
l

Techniques of Water-Resources Investigations
of the Uni tes Geological Survey

A MODU
FINITE-DIFFE

By Mich el G. McDonald and
Arl n W. Harbaugh

U.S. Geological
pen-file Report 83-875

Book 6

MODELING TECHNIQUES

http://www.usgs.gov/
reidell
Click here to return to USGS Publications

../index.html

Narrative for Module UCOLNO

Module UCOLNO prints column numbers at the top of a page when arrays of

numbers are printed. It performs its functions in the following order:

1. Calculate the number of columns to be printed (NLBL), the width

of a line (NTOT), and the number of lines needed to print all of the

column numbers (NWRAP). Initialize the fields Jl and 52 which contain
.,

the first and last column number on each print line.

2. Build and print each line (DO STEPS 3-6).

3. Clear the line buffer (BF) in which the line is built.

4. Determine the first (Jl) and last (52) column number for the

current line.

5. Put the column numbers in the line buffer. They are selected

from the array DG. The indices 11, 12, and I3 point to the units digit,

tens digit, and hundreds digit, respectively.

6. Print the line.

7. Print a line of dots.

8. RETURN.

14-22

Flow Chart for Module UCOLNO

F(

CALCULATE THE
NUMBER OF LINES
NEEDED TO PRINT

ALL O;J;tiEC;LUMN

CLEAR THE BUFFER
IN WHICH THE LINE

IS ASSEMBLED

DETERMINE THE RANGE
OF COLUMN NUMBERS
WHICH GO IN THE LINE

THE CONTENTS
OF THE BUFFER

14-23

SUBRWTINE lJCOLNO(NLBL1,NLBL2,NSPACEtNCPLrNDIGtIOUT)

-VERSION 1638 12MAY1987 UCOLNO
***********~**C****************************~~******~**************
OUTPUT COLUMN NlJmERS ABOVE A MATRIX PRINTOUT

NLBLl IS THE START COLUMN LABEL (NlJb8ER)
NLBLZ IS THE STOP COLUMN LABEL (NlJb8ER)
NSPACE IS NUMBER OF BLANK SPACES TO LEAVE AT START OF LINE
NCPL IS NlJb8ER OF COLUMN NUb8ERS PER LINE
NDIG IS NUb8ER OF CHARACTERS IN EACH COLUMN FIELD
IOUT IS OUTPUT CHANNEL

C SPECIFICATIONS:
c --

CHARACTER*4 DOT. SPACE, DG, BF
DIMENSION BF(130),DG(lO)

C
DATA ffi(l)rDG(2),ffi(3)rffi(4),DG(S),ffi(6).DG(7~,ffi~8~,ffi~9~,ffi~lO~/

1 ‘0 ‘,‘l ‘*‘2 ‘1’3 ‘,‘4 ‘r’5 ‘,‘6 ‘,
2 ‘7 ‘r’8 ‘,‘9 ‘/

DATA DOT,SPACE/‘. I,’ ‘/
--

Cl------CALCULATE # OF COLUMNS TO BE PRINTED (NLBL), WIDTH
Cl------OF A LINE (NTOT), NlJmER OF LINES (NWRAP).

WRITE(IOUT.l)
1 FORMAT

NLBL=NLBLZ-NLBLl+l
N=NLBL
IF(NLBL.GT.NCPL) N=NCF’L
NTOT=NSPACE+N*NDIG
IF(NTOT.GT.130) GO TO 50
MdRAP=(NLBL-l)/NCPL t 1
Jl=NLBLl-NCPL
J2=NLBLl-1

C
C2------BUILD AND PRINT EACH LINE

DO 40 ti=l,tWRAP

:3 ------CLEAR THE BUFFER (8F).
DO 20 1=1.130
BF(I)=SPACE

20 CONTINUE
NBF=NSPACE

C
C4------DETERMINE FIRST (Jl) AND LAST (52) COLUMN I FOR THIS LINE.

Jl=Jl+NCPL
J2= JZ+NWL
IF(J2.GT.NLBL2) J2=NLBL2

(Z------LOAD THE COLUMN I’S INTO THE BUFFER,
DO 30 J=Jl,JZ
NBF=NBFtNDIG
12=J/lO
Il=J-12*10+1
BF(MF)=DG(Il)
IF(12.EQ.0) GO TO 30
13=12/10
12=12-13+10+1
BF(hBF-l)=OG(I2)
IF(13.EQ.0) GO TO 30
BF(F8F-2)=DG(I3+1)

30 CONTINUE
C
C6------PRINT THE CONTENTS OF THE BUFFER (I.E. PRINT THE LINE).

WRITE(IOUT,31) (BF(I),I=l,NBF)
31 FOF&fAT(lX,130Al)

C
40 CONTINUE

:7 ------PRINT A LINE OF DOTS (FOR ESTHETIC PUF(POSES ONLY).
50 NTOT= NTOTt5

IF(NTOT.GT.130) NTOT=130
WRITE(IOUT,51) (DOT,I=l,NTOT)

51 FORMAT(1X, 130Al)
C
CI------RETURN

RETURN
END

14-24

List of Variables for Module UCOLNO

Variable

BF

DG

DOT

1

IOUT

11

12

13

J

Jl

52

N

NBF

NCPL

NDIG

NLBL

NLBLl

NLBL2

NSPACE

NTOT

NWRAP

SPACE

Range

Module

Module

Module

Module

Global

Module

Module

Module

Module

Module

Module

Module

Module

Module

Module

Module

Module

Module

Module

Module

Module

Module

Definition

DIMENSION (130), Buffer in which a line is assembled.

DIMENSION (lo), Digits 0 through 9.

Field containing a period.

Index for BF.

Primary unit number for all printed output. IOUT = 6.

Index for DG (units digit).

Index for DG (tens digit).

Index for DG (hundreds digit).

Index for column numbers.

First column number on the current line.

Last column number on the current line.

Number of column numbers.

Index for BF.

Number of column numbers per line.

Number of characters in each column number field.

Number of column numbers to be printed.

Start column number.

Stop column number.

Number of blank spaces at start of line.

Total number of characters on a line.

Number of lines needed in wrap format.

Field containing blanks.

14-25

Narrative for Module UZDREL

Module UEDREL reads values for a two-dimensional real array. First it
reads an "array-control record." Then, based on the contents of the array-
control record, it may read array values. The array-control record contains
four fields: location (LOCAT), constant (CNSTNT), format (FMTIN), and
printout indicator (IPRN). The LOCAT field determines where array values
will come from. If LOCAT is positive, it is the unit number from which
array values will be read in the format specified in FMTIN. If LOCAT is
negative, the sign is reversed to give the unit number from which an
unformatted record containing the array values will be read. (Before the
array record is read, a record will be read and ignored. Thus output from
the module ULASAV can be read.) If LOCAT is zero, all of the array values
will be set equal to CNSTNT. When LOCAT is not zero and CNSTNT is not
zero, the array values will be multiplied by the value of CNSTNT. The
field IPRN contains a code number for a FORTRAN format to be used when
printing the array.

Module UZDREL performs its tasks in the following order:

1. Read the array-control record (LOCAT, CNSTNT, FMTIN, and IPRN).

2. Use LOCAT to determine where the array values are coming from.
GO TO STEPS 3, 4, OR 5.

3. If LOCAT equals zero , set all array values equal to CNSTNT, print
a message to that effect, and RETURN.

4. If LOCAT is greater than zero , read array values according to the
format in FMTIN: GO TO STEP 6.

5. If LOCAT is less than zero, read an unformatted dummy record and
then read an unformatted record containing the array values. GO TO STEP 6.

6. If CNSTNT is not equal to zero, multiply array values by CNSTNT.

7. If IPRN is greater than or equal to zero, call utility module ULAPRW
to print the array values using IPRN as the format code.

8. RETURN.

14-26

Flow Chart for Module UZDREL-

a

Array Control Record controls
the input of array values.
It contains four fields:
LOCAT, CNSTNT, FMTIN, and
IPRN.

LOCAT is a code shawing where
array values will come from.

If LOCAT < 0, array values
will be read from an
unformatted record from a
unit number equal to -LOCAT.

If LOCAT = 0, array values
will be set equal to CNSTNT.

If LOCAT > 0, array values
will be read from the unit
number equal to LOCAT in the
format specified in FMTIN.

CNSTNT is the constant to which
all array values are set if
LOCAT is equal to zero, and
it is the constant by which

LOCAT >O

READ AN
UNFORMATTED

READ ARRAY
VALUES IN SET ALL

DUMMY RECORD
FROM UNIT=

FORMAT FMTIN
FROM UNIT=

ARF&Vf+$ES

-LOCAT LOCAT CNSTNT

all array values are rmltiplied READ AN

if LOCAT is not equal to zero. UNFORMATTED IF CNSTNT IS PRINT A
RECORD OF

ARRAY VALUES ‘b
NOT ZERO,

MULTIPLY ARRAY
MESSAGE TO
THAT EFFECT

is greater than zero.

IPRN is a code showing the format
to be used if array values are
to be printed.

READ THE ARRAY
CONTROL RECORD

FMTIN is the format in which
FROM UNIT= VALUES BY

-LOCAT CNSTNT 1

array values are read if LOCAT I

14-27

SUBROUTINE U2DREL(A,ANAME,II,JJ,KtIN,IOUT)
C
C
C-----VERSION 1648 12MAY1987 U2DREL
c **********+***~*****
C ROUTINE TO INPUT 2-D REAL DATA MATRICES
c A IS ARRAY TO INPUT
C ANAME IS 24 CHARACTER DESCRIPTION OF A

II IS NO. OF RCWS
JJ IS NO. OF CDLS

C K IS LAYER NO. (USED WITH NAFE TO TITLE PRINTOUT UNLESS K IS 0)
c IN IS INPUT UNIT

IOUT IS OUTPUT UNIT
~*********

SPECIFICATIONS:
c ------_--

CHARACTER*4 ANM
CHARACTER*20 FMTIN
DIMENSION A(JJ,II).ANAME(6)

:
--

Cl------READ ARRAY CONTROL RECORD.
READ (IN,l) LOCAT,CNSTNT,FMTIN,IPRN

1 FORMAT(IlO,F10.0,A20rI10)

:2 ------USE LOCAT TO SEE WHERE ARRAY VALUES CDME FROM.
IFtLCCAT) 200,50,90

C
C3------IF LOCAT=O MEN SET ML ARRAY VALUES EQUAL TO CNSTNT. RETURN

50 DO 80 I=lrII
DO 80 .l=l.JJ

80 A(J,I)=CNSTNT
IF(K.GT.0) WRITE(IOUT,2) ANM,CNSTNT,K

2 FORMAT(lH0,52X,6A4,’ =‘,G15.7.’ FOR LAYER’,I3)
IF(K.LE.0) WRITE(IOUT,3) ANAMEsCNSTNT

3 FORMAT(lHD.52X,6A4,’ =‘,G15.7)
RETURN

c
C4------IF LOCAT>O THEN READ FORMATTED RECORDS USING FOMAT FMTIN.

90 IF(K.GT.0) WRITE(IOUT,4) ANM,K,LCCAT,FMTIN
4 FORMAT(lHO,///30X,6A4,’ FOR LAYER’,13,’ WILL BE READ ON UNIT’,

1 13,’ USING FOMAT: ‘,A20/3OX,96(‘-‘1)
IF(K.LE.0) WRITE(IOUT,S) ANM,LOCAT,FMTIN

5 FORMAT(lm),///30X,6A4,’ WILL BE READ ON UNIT’,
1 13.’ USING FOFMAT: ‘rAZ0/30X,83(‘-‘)I

DO 100 I=l,II
READ (LOCAT,FMTIN) (A(J,I),J=l,JJ)

100 CONTINUE
GO TO 300

C5------LOCAT<O THEN READ UNFORMATTED RECORD CONTAINING ARRAY VALUES
200 LOCAT=-LOCAT

IF(K.GT.0) WRITE(IOUT,201) ANM,K.LOCAT
201 FORMAT(lHD,///30X,6A4,‘, LAYER’,I3,

1 ’ WILL BE READ UNFORMATTED ON UNIT’rI3/30X,73(‘-‘1)
IF(K.LE.0) WRITE(IOUT,ZOP) ANM,LCCAT

202 FORMT(ll-!Gr///30X.
1 ’ WILL BE READ UNFORMATTED ON UNIT’,I3/30X,60(‘-‘1)

:5A ------READ AN UNFORMATTED DUMMY RECORD FIRST.
READ(LOCAT)
READ(LOCAT) A

:6 ------IF CNSTNT NOT ZERO THEN MULTIPLY .ARRAY VALUES BY CNSTNT.
300 IF(CNSTNT.EQ.0.) GO TO 320

DO 310 I=lrII
DO 310 J=l.JJ
A(J,I)=A(j;IPCNSTNT

3 10 CONTINUE

:7 ------IF PRINT CODE (IPRN) =>O THEN PRINT ARRAY VALUES.
320 IF(IFRN.LT.0) RETURN

CALL ULAPRW(A,ANAtk,O,O,JJ,II,O,IPRN,IOUT)
RETURN

c
C&-----RETURN

END

14-28

List of Variables for Module UEDREL

Variable

A

ANAME

CNSTNT

FMTIN

I

II

IN

IOUT

IPRN

J

JJ

K

LOCAT

Range Definition

Module DIMENSION (JJ,II), Input array.

Module Label for printout of the input array.

Module Constant to which all array values are set if
LOCAT is equal to zero or by which all array
values are multiplied if LOCAT is not equal
to zero.

Module Format under which array values will be read.

Module Index for rows.

Module Number of rows.

Module Unit number from which the array control record will
be read.

Global Primary unit number for all printed output. IOUT = 6.

Module Code for format to be used when printing the arrays.

Module Index for columns.

Module Number of columns.

Module Layer number.

Module Location of values to fill in the array.
< 0, read an unformatted record containing the

array values.
= 0, set all the array values equal to constant

(CNSTNT).
> 0, read the formatted records containing the

array values.

14-29

Narrative for Module UZDINT

Module U2DINT reads values for a two-dimensional integer array. First
it reads an "array-control record." Then, based on the contents of the array-
control record, it may read array values. The array-control record contains
four fields: location (LOCAT), constant (ICONST), format (FMTIN), and
printout indicator (IPRN). The LOCAT field determines where array values
will come from. If LOCAT is positive, it is the unit number from which
array values will be read in the format specified in FMTIN. If LOCAT is
negative, the sign is reversed to give the unit number from which an
unformatted record containing the array values will be read. (Before the
array record is read, a record will be read and ignored. Thus output from
the module ULASAV can be read.) If LOCAT is zero, all of the array values
will be set equal to ICONST. When LOCAT is not zero and ICONST is not
zero, the array values will be multiplied by the value of ICONST. The
field IPRN (table 1) contains a code number for
used when printing the array.

Module U2DINT performs its tasks in the fo

a FORTRAN format to‘be

llowing order:

1. Read the array-control record (LOCAT,

2. Use LOCAT to determine where the array
3, 4, OR 5.

ICONST, FMTIN, and IPRN).

is coming from. GO TO STEPS

3. If LOCAT equals zero, set all array values equal to CNSTNT, print a
message to that effect, and RETURN.

4. If LOCAT is greater than zero, read array values according to the
format in FMTIN. GO TO STEP 6.

5. If LOCAT is less than zero, read an unformatted dummy record and
then read an unformatted record containing the array values. GO TO STEP 6.

6. If ICONST is not equal to zero, multiply array values by ICONST.

7. If IPRN is greater than or equal to zero, print the array values
using IPRN as the format code.

8. Call utility module UCOLNO to print column numbers at the top of
the page.

9. Print each row in the array.

10. Select the format for printing.

11. RETURN.

14-30

Flow Chart for Module U2DINT

Array Control Record controls
the input of array values.
It contains four fields:
LOCAT, ICONST, FMTIN, and
IPRN.

LOCAT is a code showing where
array values will come from.

If LOCAT < 0, array values
will be read from an
unformatted record from a
unit number equal to -LOCAT.

If LOCAT = 0, array values
will be set equal to ICONST.

If LOCAT > 0, array values
will be read from the unit
number equal to LOCAT in the
format specified in FMTIN.

ICONST is the constant to which
all array values are set if
LOCAT is equal to zero, and it

IPRN is a code showing the format
to be used if array values are
to be printed.

READ THE ARRAY
CONTROL RECORD

READ AN READ ARRAY
UNFORMATTED VALUES IN

DUMMY RECORD FORMAT FMTIN
FROM UNIT= FROM UNIT=

-LOCAT LOCAT 1

is the constant by which all
array values are multiplied
if LOCAT is not equal to zero. \

5A 6 3A

READ AN
UNFORMATTED

IF ICONST IS

RECORD OF
NOT ZERO,

PRINT A

FMTIN is the format in which MULTIPLY ARRAY
MESSAGE TO

ARRAY VALUES THAT EFFECT

array values are read if LOCAT FROM UNIT=
VALUES BY

-LOCAT
ICONST

is greater than zero.
I

IF IPRN=X.
PRINT

ARRAY VALUES

14-31

SUBROUTINE U2DINT(IA,ANAME,II,JJrK,IN,IOUT)
C

: -----VERSION 1645 12MAY1987 UZDINT

:
**
ROUTINE TO INPUT Z-D INTEGER DATA MATRICES

C IA IS ARRAY TO INPUT

:
ANAME IS 24 CHARACTER DESCRIPTION OF IA
II IS NO; OF RC#iS

C JJ IS NO. OF COLS
C K IS LAYER NO. (USED WITH NAME TO TITLE PRINTOUT UNLESS K IS 0)

:
IN IS INPUT UNIT
IOUT IS OUTPUT UNIT

C **~*************************

E SPECIFICATIONS:
”

CHARACTER*4 ANAME
CHARACTER”20 FMTIN
DIMENSION IA(JJ,II),ANAME(6)

E

Cl--- READ ARRAY CONTROL RECORD.
READ (IN,11 LOCAT,ICONSTIFMTINIIF'RN

1 F0RMAT(110,110,A20,110)
C
c2---- USE LOCAT TO SEE WHERE ARRAY VALUES COME FROM.

IFtLOCAT) 200,50,90

:3 ------IF LOCAT=O THEN SET ALL ARRAY VALUES EQUAL TO ICONST. RETURN
50 DO 80 I=lrII

DO 80 J=lrJJ
80 IA(J,I)=ICONST

IF(K.GT.0) WRITE(IOUT,2) ANAME,ICONST,K
2 FORMAT(lHO,52X,6A4r' ='rIlSr' FOR LAYER'rI3)

IF(K.LE.0) WRITE(IOUT,3) ANAMEIICONST
3 FORMAT(lH0,52X,6A4,’ =‘,I151

RETURN
C
c4 ------IF LOCAT>O THEN READ FORMATTED RECORDS USING FORMAT FMTIN.

90 IF(K.GT.0) WRITE(IOUT,4) ANAMErK,LOCAT,FMTIN
4 FORMAT(lHOr///3OXr6A4,’ FOR LAYER’rI3,’ WILL BE READ ON UNIT’,

1 13,' USING FORMAT: 'rA20/3OXr96('-'1)
IF(K.LE.0) WRITE(IOUT,5) ANAME,LOCAT,FMTIN

5 FORMAT(lHOr///3OXr6A4,’ WILL BE READ ON UNIT',
1 13,' USING FORMAT: ‘rA20/30X,83(‘-‘1)

DO 100 I=lrII
READ (LOCAT,FMTIN) (IA(J,I)rJ=lrJJ)

100 CONTINUE
GO TO 300

C
c5 ------LOCAT< THEN READ UNFORMATTED RECORD CONTAINING ARRAY VALUES

200 LOCAT=-LOCAT
IF(K.GT.0) WRITE(IOUT,201) ANAME,K,LOCAT

201 FORMAT(lHOr///3OXt6A4r'r LAYER'rI3,
1 ' WILL BE READ UNFORMATTED ON UNIT'rI3/30X,73('-'1)

IF(K.LE.0) WRITE(IOUT,202) ANAMEILOCAT
202 FORMAT(lHO,///30X,6A4,

1 ’ WILL BE READ UNFORMATTED ON UNIT’rI3/30X,60(‘-‘I 1
C

14-32

pjA--- READ AN UNFORMATTED DUMMY RECORD FIRST.
READtLOCAT)
READtLOCAT) IA

C
C6--- IF ICONST NOT ZERO THEN MULTIPLY ARRAY VALUES BY ICONST.

300 IF(ICONST.EQ.0) GO TO 320
DO 310 I=l,II
DO 310 J=lrJJ
IA(J,I)=IA(J,I)*ICONST

310 CONTINUE
C
C7------ IF PRINT CODE (IFRN) =>O MEN PRINT ARRAY VALUES.

320 IF(IPRN.LT.0) RETURN
IF(IPRN.GT.5) IPRN=O
IPRN=IF'RN+l

C
c8 ------PRINT COLUMN NUMBERS AT TOP OF PAGE.

IF(IPRN.EQ.l) CALL UCOLNO(1,JJ,O,1O,12rIOUT)
NL=125/IPRN/5*5
IF(IPRN.GT.1) CALL UCOLNO(1,JJr4,NLrIPRN,IOUT)

L-----P~~INT EACH ROW IN THE ARRAY.
DO 110 I=l,II

Lo- ----SELECT THE FORMAT
GO T0(101,102,103,104,105,106), IF’RN

C
C ----------------FORMAT 10111

101 WRITE(IOUT,lOOl) I,(IA(J,I)rJ=lrJJ) -
1001 FORMAT(1HO,I3,2X,Illr9(1X,I11)/(5X,1O(1X,I11)))

GO TO 110
C
C ----------------FOFAT 6011

102 WRITE(IOUT,1002) I,(IA(J,I)rJ=l,JJ)
1002 FORMAT(1HO,I3rlX,60(lX,Il)/(5X,6O~lX,Il)~~

GO TO 110
C
C ----------------FORMAT 4012

103 WRITE(IOUT,1003) I,(IA(J,I)rJ=lrJJ)
1003 FORMAT(1HO,I3rlX,40(1X,I2)/(5X,4O~lX,I2)~~

GO TO 110
C
C ----------------FORMAT 3013

104 WRITE(IOUT,1004) I,(IA(J,I),J=l,JJ)
1004 FORMAT(1HQrI3,lX,30(1X,I3)/(5X,30(1X,I3)))

GO TO 110
C
C ----------------FORMAT 2514

105 WRITE(IOUT,1005) I,(IA(J,I),J=lrJJ)
1005 FORMAT(1HOrI3rlX,25(1X,I4)/(5X,25(1X,I4)))

GO TO 110
C
C ----------------FORMAT 2015

106 WRITE(IOUT,1006) I,(IA(J,I),J=lrJJ)
1006 F0RMAT(1HO,13,1X,20(1X,15)/(5X,20(1X,15))1
110 CONTINUE

RETURN
C
Cll-----RETURN

END

14-33

List of Variables for Module UZDINT

Variable

ANAME

FMTIN

I

IA

ICONST

II

IN

IOUT

IPRN

3

35

K

LOCAT

Range Definition

Module Label for the printout of input array.

Module Format under which the array values will be read.

Module

Module

Index for rows.

DIMENSION (JJ,II), Input array.

Module Constant to which all array values are set if
LOCAT is equal to zero or by which all array
values are multiplied if LOCAT is not equal
to zero.

Module Number of rows.

Module Unit number from which the array-control record will
be read.

Global Primary unit number for all printed output. IOUT = 6.

Module Code for format to be used when printing arrays.

Module Index for columns.

Module Number of columns.

Module Layer number.

Module Location of values to fill in the array.
< 0, read an unformatted record containing the

array values.
= 0, set all the array values equal to constant

(CNSTNT).
> 0, read formatted records containing the array

values.

NL Module Number of columns per line.

14-34

Narrative for Module UlDREL

Module UlDREL reads values for a one-dimensional real array. First it

reads an "array-control record." Then, based on the contents of the array-

control record, it may read array values. The array-control record contains

four fields: location (LOCAT), constant (CNSTNT), format (FMTIN), and

printout indicator (IPRN). The LOCAT field determines where array values

will come from. If LOCAT is positive, it is the unit number from which

array values will be read in the format specified in FMTIN. If LOCAT is

zero, all of the array values will be set equal to CNSTNT. If LOCAT

is not zero and CNSTNT is not zero, the array values will be multiplied by

the value of CNSTNT. The field IPRN (table 2) contains a code number for

a FORTRAN format to be used when printing the array.

Module UlDREL performs its tasks in the following order:

1. Read the array-control record (LOCAT, CNSTNT, FMTIN, and IPRN).

2. Use LOCAT to determine where the array is coming from (DO STEPS 3

OR 4).

3. If LOCAT equals zero, set all array values equal to CNSTNT and

print a message to that effect. RETURN.

4. If LOCAT is greater than zero, read array values according to the

format in FMTIN.

5. If CNSTNT is not equal to zero, multiply the array values by CNSTNT.

6. If IPRN is greater than or equal to zero, print the array values.

7. RETURN.

14-35

Flow Chart for Module UlDREL

Array Control Record controls
the input of array values.
It contains four fields:
LOCAT, CNSTNT, FMTIN, and
IPRN.

LOCAT is a code showing where
array values will come from. READ THE ARRAY

t CONTROL RECORD

If LOCAT = 0, array values
will be set equal to CNSTNT.

If LOCAT > 0, array values
will be read from the unit
number equal to LOCAT in the
format specified in FMTIN.

CNSTNT is the constant to which
all array values are set if
LOCAT is equal to zero, and
it is the constant by which
all array values are multiplied
if LOCAT is not equal to zero.

FMTIN is the format in which
array values are read if LOCAT
is greater than zero.

LOCAT >O

4

READ ARRAY
VALUES IN

SET ALL
ARRAY VALUES

FORMAT FMTIN
FRW\lT=

EcQNusA:NTp

3A

IPRN is a code showing the format
to be used if array values are
to be printed.

IF CNSTNT IS

MULTIPLY ARRAY

PRINT A
MESSAGE TO
THAT EFFECT

IF IPRN=X,
PRINT

ARRAYVALUES

14-36

SUBROUTINE UlDREL(A,ANAME,JJ,IN,IOUT)
C
C
C -----VERSION 1643 12MAY1987 UlDREL
C ******************~***
C ROUTINE TO INPUT 1-D REAL DATA MATRICES
C A IS ARRAY TO INPUT
C ANAME IS 24 CHARACTER DESCRIPTION OF A
C JJ IS NO. OF ELEMENTS
C IN IS INPUT UNIT
C IOUT IS OUTPUT UNIT
C ***~**
C
C SPECIFICATIONS:

CHARACTER*4 ANAME
CHARACTER*20 FMTIN
DIMENSION A(JJ),ANAME(6)

C -----------_--------_____________L______--------------------------
C
Cl---- READ ARRAY CONTROL RECORD.

READ (IN, 1) LOCAT, CNSTNT, FMTIN, IPRN
1 FORMAT(I10,F10.O,A20,IlO)

C
c2---- USE LOCAT TO SEE WHERE ARRAY VALUES COME FROM.

IF(LOCAT.GT.0) GO TO 90
C
C3..----- IF LOCAT=O THEN SET ALL ARRAY VALUES EQUAL TO CNSTNT. RETURN

DO 80 J=lrJJ
80 A(J)=CNSTNT

WRITE(IOUT,3) ANAME,CNSTNT
3 FORMAT(lH0,52X,6A4,’ =‘rG15.7)

RETURN
C
c4 ------IF LOCAT>O THEN READ FORMATTED RECORDS USING FORMAT FMTIN.

90 WRITE(IOUT,5) ANAME,LOCAT,FMTIN
5 FORMAT(lHO,///30X,6A4,' WILL BE READ ON UNIT'rI3,

1 ’ USING FORMAT: ‘rA20/30X,79(‘-‘)/I
READ (LOCAT,FMTIN) (A(J),J=l,JJ)

C
C5------ IF CNSTNT NOT ZERO THEN MULTIPLY ARRAY VALUES BY CNSTNT.

IF(CNSTNT.EQ.0.) GO TO 120
DO 100 J=l,JJ

100 A(J)=A(J)*CNSTNT
C
Cfj---- IF PRINT CODE (IPRN) =>O THEN PRINT ARRAY VALUES.

120 IF(IPRN.LT.0) RETURN
WRITE(IOUT,lOOl) (A(J)rJ=l,JJ)

1001 FORMAT((lX,lPG12.5,9(1XIG12.5)))
RETURN

C
C7------CONTINUE

END

14-37

List of Variables for Module UlDREL

Variable

A

ANAME

CNSTNT

FiTIN

IN

IOUT

IPRN

J

33

LOCAT

Range

Module

Module

Module

Module

Module

Global

Module

Module

Module

Module

Definition

DIMENSION (JJ), Input array.

Label for printout of the input array.

Constant to which all array values are set if
LOCAT is equal to zero or by which all array
values are multiplied if LOCAT is not equal
to zero.

Format under which the array values will be read.

Unit number from which the array control record will
be read.

Primary unit number for all printed output. IOUT = 6.

Code for the format to be used when printing the
arrays.

Array index.

Number of elements in the array.

Location of values to fill in the array.
< 0, read an unformatted record containing the

array values.
= 0, set all the array values equal to constant

(CNSTNT).
> 0, read the formatted records containing the

array values.

14-38

REFERENCES

Collins, R. E., 1961, Flow of fluids through porous materials; New York,
Reinhold Publishing Corp., 270 p.

Crichlow, Henry B., 1977, Modern reservoir engineering - A simulation
approach; Englewood Cliffs, N.J., Prentice Hall Inc., 354 p.

McDonald, M.G., and Harbaugh, A.W., 1984, A modular three-dimensional
finite-difference ground-water flow model: U.S. Geological Survey
Open-File Report 83-875 , 528 p.

Peaceman, Donald W., 1977, Fundamentals of numerical reservoir simulation;
New York, Elsevier Scientific Publishing Company, 176 p.

Remson, Irwin, Hornberger, George M. and Molz, Fred J., 1971, Numerical
methods in subsurface hydrology; New York, Wiley-Interscience, 389 p.

Rushton, K. R., Redshaw S. C., 1979, Seepage and groundwater flow-numerical
analysis by analog and digital methods; New York, John Wiley and Sons

Trescott, Peter C., 1975, Documentation of finite-difference model for
simulation of three-dimensional ground-water flow: U.S. Geological
Survey Open-File Report 75-438, 32 p.

Trescott, Peter C. and Larson, S. P., 1976, Supplement to Open-File Report
75-438, Documentation of finite-difference model of three-dimensional
ground-water flow; U.S. Geological Survey Open-File Report 76-591, 21 p.

Trescott, P. C., Pinder, G. F., and Larson, S. P., 1976, Finite-
difference model for aquifer simulation in two dimensions with
results of numerical experiments: U.S. Geological Survey Techniques
of Water-Resources Investigations, Book 7, Chapter Cl, 116 p.

Weinstein, H. C., Stone, H. L., and Kwan, T. V., 1969, Iterative procedure
for solution of systems of parabolic and elliptic equations in three
dimensions: Indus. Engineering Chemistry Fundamentals, v. 8, no. 2,
p. 281-287.

14-39

APPENDIX A

PROGRAM PORTABILITY

Introduction

One of the major design requirements for the model program was that it
should be portable. A portable program is one that can be run with a minimum
of modification on most computers that are physically capable of running a
program of its type. The goal of portability for the model program has been
attained as evidenced by the fact that it has run successfully in either its
present form or the earlier form (McDonald and Harbaugh, 1984) on computers
manufactured by many companies including mainframe computers, minicomputers,
and microcomputers. The following discussion explains in more detail the
concept of portability, what was done to maximize portability of the model
programs and circumstances that might require that the program be changed in
order to run successfully on a particular computer.

The Impact of the Programming Language on Portability

The programming language is the most important factor that determines
program portability. There are a variety of programming languages available,
and for each language, there are numerous versions which have resulted from
the desire of vendors to improve the power of the language and to take
advantage of the hardware features of their particular computers. The most
commonly available language suitable to use for the model program is FORTRAN.
There are two versions defined by the American National Standards Institute
(ANSI) on which most commercial versions are based, ANSI X3.9-1966 and ANSI
X3.9-1978.l These versions are commonly referred to as FORTRAN 66 and
FORTRAN 77, respectively. FORTRAN 66 was selected for the original version of
the model because, at the time, it was far more widely supported than was
FORTRAN 77. Now that the FORTRAN 77 standard is more widely supported, the
program has been converted to this standard.

The program in this report is nearly identical to the original program
except for the changes required to make it comply with the FORTRAN 77
standard. These changes are minor and are described by McDonald and Harbaugh
(1984, p. 505). The conversion was done solely for the purpose of making the
program comply with the FORTRAN 77 standard; many of the features that make
FORTRAN 77 more powerful than FORTRAN 66 were not used. An effort to make
more extensive FORTRAN 77 revisions to the program is judged to be
uneconomical. Such an effort would not result in significant improvements in
program clarity or efficiency.

I American National Standards Institute, 1966, FORTRAN: American National
Standards Institute, X3.9-1966, 36 p.

American National Standards Institute, 1978, Programming language FORTRAN:
American National Standards Institute, X3.9-1978, chs. 1-18.

A-l

Most commercial versions of FORTRAN 77 compilers include some extended
features not defined as part of the FORTRAN 77 standard. Such features vary
widely among computer vendors and were not used in the model program. The
program contains only one exception to complete compliance to the FORTRAN 77
standard that the authors are aware of. This exception , which is explained in
a following section (see The Impact of Allocating Array Storage In a Single
Array on Portability), is commonly allowed on computers and should not be a
major restriction to portability. Because the program closely follows the
FORTRAN 77 standard, the program should work on any computer supporting this
language provided that the computer has adequate computational power.

It is recognized that some users may want the program converted back into
the FORTRAN 66 language because they have access only to older compilers.
Only a few changes are required to convert the program back to FORTRAN 66.
Information about how to convert is provided in a following section (see
Conversion to FORTRAN 66).

The Impact of Computational Precision on Portability

Variation of precision among computers causes some problems with program
portability. Computational precision refers to the accuracy at which numbers
are calculated and stored in the computer. To prevent the imposition of
constraints on the computers on which FORTRAN is implemented, the
computational precision was not defined as part of the standards. The
accuracy of model results are dependent on the computational precision, so
precision must be considered when moving the model program among computers.

The model program was developed on computers using 32 binary bits to
represent single precision real numbers. This gives from 6 to 7 decimal
digits of precision and includes values that range in magnitude from
approximately lo**-39 to 10**38. Double precision real numbers are
represented by 64 binary bits and range in magnltude from approximately
lo**-10000 to 10**10000 with 14 to 15 decimal digits of precision. The head
array? HNEW, and some variables in the solvers are stored as double precision,
and accordingly many calculations in the solvers are double precision. This
was necessary for accuracy under some conditions. The model program should
perform adequately for most problems on computers that use 32 bits for single
precision and 64 bits for double precision. However, the required precision
depends on the problem being simulated. Thus, the user must ultimately
determine if adequate precision is being used for solving a particular
problem.

There are some situations for which there is a need to modify the program
to make all real number calculations in double precision. If using a computer
that represents single precision real numbers with less than 32 bits, then
double precision is probably necessary for all real numbers and calculations.
Even on computers that represent single precision numbers with 32 bits,
certain problems are difficult to solve without making all real numbers and
calculations double precision. Unfortunately, it is difficult to predict if a
specific problem requires all double precision. Simulations with very large
numbers of cells, for example more than 50000, are more likely to have
precision problems than are smaller simulations. Simulations in which there
are areas having significant ground-water flow and yet the heads in the
adjacent model cells in these areas are equal within .Ol percent or less are

A-2

also more likely to have precision problems. In addition, precision problems
depend on the preciseness of the attempted solution. In general, the symptoms
of inadequate precision are either a poor volumetric flow balance or lack of
convergence by the solver. However, these same symptoms are more commonly
caused by bad input data or improper adjustment of parameters that control
iteration. Because precision problems are in general fairly unlikely and use
of all double precision results in increased memory and computer time usages
conversion to double precision should probably be done as a last resort in
order to solve convergence problems. If the program is converted to all
double precision, almost twice the computer memory is required for model data.
To convert all real numbers and calculations to double precision, do the
following:

1. Declare all single precision real arrays and variables as DOUBLE PRECISION
in the main program and in every subroutine. This can be done by adding
the statement

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

to the beginning of the specifications section of every subroutine and the
main program. Alternately , some compilers have a special command that
will accomplish this without the need to modify the program itself.

2. In’ the Basic Package Allocate module (subroutine BASlAL) change the
statement

I SUM= ISUM+2*NRCL
to

ISUM=ISUM+NRCL

3. Change the real intrinsic functions in subroutine SSIPlI to their double
precision equivalents. Specifically, change all occurrences of AMAXl to
DMAXl, and AMINl to DMINl.

If using a computer on which significantly more than 32 bits are used to
represent single precision real numbers, then the partial use of double
precision data and calculations as included in the present model program may
be unnecessary. The program should still work on such computers without
modification, but computational time and memory would be saved if double
precision were eliminated. The program was designed so that changing to all
single precision would 'be easy. For this reason* the use of double precision
intrinsic functions and constants is avoided, and all conversions between real
and double precision are done by implied type changes in assignment
statements. If it is determined that the use of all single precision is
acceptable, make the following changes to the program:

1. Delete all DOUBLE PRECISION specification Statements.

2. In the Basic Package Allocate module (subroutine BASlAL) change the
statement

ISUM=ISUMt2*NRCL
to

ISUM=ISUMtNRCL

A-3

The model program was developed on computers that use 32 bits for integer
numbers and calculations. This is more than adequate to represent the range
of integer numbers that are used in the program under any conditions. The
largest integer that the computer must be able to represent is the dimensioned
size of the X array in the main program. Many FORTRAN compilers allow one to
specify that integers be represented by 16 bits, which does not provide enough
precision for larger model simulations. That is, a 16 bit integer in a
typical computer can represent numbers in the range -32768 to 32767, and an X
array dimension of 32767 is adequate only for simulations that have 2200 to
3000 cells, depending on what options are used.

The Impact of Allocating Array Storage in a Single Array on Portability

Because almost all model data are stored in the X arrayI which is
dimensioned in the main program , this array can be quite large. It is
generally 10 to 15 times the size of the number of model cells. Some
computers require that special compiler options be used when an array exceeds
a specified size. Users are cautioned to be aware of this and use the
appropriate options as needed. The result of using the incorrect option can
sometimes be that the program will execute without producing error messages#
but answers will be incorrect.

All computers limit the amount of array space that a program can use. If
a user's simulation exceeds this limit, the only options may be to use a
different computer or make the simulation smaller. However, some computers
make a distinction between total amount of memory used for all arrays and the
total used by a single array. That is, some computers might allow 4 arrays
each having 32000 elements, but not allow a single array consisting of 128000
elements. On such a computer, it is quite possible that one could exceed the
size limit for a single array without exceeding the total array size limit
because nearly all model data are stored in the single X array. If this
situation occurs, it is possible to break the X array into smaller pieces.
Although this can be done by modifying only the main program* the modification
is fairly complex. Such modification requires a knowledgeable programmer who
has a clear understanding of how model data are stored within the X array.
Before making such a modification, it would be prudent to assess how long the
desired simulation might take to execute. Generally, computer execution speed
is more of a constraint on maximum problem size than is array size.

The only known exception to the use of the FORTRAN 77 standard in the
model program is that the da?a type of actual subroutine arguments does not
always match the type of the corresponding dummy arguments. The standard
requires the data type of actual and dummy arguments to match. This only
happens in the main program where it calls subroutines using actual arguments
that are elements from the X array. The X array itself is data type real, and
several model arrays stored withi X are either integer (arrays IOFLG, IBOUND,
IRCH, IEVT, and LRCH) or double precision (array HNEW). For example, actual
argument X(LCIRCH) in the main program is passed to dummy argument IRCH in
subroutine RCHlRP. X(LCIRCH) is of type real, and IRCH is of type integer.
This practice has not been a problem in the past. Should this become a
problem on future computers, required changes will be fairly minor, affecting
only the main program and some of the Allocate modules.

A-4

The Impact on Portability of Preconnected File Units

FORTRAN 77 provides 2 ways for a file unit to become connected to
(associated with) a file -- preconnection and the OPEN statement. The model
program use preconnection. This means that the computer's operating system
provides the connection between files and file units prior to program
execution. Often the user must issue commands to the system, which connect
the necessary files and file units, prior to running the program. The
specific method for doing this varies among.computers. Generally,
preconnection is adequate, but it may be inconvenient on some computers.
Modification of the main program to use OPEN statements is a simple task for a
programmer.

Conversion to FORTRAN 66

Because the model program uses only one feature of FORTRAN 77 that is not
part of FORTRAN 66, few changes are needed in order to make the program comply
with the FORTRAN 66 standard. All of the required changes are a result of
differences in the way character (alphanumeric) data are handled by the two
versions of FORTRAN. Any variables or arrays holding character data must be
declared to be the character data type in a FORTRAN 77 program; in a FORTRAN
66 program, character data are stored in numeric variables or arrays. The
specific changes that are required to make the model program comply with the
FORTRAN 66 standard are shown below. It is assumed that at least four
characters can be stored in a single precision real variable or array element.

1. Delete all CHARACTER*4 statements throughout all subroutines and the main
program.

2. In each of the array reading utility modules (UlDREL, U2DREL, and U2DINT1,
change the statement

CHARACTER*20 FMTIN
to

DIMENSION FMTIN(5)

3. In each of the array reading utility modules (UlDREL, U2DREL, and U2DINT)r
change all occurrences of W20V1 to 115A411. For example, change

1 ' USING FORMAT: ',A20/3OX,79('-')/I

in subroutine UlDREL to

1 ' USING FORMAT: ',5A4/30X,79('-')/I

4. To make the program strictly comply with the FORTRAN 66 standard, it is
necessary to change character constants in DATA statements to Hollerith
constants. However, most FORTRAN 66 compilers accept character constants
specified using FORTRAN 77 notation (using apostrophes). Thus, it is
unlikely that this change will be required.

A-5

	TWRI 6-A1 - A Modular Three-Dimensional Finite-Difference Ground-Water Flow Model
	Chapter 14. Utility modules (cont'd)
	Input instructions for arry readers (cont'd)
	UCOLNO
	U2DREL
	U2DINT
	U1DREL

	References
	Appendix A. Program portability

