
l

Techniques of Water-Resources Investigations
of the Uni tes Geological Survey

A MODU
FINITE-DIFFE

By Mich el G. McDonald and
Arl n W. Harbaugh

U.S. Geological
pen-file Report 83-875

Book 6

MODELING TECHNIQUES

http://www.usgs.gov/
reidell
Click here to return to USGS Publications

../index.html

CHAPTER 13

SLICE-SUCCESSIVE OVERRELAXATION PACKAGE

Conceptualization and Implementation

Successive overrelaxation is another method for solving large systems

of linear equations by means of iteration. It is implemented in the

model discussed herein through the Slice Successive Overrelaxation (SSOR)

Package. Background material on the successive overrelaxation approach

can be found in many standard references, including those already noted

by Peaceman (1977), Crichlow (1977) and Remson, Hornberger and Molz

(1971).

The successive overrelaxation technique is implemented in the SSOR

Package by dividing the finite difference grid into vertical "slices," as

shown in figure 54, and grouping the node equations into discrete sets,

each set corresponding to a slice. In every iteration, these sets of

equations are processed in turn, resulting in a new set of estimated head

values for each slice. As the equations for each slice are processed,

they are first expressed in terms of the change in computed head between

successive iterations. The set of equations corresponding to the slice

is then solved directly by Gaussian elimination, treating the terms for

adjacent slices as known quantities (that is, inserting the most recently

computed values of head for the adjacent slices as "known" values in the

equations for the slice being processed). The values of head change

computed for the slice in this Gaussian elimination process are then each

multiplied by an acceleration parameter, W, generally taken between 1 and 2;

the results are taken as the final values of head change in that iteration

13-1

Full Grid Slice 4

Figure 54.-Division of the three-dimensional model array into
vertical slices for processing in the SSOR package.

13-2

for the slice. They are added to the respective head values from the

preceding iteration to obtain the final estimates of head for the iteration,

for that slice. This procedure is repeated for each slice in sequence

until all of the slices in the three-dimensional array have been processed,

thus completing a single iteration. The entire sequence is then repeated,

in successive passes through the series of slices, until the differences

between the head values computed in successive iterations is less than

the closure criterion at all nodes in the mesh.

It should be noted that even though a direct method of solution

(Gaussian elimination) is used within each iteration to process the

equations for each individual slice, the overall solution procedure is

not direct but iterative. Each direct solution produces only interim

values or estimates of head change based on the most recently computed

heads in adjacent slices; as successive slices are processed, the computed

values continue to change until closure is achieved.

The process of solution described above can be illustrated in more

detail through consideration of the node equations. The equation of

flow for an individual cell, as developed in chapter 2, is reproduced

below with the addition of a second superscript to indicate iteration

level

GVi,j,k-l/ZhY$,k-I
w

+ Gci-1/2,j,khi-l,j,k
md

+ GRi,j-1/2,khi,j-1,k

+ (- GVi,j,k-l/2 - GGi-l/E,j,k - GRi,j-1/2,k - GRi,j+l/E,k

m, II w
- GGi+l/2,j,k - Gvi,j,k+l/2 + HGGFi,j,k)hi,j,k + GRi,j+l/2,khi,j+l,k

w m, fi
+ CCi+l/2,j,khi+l,j,k + CVi,j,k+l/Ehi,j,k+l = RH%,j,k

(113)

13-3

In equation (113), the superscript m refers to the time step, while

the superscript R refers to the iteration level. If an equation of the form

of (113) is written for the following iteration level, a+l, and the left

side of equation (113) is then subtracted from each side of the new

equation, the result can be written as

CVi ,j,k-1/2,(h~:gf:-l-h::g.k-l) + CCi-l/*,j,k(hTI~~~,k-h~~~,j,k)
m, a+1

+ CRi,j-1/2,k(hi,j-I,k-hl:ja_l,k) + (- CVi,j,k-l/2 - CCi-1/2,j,k

- CRi ,j-1/2,k - CRi,j+l/2,k - CCi+l/E,j,k - CVi,j,k+l/E

m,R+l m,a
+ HCOFi ,j,k)(hi,j,k-hi,j,k) t CRi ,j+l/2,k(hT:~~~,k-h~~~tl,k)

t CCi+l/2,j,k(h~~~rj,k-h~~~,j,k)
m, a+1

+ cvi , j ,k+l/z(hi , j ,k+l-h~:~,k+l) =

w m, 11
RHSi,j,k - CVi,j,k-1/2hi,j,k-1 - cci-1/2,j,khi-l,j,k

w
- CRi,j-1/2,khi,j-l,k - (- CVi,j,k-l/2 - CCi-l/E,j,k - CRi,j-1/2,k

- CRi , j+1/2,k - CCi+l/2,j,k - cvi , j , k+1/2 + HCOFi,j,k)hy:Q,k

w m,a w
- CRi ,j+l/2,khi,j+l,k - CCi+l/2,j,khi+l,j,k - Cvi ,j,k+I/2hi ,j,k+l

(114)

In equation (114) the unknown terms are taken as the changes in computed
m,a+l

iteration QtI--for example, (hi,j,k - h!/:ja,k). head between iteration & and

Note that when the Gh iterat

of (114) consists entirely of

ion has been completed, the right hand side

known terms--it includes the RHS and

conductance terms assembled in the formulation process, and estimate:; of

head already obtained during iteration R.

13-4

Now suppose that we divide the mesh into vertical slices taken along

rows, as shown in figure 54, and isolate the equations associated with

the nodes of an individual slice--for example, slice 4 of figure 54,

which is taken along row 4 of the three dimensional array. In terms of

equation (114), if we are processing slice i, corresponding to row i, we

retain the head changes at nodes within this slice as unknown terms, but

consider the head changes at nodes in the two adjacent slices to be known

values.
m, a+1

Thus the terms cci-1/2,j,k (hi-l,j,k - hyl:,j,k) and

m, a+1
CCi+l/Z,j,k (hi+l,j,k - hy;f,j,k). on the left side of equation (114), are

treated as known quantities. If we move these two expressions to the right

side of the equation and rearrange, we find that the terms in hy':,j,k and

and hTit,j,k drop out, leaving

t (- CVi,j,k-l/2 - CCi-1/2,j,k - CRi,j-l/E,k - CRi,j+l/2,k

- CCi+l/2,j,k - CVi,j,k+l/2 + HCOFi,j,k)(hyIE:-hl:t,k)

+ CRi,jtI/2,k(hY:tZ:,k-hYIftI,k) + Cvi,j,ktI/2(h~:jaf:tI-h!i~~,ktI) =

RHSi,j,k - CVi,j,k-I/Eh;:Q,k-I
m, Et1

- cc-i-1/2,j,khi-l,j,k

- CRi,j-I/2,khl:Q-l,k - (- CVi,j,k-l/2 - CCi-1/2,j,k - CRi,j-1/2,k

- CRi , jt1/2,k - CCitl/2,j,k - CVi,j,ktl/2 t HCOFi,j,k)h!i:;,k

m,R m, at1 w
- CRi,j+l/2,khi,jtl,k - CCitl/2,j,khitl,j,k - CVi,j,ktl/2hi,j,ktl

(115)

13-5

Now suppose the slices are processed in the order of increasing row

number, i; then calculations for slice i-l will be completed in each

iteration before calculations for slice i are initiated. It follows that
m,a+l

a Value Of hi-l,j,k will be available when the processing of slice i is
m, 11+1

initiated in iteration a+l, whereas a value of hi+I,j,k will not be

available.
m,Q+I

Thus the term CCi-I/2,j,khi-l,j,k can be incorporated directly
m,Q+l

as a known term in the processing of slice i, but the term CCi+I/2,j,khi+I,,j,k

cannot. TO circumvent this difficulty, the value of hy+I,j,k from the

mall m, Q+l
preceding iteration, hi+I,j,k, is substituted for hi+I,j,k on the tight

side of (115). (Thus in effect we are using the most recently calculated

value of head for each adjacent slice.) The resulting equation is

CVi , j ,k-l/2 (G:gf:-l-hy:q,k-l)
-f"', Q+l

+ CRi,j-1/2,k(hi,j-l,k-hT:Q_l.k)

t (- CVi,j,k-l/2 - CCi-1/2,j,k - CRi,j-1/2,k - CRi,jtl/2,k

- CCi +1/2, j ,k - Cvi,j,ktl/2 + HCOFi,j,k)(hT:K:-hyzJ,k)

t CRi,jt1/2,k(~:9=:,k-h~:g+l,k)
41, Q+l

t cvi ,j,ktl/2(hi,j,ktl-h'~~~,ktl) =

m, Q+l
RHSi,j,k - cvi,j,k-l/2hy:Q,k-l - cci-1/2,j,khi-l,j,k

m,Q
- CRi ,j-1/2,khi,j-1,k - (- CVi,j,k-l/2 - CCi-1/2,j,k - CRi,j-1/2,k

m, Q
- CRi , jt1/2,k - CCitl/2,j,k - Cvi , j ,k+1/2 t HCOFi,j,k)hi,j,k

m,Q m, 11 m,a.
- CRi,jtl/2,khi,jtl,k - CCitl/2,j,khitl,j,k - CVi,j,ktl/$i,j,ktl

(ll6)

In equation (116), the notation K has been introduced for the head

terms in slice i at iteration atl. The purpose of this notation will become

13-6

clear as the solution process is described. The number of nodes in the

slice is NC*NL, where NC is the number of columns in the model and NL

the number of layers; and an equation of the form of (116) is formulated

at each node. Thus a system of NC*NL equations in NC*NL unknowns is

established. Because the number of layers is usually small, the total

number of equations is generally small enough so that direct solution by

Gaussian elimination is an efficient approach (note that such a procedure

would generally not be feasible for the larger set of equations associated

with the entire three-dimensional model array.)

The set of equations associated with an individual slice, i, can be

written in matrix form as

CAli {AK}i = {R)i (117)

where [AJi is the coefficient matrix for slice i; {bF;}i is a vector of
-in,R+l m,Q

estimates, hi,j,k-hi,j,k , for the change in computed head at each node in

the slice between iteration R and iteration g+l; and {R}i is the vector of

"constant" terms, representing the right side of equation (116), for

slice i.

The Gaussian elimination procedure applied to the matrix equations
~,a+1 m,R

(117) yields one value of the term (hi,j,k-hi,j,k) for each node in the

slice. These terms are taken as first estimates for the change in computed

head from iteration R to iteration a. tl. Each is multiplied by the

acceleration parameter, W, and each result is added to the corresponding

head from the preceding iteration to obtain the final estimate of

head for iteration R+1; that is,

m,R+l m,a.
hi,j,k = hi,j,k + w(hy:;f:-h;:;,k)

(118)

13-7

m,R+l
When values Of hi,j,kl have been computed for each node (j,k) in

slice i, the procedure of calculation is initiated for the succeeding

slice, itl. When all slices have been processed the iteration is conplete,

and calculations are initiated for the next iteration unless closure has

been achieved.

As illustrated in figure 55-a, the matrix of coefficients [A]i of

equation (117) is symmetric and banded, with a maximum half-bandwidth

equal to the number of layers. Because of the symmetry of the matrix,

only the lower triangular portion has to be stored; this storage is

provided in the program in a two-dimensional array, as illustrated in

figure 55-b, with dimensions NL*NC and NL+l. In this example, NL=NC=3.

Adjustment of the acceleration parameter is frequently necessary in

SSOR to achieve optimal rates of convergence. For this purpose, methods

similar to the trial and error procedure described in Chapter 12, for

adjustment of the SIP "seed" value can be applied.

13-8

1 a11 1 a12 I I a14 I I I I I I

a 12 a22 a23 a 25

a 23 a33 a 36

a 14 a 44 a45 a 47

a 25 a 45 a55 a56

(a) Coefficient matrix for an individual slice

(b) Two dimensional array for storage of matrix elements

Figure 55.-Coefficient matrix for slice equations and
corresponding computer storage array.

13-9

Slice-Successive Overrelaxation Package Input

Input to the Slice-Successive Overrelaxation (SOR) Package is read from

the unit specified in IUNIT(11).

FOR EACH SIMULATION

SORlAL

1. Data: MXITER
Format: 110

SORlRP

2. Data: ACCL HCLOSE IPRSOR
Format: F10.0 F10.0 110

Explanation of Fields Used in
Input Instructions

MXITER--is the maximum number of iterations allowed in a time step.

ACCL--is the acceleration parameter, usually between 1.0 and 2.0.

HCLOSE--is the head change criterion for convergence. When the maximum

absolute value of head change from all nodes during an iteration

is less than or equal to HCLOSE, iteration stops.

IPRSOR--is the printout interval for SOR. IF IPRSOR is equal to zero,

it is changed to 999. The maximum head change (positive or negative)

is printed for each iteration of a time step whenever the time

step is an even multiple of IPRSOR. This printout also occurs

at the end of each stress period regardless of the value of I:PRSOR.

13-10

Module Documentation for the Slice-Successive Overrelaxation Package

The Slice-Successive Overrelaxation Package (SORl) consists of three

primary modules and one submodule. They are:

Primary Modules

SORlAL Allocates space for arrays.

SORlRP Reads control information needed by the

SORl Package.

SORlAP Performs one iteration of slice-successive

overrelaxation.

Submodule

SSORlB Solves a system of linear equations.

13-11

Narrative for Module SORlAL

Module SORlAL allocates space in the X array for SOR arrays. The SOR

arrays are A, RES, IEQPNT, HDCG, and LRCH. "A" holds the main diagonal and

the lower diagonals of the symmetric coefficient matrix for a single slice,,

RES holds the residual vector (the right hand sides) for a single slice.

IEQPNT holds a sequential identification number for each cell in a slice.

HDCG holds the maximum head change for each iteration. LRCH holds the

location of the cell (row, column, and layer) which had the'maximum head

change for each iteration.

Module SORlAL performs its functions in the following order:

1. Print a message identifying the SOR Package.

2. Read and print the maximum number of iterations.

3. Allocate the required space in the X array. The X-array location

pointer (ISUM) is saved in the variable ISOLD prior to allocation so that

the space required for SOR can be calculated in step 4. To allocate space

for an array, the array-location variable is set equal to ISUM. Then ISUM

is incremented by the required number of elements.

4. Calculate and print the space used in the X array, The space used by

SOR is ISUM - ISOLD.

5. RETURN

13-12

Flow Chart for Module SORlAL

,X array is the pool of memory space
from which space is allocated for
arrays used by various packages.

PRINT A MESSAGE
IDENTIFYING THE

SORPACKAGE

READ AND PRINT
THE MAXIMUM

NUMBER OF
ITERATIONS

ALLOCATE SPACE
FOR SOR ARRAYS

CALCULATE AND
PRINT THE AMOUNT

OF SPACE IN THE
X ARRAY USED BY

13-13

SUBROUTINE SORlAL (ISUM, LENX, LCA, LCRES, LCHDCG, LCLRCH, LCIEQP,
1 MXITER,NCOL,NLAY,NSLICE,bf3W,IN,IOUT)

: -----VERSION 1638 24JUL1987 SORlAL
C ********************************~*~*****************~*************
C ALLOCATE STORAGE FOR SOR ARRAYS
C ************************~***************************~*******~~*****
C
C SPECIFICATIONS:
C --------------------____________________------------.--------------
C --~-------------

------PRINT A MiSSAGE IDENTIFYING SOR PACKAGE
WRITE(IOUT,l)IN

1 FORMAT(lHO,‘SORl -- SLICE-SUCCESSIVE OVERRELAXATION PACKAGE’
I,', VERSION 1, 9/l/87 INPUT READ FROM UNIT’,131

C
(-J&--- READ AND PRINT MXITER (MAXIMUM # OF ITERATIONS)

READtIN, MXITER
2 FORMATtIlO)

WRITE(IOUT,3) MXITER
3 FORMATt 1X, 15, ' ITERATIONS ALLOWED FOR SOR CLOSURE’ 1

------ALLOCATE SPACE FOR THE SOR ARRAYS
ISOLD=ISUM
NSLICE=NCOL*NLAY
MBW=NLAY+l
LCA= ISUM
ISUM=ISUMtNSLIC~*MBW
LCRES=ISUM
ISUM=ISUM+NSLICE
LCIEQP=ISUM
ISUM=ISUMtNSLICE
LCHDCG= ISUM
ISUM=ISUM+MXITER
LCLRCH=ISUM
ISUM=ISUM+3*MXITER
ISF+=ISUM-ISOLD

i

C
c4 ------CALCULATE AND PRINT THE SPACE USED IN THE X ARRAY

WRITE(IOUT,4) ISP
4 FORMAT(lX,I8,' ELEMENTS IN X ARRAY ARE USED BY SOR’)

ISUMl=ISUt+l
WRITE(IOUT,5) ISUMlrLENX

5 FORMAT(lX,I8,' ELEMENTS OF X ARRAY USED OUT OF’,181
IF(ISUMl.GT.LENX) WRITE(IOUT,6)

6 FORMATt 1X, ’ ***X ARRAY MUST BE DIMENSIONED LARGER***‘)
C
c5 ..---+EJ-U~

RETURN
END

13-14

List of Variables for Module SORlAL

Variable

IN

IOUT

ISOLD

ISP

ISUM

ISUMl

LCA

LCHDCG

LCIEQP

LCLRCH

LCRES

LENX

FBW

MXITER

NCOL

NLAY

NSL ICE

Range

Package

Global

Package

Module

Global

Module

Package

Package

Package

Package

Package

Global

Package

Package

Global

Global

Package

Definition

Primary unit number from which input for this package
will be read.

Primary unit number for all printed output. IOUT = 6.

Before this module allocates space, ISOLD is set equal
to ISUM. After allocation, ISOLD is subtracted
from ISUM to get ISP, the amount of space in the
X array allocated by this module.

Number of words in the X array allocated by this module.

Index number of the lowest element in the X array which
has not yet been allocated. When space is allocated
for an array, the size of the array is added to ISUM.

Index number of the last element of the X array allocated
by this module.

Location in the X array of the first element of array A.

Location in the X array of the first element of array
HDCG.

Location in the X array of the first element of array
I EQPNT.

Location in the X array of the first element of array
LRCH.

Location in the X array of the first element of array
RES.

Length of the X array in words. This should always be
equal to the dimension of X specified in the MAIN
program.

Maximum bandwidth of the coefficient matrix +l.

Maximum number of iterations.

Number of columns in the grid.

Number of layers in the grid.

Number of cells in a slice.

13-15

Narrative for Module SORlRP

Module SORlRP reads data for the SOR package: the acceleration parameter

(ACCL), also called the relaxation factor; the closure criterion (HCLOSE);

and the time-step interval (IPRSOR) for printing head change. This module

does not have a flow chart. Module SORlRP performs its functions in the

following order:

1. Read the acceleration parameter (ACCL), the closure criterion

(HCLOSE), and the interval for printing head change (IPRSOR), If ACCL is

zero, substitute a default value of 1.0. If IPRSOR is less than one, set it

equal to 999.

2. Print the maximum number of iterations (MXITER), the acceleration

parameter (ACCL), the closure criterion (HCLOSE), and the head-change interval

(IPRSOR).

3. RETURN.

13-16

SUBROUTINE SORlRPlMXITER, ACCL, HCLOSE, IN, IPRSOR, IOUT)
C
C
C -----VERSION 1005 16MAR1983 SORlRP
C **~***
C READ PARAMETERS FOR SOR

c”
t*~**~**t******+********~*~*****~******~*****~*****~~**~***~**

C SPECIFICATIONS:
C --
C --
C
Cl----- READ THE ACCELERATION PARAMETER/RELAXATION FACTOR (ACCL) THE
Cl---- CLOSURE CRITERION (HCLOSE) AND THE NUMBER OF TIME STEPS
Cl--- BETWEEN PRINTOUTS OF MAXIMUM HEAD CHANGES (IPRSOR).

READtIN, ACCL,HCLOSE,IPRSOR
1 FORMAT(2F10.0,110)

IF(ACCL.EQ.0.) ACCL=l.
IF(IPRSOR.LT.l) IPRSOR=999

:2------PRINT A~CL, HCLOSE, IPRSOR
WRITE(IOUT,lOO)

100 FORMAT(lHO,///57X,‘SOLUTION BY SLICE-SUCCESSIVE OVERRELAXATION'
1/57X,43('-'))
WRITE(IOUT,llS) MXITER

115 FORMAT(lHO,47X,'MAXIMUM ITERATIONS ALLOWED FOR CLOSURE =',I91
WRITE (IOUT, ACCL

120 FORMATtlH ,63X, 'ACCELERATION PARAMETER ='rG15.5)
WRITE(IOUT,125) HCLOSE

125 FORMATtlH ,52X,'HEAD CHANGE CRITERION FOR CLOSURE ='rE15.5)
WRITE(IOUT,130) IPRSOR

130 FORMATtlH ,52X,‘SOR HEAD CHANGE PRINTOUT INTERVAL =',I91
C
C3------RETURN

RETURN
END

13-17

List of Variables for Module SORlRP

Variable Range Definition

ACCL Package Acceleration parameter.

HCLOSE Package Closure criterion for the iterative procedure,,

IN Package Primary unit number from which input for this package
will be read.

IOUT Global Primary unit number for all printed output. IOUT = 6,,

IPRSOR Package Frequency (in time steps) with which the maximum head
changes for each iteration will be printed.

MXITER Package Maximum number of iterations.

13-18

Narrative for Module SORlAP

Module SORlAP performs one iteration of the Slice-Successive Over-

relaxation (SSOR) algorithm for solving the system of finite-difference

equations. The conductances CC, CR, and CV and the composite terms HCOF

and RHS (see equation (27)) which are calculated by the formulation procedure

are combined, row by row (slice by slice), to form the coefficient matrix

[A] and the vector {RES) on the right hand side of the matrix equation for a

single slice. Since the coefficient matrix is symmetric and banded, only

main diagonals and NLAY subdiagonals are saved. As heads are calculated,

they are stored Sn the array HNEW. The matrix [A] and the vector {RES) are

passed to a submodule SSORlB which solves the matrix equation for a vector

of approximate head changes which is then multiplied by the relaxation

factor to get the final head changes for the iteration. The final head

changes are added to the heads from the preceding iteration to get the

heads for the current iteration. The final head changes for the iteration

are compared to the closure criterion to see if the iterative procedure

has closed.

Module SORlAP performs its functions in the following order:

1. Calculate the number of elements in the compressed coefficient

matrix [A].

2. Process the slices (rows) one at a time (DO STEPS 3-7).

3. Clear the A array.

4. Assign integers sequentially to the active cells in the slice

(remember that finite-difference equations are formulated only for active cells).

13-19

5. Calculate the elements in the compressed coefficient matrix [A] and

the residual vector {RES). Process the cells in the slice one cell at a time.

If the cell is inactive, move on to the next cell. The elements in

the main diagonal of the coefficient matrix (the multipliers of hi,j,k)

will consist of HCOF plus conductances to the six adjacent cells. They

will be formed in an accumulator called EE. The contents of EE multiplied

by the head from the previous iteration (HNEW) are subtracted from an

accumulator (R) to form the residual.

(a) Determine the equation number (NED) of the cell. If NEQ is

zero, the cell is inactive. Move on to the next cell.

(b) Set the accumulators EE and R equal to HCOF and RHS,

respectively. Note: HNEW contains head from the last iteration.

(c) If there is a node to the left, subtract the conductance from

EE and subtract the conductance times HNEW from R.

(d) If there is a node to the right, subtract the conductance

from EE, and subtract the conductance times HNEW from R; and, if the cell

to the right is active, move the conductance into the compressed coefficient

matrix [A]. Remember that the coefficient matrix is symmetric so the conduc:tance

to the left in step 5(c) did not have to be stored.

(e) If there is a node to the rear, subtract the conductance from

EE and subtract the conductance times HNEW from R.

(f) If there is a node to the front, subtract the conductance

from EE and subtract the conductance times HNEW from R. Remember that the

13-20

form of the SSOR equations does not have terms containing head in adjacent

rows on the left hand side.

(g) If there is a node above, subtract the conductance from EE

and subtract the conductance times HNEW from R.

(h) If there is a node below, subtract the conductance from EE

and subtract the conductance times HNEW from R; and, if the cell below

is active, move the conductance into A.

(i) Move EE into the first row of A. The first row in A corresponds

to the main diagonal in the "full" coefficient matrix. Subtract EE times

HNEW from R and store it in the residual vector.

6. If there are no equations for this slice, go on to the next slice.

If there is only one equation, solve it directly and leave the result in

the residual vector {RES). If there are two or more equations, call submodule

SSORlB to solve the system of equations for the slice leaving the results

(first estimate of head change for this iteration) in the vector {RES).

7. For each cell in the slice, calculate the head for the current

iteration.

(a) Multiply the first estimate of head change for this iteration

by the relaxation factor to get the final estimate of head change for this

iteration.

(b) Add the final head change for this iteration to the head from

the last iteration to get the head for this iteration.

13-21

(c) If the head change for this cell is greater than that for any

other cell, store the head change and the location of the cell.

8. Save the largest head change from this iteration so that it can

be printed at the end of the time step.

9. Compare the biggest head change (BIGG) to the closure criterion

(HCLOSE). If HCLOSE is greater than BIGG, set the convergence flag

(ICNVG) equal to one.

10. If you have not converged and you have not exceeded the maximum

number of iterations, RETURN.

11. Print the number of iterations.

12. If convergence failed, or this is the last time step, or this is

the time step interval specified by the user, print the maximum head change 8

for each iteration in this time step.

13. RETURN.

13-22

Flow Chart for Module SORlAP

A is a compressed coefficient
matrix for a slice. It
contains the main diagonal
of the full matrix and the
NLAY diagonals below it.
(NLAY is the number of layers.)

Sequence Number is a number used
to identify the internal
(variable-head) cells in a
slice and also the equations
for each internal cell.

RES is a vector containing the
residuals for a slice. It
consists of RHS (from the
basic finite-difference
equation) plus all of those
terms which are moved to the
right hand side to get the
equations ready for solution
in residual form.

First estimates of head change:
these are the head changes
calculated by simultaneously
solving the equations for a
slice. They will be multi-
plied by the relaxation
factor to get final estimates
of head change.

Final estimates of head change:
these are the head changes
calculated by multiplying
first estimates by the
relaxation factor. They are
added to the heads from the
previous iteration to get
head for the current iteration.

ICNVG is the convergence flag.
It is set in the approximator
and returned to the MAIN
Program so that the iteration
loop can be terminated.

FOR
IN

13-23

SUBROUTINE SORlAP(HNEW, IBOUND,CRrCC,CVr HCOF, RHS, A, RES, IEQPNT,
1 HDCG,LRCH,KITER,HCLOSE,ACCL,ICNVG,KSTP,KPER,
2 IPRSOR,MXITERINSTPINCOL,NROW,NLAYINSLICE,M~W,IOUT)

-----VERSION 0936 09MAY1983 SORlAP
~***********

:
SOLUTION BY SLICE-SUCCESSIVE OVERRELAXATION -- 1 ITERATION
~*********~~*********

C
C SPECIFICATIONS:
C ---.---------

DOUBLE PRECISION HNEW, DIFF, DP, EE, R,HCFHNWr HHCOF
C

DIMENSION HNEW(NCOL,NROW,NLAY)r IBOUND(NCOLrNROW,NLAY)r
1 CR(NCOL,NROW,NLAY)r CC(NCOLrNRCW,NLAY)r
1 CV(NCOLrNROW,NLAY)r HCOF(NCOLrNROW,NLAY)r RHS(NCOLrNROW,NLAY)r

3’
HDCGtMXITER), LRCH(~~MXITER)~A~J~BW,NSLICE)~RES(NSLICE),
IEQPNT(NLAY,NCOL)

C --~---------
C
Cl ------CALCULATE # OF ELEMENTS IN COMPRESSED MATRIX A AND
Cl--- INITIALIZE FIELDS TO SAVE LARGEST HEAD CHANGE.

NA=MBW*NSLICE
BIG=O.
ABSBIG=O.
IB=O
JB=O
KB=O

C
c2--- PROCESS EACH SLICE

DO 500 I=lrNROW
C
Q------CLEAR A

DO 110 J=lrNSLICE
DO 110 K=l,MBW

110 A(K,J)=O.

E4 ------ASSIGN A SEQUENCE # TO EACH VARIABLE HEAD CELL.
NEQT=O
DO 200 J=l,NCOL
DO 200 K=l,NLAY
IEQPNT(K,J)=O
IF(IBOUND(J,I,K) .LE.O) GO TO 200
NEQT= NEQT+ 1
IEQPNT(K,J)=NEQT

200 CONTINUE
C
c5 ------FOR EACH CELL LOAD MATRIX A AND VECTOR RES

DO 300 J=lrNCOL
DO 300 K=lrNLAY

&A -----IF SEQUENCE # IS 0 (CELL IS EXTERNAL) GO ON TO NEXT CELL
NEQ=IEQPNT(K, J)
IF(NEQ.EQ.0) GO TO 300

C
C5&---- INITIALIZE ACCUMULATORS EE AND R

EE=O.
R=RHS(J,I,K)

C

13-24

clj(-+--- IF NODE TO LEFT SUBTRACT TERMS FROM EE AND R
IF(J.EQ.l) GO TO 120
DP=CR(J-lrI,K)
R=R-DP*HNEW(J-1rIrK)
EE=EE-DP

C
C5D-w-n IF NODE TO RIGHT SUBTRACT TERMS FROM EE 8 R, MOVE COND TO A

120 IF(J.EQ.NCOL) GO TO 125
SF’=CR(J,I,K)
DP= SP
R=R-DP*HNEW(J+lrIrK)
EE=EE-DP
NXT=IEQPNT(K,J+l)
IF(NXT.GT.0) A(l+NXT-NEQ,NEQ)=SP

C
ME--- IF NODE TO REAR SUBTRACT TERMS FROM EE AND R

125 IF(I.EQ.l) GO TO 130
DP=CC(J,I-1rK)
gR;y;HpNEW’J,I-1rK)

= -
C
pj F---- IF NODE TO FRONT SUBTRACT TERMS FROM EE AND R

130 IF(I.EQ.NROW) GO TO 132
DP=CC(J,I,K)
;;R;$P;HpNEW(J,I+lrK)

= -
C

.

CSG---- IF NODE ABOVE SUBTRACT TERMS FROM EE AND R
132 IF(K.EQ.l) GO TO 134

DP=CV(J,I,K-1)
R-R-DP*HNEW(JrI,K-1)
EE=EE-DP

C
C5 H----s IF NODE BELOW SUBTRACT TERMS FROM EE 8 R AND MOVE CDND TO A

134 IF(K.EQ.NLAY) GO TO 136
SF=CV(J,I,K)
DP=SP
R=R-DP*HNEW(JrIrK+l)
EE=EE-DP
IF(IEQPNT(K+lrJ).GT.O) A(2rNEQ)=SP

-----MOVE EE INTO A, SUBTRACT EE TIMS LAST HEAD FROM R TO GET RES
136 HHCOF=HCOF(J,I,K)

A(l,NEQ)=EE+HHCQF
HNW=HNEW(JrIrK)
HCFHNW=HNW*HCOF(J, 1,Kl
RES(NEQ)=R-EE*HNEW(J,I,KbHCFHNW

300 CONTINUE

is6 ------IF NO EQUATIONS GO TO NEXT SLICE, IF ONE EQUATION SOLVE
c6 ------DIRECTLY, IF 2 EQUATIONS CALL SSORlB TO SOLVE FOR FIRST
(3j--- ESTIMATE OF HEAD CHANGE FOR THIS ITERATION.

IF(NEQT.LT.l) GO TO 500
IF(NEQT.EQ.l) RES(l)=RES(l)/A(lrl)
IF(NEQT.GE.2) CALL SSORlB(A,RES,NEQT,NA,MBW)

C
C7------ FOR EACH CELL IN SLICE CALCULATE FINAL HEAD CHANGE THEN HEAD.

DO 400 J=lrNCOL
DO 400 K=l,NLAY
NEQ=IEQF’NT(K, J 1
IF(NEQ.EQ.0) GO TO 400

C

13-25

C7A-es-- MULTIPLY FIRST ESTIMATE OF HEAD CHANGE BY RELAX FACTOR TO ’
C7A----- GET FINAL ESTIMATE OF HEAD CHANGE FOR THIS ITERATION,

DH=RES(NEQ)*ACCL
DI FF=DH

C
C7&---- ADD FINAL ESTIMATE TO HEAD FROM LAST ITERATION TO GET HEAD
c7B----- FOR THIS ITERATION.

HNEW(J,I,K)=HNEW(J,IIK)+DIFF

:7c -----SAVE FINAL HEAD CHANGE IF IT IS THE LARGEST
ABSDH=ABS(DH)
IF(ABSDH.LE.ABSBIG) GO TO 400
ABSBIG=ABSDH
BIG=DH
IB=I
JB=J
KB=K

400 CONTINUE

:
500 CONTINUE"

Ei3 ------SAVE LARGEST HEAD CHANGE FOR THIS ITERATION
HDCG(KITER)=BIG
LRCH(lrKITER)=KB
LRCH(i?rKITER)=IB
LRCH(3rKITER)=JB

k ------IF LARGEST HEAD CHANGE IS SMALLER THAN CLOSURE THEN SET
c9 ------CONVERGE FLAG (ICNVG) EQUAL TO 1.

ICNVGO
IF(ABSBIG.LE.HCLOSE) ICNVGl

C
ClO----- IF NOT CONVERGED AND NOT EXCEDED ITERATIONS THEN RETURN

IF(ICNVG.EQ.0 .AND. KITER.NE.MXITER) RETURN
IF(KSTP.EQ.l) WRITE(IOUT,6001

600 FORMATt 1HO)
C
Cll--- PRINT NU1YBER OF ITERATIONS

WRITE(IOUT,601) KITER, KSTP,KPER
601 FORMAT(lX,I5,' ITERATIONS FOR TIME STEP'rI4r' IN STRESS PERIOD',

1 13)

El2 -----IF FAILED TO CONVERGE OR LAST TIME STEP OR PRINTOUT
c12--- INTERVAL SPECIFIED BY USER IS HERE THEN PRINT MAXIMUM
c12--- HEAD CHANGES FOR EACH ITERATION.

IF(ICNVG.NE.0 .AND. KSTP.NE.NSTP .AND. MOD(KSTP,IPRSORl.NE.O)
1 GO TO 700
WRITE(IOUT,5)

5 FORMAT(1HOr’MAXIMUM HEAD CHANGE FOR EACH ITERATION: '/
1 lHO,4(’ HEAD CHANGE LAYER,ROW,COL')/lX,120('-'1)
WRITE (IOUT, (HDCG(J)r(LRCH(I,J)rI=lr3)rJ=lrKITER)

10 FORMAT((lX,4(4X,G12.4,' (',13,',',13,',',13,')I)))
WRITE(IOUT,ll)

11 FORMATtlHD)
C
Cl3 -----RETURN

700 RETURN
C

END

13-26

List of Variables for Module SORlAP

Variable

A

ABSDIG
ABSDH

ACCL
cc

CR

cv

DH
DIFF
DP
EE
HCLOSE
HCOF

HDCG

HNEW

I
IB

IBOUND

ICNVG

IEQPNT

IOUT
I PRSOR

J
JB

K
KB

KITER

KPER

Range

Package

Module
Module

Package
Global

Global

Global

Module
Module
Module
Module
Package
Global

Package

Global

Module
Module

Global

Global

Global

Global
Package

Module
Module

Module
Module

Global

Global

Definition

DIMENSION (MBW,NSLICE), Compressed coefficient matrix
for a slice.

Largest ABSDH for this iteration.
Absolute value of head change in a cell for the current

iteration.
Acceleration parameter.
DIMENSION (NCOL,NROW,NLAY), Conductance in the column

direction. CC(J,I,K) contains conductance between
nodes (J,I,K) and (J,I+~,K).

DIMENSION (NCOL,NROW,NLAY), Conductance in the row
direction. CR(J,I,K) contains conductance between
nodes (J,I,K) and (J+l,I,K).

DIMENSION (NCOL,NROW,NLAY-l), Conductance in the
vertical direction. CV(J,I,K) contains conductance
between nodes (J,I,K) and (J,I,K+l).

Change in head in a cell during one iteration.
Double-precision change in head (DH).
Double-precision temporary field.
Main diagonal term in the finite-difference equation.
Closure criterion for the iterative procedure.
DIMENSION (NCOL,NROW,NLAY), Coefficient of head in the

cell (J,I,K) in the finite-difference equation.
DIMENSION (MXITER), Maximum head change for each

iteration.
DIMENSION (NCOL,NROW,NLAY), Most recent estimate of

head in each cell. HNEW changes at each iteration.
Index for rows. . .
Row number of the cell containing the largest head

change.
. DIMENSION (NCOL,NROW,NLAY), Status of each cell.

< 0, constant-head cell
= 0, inactive cell
> 0, variable-head cell

Flag is set equal to one when the iteration procedure
has converged.

DIMENSION (NLAY,NCOL), Sequence numbers for variable-
head cells in a slice.

Primary unit number for all printed output. IOUT = 6.
Frequency (in time steps) with which the maximum head

changes for each iteration will be printed.
Index for columns.
Column number of the cell containing the largest head

change.
Index for layers.
Layer number of the cell containing the largest head

change.
Iteration counter. Reset at the start of each time

step.
Stress period counter.

13-27

List of Variables for Module SORlAP (Continued)

Variable

KSTP

LRCH

MBW
MXITER
NA

NCOL
NEQ
NEQT
NLAY
NROW
NSLICE
NSTP
NXT
R

RES
RHS

SP

Range

Global

Package

Package
Package
Package

Global
Module
Package
Global
Global
Package
Global
Module
Module

Package
Global

Module

Definition

Time step counter. Reset at the start of each stress
period.

DIMENSION (MXITER), Layer, row, and column of the cell
containing the maximum head change (HDCG) for each
iteration.

Maximum bandwidth of the coefficient matrix +l.
Maximum number of iterations.
Number of elements in the compressed coefficient

matrix (A).
Number of columns in the grid.
Index for equations (variable-head cells) in a slice.
Number of equations (variable-head cells) in a slice.
Number of layers in the grid.
Number of rows in the grid.
Number of cells in a slice.
Number of time steps in the current stress period.
Sequence number of the cell to the right.
Right hand side of the finite-difference equation as

modified (terms for the adjacent rows moved to the
right) for solution by the slice-successive
overrelaxation.

DIMENSION (NSLICE), Residual.
DIMENSION (NCOL,NROW,NLAY), Right hand side of the

finite-difference equation. RHS is an accumulation
of terms from several different packages.

Single-precision temporary field.

13-28

	TWRI 6-A1 - A Modular Three-Dimensional Finite-Difference Ground-Water Flow Model
	Chapter 13. Slice-successive overrelaxation package
	Conceptualization and implementation
	Input instructions
	Module documentation
	SOR1AL
	SOR1RP
	SOR1AP

