Bluff sites. In comparison,
transmissivities for the Upper Floridan aquifer were 70,000
ft?/d for well 35P110 at the Richmond Hill site, and ranged
from 20,000 to 50,000 ft?/d in Chatham County, and from
130,000 to 160,000 ft*/d in Liberty County, GA (Harrelson
and Falls, 2003; Clarke and others, 2004).

Southern Sites

The upper permeable zone of the Lower Floridan
aquifer at the St Marys, Brunswick, and St Simons Island
sites is thicker than the Upper Floridan aquifer and has total
thicknesses ranging from 600 to 760 ft. The aquifer consists
of porous limestone and dolomite of the middle Eocene Avon
Park Formation interbedded with nonporous carbonate strata
and includes the upper part of the early Eocene Oldsmar
Formation, unlike the northern sites (pl. 1; apps. 1, 2). The
porous limestone and dolomite strata represent about 20 to
30 percent of the total thicknesses of the upper permeable zone
of the Lower Floridan aquifer at the southern sites. The upper

permeable zone includes 191, 101, and only 31 ft of the early
Eocene Oldsmar Formation at the St Marys, Brunswick, and
St Simons Island sites, respectively. The limestone in the early
Eocene strata at these three sites commonly is pelleted and
fossiliferous, in contrast to the generally fossiliferous texture
of the middle Eocene strata. Chert nodules and glauconite
pellets are present in the limestone.

The abundance of porous and nonporous dolomite in the
upper permeable zone is one of the distinctive characteristics
of the Avon Park Formation at the three southern sites, par-
ticularly in comparison with the limestone-dominated strata at
the Shellman Bluff and Richmond Hill sites. Beds of dolomite
in the early and middle Eocene strata vary in thickness from
a few feet to several tens of feet. Intercrystalline and moldic
porosity in the porous dolomite varies from 10 to 35 percent.
Voids—fractures and solution cavities—were detected during
drilling of the Lower Floridan aquifer in well 34H495 at
Brunswick, particularly in association with the thick dolomite
beds from 1,673 to 1,965 ft below NAVD 88 (app. 2). Solution
cavities also were penetrated at 1,260 and 2,060 ft below
NAVD 88 during the drilling of well 33D074 (Mr. Nolan Col,
St Johns River Water Management District, written commun.,
January 8, 2002). Interparticle porosity in the porous limestone
of the upper permeable zone is generally 5 to 10 percent in the
early and middle Eocene strata.

In addition to limestone and dolomite, Miller (1986)
also described gypsum—a calcium sulfate mineral—in the
early and middle Eocene strata of the upper permeable zone
of Camden and Glynn Counties, GA. Gypsum is present only
below the top of the early Eocene Oldsmar Formation at the
Brunswick and St Simons Island sites (pl. 1). Natural-gamma
logs were used to correlate the top of the early Eocene at the
Brunswick site to 1,844 ft below NAVD 88 in well 33D074
at the St Marys site. The first appearance of gypsum in well
33D074 at the St Marys site is in an interval of dense dolomite
from approximately 1,610 to 1,620 ft below NAVD 88 (Mr.
Nolan Col, St Johns River Water Management District, written
commun., January 8, 2002). This places the first appearance
of gypsum at 224 ft above the top of the early Eocene at the St
Marys sites.

Calculated transmissivity in the upper permeable zone
of St Marys well 33D073 open from 1,356 to 1,491 ftis
13,000 ft¥/d, considerably lower than the range of transmissiv-
ity of 19,000 to 130,000 ft*/d for the Upper Floridan aquifer in
Camden County (Clarke and others, 2004). Aquifer tests were
not completed for well 33D074 at St Marys and well 34H500
at Brunswick, which are open to the upper permeable zone of
the Lower Floridan aquifer. The calculated transmissivity of
the Lower Floridan aquifer for the interval open from 1,371
to 1,571 ft below NAVD 88 in well 35H068 at the St Simons
Island site was 500 ft*/d (Mr. Richard H. Johnston, Glynn
County Water Resource Advisory Committee, written com-
mun., June 2002).

The upper permeable zone of the Lower Floridan aquifer
at the St Marys and Brunswick sites is separated from the
Fernandina permeable zone by an interval of nonporous and



low-porosity limestone and dolomite in the early Eocene
Oldsmar Formation. Miller (1986) informally referred to this
interval as the local confining unit because of its limited extent
beneath the southern coastal counties of Georgia and the
northeastern counties of Florida. The strata of Miller’s local
confining unit are 85 ft thick in well 33D074 at St Marys and
118 ft thick in well 34H495 at Brunswick (table 4).

Fernandina Permeable Zone

Of the seven sites described in this report, the Fernandina
permeable zone was present only at the St Marys and Bruns-
wick sites. The extent of the Fernandina permeable zone, as
mapped by Miller (1986), included all of Camden and Glynn
Counties and parts of McIntosh, Charlton, and Ware Counties,
GA, and all or parts of seven counties in northeastern Florida
(fig. 7). The Floridan aquifer system, however, at the St
Simons Island site in coastal Glynn County and Shellman
Bluff in northeastern McIntosh County did not include the
Fernandina permeable zone, which constrains the Fernandina
permeable zone to a smaller part of coastal Georgia than was
proposed by Miller (1986; fig. 7).

The top of the Fernandina permeable zone was penetrated
by well 34H495 at the Brunswick site and by well 33D074
at the St Marys site at altitudes of 2,078 and 2,106 ft below
NAVD 88, respectively (fig. 7; table 4). At both sites, the
top of the Fernandina permeable zone is above the top of the
Paleocene Cedar Keys Formation, as mapped by Miller (1986)
and, therefore, in the early Eocene Oldsmar Formation (pl. 1;
table 4).

Well 33D074 at the St Marys site was terminated after
penetrating 11 ft of porous and nonporous dolomite below the
top of the Fernandina permeable zone. Well 34H495 at the
Brunswick site penetrated 633 ft of the Fernandina permeable
zone from 2,078 to 2,711 ft below NAVD 88, including 72 ft
of porous to nonporous dolomite and nonporous limestone of
the early Eocene Oldsmar Formation and 561 ft of porous and
nonporous dolomite of the Paleocene Cedar Keys Formation.
Well 34H495 did not penetrate the base of the Floridan aquifer
system. In addition to dolomite and limestone, gypsum is
present in association with the dense dolomite from 2,400
to 2,711 ft below NAVD 88 in well 34H495. Small clasts of
argillaceous mudstone also were observed in dolomite cuttings
from 2,610 to 2,711 ft below NAVD 88.

Intercrystalline porosity in the porous dolomite ranges
from 10 to as much as 35 percent. Moldic porosity, resulting
from the dissolution of carbonate shells, was noticeable in the
interval from 2,580 to 2,711 ft below NAVD 88 and ranged
from 5 to 10 percent. In addition to microscopic pores, six
voids of at least 1 to 4 ft in height, interpreted as fracture
zones and solution cavities, were detected between 2,231 and
2,668 ft below NAVD 88 during the drilling of the Fernandina
permeable zone in well 34H495 (app. 2). After penetrating
the fracture zone at 2,231 ft, sand-sized fragments of dolomite
spilled into the open borehole for several hours. Aquifer
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tests were not conducted in CSSI well 34H495 in downtown
Brunswick and well 33H188 on Colonels Island to the west of
the Brunswick site.

Lower Confining Unit

At the four northern sites and the St Simons Island site,
marl underlying the base of the Floridan aquifer system was
penetrated. Given its fine-grained texture, the marl is assumed
to represent confinement between the Floridan aquifer system
and the underlying aquifers in the Cretaceous strata, and is
referred to as the lower confining unit by Miller (1986). Well
33D074 at the St Marys site and well 34H495 at the Bruns-
wick site did not penetrate the base of the Floridan aquifer
system and the marl of the lower confining unit.

Marl, as referenced in this report, is a lithologic term
applied to a semi-indurated, fine-grained mixture of carbonate,
clay, silt, and sand and generally is dominated by clay and silt.
The actual lithologies collectively referred to as marl include
calcareous claystone and siltstone, and a few beds of calcare-
ous sandstone, and generally are olive gray to light green. The
marl generally contains pellets of glauconite and phosphate,
and nodules of chert.

The base of the Floridan aquifer system and the under-
lying marl is recognized easily in cuttings during drilling and
on the natural-gamma log, which shows a sharp increase in
counts per second from carbonate strata to the marl (pl. 1).
The boreholes of wells 35P109 and 35L085 penetrated soft
black clay beneath the marl for a total marl thickness of 331 ft
at Richmond Hill and 432 ft at Shellman Bluff, respectively.

Water Levels in the Floridan Aquifer System

Water-level hydrographs for CSSI and other nearby
wells opened to the Upper Floridan aquifer, and the upper
permeable and Fernandina permeable zones of the Lower
Floridan aquifer, recorded similar responses of the Floridan
aquifer system to changes in hydraulic head relative to annual
recharge cycles and to local and regional ground-water use
from the Upper Floridan aquifer. These hydrographs also
recorded the response of the Floridan aquifer system in coastal
Georgia to the effects of a regional drought from spring 1998
to summer 2002.

Water-level trends are similar in the three hydrogeologic
units, but the altitudes of measured water levels can be similar
or dissimilar, depending on confinement, head gradients,
and local water use. The concentrations of total dissolved
solids (TDS) in water samples collected from the CSSI and
St Simons Island wells also are considered in the following
discussion of measured water-level altitudes because water in
the upper permeable and Fernandina permeable zones of the
Lower Floridan aquifer typically have greater TDS concentra-
tions than water in the Upper Floridan aquifer (Falls and
others, 2001). Consequently, measured water levels typically
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do not represent true freshwater head in the Lower Floridan
aquifer.

The density of water is a function of the TDS concentra-
tion. With increased density, the altitude to which water
rises in a well cased in a confined aquifer reduces relative to
an equivalent freshwater head. The relation is described by
Cooper and others (1964) using the following formula:

lf = 1sps /pf

where:
1. is the calculated water column length for equivalent
freshwater in feet above the bottom of the casing,
1, is the measured water column length for saline water
in feet above the bottom of the casing, and
p,/ p; is the ratio of saline-water density in the casing to
freshwater.

Consideration of the TDS concentration and the need to
make density corrections for water levels is important, given
the length of casings for wells opened to the Lower Floridan
aquifer in coastal Georgia. For example, the water level in
a well with a 1,000-ft-long column of saltwater in the well
casing would have what is termed an equivalent freshwater
head that is 24 ft higher, assuming a saltwater to freshwater
density ratio of 1.024. With the exception of the Pineora and
Pembroke sites, the CSSI and St Simons Island wells that are
open to the Lower Floridan aquifer have more than 1,000 ft of
casing. Even if the density ratio was only 1.001, the equivalent
freshwater head for a 1,000-ft-long column of water in the
casing would be as much as 1 ft higher than the measured
head.

Measured heads, not equivalent freshwater heads, are
presented in the hydrographs in this report. The effects of
density on water levels are discussed, if considered necessary,
to explain head relations between the Upper and Lower
Floridan aquifers at the CSSI and St Simons Island sites. The
discussion of the effects of density on water levels is based on
the calculated TDS concentrations for water samples collected
after the development of each well. The TDS concentrations
were calculated using the software program, WATEQ4F,
which summed the concentrations of dissolved constituents
from laboratory analyses of water samples collected from
the Floridan aquifer system (Ball and Nordstrom, 1991). The
following discussion assumes that the TDS concentration of
the water in each well casing remained constant after devel-
oping and sampling the well for the period of record of each
hydrograph.
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Northern Sites

Wells open to the Upper and Lower Floridan aquifers
at the northern sites from Shellman Bluff to Pineora as of
January 1, 2004, were non-flowing wells. Prior to the 1880s,
the potentiometric surface of the Upper Floridan aquifer, and
probably the Lower Floridan aquifer, was above land surface
at the Shellman Bluff and Richmond Hill sites, and approxi-
mately 20 ft below land surface at the Pineora and Pembroke
sites (fig. 3). Water levels in the Upper and Lower Floridan
aquifers at these sites are influenced by regional water use in
coastal Georgia and were below land surface at all four sites
during the period of record.

Wells 35P109 and 35P110 at the Richmond Hill site in
Bryan County, GA, are open to the Upper and Lower Floridan
aquifers, respectively, and have nearly identical hydrographs
for the period from June 2000 to January 1, 2004 (fig. 8).
Water levels in both wells generally have annual water-level
highs in late winter and early spring (March—April) and
annual water-level lows in late summer (August—September)
in response to the regional effects of annual recharge to the
Floridan aquifer system. Prior to August 2002, the drought
resulted in differences between annual water-level highs and
lows at this site that ranged from 2 to 4 ft. With abundant rain-
fall in the late summer and fall of 2002, water levels rose by
more than 7 ft in both wells and continued to rise during 2003.
The difference between water-level altitudes in the Upper and
Lower Floridan aquifers generally ranges from 0 to 0.2 ft, but
was as much as 0.5 ft in October 2000. Measured water levels
for the Lower Floridan aquifer are not consistently higher
or lower than measured water levels in the Upper Floridan
aquifer at this site. The TDS concentration in the water sample
from the Lower Floridan aquifer was 1,627 mg/L, compared
with 247 mg/L in the Upper Floridan aquifer at the Richmond
Hill site. If the heads were corrected for density, then the
Lower Floridan aquifer would have a freshwater head equal to
or greater than the head in the Upper Floridan aquifer for the
period of record.

The hydrograph for well 35L085, opened to the Lower
Floridan aquifer at the Shellman Bluff site, was compared
with the hydrograph for well 35MO013 (fig. 9). Well 35M013
is 3.6 miles northeast of well 35L085 and is the closest well
with a water-level recorder open to the Upper Floridan aquifer
(fig. 1). Given the distance between the two wells, the head
relation between the two wells does not represent the head
relation between the Upper and Lower Floridan aquifer at the
Shellman Bluff site. As in the hydrograph for the Richmond
Hill wells, hydrographs for the two wells in McIntosh County
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are similar for the period of record and have highs and lows in
response to annual recharge. The water-level decline of 2.5 ft
from April to late August 2002 and rise of 4.9 ft from late
August 2002 to June 2003 for the Lower Floridan aquifer were
slightly greater than the decline of 2 ft and rise of 4.5 ft for
the Upper Floridan aquifer. The TDS concentration in water
collected from the Lower Floridan aquifer in well 35L085 was
2,800 mg/L. With 1,144 ft of casing and an estimated water
density ratio of 1.001, the equivalent freshwater head in well
35L085 would be at least 1 ft higher than the measured head.
Wells 33R045 and 345011 at the Pembroke and Pineora
sites, respectively, are open to the Lower Floridan aquifer and
have a period of record only from May 2002 to
January 1, 2004 (fig. 10). Continuous water-level records
for an equivalent period of record are not available for the
Upper Floridan aquifer for either site. Water-level trends for
the Lower Floridan aquifer at these two sites were compared
with water levels in well 32R002 in Bulloch County, GA,
which has a water-level recorder and is located approximately
6.5 miles northwest of the Pembroke site (fig. 1). As in the
previous hydrographs, the water-level trends for the Lower
Floridan aquifer at the two CSSI sites declined from spring
2002 to a low in late August and rose in fall and winter
2002 by approximately 6.5 and 7.5 ft in wells 34S011 and
33R045, respectively. The water-level trend for the Upper
Floridan aquifer in well 32R002 is similar to trends in two
Lower Floridan wells and has a slightly greater magnitude of
recovery following the drought, in comparison to the trends in
the two Lower Floridan wells. Water samples from the Upper
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and Lower Floridan aquifers at the Pembroke site and the
Lower Floridan aquifer at Pineora had TDS concentrations of
231, 284, and 204 mg/L, respectively; so no corrections were
made for density.

Southern Sites

Hydrographs for wells open to the upper permeable
zone of the Lower Floridan aquifer at the Brunswick and St
Marys sites, and the Fernandina permeable zone of the Lower
Floridan aquifer at the Brunswick site, were compared with
hydrographs of nearby monitoring wells open to the Upper
Floridan aquifer (figs. 11, 12). Well 34H371 is 0.3 mile
south of the CSSI wells in downtown Brunswick, GA, and
is not within the chloride-contamination plume underlying
downtown Brunswick (fig. 13). Well 33D069 is approximately
1.0 mile south of the CSSI wells at the St Marys site (fig. 12).
Both Upper Floridan wells are farther from the industrial
production wells in downtown Brunswick and St Marys than
the CSSI wells. As at the Shellman Bluff, Pembroke, and
Pineora sites, water levels at the Brunswick and St Marys sites
can be compared to the offsite Upper Floridan wells for trends,
but may not reflect the true head relations at the CSSI sites.

CSSI wells 34H500 and 34H495 are open to the upper
permeable and Fernandina permeable zones of the Lower
Floridan aquifer, respectively, at the Brunswick site. Measured
water levels in the hydrographs for these two wells were very
similar and, although higher in altitude, had the same annual
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Figure 10. Daily mean water levels in Pineora well 34S011 in Effingham County, Pembroke well 33R045 in Bryan County,
and well 32R002 in Bulloch County, Georgia, May 10, 2002, to January 1, 2004.



26 Hydrogeology, Water Quality, and Water-Supply Potential of the Lower Floridan Aquifer, Coastal Georgia, 1993-2002

30,
| DOWNTOWN BRUNSWICK, GEORGIA

© (Ports Authority Site)
g Upper permeable zone of
S 25 the Lower Floridan aquifer,
<Zt r well 34H500 (black line)
% Fernandina permeable zone 1
' t of the Lower Floridan aquifer, g
W20 " well 34H495 (red line) _
'_ r 4
w L
L
o L
z I m
d— 15 7
>
H \ Upper Floridan aquifer,
o L well 34H371 (blue line) 1
Jin]
= 10 —
< e Land surface (9 feetabove NAVDS8®) o _________|
=

5 I . . . . . . . . . . . | . . . . . . . . . . . | . . . . . . . . . . .
January 1, 2001 January 1, 2002 January 1, 2003 January 1, 2004

DATE

Figure 11. Daily mean water levels in wells 34H495 and 34H500 at the Brunswick site, and in nearby well 34H371 in downtown Brunswick,
Glynn County, Georgia, February 1, 2001, to January 1, 2004.

35 I —————r——
- CAMDEN COUNTY, GEORGIA S ot as ute
L (Gallop Road ballpark, St Marys) Lower Floridan aquifer, ]
30 well 33D073 (black line) W _
© [ ]
=) i — Camden County, ]
g o5 I ,L<\, 8 Georgia  eis 330071, Paper _
e i B 330072, and —/ g Ml ~ ]
z L "\ ) . 33po73 Well 330069 Upper Floridan aquifer, |
o L \\\)’ L/"%s /f—~ﬂe-'f” well 33D069 (blue line) i
L r 1 ) ]
S 20 Nassau County, ~ ) ) —
= L Florida 9 1 2MiEs Upper Brunswick aquifer, 4
< L 0 1 2KILOMETERS well 33D071 (green line) ]
o L i
T L ]
15+ -
L L i
w
L L i
Z [ ]
u
-
o i
M5 i
g Surficial aquifer, ]
L well 33D072 (orange line) |
0 - —
January 1, 2000 January 1, 2001 January 1, 2002 January 1, 2003 January 1, 2004

DATE

Figure 12. Daily mean water levels in wells 33D071, 33D072, and 33D073 at the St Marys site, and in nearby well 33D069 in downtown
St Marys, Camden County, Georgia, January 1, 2000, to January 1, 2004.
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highs and lows as the water levels in the Upper Floridan
aquifer in nearby monitoring well 34H371 (fig. 11). For the
period of record, water levels in all three wells were above
land surface. Water-level altitudes in the CSSI wells were
approximately 4 to 5 ft higher than in well 34H371 prior to
August 2002 and 6 to 8 ft higher than in well 34H371 after
August 2002, which may reflect changes in ground-water
withdrawal in downtown Brunswick.

In the upper permeable zone of the Lower Floridan
aquifer, TDS concentrations were 840 mg/L in well 34H500.
In three samples collected in the Fernandina permeable zone
of well 34H495 at the Brunswick site, TDS concentrations
increased downward from 4,400 mg/L near the top of the
permeable zone to 33,700 and 48,400 mg/L. The specific con-
ductance of water discharging from the Fernandina permeable
zone in well 34H495 was approximately 30,000 microsiemens
per centimeter (uS/cm) at 25 degrees Celsius and is assumed
to be similar in density to water discharging from well 33H188
at Colonels Island, which has a specific conductance of
29,900 uS/cm and a TDS concentration of 20,100 mg/L. With
over 2,000 ft of casing and an approximate water density ratio
of 1.013, the equivalent freshwater head would be 26 ft higher
than the measured head for well 34H495.

At the St Marys site, well 33D073 is open to the upper
permeable zone of the Lower Floridan aquifer and is within
0.5 mile of a paper mill in downtown St Marys (fig. 12).
Withdrawals from the mill’s production wells and the town’s
water-supply wells are from the Upper Floridan aquifer. The
hydrograph includes measured water levels in the Lower
Floridan, upper Brunswick, and surficial aquifers in wells
33D073, 33D071, and 33D072, respectively, at the CSSI St
Marys site and in the Upper Floridan aquifer in well 33D069
(fig. 12). Prior to August 2002, water levels in the Lower
Floridan aquifer in well 33D073 periodically were equal to
and more than 2 ft greater than water levels in the Upper
Floridan aquifer at well 33D069, but generally followed the
same trend. Following the annual water-level low in July and
August 2002, ground-water levels gradually increased until
October, when the mill’s production wells were turned off.
Not only did water levels in the Upper and Lower Floridan
aquifers increase by more than 19 ft in wells 33D069 and
33D073, but an increase greater than 15 ft also was observed
in water levels in well 33D071 in the upper Brunswick aquifer.
These increases resulted in artesian flow from wells 33D069,
33D072, and 33D073 and numerous Upper Floridan wells
in the St Marys area. The gradual increases in water level
after August 2002 were partially attributed to recovery of
the aquifers after the drought, but the timing of the abrupt
increase in October is attributed largely to the mill terminating
ground-water withdrawal of more than 35 Mgal/d. Following
the termination of industrial water use by the mill, water
levels in well 33D073 in the Lower Floridan aquifer were
approximately 4 ft greater than water levels in well 33D069 in
the Upper Floridan aquifer. Concentrations of TDS were 571
and 569 mg/L for two Upper Floridan water samples collected
from well 33D054 and 722 mg/L for the Lower Floridan

water sample collected from well 33D073. Density correc-
tions would be small and approximately the same to convert
measured water levels in both wells to true freshwater head.

Water Quality

Water-quality results include chloride analyses of reverse-
air rotary discharge water and field and laboratory analyses
of water samples collected after well development. Chloride
analyses of reverse-air rotary discharge-water samples
collected during the drilling of the CSSI wells are used to
document the distribution of chloride water in the Floridan
aquifer system (table 5). Field and laboratory results for water
samples collected from the CSSI wells and other wells in the
study area are used to describe water-chemistry and isotopic
compositions of water from the upper permeable and Fernan-
dina permeable zones of the Lower Floridan aquifer relative to
water from the Upper Floridan aquifer in coastal Georgia and
to water-quality standards (tables 6-8). The chemical content
of modern ocean water described in this report includes the
ion chemistry reported in Hem (1989) and the isotopic results
reported in Phelps (2001).

Chloride Results for Reverse-Air Rotary
Discharge-Water Samples

Water samples from the reverse-air rotary discharge of
the drill rig were collected in wells at the CSSI and St Simons
Island sites during the drilling of the Floridan aquifer system
and analyzed for dissolved chloride (table 5). Chloride results
for these samples were compared with chloride results for
wireline samples collected at specific depths in the borehole
and for bulk water samples pumped from the open borehole
intervals of wells (tables 6-8). Results were compared to the
Federal secondary drinking-water standard of 250 mg/L for
chloride (U.S. Environmental Protection Agency, 2000).

Chloride concentrations in water samples collected from
the Upper Floridan aquifer and the upper permeable zone
of the Lower Floridan aquifer were less than 6 mg/L at the
Pineora and Pembroke sites, and ranged from 21 to 36 mg/L
at the St Simons Island site and from 8 to 60 mg/L at the St
Marys site (tables 4, 5). Chloride results for samples collected
by wireline sampler and submersible pump from the open
borehole also are similar to concentrations in the reverse-air
rotary discharge samples (tables 6, 8). The highest chloride
concentrations generally were near the bottom of the upper
permeable zone of the Lower Floridan aquifer at St Simons
Island and St Marys. In well 33D074 at St Marys, chloride
concentrations were 350 and 410 mg/L in samples collected
during the drilling of the local confining unit at the base of
the upper permeable zone of the Lower Floridan aquifer and
3,200 mg/L in a sample collected at the top of the Fernandina
permeable zone (table 5). No other water samples had chloride
concentrations at the four drill sites that exceeded the



Water Quality

Table 5. Chloride analyses for reverse-air rotary discharge-water samples collected in the Floridan aquifer
system at the Coastal Sound Science Initiative and St Simons Island wells in Georgia, and unpublished results for
well 33D074 drilled by St Johns River Water Management District of Palatka, Florida, at the St Marys site, Georgia,

1999-2002.

[ft, feet below land surface; mg/L, milligrams per liter; brackets denote unpublished results for well 33D074 at the St Marys site]

St Marys well 33D073

Brunswick well 34H495,

Brunswick well 34H500,

Can[:li?loézﬁmy, Glynn Co_unty, Glynn Co_unly,
. Georgia Georgia
Georgia
Depth Chloride Depth Chloride Depth Chloride Depth Chloride
(ft) (mg/L) (ft) (mg/L) (ft) (mg/L) (ft) (mg/L)
624 35 668 1,500 2,089 1,100 700 1,600
749 34 700 1,600 2,092 1,100 716 1,700
873 35 732 1,700 2,123 1,200 731 1,700
904 35 763 1,700 2,155 1,400 761 1,700
996 32 795 1,700 2,186 2,000 793 1,700
1,042 34 827 1,700 2,217 17,000 823 1,600
1,072 31 859 1,700 2,249 17,000 855 1,700
1,103 31 890 1,800 2,281 17,000 887 1,700
1,149 36 922 1,700 2,311 17,000 918 1,600
1,224 40 953 1,700 2,343 17,000 950 1,700
1,271 34 984 1,800 2,354 17,000 982 1,700
1,302 34 1,016 1,700 2,375 17,000 1,013 1,700
1,319 35 1,047 1,500 2,407 17,000 1,044 1,700
1,334 34 1,079 1,400 2,438 17,000 1,076 1,700
1,350 35 1,111 2,800 2,470 17,000 1,107 2,700
1,365 33 1,143 2,900 2,533 17,000 1,139 2,900
1,385 32 1,174 2,800 2,564 17,000 1,237 850
1,399 32 1,206 2,200 2,595 17,000 1,269 530
1,430 33 1,237 2,400 2,626 17,000 1,301 470
1,462 31 1,269 2,200 2,657 17,000 1,332 460
1,494 31 1,301 2,300 2,689 27,000 1,364 440
[1,578] 25 1,333 2,200 2,720 26,000 1,396 280
[1,593] 25 1,365 2,300 1,400 290
[1,623] 30 1,405 2,000
[1,655] 30 1,426 36
[1,685] 8 1,447 14
[1,716] 13 1,489 13
[1,747] 15 1,521 13
[1,783] 11 1,553 13
[1,813] 12 1,585 12
[1,844] 12 1,617 12
[1,875] 20 1,648 12
[1,906] 50 1,679 120
[1,935] 60 1,709 100
[1,966] 56 1,740 140
[1,997] 52 1,772 140
[2,028] 52 1,803 170
[2,060] 350 1,837 220
[2,091] 410 1,869 310
[2,121] 3,200 1,899 320
1,931 340
1,962 340
1,994 220
2,026 210
2,057 180

29
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Table 5. Chloride analyses for reverse-air rotary discharge-water samples collected in the Floridan aquifer system at the
Coastal Sound Science Initiative and St Simons Island wells in Georgia, and unpublished results for well 33D074 drilled by
St Johns River Water Management District of Palatka, Florida, at the St Marys site, Georgia, 1999-2002.—Continued

[ft, feet below land surface; mg/L, milligrams per liter; brackets denote unpublished results for well 33D074 at the St Marys site]

St Simons Island Shellman Bluff Richmond Hill Pembroke Pineora
well 35H068, well 35L085, well 35P109, well 33R045, well 34S011,
Glynn County, Mclntosh County, Bryan County, Bryan County, Effingham County,
Georgia Georgia Georgia Georgia Georgia
Depth Chloride Depth Chloride Depth Chloride Depth Chloride .

(f) mgl) | (0 malt) | (i) malt) | (0 (mg) | Depth  Chloride
1,079 24 560 20 375 4 405 3.7 374 4.6
1,111 24 592 11 406 5 437 3.8 404 4.6
1,143 24 623 11 435 5 467 3.9 435 4.8
1,174 24 655 12 466 5 499 3.8 467 4.6
1,206 24 686 13 497 5 529 3.8 497 4.4
1,238 24 717 14 528 5 560 4.1 528 4.2
1,269 24 748 14 560 5 591 3.8 556 43
1,301 24 778 15 590 5 622 3.8 590 4.2
1,332 24 808 15 622 5 653 3.8 622 4.0
1,362 24 808 15 653 5 684 3.8 654 4.0
1,394 24 839 16 685 5 715 3.9 750 4.0
1,423 21 870 16 715 5 745 4.0 808 3.1
1,455 23 900 19 746 5 778 5.7 870 3.2
1,486 23 931 20 778 5 809 5.8
1,518 23 963 20 808 5 839 5.7
1,550 24 994 21 840 5 870 5.6
1,582 23 1,025 23 870 5 901 5.1
1,612 26 1,056 22 901 5 932 4.8
1,643 28 1,085 22 933 5 964 4.8
1,675 29 1,116 22 963 5 994 5.2
1,706 30 1,148 23 980 5
1,738 30 1,181 180 980 5
1,769 32 1,212 260 995 5
1,801 33 1,243 280 1,060 9
1,832 33 1,273 290 1,092 12
1,894 36 1,305 290 1,122 34
1,925 36 1,336 300 1,153 43
1,957 38 1,367 310 1,185 86
1,989 39 1,399 310 1,216 115
2,020 41 1,419 310 1,248 152
2,052 48 1,429 310 1,279 162
2,084 48 1,461 310 1,310 160
2,116 48 1,492 310 1,341 159
2,147 48 1,523 310 1,372 160
2,179 63 1,554 310 1,403 161
2,200 55 1,585 310 1,434 162

1,605 310 1,465 160

1,645 310 1,497 160

1,675 310 1,526 160

1,706 310 1,557 162

1,737 310 1,589 161

1,768 310 1,650 159

1,800 310

1,832 310

1,863 310
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secondary drinking-water standard of 250 mg/L at these four
sites (table 5).

Chloride concentrations in discharge-water samples
collected from the upper permeable zone of the Lower
Floridan aquifer ranged from 5 to 162 mg/L at Richmond Hill
well 35P109 and from 180 to 310 mg/L at Shellman Bluff well
35L085 (table 5). Concentrations increased with depth in both
wells. Chloride concentrations in samples collected from the
Lower Floridan aquifer by a submersible pump in Richmond
Hill well 35P109 and by wireline sampler in Shellman Bluff
well 35L.085 were 160 mg/L and 260 mg/L, respectively,
and confirmed the chloride results from the reverse-air rotary
discharge samples (tables 6, 8). Discharge-water samples
from the Upper Floridan aquifer at the Richmond Hill and
Shellman Bluff sites had chloride concentrations ranging from
4 to 5 mg/L and from 11 to 20 mg/L, respectively (table 5).
Only the water samples from the Lower Floridan aquifer at
Shellman Bluff had chloride concentrations that exceeded the
secondary drinking-water standard of 250 mg/L.

Identification of the top of the freshwater interval of the
upper permeable zone of the Lower Floridan aquifer at the
Brunswick site was complicated by the presence of chloride
contamination in the Upper Floridan aquifer. The Brunswick
site is within the chloride-contamination plume in downtown
Brunswick, and had chloride concentrations ranging from
1,500 to 2,900 mg/L in the Upper Floridan aquifer during
the drilling of wells 34H495 and 34H500 (table 5; fig. 13).
The highest chloride concentrations were near the base of the
Upper Floridan aquifer at 1,143 ft in well 34H495 and 1,139 ft
in well 34H500. As the drilling of the borehole progressed to
include the freshwater interval of the Lower Floridan aquifer,
the chloride concentrations of reverse-air rotary discharge
samples collected from 1,206 to 1,405 ft in well 34H495
ranged from 2,000 to 2,400 mg/L and reflected the borehole
dilution of chloride-contaminated water from the Upper
Floridan aquifer with freshwater from the Lower Floridan
aquifer but did not reflect the actual chloride concentration of
the Lower Floridan aquifer (table 5). A wireline water sample
collected near the bottom of the open borehole at a depth of
1,380 ft below land surface had a chloride concentration of
26 mg/L, which reflected the actual chloride concentration
of the freshwater interval of the upper permeable zone of the
Lower Floridan aquifer (table 7).

Based on the chloride analyses of reverse-air discharge
water in well 34H495, the top of the freshwater interval of
the upper permeable zone of the Lower Floridan aquifer was
assumed to be at a depth of 1,249 ft. After setting 1,212 ft of
casing in the borehole of well 34H500, the chloride concentra-
tion of reverse-air discharge samples decreased from 530 mg/L
at 1,269 ft to 290 mg/L at 1,400 ft (table 5). Water flowing
from well 34H500 had a chloride concentration of 300 mg/L.
The chloride analysis indicates that the final open interval in
well 34H500 was still receiving some chloride-contaminated
water from the base of the Upper Floridan aquifer and did not
represent the actual chloride concentration of the freshwater

interval of the upper permeable zone of the Lower Floridan
aquifer.

After setting 1,396 ft of casing in well 34H495 at the
Brunswick site, the chloride concentrations of the reverse-air
rotary discharge samples collected from the upper perme-
able zone of the Lower Floridan aquifer ranged from 12 to
36 mg/L in the interval from 1,426 to 1,648 ft and from 100 to
340 mg/L in the interval from 1,679 to 1,962 ft. The chloride
concentrations declined to 180 mg/L at 2,057 ft before the
borehole penetrated the dense dolomite at the base of the local
confining unit. After penetrating the top of the Fernandina
permeable zone at 2,087 ft, the chloride concentrations in well
34H495 increased in the reverse-air discharge samples from
1,100 mg/L at 2,089 ft to 2,000 mg/L in the discharge samples
from 2,186 ft and then abruptly increased to 17,000 mg/L in
the samples collected at 2,217 ft. Another abrupt increase to
27,000 mg/L was observed in the sample at 2,689 ft. The chlo-
ride concentrations in water samples from the Upper Floridan
aquifer, the Lower Floridan aquifer from 1,869 to 1,962 ft, and
the Fernandina permeable zone at the Brunswick site exceeded
the secondary drinking-water standard of 250 mg/L.

Salinity

Salinity is based on TDS concentrations and, therefore,
reflects all chemical constituents, not merely the dissolved
chloride concentrations in water samples (Robinove and
others, 1958). TDS concentrations are less than 1,000 mg/L
in freshwater and range from 1,000 to 3,000 mg/L for slightly
saline, 3,000 to 10,000 mg/L for moderately saline, and
10,000 to 35,000 mg/L for very saline. Seawater typically is
very saline with TDS concentrations of approximately 35,000
mg/L (Hem, 1989). For this report, water from the Fernandina
permeable zone with a TDS concentration of 48,400 mg/L
is considered to be brine. TDS concentrations in samples
analyzed for this report also were compared to the Federal
secondary drinking-water standard of 500 mg/L
(U.S. Environmental Protection Agency, 2000).

Except for chloride analyses of the reverse-air rotary
discharge-water samples, water samples were not collected for
analysis from the Upper Floridan aquifer in well 35L.085 at
Shellman Bluff or the Lower Floridan aquifer in well 34S011
at Pineora; however, field parameters were measured for the
reverse-air discharge water in these two intervals (table 9).
Based on the other freshwater concentrations reported in
tables 68, the TDS concentration can be estimated as
approximately equal to the measured specific conductance of
the reverse-air rotary discharge samples with an uncertainty
of plus or minus 100 mg/L; therefore, the TDS is estimated to
be approximately 500 mg/L for the Upper Floridan aquifer at
Shellman Bluff and 388 mg/L for the Lower Floridan aquifer
at Pineora (table 9).

Freshwater is present in the Lower Floridan aquifer at
the Pineora, Pembroke, and St Marys sites, and in the interval
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Table9. Temperature, specific conductance, and estimated concentration of total dissolved solids in discharge-water
samples collected from the Lower Floridan aquifer in well 34S011 in Effingham County and the Upper Floridan aquifer in well

35L085 in McIntosh Counties, Georgia, 2001.

[°C, degrees Celsius; uS/cm, microsiemens per centimeter at 25 degrees Celsius; mg/L, milligrams per liter; CSSI, Coastal Sound Science Initia-
tive; UPZ of LFA, upper permeable zone of Lower Floridan aquifer; UFA, Upper Floridan aquifer]

LIS Field specific il
Georgia well depth or Development/ Temperature P dissolved
Sample o conductance .
name, . depth . sample (°C), for solids (mg/L),
. Aquifer . collection . (pS/cm), range .

site name interval, collection sample depth estimated

. . date(s) . for sample o
(fig. 1) in feet below method interval . from specific

depth interval

land surface conductance

Effingham County

348011, UPZ of 808 12/18/01 Reverse-air 24 388 388
Pineora LFA purge/
CSSI reverse-air

discharge

MecIntosh County

35L085, UFA 560-849 1/03/2001-  Reverse-air 25 367-604 500
Shellman Bluff 1/05/2001 purge/
CSSI reverse-air

discharge

from 1,259 to 1,648 ft in well 34H495 at the Brunswick

site based on specific conductance (apps. 1, 2). TDS
concentrations in water samples from the Lower Floridan
aquifer were less than 1,000 mg/L at all four sites and less
than the secondary drinking-water standard of 500 mg/L at the
Pembroke, Pineora, and Brunswick sites. Slightly saline water
was present in the Lower Floridan aquifer at Richmond Hill,
Shellman Bluff, and St Simons Island, and in the interval from
1,679 to 1,970 ft in well 34H495 at the Brunswick site. Water
samples collected from the Fernandina permeable zone in well
34H495 had TDS concentrations of 4,400 mg/L. (moderately
saline) in the interval from 2,087 to 2,200 ft, 33,700 mg/L
(very saline) in the interval from 2,200 to 2,685 ft, and

48,400 mg/L (brine) in the interval from 2,685 ft to the total
well depth of 2,720 ft (table 7).

With the exception of the Brunswick site, the water
samples collected from wells open to the Upper Floridan
aquifer at and near the five other CSSI sites and the St Simons
Island site had TDS concentrations less than 1,000 mg/L., and
can be considered freshwater (tables 6, 8, 9). Of these samples,
all had TDS concentrations less than the secondary
drinking-water standard of 500 mg/L, except for the two
samples collected from the Upper Floridan aquifer in well
33D054 at St Marys, which had TDS concentrations of 569
and 571 mg/L (table 6).

Well 34G002 and the Brunswick site are in two areas
of Brunswick that have chloride contamination in the Upper
Floridan aquifer (fig. 13). Water collected from the Upper
Floridan aquifer in well 34G002—the smaller of the two
chloride-contaminated areas—was freshwater with a TDS

concentration of 522 mg/L, which exceeds the secondary
drinking-water standard. The Brunswick site inside the larger
chloride-contaminated area in downtown Brunswick had
slightly saline water with a TDS concentration of

2,300 mg/L in the interval of the Upper Floridan aquifer of
well 34H500.

Major lons, Other Constituents, and Saturation
Indices

For the following discussion, 16 of 18 water samples
were grouped into four water types, which reflect the
dominant major anion(s) for each water type. The four water
types include bicarbonate, sulfate-bicarbonate, sulfate, and
chloride waters and are assigned roman numerals I, II, III, and
IV, respectively (fig. 14). The water samples collected from
the Upper Floridan aquifer at well 34G002 and the moderately
saline water zone at the top of the Fernandina permeable
zone in well 34H495 at the Brunswick site have major ion
compositions that are subtly different from water types II and
IV, respectively, but are included in the discussion of these two
water types.

A trilinear plot was used to classify the four water types
based on major cation and anion compositions (Piper, 1944).
The major ion compositions were plotted as a percentage of
the total milliequivalents per liter for the major cations and
anions for 18 water samples, including 7 samples from the
Upper Floridan aquifer, 7 samples from the Lower Floridan
aquifer, 3 samples from the Fernandina permeable zone, and
1 seawater sample (fig. 14).
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EXPLANATION

Ground-water samples from the Upper Floridan aquifer and a seawater sample (sample
numbers and depths from tables 6-8):

+6  StMarys, 33D054 +21 St Simons, 35H070 + 20 Pineora, 345011, 360 ft
+ 11 Brunswick, 34G002 +5  Richmond Hill, 35P110 @26 Seawater (Hem, 1989)
+ 12 Brunswick, 34H393 +1 Pembroke, 33R045, 395 ft

Ground-water samples from the Lower Floridan aquifer (sample numbers and depths from

tables 6-8):
Upper permeable zone:
+8  StMarys, 33D073 +22 St Simons, 35H068 +2  Pembroke, 33R045, 800 ft
+13 Brunswick, 34H495, 1,380 ft +24 Shellman Bluff, 35L085
+14 Brunswick, 34H495, 1,675 ft +3  Richmond Hill, 35P109
Fernandina permeable zone:
+15 Brunswick, 34H495, 2,084 ft +16 Brunswick, 34H495, 2,243 ft +17 Brunswick, 34H495, 2,720 ft
Water type:
I Bicarbonate Illa Calcium-Magnesium-Sulfate IV Chloride
11 Bicarbonate-Sulfate IIIb Calcium-Magnesium-Sodium-Sulfate

Figure 14. Major cation and anion compositions of water samples from the Upper Floridan aquifer, and the upper permeable
and Fernandina permeable zones of the Lower Floridan aquifer at the Coastal Sound Science Initiative wells, and at Upper
Floridan aquifer monitoring wells in Brunswick and St Marys, Georgia, and for a modern seawater sample (Hem, 1989).



Not all laboratory results, particularly several trace
constituents and nutrients, are discussed in this report;
however, all results are presented in tables 6-8. In addition to
major ions, the water samples were analyzed for strontium,
bromide, hydrogen sulfide, and total organic carbon, which
are important constituents used to characterize the four water
types relative to freshwater and saltwater. For hydrogen
sulfide, a concentration of less than 1 mg/L means the concen-
tration was below the laboratory analytical limit of 1 mg/L and
does not mean that hydrogen sulfide was absent.

Concentrations also were compared to Federal secondary
drinking-water standards of 500 mg/L for TDS, 250 mg/L
for chloride, and 250 mg/L for sulfate (U.S. Environmental
Protection Agency, 2000). All water samples had fluoride
concentrations less than 2.0 mg/L and pH values ranging from
6.5 to 8.5, which are also Federal secondary drinking-water
standards, (U.S. Environmental Protection Agency, 2000),
except for the sample with a fluoride concentration of
2.3 mg/L collected near the base of the Floridan aquifer
system in Shellman Bluff well 35L085 (tables 6-8).

Dissolved-oxygen concentration is not presented in
tables 68, but was measured in all samples and was found
to be less than 0.2 mg/L. This concentration was the lower
reporting limit of the meter used in the field to measure
dissolved oxygen, and is assumed to indicate anaerobic
conditions in the Floridan aquifer system at the well sites that
were sampled.

Saturation indices were calculated for each sample
using the geochemical modeling program, WATEQA4F (Ball
and Nordstrom, 1991). Saturation indices were calculated
and discussed for calcite, aragonite, dolomite, gypsum, and
anhydrite, which are mineral phases observed in drill cuttings
and associated with the carbonate rocks of the Floridan aquifer
system (table 10). A saturation index for a particular mineral
phase is approximately equal to zero when the water composi-
tion is at equilibrium with the mineral phase. A saturation
index less than zero indicates that the water is undersaturated
with the mineral phase and favors dissolution; a saturation
index greater than zero indicates oversaturation and favors
precipitation of the mineral phase.

Water Type |—Bicarbonate

Water type I is bicarbonate and includes samples
from the Upper Floridan aquifer at Pineora, Pembroke, and
Richmond Hill, and the Lower Floridan aquifer at Pembroke
(fig. 14). These samples are from CSSI wells at the three
northernmost sites in the study area in Bryan and Effingham
Counties, GA (fig. 1). Bicarbonate was the dominant
anion and represented greater than 85 percent of the anion
composition of the four water samples (fig. 14). Calcium and
magnesium were the dominant cations, relative to sodium
and potassium, and represented greater than 70 percent of the
cation composition of these samples. The major ion composi-
tion of the water in these four samples can be classified as
calcium-magnesium-bicarbonate.
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The ion concentrations in these waters did not exceed
Federal secondary drinking-water standards for TDS, chloride,
and sulfate (U.S. Environmental Protection agency, 2000).
These four water samples had TDS concentrations of less
than 300 mg/L, making these four samples fresh, and had the
four lowest ionic strengths of the 18 ground-water samples
analyzed. These samples had concentrations less than or
equal to 6 mg/L for chloride, 7.3 mg/L for sulfate, 0.4 mg/L
for strontium, 0.05 mg/L for bromide, and less than 1.0 mg/L
for hydrogen sulfide (tables 6, 8). The concentration of total
organic carbon ranged from 0.9 to 1.4 mg/L. Specific con-
ductance in all four bicarbonate samples ranged from 199 to
269 uS/cm. The water from the Lower Floridan aquifer at the
Pineora site had a specific conductance of 388 uS/cm (table 9).

The four samples were saturated with respect to calcite
and dolomite, and undersaturated with respect to gypsum
and anhydrite (table 10). The saturation indices for aragonite
were greater than zero in the samples from the Upper Floridan
aquifer at Pembroke and Pineora and from the Lower Floridan
aquifer at Pembroke, and slightly less than zero in the sample
from the Upper Floridan aquifer at Richmond Hill, indicating
saturation or close to saturation with respect to aragonite.

Water Type [l—Sulfate-Bicarbonate

Found only in the southern sites, water type II is sulfate-
bicarbonate and includes samples from the Upper Floridan
aquifer at the St Marys and St Simons Island sites, and from
the upper permeable zone of the Lower Floridan aquifer at
1,380 ft in well 34H495 at the Brunswick site. Well 34G002 is
within a small plume of chloride contamination in the Upper
Floridan aquifer in downtown Brunswick and is included in
the discussion of this water type because water from this well
has most of the characteristics of the other water samples
of type II, except for its sodium and chloride concentrations
(figs. 13, 14). Except for the chloride-contaminated sample
from well 34G002 in downtown Brunswick, sulfate and
bicarbonate represented about 38 to 48 percent and 44 to
48 percent, respectively, of the major anion composition of
the three type II samples. Chloride was less than 20 percent
in these samples. Calcium and magnesium were the dominant
cations, relative to sodium and potassium, and represented
greater than 80 percent of the cation composition. The major
ion composition of the three samples can be classified as
calcium-magnesium-sulfate-bicarbonate water. The ratio of
calcium to sodium was approximately 2 to 1 or greater.

The ion concentrations of the three sulfate-bicarbonate
water samples did not exceed secondary drinking-water
standards for TDS, chloride, and sulfate, except for the sample
from the Upper Floridan aquifer in well 33D054 at St Marys
with a TDS concentration of 571 mg/L. All three samples
were fresh, ranging in TDS concentrations from 355 to
571 mg/L, chloride concentrations from 24 to 32 mg/L, sulfate
concentrations from 88 to 160 mg/L, strontium concentrations
from 0.5 to 0.7, and bromide concentrations from 0.08 to 0.1
(tables 6-8). The water sample from the Upper Floridan



Hydrogeology, Water Quality, and Water-Supply Potential of the Lower Floridan Aquifer, Coastal Georgia, 19992002

44

€500~ 2600 LyL'0
08¢0~ LTT°0- 19¢°1
6650~ 6Ct'0- ILET
¢S°0- 8¥¢0- 1101
SI80- 6290~ 8IT0
986°0- 86L°0- 81T0
|G 9161~ 6Ct0
06€°1- 6811~ cIso
LS6°0- LSLO- L6S°0
olve- c6l°¢- ILS0
001°C- 088°1- YL 0"
8Ly ¢~ L8EI- €670
17495 1760~ 9T
6L81- cs9'l- 6600~
6€e°e- LTI ¢~ 0cr'o
T0L°T- 181~ °9T0
€9¢°¢- eeles 9100
SLTE 1S0¢- IS1°0

ajpAyuy wnsdAg ajwojoq

YLT'0
Y910
9¢6°'0

12€0
800~
SETo-
120°0-
6200
190°0
€rro

L9S°0-
S¥0°0-
LST°O-
1€C0-
160°0

9%0°0-
001°0-
980°0

ajuohiery

01¢0 Al
0090 Al
€L0'1 AL
auoz ajqeaw.ad euipueulad
80 11
LSOO 11
700°0 I
1210 I
0LT°0 111
10C°0 11
8SC°0 I
Jajinbe ueplol4 Jamo
€er0- II
9600 0]
S10°0- Al
980°0- 111
€€C0 I
8600 11
Sv0°0 I
0€20 I

Jayinbe uepuio|4 Jaddpn

ajoe)

adhy
SEITTTY

0TLT
€vTT
160°CT+80°C

T I-PPI°l
165 T-16€°1
CLY'T
08¢°1
00S° 1-59¢°1
CLTT-010°T
008

€VL—8¢€9
SSI°1
€CL=C19
0SL=68¢
09¢
100°T-€9¢
0r—0ce
S6¢

aoepns
puej mojaq
yaaj u1 ‘ydap
ajdweg

UuA[D ‘ISSO Yormsunig ‘S6vHYE (L1)
uuk[D ‘TSSO Sormsunig ‘S6rHyE (91)
uuk[0 ‘ISSD Yormsunig ‘SorHYE (ST)

YSOWON TSSO JnIg uew([ays ‘¢8071SE (+2)

3 <

uuA[D ‘suowis 1§

890HS¢ (TT)

UUAID TSSO doIrmsunid ‘S6vHEE (v1)

uuA[D TSSO yormsunig ‘S6rHYE (€1)
uopue) ISSO SAIBIN IS ‘€L0dEE (8)
uek1g ‘ISSD IITH puowydry ‘601ds¢ (€)
ueArg ‘ISSD MOIqQUI] ‘SHOIEE (2)

uuA[o ‘suowrs 1S ‘0LOHSE (17)
uuk[O ‘[SSD yormsunig ‘00SHYE (81)
UUATD SImsunig L1-[[PM 1AL SOSN ‘C6EHYE (TT)
uuA[o 3prrg Iorue T yormsunig ‘c000OrE (11)
weySuiyd ‘ISSD eroduld ‘1 10SHE (07)

uopwe) ‘c# SAIIN 1S ‘S0dEe (9)

ueArg ‘1SS [[1H puowyory ‘01 1ds¢ (S)

uekrg ‘ISSO aoIquidd ‘SHOAEE (1)

aweu Ayunod ‘awieu a)is ‘aweu [|am e16103g
‘(1 “B1y :8-9 sa|qey) 1aquinu ajdweg

[ouoz pejeurwrejuod

D) SOPLIO[YD ‘AT QIBJNS ‘T[] ‘@)BUOQIBIIQ-)BJ[NS ‘I] ‘Jeuoqiedlq ‘T :sadA) 19)eAy "SUOIIIPUOD PAJRINIBSIIPUN JBIIPUI SAN[BA ANLIIU ‘TUIPRYS ‘DAIJBNIUT OUIIOS PUNOS [BISL0D) 1SS

"s|eJaulw ay1i0dens pue

912100 P39S 0}108dSaJ Y1IM B3R APNIS BAIIRILIU| 80UBIDS PUNOS [BISBOY) BY3 Ul S||aM WoJ) sajdwes Ja1em o $a91pul UolleInies palenojey gL ajqel



aquifer in St Marys well 33D054 had a hydrogen sulfide
concentration of 4.3 mg/L and a total organic carbon
concentration of 3.4 mg/L, the highest concentrations for both
constituents in the samples from the Upper Floridan aquifer
collected during this study.

The chloride-contaminated sample collected from Upper
Floridan aquifer well 34G002 in downtown Brunswick plotted
to the right of the water type II on the trilinear diagram and
is distinguished from the composition of sulfate-bicarbonate
water samples by having nearly equal percentages of sulfate,
bicarbonate, and chloride in the anion composition and
calcium, magnesium, and sodium in the cation composition
(fig. 14). The calcium to sodium ratio is less than 2 to 1.
Similar to the sulfate-bicarbonate water of the St Marys
sample, the ion composition of the sample from the Upper
Floridan aquifer in well 34G002 in downtown Brunswick
did not exceed standards for chloride and sulfate, but did
exceed the standard for TDS concentration. The sample had
minor chloride contamination (80 mg/L) compared to sulfate-
bicarbonate water samples from the Upper Floridan aquifer
in CSSI wells 34H495 and 34H500 at the Brunswick site and
well 34H393 just south of the Brunswick site. The chloride
concentration in the sample from well 34G002, however, was
more than twice the concentration in the sulfate-bicarbonate
water samples (fig. 14). The water sample from well 34G002
was freshwater, with a TDS concentration of 522 mg/L and
concentrations of sulfate, strontium, and bromide that are
within the range of concentrations in the type Il water samples
(table 7). The ratio of calcium to sodium is approximately 1
to 1. The sample had concentrations of 1.4 mg/L for hydrogen
sulfide and 1.1 mg/L for total organic carbon.

The specific conductance of the three sulfate-bicarbonate
water samples ranged from 470 to 732 uS/cm. The reverse-
air rotary discharge-water samples collected in the Upper
Floridan aquifer at Shellman Bluff had a specific conductance
of approximately 500 uS/cm and probably was bicarbonate
or sulfate-bicarbonate water similar to water types I or II,
respectively.

All four water samples were undersaturated relative to
gypsum and anhydrite (table 10). The samples from the Upper
Floridan aquifer at St Marys and the upper permeable zone of
the Lower Floridan aquifer in well 34H495 at the Brunswick
site were saturated relative to calcite and dolomite, and had
negative saturation indices almost equal to zero (saturation)
for aragonite. The sulfate-bicarbonate samples from the Upper
Floridan aquifer at St Simons Island and the chloride contami-
nated sample from the Upper Floridan aquifer in downtown
Brunswick were undersaturated relative to all three carbonate
minerals.

Water Type |ll—Sulfate

Water type 111 is sulfate and includes the five water
samples from the upper permeable zone of the Lower Floridan
aquifer at the St Marys, St Simons Island, Brunswick, Shell-
man Bluff, and Richmond Hill sites (fig. 14). The Brunswick

Water Quality 45

sample collected at 1,675 ft below land surface in CSSI well
34H495 represents the high-chloride interval of the Lower
Floridan aquifer from 1,657 to 2,030 ft below land surface,
in contrast to the low-chloride interval of the Lower Floridan
aquifer represented by the sulfate-bicarbonate water in the
sample collected at 1,380 ft.

Sulfate is the dominant anion for water samples of
this type and represents 62 to 86 percent of the major anion
composition of these five samples. The major cation composi-
tions separate the five samples into two subtypes (fig. 14). The
compositions of the samples from St Marys and St Simons
Island were calcium-magnesium-sulfate waters and had
calcium to sodium ratios of 4 to 1 and 6 to 1, respectively. The
compositions of the samples from Shellman Bluff, Richmond
Hill, and Brunswick were calcium-magnesium-sodium-sulfate
waters and had calcium to sodium ratios equal to or less than
1tol.

The ion concentrations for TDS and sulfate for all five
samples exceeded the Federal secondary drinking-water
standards for these constituents. The sample from Shellman
Bluff had a chloride concentration of 260 mg/L. and was the
only type III sample of the five to exceed the Federal second-
ary drinking-water standard for chloride. All of the samples
had TDS concentrations between 1,000 and 3,000 mg/L and
were slightly saline, except for the St Marys sample, which
had a TDS concentration of 722 mg/L and was fresh.

The calcium-magnesium-sulfate waters from the upper
permeable zone of the Lower Floridan aquifer at St Marys
and St Simons Island had sulfate, strontium, and bromide
concentrations that generally were greater than the bicarbonate
and sulfate-bicarbonate waters. The chloride concentrations
were in the same range as the sulfate-bicarbonate waters. The
water sample from the Lower Floridan aquifer at St Marys had
the highest concentration of hydrogen sulfide (3.4 mg/L) and
total organic carbon (3.3 mg/L) for the Lower Floridan aquifer
wells sampled, just as the sample from the Upper Floridan
aquifer at the St Marys site had the highest concentrations of
those two constituents observed in the Upper Floridan aquifer.
The St Simons Island water sample had a concentration of
less than 1.0 mg/L for hydrogen sulfide and 0.7 mg/L for total
organic carbon.

The calcium-magnesium-sodium-sulfate waters from
the upper permeable zone of the Lower Floridan aquifer at
Richmond Hill, Shellman Bluff, and Brunswick had chloride,
sulfate, strontium, and bromide greater than the bicarbonate,
sulfate-bicarbonate, and calcium-magnesium-sulfate waters,
except for the bromide concentrations. Concentrations were
less than 1.0 mg/L for hydrogen sulfide and approximately
1.0 mg/L for total organic carbon in these samples, except in
Brunswick well 34H495 at 1,675 ft where these constituents
were not measured.

All five samples were saturated to slightly oversaturated
relative to the carbonate minerals. This includes the saturation
index —0.08 for aragonite in the St Simons Island samples,
which is nearly zero (table 10). These water samples had
saturation indices for gypsum and anhydrite ranging from
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-0.3 to -1.4, and were undersaturated but not as undersaturated
as the type I and type II samples, with saturation indices
ranging from -1.5 to -3.4.

Water Type IV—Chloride

Water type IV is chloride and includes three ground-
water samples and a seawater sample (fig. 14). The three
ground-water samples were collected from a chloride-contami-
nated interval of the Upper Floridan aquifer in well 34H393
and from depths of 2,243 and 2,720 ft below land surface
in the Fernandina permeable zone of CSSI well 34H495 in
downtown Brunswick (table 7). These three samples were
sodium-chloride waters with chloride and sodium making up
more than 75 and 70 percent of the major anion and cation
compositions, respectively (fig. 14). The calcium to sodium
ratios for these samples decreased to less than 1 to 5, relative
to the type III samples.

The anion composition of the ground-water sample
collected at 2,084 ft from the upper part of the Fernandina
permeable zone in well 34H495 was a sulfate-chloride water.
The composition of this sample was transitional between
water types III and IV, but is included in this section. Because
sodium constitutes 52 percent of the cation composition, the
ionic composition of this sample was classified as sodium-
sulfate-chloride water.

During the drilling of the Fernandina permeable zone in
CSSI well 34H495, the salinity of the water was moderately
saline in the interval from 2,087 to 2,186 ft, very saline from
2,186 to 2,685 ft, and brine from 2,685 ft to the bottom of
the borehole at 2,720 ft (table 5). Similar changes in salinity
also were documented in the Fernandina permeable zone
at well 33H188 on Colonels Island, GA (Jones and others,
2002). Ground-water samples were collected from each of
the three high salinity intervals in well 34H495 and from the
water flowing from well 33H188. The ion concentrations of
TDS, sulfate, and chloride in these four ground-water samples
exceeded the Federal secondary drinking-water standards for
these constituents. The sodium-sulfate-chloride water type
from the moderately saline interval had TDS concentrations
of 4,400 mg/L; the two sodium-chloride waters collected from
the very saline and brine intervals had increasing concentra-
tions of TDS of 33,700 and 48,400 mg/L. The increase in TDS
concentration with depth in the Fernandina permeable zone
of well 34H495 paralleled similar increases in concentrations
with depth for chloride, sulfate, strontium, and bromide
(table 7). Based on these three samples, concentrations of TDS
and chloride in the very saline water of the Fernandina perme-
able zone were most similar to modern seawater; however,
the very saline ground-water sample had a higher sulfate
concentration and a calcium-to-sodium ratio of 1 to 9 com-
pared with 1 to 22 for the seawater sample. The higher sulfate
and calcium-to-sodium ratio indicate that the composition of
the ground-water sample was affected by the dissolution of
minerals—anhydrite, gypsum, and carbonate minerals—in the
aquifer. Concentrations were greater than 1.0 mg/L for total

organic carbon in these three ground-water samples, but only
exceeded 1.0 mg/L for hydrogen sulfide in the brine sample.
The sodium-chloride water collected from well 33H188 at
Colonels Island was a mixture of waters from the Fernandina
permeable zone and, therefore, had concentrations of TDS,
chloride, sulfate, strontium, and bromide that were between
the moderately saline concentrations and very saline interval
in well 34H495 (table 7).

The saline water from the Fernandina permeable zone
beneath Brunswick has been described as the most probable
source of saltwater contamination observed in the Upper
Floridan aquifer in downtown Brunswick (Krause and
Randolph, 1989). The sodium-chloride type sample collected
from the Upper Floridan aquifer in well 34H393 is assumed
to be a mixture of original freshwater from the Upper Floridan
aquifer and water from the Fernandina permeable zone. This
sample was moderately saline with concentrations of TDS,
chloride, and sulfate that exceeded Federal secondary
drinking-water standards for these constituents. Concentra-
tions of total organic carbon and hydrogen sulfide were 1.1
and 1.6 mg/L, respectively (table 7).

The three samples collected from the Fernandina perme-
able zone in well 34H495 were saturated to oversaturated
relative to calcite, aragonite, and dolomite and had saturation
indices that ranged from 0.2 to 2.4. The water collected from
the Upper Floridan aquifer in well 34H393 and the Fernandina
permeable zone in well 33H188 probably resulted from mix-
ing at least two waters in the borehole and, therefore, was not
representative of a particular zone or aquifer. Compared with
the 18 ground-water samples discussed in this report, the very
saline and brine waters from the Fernandina permeable zone
in well 34H495 and the water collected from the Colonels
Island well had the lowest saturation indices for gypsum and
anhydrite and were undersaturated to saturated with these two
minerals (table 10). Drill cuttings of gypsum and anhydrite
were most commonly observed in the stratigraphic interval of
the very saline and brine water of the Fernandina permeable
zone in wells 34H495 and 33H188, where the water was
saturated or approached saturation with gypsum and anhydrite
and did not result in dissolution of these two minerals (Jones
and others, 2002).

Isotopes

Water samples were collected and analyzed for the stable
isotopes of oxygen, hydrogen, and carbon, radiogenic isotopes
of carbon-14 and tritium, and the ratio of strontium-87 to
strontium-86 (tables 6—8). Isotopic results also are included for
a modern seawater sample collected off the northeast coast of
Florida for comparison with results from the Floridan aquifer
system in Georgia (Phelps, 2001).

The stable oxygen, hydrogen, and carbon isotopic results
are reported from the laboratory in delta notation, which is
defined as the per mil (parts per thousand) difference between
the isotopic ratio of the sample relative to the isotopic ratio



of a standard (Faure, 1977). The isotopic ratios used are
oxygen-18/oxygen-16 of water, deuterium/hydrogen of water,
and carbon-13/carbon-12 of the dissolved inorganic carbon
(DIC) in the water. Therefore, sample results are more positive
or more negative when the sample is more enriched or more
depleted, respectively, in the heavier isotope in each ratio.
The standards are Peedee Belemnite (PDB) for stable carbon
isotopes of the DIC in the water and Vienna-Standard Mean
Ocean Water (V-SMOW) for the stable hydrogen and oxygen
isotopes of water (Gonfiantini, 1984; Coplen, 1994). The
2-sigma (two standard deviations) analytical precision of the
laboratory is 0.2 per mil for oxygen, 1.5 per mil for deuterium,
and 0.2 per mil for carbon isotopes.

Carbon- 14 results are reported in percent modern
carbon. Analytical precision for carbon-14 results is less than
0.1 percent modern carbon (pmc). Tritium results are reported
in trittum units (TU). The lower analytical limit for tritium
results is 0.3 TU. Results for strontium isotopes are presented
as the ratio of strontium-87 to strontium-86 and have a
precision of plus or minus 0.00003.

Stable Hydrogen and Oxygen Isotopes

Stable hydrogen and oxygen isotopes commonly are used
as conservative environmental tracers to determine source,
movement, and proportional mixing of water masses. In this
report, these isotopes are used for assessment of water source
and movement in the aquifers of the Floridan aquifer system
and for estimating proportional mixing of freshwater in the
Upper Floridan aquifer with higher-chloride waters of the
Fernandina permeable zone.

The stable oxygen isotopic compositions for 16 ground-
water samples and a modern seawater sample were plotted
relative to the stable hydrogen isotopic compositions (fig. 15).
The Global Meteoric Line is an average of the stable oxygen
and hydrogen isotopes for freshwater samples collected
worldwide (Craig, 1961). A linear regression line is plotted
through the Brunswick water samples for the discussion of
mixing (Helsel and Hirsch, 1992).

The freshwater, slightly saline, and moderately saline
samples collected from the Upper Floridan aquifer, the upper
permeable zone of the Lower Floridan aquifer, and the upper-
most interval of the Fernandina permeable zone plotted close
to the Global Meteoric Line and ranged in composition from
-2.7 to -4.0 per mil for stable oxygen isotopes and from -10.6
to -19.7 for stable hydrogen isotopes (fig. 15). For this dataset,
the compositions of the Upper and Lower Floridan aquifer
samples ranged from more negative or isotopically depleted
at the northern well sites to more positive or isotopically
enriched at the southern well sites. The geographic distribution
of these compositions indicates that water in the Floridan
aquifer system at different locations in coastal Georgia either
entered the recharge areas to the west of the study area under
different climatic conditions or followed flowpaths of different
lengths from the recharge area to specific sites. Samples col-
lected from the upper permeable zone of the Lower Floridan
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aquifer at the St Marys, St Simons Island, Richmond Hill, and
Pembroke sites had compositions similar to samples collected
in the Upper Floridan aquifer at these four sites, respectively.
The similarities in composition indicate that waters at a
specific site in coastal Georgia entered the recharge area under
similar climatic conditions and followed fairly similar flow-
paths from the recharge area to the Upper and Lower Floridan
aquifers at the sites discussed in this report.

The water samples collected from wells in Glynn County
had a larger range in stable oxygen and hydrogen isotopic
compositions compared with water samples from the counties
to the north and St Marys to the south (fig. 15). Samples from
the Upper and Lower Floridan aquifers at the St Simons Island
site and at 1,380 ft in the upper permeable zone of the Lower
Floridan aquifer at the Brunswick site had lower chloride con-
centrations and depleted stable oxygen and hydrogen isotopic
compositions, relative to the higher-chloride and isotopically
enriched water samples in the downtown Brunswick wells
34G002 and 34H393 and at 2,084 ft in well 34H495 (fig. 15).

The sample from 2,084 ft in well 34H495 is moderately
saline water at the top of the Fernandina permeable zone and
represents a transitional mixing zone between the slightly
saline sulfate water from the upper permeable zone of the
Lower Floridan aquifer collected at 1,675 ft and the very
saline water of the Fernandina permeable zone collected
at 2,243 ft. Proportional mixing, based on the chloride
concentrations of samples collected at 1,675 and 2,243 ft in
well 34H495, would require a water mixture of approximately
93 percent from the sulfate water of the upper permeable
zone of the Lower Floridan aquifer and 7 percent from the
saltwater of the Fernandina permeable zone. Assuming similar
mixing proportions for the stable isotopes in these samples,
the stable oxygen and hydrogen isotopic compositions of
the sulfate water of the upper permeable zone of the Lower
Floridan aquifer can be estimated to be approximately -3.53
and -15.3 per mil, respectively, and are represented by a red
diamond in figure 15.

Wells 34G002 and 34H393 have intervals open to the
high-chloride plumes in downtown Brunswick, where saline
water from beneath the Upper Floridan aquifer has intruded
the freshwater of the Upper Floridan aquifer. If the freshwaters
of the Upper and Lower Floridan aquifers in Brunswick can be
assumed to have similar stable oxygen and hydrogen isotopic
compositions, as was documented at the St Marys, St Simons
Island, Richmond Hill, and Pembroke sites, then prior to intru-
sion, the uncontaminated freshwater in the Upper Floridan
aquifer in downtown Brunswick probably had stable oxygen
and hydrogen isotopic compositions of -3.4 and -16.7 per mil,
respectively, and a chloride concentration of 26 mg/L, similar
to the Lower Floridan aquifer. The chloride-contaminated
water in well 34H393 had stable oxygen and hydrogen
isotopic compositions of -2.9 and -12.9 per mil, respectively;
therefore, the stable isotopic compositions of the chloride-
contaminated water in the Upper Floridan aquifer could not
have resulted from the intrusion of waters from only the upper
permeable zone of the Lower Floridan aquifer, which ranged
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from -3.4 to -3.5 per mil and -15.3 to -16.7 per mil for stable
oxygen and hydrogen isotopes, respectively (table 7).

The intrusion of some water from the saltwater interval
of the Fernandina permeable zone, however, could account
for the chemical and isotopic composition of the water in
well 34H393 in downtown Brunswick. Proportional mixing
would require at least 12 to 20 percent of the water to be
from saltwater of the Fernandina permeable zone. It also
is assumed, however, that saltwater from the Fernandina
permeable zone would mix with waters from the overlying
moderately saline-water interval and from the upper permeable
zone of the Lower Floridan aquifer as it moves up to the Upper
Floridan aquifer. The range of 12 to 20 percent for the volume
of saltwater, therefore, is the minimum needed to produce the
chloride concentrations and stable isotopic compositions in the
water at well 34H393.

The stable oxygen and hydrogen values for the very
saline and brine samples collected from 2,243 and 2,720 ft in
Brunswick well 34H495 are enriched relative to the freshwater
and moderately saline water samples by at least 2.0 and 8.0 per
mil, respectively (fig. 15). The saltwater and brine samples,
however, have a distinctly different isotopic composition
relative to the modern seawater sample and are assumed to be
the result of relict seawater interacting with the minerals of the
Paleocene strata. Like the modern seawater sample, saltwater
and brine from the Fernandina permeable zone plot below the
Global Meteoric Line.

Carbon Isotopes

Water samples were collected and analyzed for carbon-14
and stable carbon isotopes of the DIC in 18 ground-water
samples from the Floridan aquifer system, including one
duplicate sample (tables 6—8). Stable carbon isotopes are
commonly used as environmental tracers of carbon sources
contributing to the DIC in the water and the physiochemical
processes that affect water chemistry. In previous studies,
carbon-14 and the stable carbon isotopic compositions of
the DIC in water samples have been presented and used to
interpret the relative and absolute ages of water samples
from the Upper Floridan aquifer beneath coastal Georgia and
South Carolina (Plummer, 1993; Landmeyer and Stone, 1995;
Landmeyer and Belval, 1996; U.S. Army Corps of Engineers,
1998).

In the hydrologic cycle, the natural source of carbon-14
is the atmosphere. The DIC in recharge water is assumed to
be in equilibrium with the atmospheric reservoir of carbon-14
of approximately 100 percent modern carbon (pmc) or
greater, and to have a stable carbon isotopic composition in
equilibrium with carbon dioxide from soil zone respiration of
plants and oxidation of organic matter of approximately -21
to -25 per mil. Marine-derived calcitic and aragonitic rock
components in the Floridan aquifer system have stable carbon
isotopic compositions of approximately 1 per mil and contain
no carbon-14.
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As water flows from the recharge area into the confined
ground-water system and becomes isolated from the atmos-
pheric source of carbon-14, the concentration of carbon-14,
which has a half-life of 5,730 years, decreases in the confined
ground-water flow system by radioactive decay as a function
of time. Therefore, carbon-14 concentration is partially an
indication of the residence time of ground water in an aquifer.
The carbon-14 concentration of ground water, however, can
also be diluted with “radioactively dead” carbon derived from
the dissolution of carbonate minerals and reduction of organic
carbon in the aquifer, which complicates the calculation of
ground-water age. If the dominant geochemical process is
carbonate dissolution driven by carbon dioxide (CO,), and the
carbonate minerals have a stable carbon isotopic composition
of 1.0 per mil, then the stable isotopic composition of the DIC
(-21 to -25 per mil) becomes isotopically enriched or more
positive relative to the DIC in the water in the recharge area.
Other geochemical processes, however, including sulfate
reduction in the aquifer, can produce isotopically depleted CO,
and, therefore, DIC with a relatively depleted stable carbon
isotopic composition.

The concentration of carbon-14 in ground-water samples
was used in this investigation to estimate the relative age
of ground-water samples. Therefore, the presence of high
concentrations (50 to 100 pmc) of carbon-14 indicates that
relatively modern freshwater or saltwater has recharged the
aquifer. Conversely, low concentrations of carbon-14 (less
than 5 pmc) indicate long residence times and geochemical
conditions that favor dilution of the percent modern carbon of
the water in the aquifer.

Stable Carbon Isotopes and Water Types With Respect to
Geochemical Processes

The stable carbon isotopic compositions of most of the
water samples were related to water type and concentrations
of sulfate and hydrogen sulfide in the water (fig. 16). Water
type and concentrations of these constituents indicated the
geochemical processes that were active or dominant in specific
hydrogeologic units and in specific parts of coastal Georgia.
This relation between stable carbon isotopic composition
and water type also was observed in results for the Floridan
aquifer system in Duval County, FL (Phelps, 2001). All of the
samples collected from the Floridan aquifer system during
this investigation had stable carbon isotopic compositions that
ranged from -0.2 to -9.4 per mil.

Water type I from the Upper Floridan aquifer at Pineora
well 34S011, Pembroke well 33R045, and Richmond Hill well
35P110, and from the Lower Floridan aquifer at Pembroke
well 33R045 had concentrations of sulfate equal to or less
than 7.3 mg/L, concentrations of hydrogen sulfide of less than
1.0 mg/L, and stable carbon isotopic compositions ranging
from -3.7 to -6.6 per mil (fig. 16; tables 6, 8). Calcium-
carbonate dissolution was the dominant geochemical process
resulting in the calcium-magnesium-bicarbonate composition
and the range of stable isotopic compositions in these samples.
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collected from the Floridan aquifer system in the Coastal Sound Science Initiative study area, Georgia.

Sulfate concentrations are low enough to limit the effects of
sulfate reduction at these sites.

Four water samples had stable carbon isotopic composi-
tions more depleted (more negative) than the samples of
water type I (fig. 16). These four samples had concentrations
of sulfate ranging from 130 to 610 mg/L, hydrogen sulfide
ranging from 1.4 to 4.3 mg/L, total organic carbon ranging
from 1.1 to 3.4 mg/L and stable carbon isotopic compositions
ranging from -6.7 to -9.4 per mil (tables 6, 7). The four
samples were water type II from the Upper Floridan aquifer in
St Marys well 33D054, water type III from the upper perme-
able zone of the Lower Floridan aquifer in St Marys well
33D073, and the two chloride-contaminated samples from
the Upper Floridan aquifer in downtown Brunswick, which
include transitional water type II-1II in well 34G002 and type
IV in well 34H393. Relative to water type I, sulfate reduction
produced the higher concentrations of hydrogen sulfide and
more isotopically depleted stable carbon isotopic compositions
of the DIC in water type II and these other samples.

Six water samples had stable carbon isotopic composi-
tions more enriched (more positive) than the samples of water
type L. These water samples include four samples from the
upper permeable zone and two samples from the Fernandina
permeable zone of the Lower Floridan aquifer.

The four samples from the upper permeable zone of the
Lower Floridan aquifer were a sample of water type II from
well 34H495 at the Brunswick site and three samples of water
type III from Richmond Hill well 35P109, Shellman Bluff well
35L.085, and St Simons Island well 35H068. The four samples
had concentrations of hydrogen sulfide less than 1.0 mg/L,
total organic carbon ranging from 0.5 to 1.1 mg/L, and stable
carbon isotopic compositions ranging from -0.2 to -2.2 per mil
(tables 6-8). The sample of water type II has a concentration
of sulfate of 89 mg/L, considerably lower than the samples of
water type III that had sulfate concentrations ranging from 830
to 1,600 mg/L. The higher percentage of sodium, relative to
calcium and magnesium, in samples of water type III from the
Lower Floridan aquifer at Richmond Hill and Shellman Bluff
may be the result of minor quantities of saltwater retained




in the fine-grained carbonate and marl beneath the Lower
Floridan aquifer and calcium-sodium exchange between the
ground water and the matrix of the aquifer and underlying
confining unit. Cation exchange of calcium for sodium would
allow additional carbonate to be dissolved, which would result
in an enriched, stable carbon isotopic composition of the DIC,
relative to water type I (Pearson and Swarzenki, 1974).

The two water samples from the Fernandina permeable
zone were water type IV from a depth of 2,243 and 2,720 ft
in well 34H495 at the Brunswick site, with concentrations of
sulfate of 3,400 and 4,200 mg/L, and total organic carbon of
1.1 and 1.3 mg/L, respectively (fig. 16; table 7). The saltwater
sample from 2,243 ft had a hydrogen sulfide concentration
less than 1.0 mg/L, similar to the other samples with enriched
stable carbon isotopic compositions; however, the brine
sample from 2,720 ft had a hydrogen sulfide concentration
of 6.0 mg/L, which was the highest concentrations for this
constituent in this study (table 7). The saltwater and the
brine in the Fernandina permeable zone are interpreted as
relict marine waters buried in these strata after deposition
with stable carbon isotopic compositions of approximately
-2.0 per mil, which is close to the -1.8 per mil of the modern
seawater sample. Mineralization, including the dissolution of
sulfate minerals and sulfate reduction, has altered the chemical
composition of the brine, relative to the saltwater, but has
not resulted in a large difference between the stable isotopic
compositions of these two samples.

Carbon-14

Carbon-14 concentrations in samples collected from
the Lower Floridan aquifer were similar to those collected
from the overlying Upper Floridan aquifer and the underlying
Fernandina permeable zone. The water samples collected
from the Floridan aquifer system during this investigation had
carbon-14 concentrations ranging from 0.66 to 5.07 pmc in
samples from the Upper Floridan aquifer, 0.91 to 2.79 pmc in
samples from the upper permeable zone of the Lower Floridan
aquifer, and 1 to 3.15 pmc in samples from the Fernandina
permeable zone of the Lower Floridan aquifer (tables 6-8).

The ages of water samples in the Upper and Lower Flori-
dan aquifers at a specific site, however, cannot be assumed to
be the same just because the carbon-14 concentrations are the
same. As discussed in the section on stable carbon isotopes,
the stable carbon isotopic compositions and the water types
were not similar in the Upper and Lower Floridan aquifers at
the St Marys, Brunswick, and Richmond Hill sites. As a result,
dilution of carbon-14 concentrations by geochemical processes
in the Lower Floridan aquifer could differ from those in the
Upper Floridan aquifer. The site-specific similarities in the
stable oxygen and hydrogen isotopic compositions of waters
in the Upper and Lower Floridan aquifer at the St Marys,
Brunswick, Richmond Hill, and Pembroke sites indicated that
the waters in both aquifers at a specific well site in the study
area probably entered the recharge area under similar climatic
conditions and, therefore, could have similar ages.
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In this usage, the term “similar ages” has an accuracy
of plus or minus 2,000 to 5,000 years. Preparation of water
samples processed for carbon-14 analysis by the accelerator-
mass-spectrometer (AMS) method has resulted in an error
of plus or minus 4,000 years for age calculations in previous
investigations (Phelps, 2001). Therefore, the fresh or slightly
saline waters in the Lower Floridan aquifer at a specific site in
coastal Georgia may have had a different geochemical history
compared to the freshwater in the Upper Floridan aquifer;
however, the ages of the waters in both aquifers at a specific
site were probably similar within an accuracy of plus or minus
a few thousand years.

In addition to the effects of carbon-14 dilution by
aquifer-specific and site-specific geochemical processes, the
potential for contamination of water samples with modern
atmospheric carbon-14 must be considered. It seems unreal-
istic to assume modern recharge of freshwater or saltwater to
the brine in the Fernandina permeable zone at the Brunswick
site, given that the brine is buried more than 2,680 ft below
downtown Brunswick and is overlain by saltwater in the
Fernandina permeable zone with a carbon-14 concentration
of 1 pmc. Therefore, the carbon-14 concentration of 3.2 pmc
for the brine sample seems unrealistic. The brine and saltwater
were collected with a wireline sampler, but the transfer of
water from the sampler to the sample bottle likely resulted in
contamination of the brine sample with a minor amount of
modern atmospheric carbon-14 and likely resulted in minor
contamination of other samples collected with the wireline
sampler. Of the water samples collected in Camden, McIntosh,
Bryan, and Effingham Counties, carbon-14 concentrations
ranged from 1.5 to 5.1 pmc in the five samples collected by
wireline sampler and from 0.7 to 1.7 pmc in the five samples
collected from the discharge of submersible or turbine pumps.
In Brunswick, the carbon-14 concentrations for both sampling
techniques ranged from 1 to 4 pmc.

Based on low carbon-14 concentrations of these water
samples, water collected from the Floridan aquifer system
during this investigation is thousands of years old and
probably greater than 10,000 years old. Most of the sampled
wells are at the downgradient end of ground-water flowpaths
in coastal Georgia, and the depth and confinement of the
Floridan aquifer system at these sites is consistent with low
measured carbon-14 concentrations in the samples. Given the
sample-preparation error for the AMS method, the potential
for contamination with the wireline-sampling technique, and
the complex geochemical history of the water in the Floridan
aquifer system, absolute ages were not calculated from these
carbon-14 results.

Tritium

Results for tritium are limited to 5 of the 24 water
samples. The presence of tritium at concentrations above the
minimum laboratory reporting limit indicates the presence
or the influence of modern water (less than 50 years) or
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possible contamination of a ground-water sample with modern
atmospheric water vapor during sampling.

Four water samples were collected from existing produc-
tion or monitoring wells open to the Upper Floridan aquifer
and Fernandina permeable zone in Glynn County and the
Upper Floridan aquifer in Camden County, GA, to test the
integrity of the wells and sampling procedures at the CSSI
wells. The three Upper Floridan samples had tritium concen-
trations less than 0.3 TU. The sample from the Fernandina per-
meable zone in well 33H188 had a concentration of 0.5 TU.
Given the low carbon-14 concentration of 2.99 pmc in this
sample, the tritium probably is the result of a small amount of
atmospheric contamination during sample collection (table 7).
Subsequently, a water sample was collected in CSSI well
34H495 in downtown Brunswick in the interval from 2,084 to
2,091 ft from the moderately saline-water interval at the top of
the Fernandina permeable zone, which had a tritium con-
centration of less than 0.3 TU. These tritium results, and the
carbon-14 concentration of 1.42 pmc in the sample from 2,084
to 2,091 in well 34H495, indicated the absence of modern
freshwater or saltwater recharge to the Floridan aquifer system
in these wells in Glynn and Camden Counties, GA.

Strontium Isotopes of Water

The strontium isotope ratio in marine carbonate strata
is presumed to be in equilibrium with the strontium isotope
ratio of the seawater of its origin (Hess and others, 1986). For
example, marine carbonate that formed during the Eocene
should have a strontium isotope ratio similar to Eocene
seawater. With a long residence time in the aquifer, the
strontium isotope ratio of ground water will equilibrate with
the strontium-bearing carbonate minerals in the carbonate
strata. Therefore, the strontium isotope ratio of ground-water
samples cannot be used to determine the relative or absolute
age of ground water, as in the case of tritium or carbon-14, but
can be used to determine the ground-water source strata. The
original strontium isotope ratio of marine carbonate, however,
can be altered during the geochemical processes involved in
the formation of dolomite.

The ratios of the absolute proportions of strontium-87
to strontium-86 were measured in 11 ground-water samples
collected in coastal Georgia and compared with published
strontium isotope ratios for limestone from the Floridan aqui-
fer system in Duval County, FL (Phelps, 2001). One of the 11
ground-water samples, not previously discussed, is from well
33D074 in St Marys, GA, which was drilled by the STRWMD.
The sample from well 33D074 was collected from the Lower
Floridan aquifer in the interval from 1,840 to 2,045 ft. The
strontium isotope ratios of the 11 ground-water samples were
plotted on a scatter diagram as a function of inverse strontium
concentration in liters per milligram (fig. 17). Not included
in this figure is the strontium isotope ratio of 0.70916 for the
modern seawater sample given in Phelps (2001).

The five freshwater samples from the Upper Floridan
aquifer at the Pineora, Pembroke, Richmond Hill, St Marys,

and St Simons Island sites and the two freshwater samples
from the Lower Floridan aquifer at the Pembroke and St
Marys sites had inverse strontium concentrations greater than
1 and strontium isotope ratios that fall in the range of Oligo-
cene or Miocene seawaters (fig. 17). Oligocene strata were
porous at Pineora, Pembroke, and Richmond Hill and were
included as part of the Upper Floridan aquifer at these sites.
Conversely, the Oligocene strata were nonporous at St Simons
Island and absent at St Marys, and definitely not present in the
Lower Floridan aquifer at Pembroke and CSSI well 33D073 at
St Marys.

Three possible explanations are proposed for the occur-
rence of Oligocene and Miocene strontium isotope ratios in
the fresh ground-water samples—dolomitization, mixing,
and residence time. Dolomitization could have altered the
strontium ratio of carbonate strata in the Lower Floridan
aquifer at St Marys and resulted in a ratio that falls in the
range of Oligocene seawater samples. Downward leakage of
porewaters from the upper confining unit probably occurred
with ground-water withdrawals from the Upper Floridan
aquifer. If the residence time of the mixed water has not been
long enough to allow for re-equilibration with the Eocene
strata, then the mixing of porewater from the Miocene strata of
the upper confining unit with the water of the Upper Floridan
aquifer could result in a strontium isotope ratio similar to that
of the Oligocene strata.

The four ground-water samples from the Lower Floridan
aquifer at Shellman Bluff, Richmond Hill, and St Simons
Island, and well 33D074 at St Marys were slightly saline
and had inverse strontium concentrations less than 1 liter
per milligram (fig. 17). The strontium isotope ratios in these
samples were similar to Eocene seawater and are assumed,
therefore, to be at equilibrium with the strontium isotope ratio
of the Eocene strata of the Lower Floridan aquifer.

Water-Supply Potential of the Lower
Floridan Aquifer

Transmissivity and water quality are two potential limita-
tions of using the upper permeable zone of the Lower Floridan
aquifer as an alternative water supply to the Upper Floridan
aquifer. The Fernandina permeable zone of the Lower Floridan
aquifer, with its saltwater and brine, would require extensive
water treatment to be considered for most water-supply needs
and, therefore, is not discussed as a potential alternative water
supply to the Upper Floridan aquifer.

Transmissivity is a measure of an aquifer’s ability to
transmit water. The transmissivities of the upper permeable
zone of the Lower Floridan aquifer at the Richmond Hill,
Shellman Bluff, and St Marys sites were as much as one to
two orders of magnitude less than published transmissivities
and measured transmissivities of the Upper Floridan aquifer
(Harrelson and Falls, 2003); however, these transmissivities
for the Lower Floridan aquifer are in the same range as
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Figure 17. Relation of strontium isotope ratio with the inverse of strontium concentration in water samples collected from wells open to the

Upper and Lower Floridan aquifers in the Coastal Sound Science Initiative study area, Georgia.

other water-supply aquifers in Georgia and South Carolina,
including the sand aquifers in the Tertiary and Cretaceous
strata of the Upper Coastal Plain in both States (Brooks and
others, 1985; Clarke and others, 1985; Newcome, 1993).
Transmissivities of 6,000 to 8,300 feet squared per day (ft*/d)
at the Shellman Bluff and Richmond Hill sites, respectively,
and 13,000 ft*/d at the St Marys site may not yield enough
water to efficiently meet the demand of industrial water
supply, as seen in Chatham, Glynn, Camden, and Wayne
Counties, GA, but a well in the Lower Floridan aquifer could
meet the more moderate needs of public supply in small
communities and large municipalities, as well as seasonal
agricultural needs. The low yield of water during the drilling
at the Pineora site and the estimated transmissivity of 500 ft*/d
at the St Simons Island site indicate that the Lower Floridan
aquifer may have limited use as an alternative water supply to
the Upper Floridan aquifer at these two sites.

The water quality of the upper permeable zone exceeded
secondary drinking-water standards for sulfate and total
dissolved solids more frequently and had higher chloride
concentrations at several sites, relative to the Upper Floridan

aquifer. Water in the upper permeable zone of the Lower
Floridan aquifer would need to be treated or diluted at most
coastal Georgia sites to meet the Federal secondary
drinking-water standards for sulfate and TDS. Sulfate and
TDS concentrations did not exceed the Federal secondary
drinking-water standards at the Pembroke and Brunswick
sites. Given the sulfate concentrations of the upper permeable
zone at most coastal sites, the construction of wells combining
permeable zones of the Upper and Lower Floridan aquifers
potentially would allow borehole mixing of waters from both
aquifers and could result in undesirable geochemical reactions,
including the production of hydrogen sulfide.

Chloride concentrations in the upper permeable zone of
the Lower Floridan aquifer were not as common a problem
as sulfate and TDS concentrations. Chloride concentrations
slightly exceeded the Federal secondary drinking-water
standard only at the Shellman Bluff site. Production of water
from a combined interval of the Upper and Lower Floridan
aquifers at Richmond Hill or Shellman Bluff, however, would
result in higher chloride concentrations than in a well open
only to the Upper Floridan aquifer. As with sulfate and TDS,
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water from the Lower Floridan aquifer at these two sites would
require treatment or dilution to meet the secondary drinking-
water standard.

Summary

For more than a century, the abundant yield of good-qual-
ity water from the Upper Floridan aquifer has provided most
of the water-supply wells in the coastal counties of Georgia
and, until the late 1990s, generally limited the need to explore
the Lower Floridan aquifer as a water supply. This report
documents the results of a hydrogeologic and water-quality
field investigation of the upper permeable and Fernandina per-
meable zones of the Lower Floridan aquifer in the 24-county
study area of the Georgia Coastal Sound Science Initiative
with data collected from wells drilled at Pineora, Pembroke,
Richmond Hill, Shellman Bluff, St Simons Island, Brunswick,
and St Marys, Georgia. Based on the hydrogeologic charac-
teristics, these seven sites are divided into the northern sites at
Shellman Bluff, Richmond Hill, Pembroke, and Pineora; and
southern sites at St Marys, Brunswick, and St Simons Island.
The top of the Lower Floridan aquifer correlates within 50 feet
of the previously reported top of the Lower Floridan aquifer,
except at the St Simons Island site where the top is more than
80 feet higher.

At the northern sites, the Lower Floridan aquifer is
thinner than the Upper Floridan aquifer and consists of strata
of the middle Eocene Avon Park Formation. The Lower
Floridan aquifer is 157 feet thick at Pineora with three beds
of dolomite, and at least 310 feet thick at Pembroke with four
beds of dolomite. The Lower Floridan aquifer is 310 feet of
porous and nonporous dolomitic limestone at Richmond Hill,
and 228 feet of porous and nonporous limestone at Shellman
Bluff. Transmissivities in the Lower Floridan aquifer are
8,300 feet squared per day at Richmond Hill and 6,000 feet
squared per day at Shellman Bluff.

At the southern sites, the upper permeable zone of the
Lower Floridan aquifer is thicker than the Upper Floridan
aquifer, and consists of porous limestone and dolomite
interbedded with nonporous strata of the middle Eocene Avon
Park and early Eocene Oldsmar Formations. The porous strata
are 19, 28, and 22 percent of the total thickness of the Lower
Floridan aquifer at St Marys, Brunswick, and St Simons
Island, respectively. Intercrystalline and moldic porosity in the
dolomite varies from 10 to 35 percent. Interparticle porosity
in the limestone is generally 5 to 10 percent. Fractures and
solution cavities were detected during drilling at Brunswick,
St Marys, and St Simons Island. Estimated transmissivities
are 13,000 and 500 feet squared per day at St Marys and St
Simons Island, respectively. The Fernandina permeable zone
of the Lower Floridan aquifer was present at only St Marys
and Brunswick.

Hydrographs for Coastal Sound Science Initiative wells
and other nearby wells open to the Upper Floridan aquifers,

and the upper permeable and Fernandina permeable zones of
the Lower Floridan aquifer have similar water-level trends.
Wells open to the Upper and Lower Floridan aquifers at the
northern sites (through January 1, 2004) had measured water
levels below land surface. At Brunswick, measured water
levels for the upper permeable and Fernandina permeable
zones of the Lower Floridan aquifer are above land surface
and greater than the Upper Floridan aquifer. At the St Marys
site, ground-water levels in the Upper and Lower Floridan
aquifer have similar trends; water levels increased by over
19 feet after the closure of a paper mill in October 2002.

Freshwater is present in the Lower Floridan aquifer at
Pineora, Pembroke, and St Marys, and from 1,259 to 1,648
feet below land surface at Brunswick. Slightly saline water
is present in the Lower Floridan aquifer at Richmond Hill,
Shellman Bluff, St Simons Island, and from 1,679 to 1,970
feet below land surface in well 34H495 at Brunswick. The
Fernandina permeable zone in well 34H495 includes moder-
ately saline water, very saline water, and brine.

Bicarbonate water (water type I) was present in the Upper
Floridan aquifer at Pineora, Pembroke, and Richmond Hill,
and in the Lower Floridan aquifer at Pembroke. Sulfate-
bicarbonate water (water type II) was present in the Upper
Floridan aquifer at St Marys and St Simons Island, and in
the upper permeable zone of the Lower Floridan aquifer at
1,380 feet in Brunswick well 34H495. Sulfate water (water
type III) was present in the Upper Floridan aquifer and the
upper permeable zone of the Lower Floridan aquifer at St
Marys and St Simons Island, respectively. Water type III also
was present in the upper permeable zone of the Lower Flori-
dan aquifer at Shellman Bluff, Richmond Hill, and Brunswick.
The bicarbonate, sulfate-bicarbonate, and sulfate waters are
saturated with calcite and dolomite, and undersaturated with
gypsum and anhydrite. In the upper permeable zone of the
Lower Floridan aquifer, Federal secondary drinking-water
standards were exceeded for total dissolved solids and sulfate,
except at Pineora and Pembroke, and for chloride at only
Shellman Bluff.

Chloride water (water type IV) was present in the
chloride-contaminated interval of the Upper Floridan aquifer
and the Fernandina permeable zone of the Lower Floridan
aquifer beneath downtown Brunswick. Concentrations of total
dissolved solids, sulfate, and chloride exceeded the Federal
secondary drinking-water standards. The very saline and
brine waters from the Fernandina permeable zone are slightly
undersaturated to saturated with gypsum and anhydrite.
Based on chloride and stable isotope results for Brunswick
well 34H393, the chloride-contaminated plumes in the Upper
Floridan aquifer beneath downtown Brunswick would require
at least a 12- to 20-percent contribution of very saline water
from the Fernandina permeable zone.

Water from the upper permeable zone of the Lower
Floridan aquifer at the St Marys, Brunswick, Richmond Hill,
and Pembroke sites had carbon-14 concentrations and stable
oxygen and hydrogen isotopic compositions that were similar
to water from the Upper Floridan aquifer at these respective



sites. The site-specific similarities in the stable oxygen and
hydrogen isotopic compositions of water indicate that waters
in both aquifers at a specific well site probably entered the
recharge area under similar climatic conditions and, therefore,
could have similar ages within an accuracy of plus or minus a
few thousand years.

Five samples from the Upper Floridan aquifer at Pineora,
Pembroke, Richmond Hill, St Marys, and St Simons Island
and two freshwater samples from the upper permeable zone
of the Lower Floridan aquifer at Pembroke and St Marys have
strontium isotope ratios that fall in the range of Oligocene
or Miocene seawaters. Four ground-water samples from
the upper permeable zone of the Lower Floridan aquifer at
Shellman Bluff, Richmond Hill, and St Simons Island, and St
Marys well 33D074 have strontium isotope ratios in the range
of Eocene seawater.

Transmissivities for the Lower Floridan aquifer are in
the same range as other water-supply aquifers in Georgia and
South Carolina and could meet the needs of public supply
in small communities and large municipalities, as well as
seasonal agricultural needs. Water of the upper permeable
zone of the Lower Floridan aquifer exceeded the Federal
secondary drinking-water standards for sulfate and total
dissolved solids at most coastal Georgia sites and for chloride
at the Shellman Bluff site.
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