
l 

Techniques of Water-Resources Investigations 
of the Uni tes Geological Survey 

A MODU 
FINITE-DIFFE 

By Mich el G. McDonald and 
Arl n W. Harbaugh 

U.S. Geological 
pen-file Report 83-875 

Book 6 

MODELING TECHNIQUES 

http://www.usgs.gov/
reidell
Click here to return to USGS Publications

../index.html


CHAPTER 5 

BLOCK-CENTERED FLOW PACKAGE I 

Conceptualization and Implementation 

The Block-Centered Flow (BCF) Package computes the conductance 

components of the finite-difference equation which determine flow between 

adjacent cells. It also computes the terms that determine the rate of 

movement of water to and from storage. To make the required calculations, 

it is assumed that a node is located at the center of each model cell; thus 

the name Block-Centered Flow is given to the package. 

In Chapter 2, the equation of flow for each cell in the model was 

developed as 

Cvi,j,k-1/2hi,j,k-1 +CCi-1/2,j,khi-l,j,ktCRi,j-1/2,khi,j-l,k 

t (-Cvi,j,k-1/2’CCi-l/2,j,k-CRi,j-1/2,k-cRi,j+l/2,k 

- CCi+l/2,j,k-CVi,j,k+1/2t~~~Fi,j,k)hi,j,kt~~i,jtl/2,khi,jtl,k 

+ ~~i+l/2,j,khi+l,j,kt~~i,j,k+l/2hi,j,k+l = RHSi,j,k* (2% 

The CV, CR, and CC coefficients are conductances between nodes--sometimes 

called "branch conductances." The HCOF and RHS coefficients are composed 

of external source terms and storage terms. Besides calculating the 

conductances and storage terms, the BCF Package calculates flow-correction 

terms that are added to HCOF and RHS when an underlying aquifer becomes 

partially unsaturated. Under these conditions the flow to the underlying 

aquifer no longer increases in proportion to the head difference between 

aquifers, but rather reaches a constant limiting value. The additional 

terms correct the flow equations, in effect reducing the expressions for 

downward flow to correspond to this limiting value. 
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The following d 

of the BCF package is 

Equations, Horizontal 

Conductance Under Wat 

scussion of the conceptualization and implementation 

divided into nine sections: Basic Conductance 

Conductance Under Confined Conditions, Horizontal 

r Table Conditions, Vertical Conductance Formulation, 

Vertical Flow Calculation Under Desaturating Conditions, Storage Formulation, 

Storage Term Conversion, Applicability and Limitations of Optional Formulations 

and Data Requirements. 

Basic Conductance Equations 

The concept of hydraulic conductance was introduced in Chapter 2 

(equation (9)). It is reviewed here and extended to cover the calculation 

of equivalent conductance for elements arranged in series. 

Conductance is a combination of several parameters used in Darcy's 

law. Darcy's law defines one-dimensional flow in a prism of porous material 

(figure 23) as 

Q = KA(h2-hI)/L (30) 

where 

Q is the flow (Lst-1); 

K is the hydraulic conductivity of the material in the direction of 

flow (Lt-1); 

A is the cross-sectional area perpendicular to the flow (L*); 

h2-hl is the head differences across the prism parallel to flow (L); and 

length of the flow path (L). L is the 

Conductance, C, 

C = KA/L. 

is defined as 

(31) 

a 
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Q Q 

Explanation 

K Is Hydraulic Conductivity 

h, Is the Head at the Left End of the Prism 

hl Is the Head at the Right End of the Prism 

Q Is the Flow Rate from the Left End to the Right End 

L Is the Length of the Flow Path 

A Is the Cross Sectional Area Perpendicular to the Direction of Flow 

Figure 23.-Prism of porous material illustrating Darcy’s law. 
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Therefore, Darcy's law can be written as 

Q = C(h2-hl). (32) 

Another form of the conductance definition for horizontal flow in a prism is 

C = TW/L (33) 

where 

T is transmissivity (K times thickness of the prism) in the direction 

of flow (L*t-1); and 

W is the width of the prism (L). 

Conductance is defined for a particular prism of material and for a 

particular direction. In an anisotropic medium characterized by three 

principal directions of hydraulic conductivity, the conductances of a prism 

in these three principal directions will generally differ. 

If a prism of porous material consists of two or more subprisms in 

flow, as shown in 

a conductance 

series--that is, aligned sequentially in the direction of 

figure 24--and the conductance of each subprism is known, 

representing the entire prism can be calculated. The equ 

for the entire prism is the rate of flow in the prism div 

change across the prism. 

c = Q/b/+$) 

ivalent conductance 

ided by the head 

(34) 

Assuming continuity of head across each section in series 

n 
C Ahi = hA-hD. 

i=l 

gives the identity 

(35) 

Substituting for head change across each section using Darcy's law (equation 

(32)) gives 

n 9i 
c -- = hA-hg. 

i=l Ci 
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Explanation 

Q Is the Flow Rate 

%l Is Conductance of Prism m 

hfn Is Head at the Right Side of Prism m 

Ah,,, Is the Head Change Across Prism m 

C Is the Conductance of the Entire Prism 

Figure 24.-Calculation of conductance through several prisms 
in series. 
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Since flow is one-dimensional and we are assuming no accumulation or deple- 

tion in storage, all qi are equal to the total flow Q; therefore, 

Q; -t 
hA-hB n 1 

i=l Ci 
= hA-hB and ----- = 1 --. 

Q i=l Ci 
(37) 

By comparison with equation (34),.it can be seen that 

1 nl 
m-s = c mm . 
C is1 Ci 

(36) 

Thus for a set of conductances arranged in series, the inverse of the equi- 

valent conductance equals the sum of the inverses of the individual conduc- 

tances. When there are only two sections, the equivalent conductance 
. 

reduces to 

c = ClC2/(Cl + C2). (39) 

Horizontal Conductance Under Confined Conditions 

The finite-difference equations presented in this report use equiva- 

lent conductances between nodes of adjacent ccl Is--i .e., “branch conduc- 

tances,"-- rather than conductances defined within individual cells. The 

horizontal conductance terms, CR and CC of equation (29), are calculated 

between adjacent horizontal nodes. CR terms are oriented along rows and 

thus specify conductance between two nodes in the same row. Similarly, CC 

terms specify conductance between two nodes in the same column. To desig- 

nate conductance between nodes, as opposed to conductance within a cell, 

the subscript notation "l/2" is used. For example, CRi,j+l/2,k represents 

the conductance between nodes i,j,k and i,j+l,k. 

Figure 25 illustrates two cells along a row, and the parameters used 

to calculate the conductance between nodes. Two assumptions are made: (1) 
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T 
I I 

i TRi,j+l,k 

I 

I 

DELCi 

1. 

& i,j+l,k 

I 
I 

= 2 DELCi x 
T*i j k I * TRi j+l k 9 ? 

CRi j+x k I I 
TR ijk I 8 DELRj+, + TRi j+, k DELRj 9 * 

Explanation 

TRi j k Is Transmissivity in the Row Direction in Cell i,j,k 1 1 

CRi j+% k Is Conductance in the Row Direction Between Nodes i,j,k and i,j+l,k 1 , 

Figure 25.-Calculation of conductance between nodes using 
transmissivity and dimensions of cells. 
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the nodes are in the center of the cells and (2) the transmissivity is uni- 

form over each cell. Thus the conductance between the nodes is the equiva- 

lent conductance of two half cells in series (Cl and C2). Applying equation 

(39) gives 

mi,j+1/2,k = ClC2/(Cl + CZ)* (40) 

Substituting the conductance for each half cell from equation (33) gives 

TRi,j,k DELCi TRi,j+l ,k DELCi 
------------- m-------------- 

CRi,j+1/2,k 
l/2 DELRj l/2 DELRj+l 

= ----------------------------------- 
TRi,j,k DELCi TRi,j+l,k DELCi 
-------B----- + m----w--------- 

1/2 DELRj l/2 DELRj+l 

where 

TR is transmissivity in the row direction (L*t-l); 

DELR is the grid width along a row (L); and 

DELC is the grid width along a column (L). 

DELR and DELC are identical to the terms Ar and AC, respectively, 

which were introduced in figure 4 and equation (3), Chapter 2. The 

new notation is introduced here to conform to the input of the Block- 

Centered Flow Package. 

Simplification of the above expression gives the final equation 

mi,j+1/2,k = 2 DELCi 
TRi,j,kTRi,j+l,k 

-------------------------------- 
TRi,j,kDELRj+l + TRi,j+l,kDELRj. 

(41) 
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The same process can be applied to the calculation of cci+l/z,j,k giving 

cci+l/z,j,k = Z DELRj 
TCi,j,kTCi+l,j,k 

----------_-------------------- 
TCi,j,kDELCi+I + TCi+I,j,kDELCi 

(42) 

where 

TC is the transmissivity in the column direction (Lzt-1). Equations 

(41) and (42) are used in the BCF Package to calculate the horizontal 

conductances between nodes within each layer of the model. However, where 

the transmissivity of both cells is zero, the conductance between the nodes 

in the cells is set equal to zero without invoking the equations. 

Horizontal Conductance Under Water Table Conditions 

In a model layer which is confined, horizontal conductance will be 

constant for the simulation. If a layer is unconfined or potentially 

unconfined, new values of horizontal conductance must be calculated as the 

head fluctuates. This is done at the start of each iteration. First, 

transmissivity is calculated as the product of hydraulic conductivity and 

saturated thickness; then conductance is calculated from transmissivity and 

cell dimensions using equations (41) and (42). 

Transmissivity within a cell in the row direction is calculated using 

one of the following three equations 

if HNEWi,j,k 2 TOPi,j,k, 

then TRi,j,k = (TOPi,j,k - BOTi,j,k) HYRi,j,k; (43) 

if TOPi ,j,k > HNEWi,j,k > BOTi,j,k, 

then TRi,j,k = (HNEWi,j,k - BOTi,j,k) HYRi,j,k; (44) 
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if HNEWi,j,k 2 BOTi,j,k, 

Transmissivity in the column direction is the product of transmis- 

sivity in the row direction and a horizontal anisotropy factor specified by 

the user; the horizontal anisotropy factor is a constant for each layer. 

Conductances in each direction are calculated from transmissivity and cell 

dimensions. When head drops below the aquifer bottom (equation (45)), the 

cell is cons idered to be dewatered, and is permanently set to no flow; the 

model has no provision for the resaturation of a dewatered cell. Thus 

errors may arise in attempts to simulate situations in which actual reversals 

in water-level occur. Errors can also arise if oscillations of computed 

heads occur during iteration; if such computational oscillations cause 

head to drop erroneously below the botton of the cell, the cell will change 

to no flow for all succeeding iterations and time steps. As a means of 

controlling this problem, the iterative solvers contain provisions for 

slowing the rate of convergence. 

a 
(45) 

where 
then TRi,j,k = 0 

HYRi,j,k is the hydraulic conductivity of cell i,j,k in the row 

direction (Lt.-l); (this notation is introduced here to 

conform to the input of the Block-Centered Flow Package); 

TOPi,j,k is the elevation of the top of cell i,j,k (L); and 

BOTi,j,k is the elevation of the bottom of cell i,j,k (L). 

In the program described herein a layer-type flag, LAYCON, is used to 

specify whether or not the simulation of water table conditions through 

equations (43)-(45) is to be invoked. This is discussed more fully in the 

section on data requirements. 

a 

a 
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Vertical Conductance Formulation 

Vertical conductance terms are calculated within the model using data 

from an input array which incorporates both thickness and vertical hydraulic 

conductivity in a single term, and using horizontal (or map) areas calculated 

from cell dimensions. In general, the vertical interval between two nodes, 

i,j,k and and i,j,k+l, may be considered to contain n geohydrologic layers 

or units, having vertical hydraulic conductivities KI,Kz . . . . Kn and 

thicknesses Azl, Az2 . . . . AZ,. The map area of the cells around nodes 

i,j,k and i,j,k+l is DELRj*DELCi; the vertical conductance of an individual 

geohydrologic layer, g, in this area is given by 

% 

Kg DELRj*DELCi 
= -------------- (46) 

Azg 

The equivalent vertical conductance, ci,j,k+l/z, for the full vertical 

interval between nodes i,j,k and i,j,k+I is found by treating the n individual 

geohydrologic layers as conductances in series; this yields 

1 ---------- = 
Ci,j,k+l/Z 

91 i 

1 1 n Azg 
----------------- = ----------- 

*I g=l 
--- 

KgDELRj*DELCi DELRj*DELCi Kg 
------------- 

Azg 

rearranging equation (47) 

Ci,j,k+l/Z 1 
------------- = ------m- 

DELRj*DELCi n AZ 
c g 

g=l -ii; 

(47) 

(48) 
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The quantity ----------- 
DELRj*DELCi 

has been termed the "vertical leakance ' and 

is designated Vcont. l,j,k+l/2 in this report; thus we have 

1 
vconti , j ,k+l/2 = (4% 

Vcont is the term actually used as input in the model described 

herein. That is, rather than specifying a total thickness and an equivalent 

(or harmonic mean) vertical hydraulic conductivity for the interval between 

node i,j,k and node i,j,k+l, the user specifies the term vconti,j,k+l/2, 

which is actually the conductance of the interval divided by the cell area, 

and as such incorporates both hydraulic conductivity and thickness. The 

program multiples Vcont by cell area to obtain vertical conductance. The 

values of Vcont must'be calculated or determined externally to the program; 

this is generally done through an application of equation (49). The Vcont 

values are actually read as the elements of a two-dimensional input array, 

Vconti,j, for each layer. Each value of Vconti,j is the vertical leakance 

for the interval between cell i,j,k and cell i,j,k+l--that is, for the 

interval between the layer for which the array is read, and the layer below 

it. It foll ows that the Vcont array is not read for the lowermost layer 

in the model . Although values of Vcont are thus read into the model through 

a series of two-dimensional input arrays, the discussion in this section 

will continue to be given 

Vconti,j,k+l/2, t0 emphas 

intervals between layers. 

in terms of three-dimensional 

ize the fact that the Vcont va 

array notation, 

lues refer to the 

5-12 



b 

B 

Figure 26 shows a situation in wh 

within a single hydrogeologic unit, hav 

Kz i,j which is uniform at least within 

application of equation (49) yields 

ich nodes i,j,k and i,j,k+l both 

ing a vertical hydraulic conduct 

the cell area. For this case, 

fall , 

ivity 

Kz i,j 
vconti , j ,k+l/2 = ------- 

Bk+1/2 
(50) 

*vk 
where Azk+1/2, the vertical distance between nodes, is the sum of --2- and 

*vk+l 
m---w 

2 ' 
in which AV represents layer thickness as in figure 1. This situation 

might be found, for example, where several model layers are used to represent 

a single geohydrologic unit in order to provide greater vertical resolution. 

Figure 27 shows a case in which two adjacent model layers are used to 

represent two vertically adjacent hydrogeologic units, so that nodes i,j,k 

and i,j,k+l fall at the midpoints of these geohydrologic layers. Each 

layer is characterized by its own value of vertical hydraulic conductivity, 

which is again assumed to be uniform at least over the cell area. The 

expression for Vcont in this case becomes 

1 
Vcon+,i,j,ktl/2 = ------------------- 

(4"k)/2 (*"k&2 
-------- + ---mw----- 

Kz i,j,k Kz i,j,ktl 

(51) 

where Avk is the thickness of model layer k 

Avk+l is the thickness of model layer ktl 

KZ i,j,k is the vertical hydraulic conductivity of the upper 
layer in cell i,j,k 

K, i j k+l is the vertical hydraulic conductivity of the lower 
lby&r in cell i,j,ktl 
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Figure 26.-Diagram for calculation of vertical 
leakance, Vcont, between two nodes 

which fall within a single geohydrologic unit. 
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Figure 27.-Diagram for calculation of vertical 
leakance, Vcont, between two nodes 
located at the midpoints of vertically 
adjacent geohydrologic units. 
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If one value of K, is much smaller than the other, the term containing the 

larger K, value will be negligible in equation (51). Thus for this condition, 

only the term involving the smaller KZ value need be retained in the 

denominator of (51). 

Figure 28 shows a third situation, in which node i,j,k and node 

i,j,k+l are taken within (i.e., at the median depths of) two aquifers which 

are separated by a semiconfining unit. In this case, three intervals must 

be represented in the summation of equation (49)--the lower half of the 

upper aquifer, the semiconfining unit, and the upper half of the lower 

aquifer. The resulting expression for Vcont is 

1 
.l 

VCOnti,j,k+l/2 = ------~~~~~~~~~~----- 

&l/2 A-% UL/2 
--m-m + --- -me-- t 

Kzu KZC KZL 

(52) 

a 
where AZ~ is the thickness of the upper aquifer 

AZc is the thickness of the confining bed 

AZL is the thickness of the lower aquifer 

K,, is the vertical hydraulic conductivity of the upper aquifer 

Kzc is the vertical hydraulic conductivity of the semiconfining unit 

K,L is the vertical hydraulic conductivity of the lower aquifer; and 

each of these terms must in general be considered to vary with the map 

location (i,j) of the nodes. In many applications it turns out that K,, 

is much smaller than either K,, or K,L; in these situations the terms 

involving K,, and K,L are negligible in equation (52) so that the expression 

for Vcont becomes 
Kzc 

Vconti,j,ktl/Z = ;; (53) -, 

a 
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DELRj 

Upper Aquifer - 
vertical conductancx 

of lower half = Cu 

Semiconfining layer - 
vertical conductance =C, 

Lower Aquifer - 
vertical conductance 

of upper half = CL 

1 

I 0 i,j,k 

I 
I 0 i,i,k+l 

1 1 1 

Kzu 

-N--L- 

/ Kzc 

/ 

KZL 
---Be- 

-=-+-+-= 
% CIJ CC CL 

A 2,/2 AZ, A 2~12 
+ + 

Kzu Kzc KZL 

1 
VCONT.. I,j,k + l/2 = AZ,/2 Az, AZLI~ 

-I- -l- 
K zu K zc KZL 

AZ,/2 

-- Boundary 
Between 

AzC - Model 

-- Layers 

AZL/2 

-- 

Figure 28.-Diagram for calculation of vertical leakance, Vcont, 
between two nodes located at the midpoints of aquifers 
which are separated by a semiconfining unit. 
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If the formulation of equation (53) is applied to the situation shown 

in figure 28, and if the further assumptions are made that the confining 

bed makes no measureable contribution to the horizontal conductance or the 

storage capacity of either model layer, then in effect model layer k, repre- 

sents the upper aquifer, model layer k+l represents the lower aquifer, and 

the confining bed is treated simply as the vertical conductance between the 

two model layers. This formulation is equivalent to that of figure 12, 

and is frequently referred to as the "quasi-three-dimensional" approach. 

In summary, the model described herein utilizes a single input array, 

Vcont, which incorporates both vertical hydraulic conductivity and thick- 

ness, rather than independent inputs for thickness and conductivity. The 

program multiplies Vcont by cell area to obtain vertical conductance. This 

requires the user to calculate Vcont values externally to the program, 

using equation (49) in the general case (where n hydrogeologic layers occur 

in the vertical interval between nodes) or equat ions (50), (51 1, (52) or (53) 

in the situations shown in figures 26-28. While this approach involves 

some preprocessing of input data, it actually increases the flexibility of 

model application. Because layer transmissivity (or hydraulic conductivity 

and bottom elevation if unconfined) and layer storage coefficient are 

also used as input terms, the model never actually reads vertical gird 

spacing data. Thus the model can implement either the orthogonal mesh of 

figure 9-b or a deformed mesh such as that of figure 9-c, and can similarly 

be adapted to either a direct three-dimensional simulation or to the quasi- 

three-dimensional formulation, without modification of the program. 
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Vertical Flow Calculation Under Dewatered Conditions 

The basic finite difference equation for cell i,j,k (equation (24)) was 

given as 

+ CCi-I/2,j,k(h!i-I,j,k - h!i,j,k) + CCi+I/2,j,k(h!i+I,j,k - hT,j,k) + 

CVi,j,k-I/2(h!i,j,k-1 - hl,j,k) + CVi,j,k+I/Z(hT,j,k+I - hY,j,k) + 
m 

hi j k 
m-l 

- hi,j,k 
Pi,j,khy,j,k + Qi,j,k = ssi,j,k(ArjACiAVk) --Iii-~-;--;--- 

m- 

m 
In this equation the term CVi,j,k+I/2(hy,j,k+I - hi,j,k) gives the flow 

into cell i,j,k through its lower face, i.e. 

qi,j,k+1/2 = CVi,j,k+l/2 (hy,j,k+I - 'hy,j,k) 

(54) 

(55) 

where following the convention of equation (24), a positive value of qi,j,k+I/2 

indicates flow into cell i,j,k and a negative value indicates flow out of 

the cell. Equations (54) and (55) are based on the assumption that cells 

i,j,k and i,j,k+l are fully saturated - i.e., that the water level in each 

cell stands higher than the elevation of the top of the cell. There are, 

however, situations in which a portion of a confined aquifer may become 

unsaturated--for example, when drawdown due to pumpage causes water levels 

to fall, at least locally, below the top of the aquifer. In terms of 

simulation, this condition is shown in figure 29. Two aquifers separated 

by a confining bed are simulated using the quasi-three-dimensional approach, 

in which the upper aquifer is represented by cell i,j,k, the underlying 

aquifer by cell i,j,k+l, and the confining bed by the vertical conductance 

between the two layers, CVi,j,k+I/2. Pumping from the lower layer has. 
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hi j k+l 3 I 

-M-B 

-w-B 

0 

Cell i,j,k 

Confining 
Unit 

Cell i,j,k+l 

Figure 29.-Situation in which a correction is required to limit the 
downward flow into cell i,j,k+l, as a result of partial 
desaturation of the cell. 

5-20 



lowered the water level in cell i,j,k+l below the elevation of the top of b 

B 

the cell, so that the aquifer is effectively unconfined within the cell 

area. An assumption is made that the confining layer remains fully saturated 

from top to bottom, and we consider the head difference across this confining 

unit. At the upper surface of the confining unit the head is simply that 

in the upper aquifer in cell i,j,k--hi,j,k. Just below the lower surface 

of the confining unit, however, unsaturated conditions prevail, so that the 

pressure sensed on the lower surface of the confining unit is atmospheric-- 

taken as zero in the model formulation. Thus the head at the base of the 

confining unit is simply the elevation at that point-i.e., the elevation of 

the top of the lower cell. If this elevation is designated TOPi,j,k+l, the 

flow through the confining bed is obtained by substituting TOPi,j,k+l for 

hi,j,k+l in equation (55), 
m 

qi,j,k+1/2 = CVi,j,k+l/2(TOPi,j,k+l - hi,j,k) (56) 

Thus the flow will be downward, from cell i,j,k to cell i,j,k+l (i.e., 

following the convention of equation (26), qi,j,k+l/z will be negative); 

but under this condition the flow will no longer be dependent on the water 

level, hi,j,k+l, in the lower cell. The simplest approach to this probelm 

in formulating the equation for cell i,j,k would be to substitute the flow 

expression of equation (56) into equation (54), in place of the expression 

given in (55). However, if we consider the matrix of coefficients of the 

entire system of finite difference equations (matrix [A] of equation (27)), 

direct substitution of the expression in (56) into the equation for node 

i,j,k would render this matrix unsymmetric, generating problems in the 

solution process. To avoid this condition, an alternative approach is 

used. The flow term of equation (55) is allowed to remain on the left side 

of equation (54). The flow into cell i,j,k as computed by this term, is 
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CVi,j,k+l/2(h~,j,k+l - hy,j,k) 

(where in this case, since hi,j,k > hi,j,k+J, the computed flow is negative, 

i ,j,k 

again 

ion 

(55)s 

indicating movement out of cell i,j,k.) The "actual" flow into cell 

is given by equation (56) as CVi,j,k+J/2(TOPi,j,k+J - 
m 

hi ,j,k) (where 
m 

hi,j,k > TOPi,j,k+l indicating movement out of the ce 11). A correct 

term, qc, can be obtained by subtracting equation (56) from equation 

i.e. 
qc = (computed flow into cell i,j,k) 

- ("actual" flow into all i,j,k) = 

CVi,j,k+l/2(h!J,j,k+l - TOPi,j,k+l) 

c 

(57) 

To compensate for allowing the computed flow to remain on the left side of 

equation (54), the term qc is added to the right side of equation (54). In 

the operation of the model, equation (54), which is identical to equation 

(24), is rearranged to the form of equation (26); and in practice, the term 

qc is added to the right side, RHS, of equation (26). This immediately 

introduces a difficulty, since qc contains the term hF,j,k+J, and all terms 

involving unknown heads must be kept on the left side of equation (26). to 

circumvent this difficulty, qc is actually computed using the value of hF,j,k+J 

from the preceding interation, rather than that from the current iteration, 

i.e. 
m,n-1 

qc,n = CVi,j,,k+l/2(hi,j,k+l - TOPi,j,k+l) (58) 

where qc,n is the value of qc to be added to RHS in the nth iteration, and 
m,n-1 

hi ,j,k+l is the value of hm l,j,k+l from the preceding iteration, n-l. As 
m,n-1 m,n 

convergence is approached the difference between hi,j,k+J and hi,j,k+J becomes 

progressively smaller, and the approximation involved in (58) thus becomes 
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more accurate. In the first iteration of each time step, the initial trial 

Value Of hi ,j ,k+I is used in computing q,. 

The process described above is used in formulating the equations for 

cell i,j,k when the underlying cell, i,j,k+l, has "dewatered"-i.e., 

when the water level in i,j,k+l has fallen below the top of the cell. A 

correction must also be applied in formulating the equations for the 

dewatered cell itself. To examine this correction, we now take cell 

i,j,k to be the dewatered cell, and we consider flow into i,j,k from the 

overlying cell, i,j,k-1. For this case, the computed flow into cell i,j,k 

from above iS CVi,j,k-I/2(hy,j,k-I - hy,j,k) whereas the "actual" flow into 

the Cell iS CVi,j,k-1/2(h~,j,k-l - TOPi ,j,k)* The difference, computed 

minus 
m 

"actual" flow, is thus qc' = CVi,j,k-I/E(TOPi,j,k - hi,j,k) where q,' 

should be added to the right hand side of equation (54) or (26). From a 

programming point of view, the most efficient way to handle this correction 

is to add the term cvi,j,k-l/2 to HCOF on the left side of equation (26), 

while adding the term (CVi,j,k,I/2 l TOPi,j,k) to the RHS term. Because 

HCOF forms part of the coefficient of hy,j,k, which falls on the main 

diagonal of the coefficient matrix, this correction does not affect the 

symmetry of the coefficient matrix; at the same time, the problems entailed 

in placing an unknown head value on the right side of the equation are 

avoided. 

In summary, whenever dewatering of a cell occurs, two corrections 

must be made--one in formulating equation (26) as it applies to the overlying 

cell, and one in formulating equation (26) as it applies to the dewatered 
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cell itself. These two corrections are discussed separately above, in each 

case using the designation i,j,k to represent the cell for which equation 

(26) is formulated. It is important to keep in mind, however, that both 

corrections are applied in any dewatering event, and that the form of the 

corrections has been developed to preserve the symmetry of the coefficient 

matrix [A] of equation (27), and to maximize program efficiency. 

In the program described herein, the user specifies whether or not 

the procedure for limiting vertical flow under dewatered conditions is 

to be implemented. This 

discussed in the section 

is done through the layer type-flag, LAYCON, as 

on data requirements. 

Storage Formulation 

In the formulation of storage terms, the program described herein 

distinguishes between layers in which storage coefficient values remain 

constant throughout the simulation, and those in which the storage coefficient 

may "convert" from a confined value to a water table value, or vice-versa, 

as the water level in a cell falls below or rises above the top of the cell. 

This distinction is made through the use of the layer flag, LAYCON, as 

described in the section on data requirements. 

For a layer in which storage coefficient is to remain constant during 

the simulation, the storage formulation is based upon a direct application 

of the storage expression in equation (24) or (54). This expression, which 

applies to an individual cell, i,j,k, has the form 
m m-l 

AV hi,j,k - hi,j,k 
-- = ssi ,j,k (ArjACiAVk) ------v-------- 

At tm - tm-l 
033) 
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AV 
where -- is the rate of accumulation of water in the cell, and as such must 

At 
appear on the right side of equation (24) or (54); ssi,j,k is the specific 

storage of the material in cell i,j,k; Arj, ACi and Avk are the cell dimen- 
m m-l 

SiOnS; hi,j,k is the head in cell i,j,k at the end of time step m; hi,j,k 

is the head in cell i,j,k at the end of time step m-l; tm is the time at 

the end of time step m; and tm,I is the time at the end of time step m-l. 

In equation (26) the notation scli,j,k was introduced, where 

SCIi,j,k = ssi,j,kArjACihVk. In this report the term SCIi,j,k is termed 

the "storage capacity" or the "primary storage capacity" of cell i,j,k; 

the "primary" designation is used to distinguish scli,j,k from a secondary 

storage capacity which is used when storage term conversion is invoked, as 

explained in the following section. Using the concept of storage capacity, 

the expression for rate of accumulation in storage in cell i,j,k can be 

written 

scli,j,k(hy,j,k 
m-l 

- hi,j,k)/(tm - tm-1) l 

This expression is separated into two terms in equation (26), 

SCIi,j,k hy,j,k/(tm-tm_I), which is incorporated in the left side of (26) 

through the term HCOFi,j,k, and scli,j,k hTIi,k /(tm-tm-I), which is included 

in the term RHSi,j,k on the right side of (26). 

The input to the Block-Centered Flow Package requires specification 

of dimensionless storage coefficient values in each layer of the model; for 

a confined layer these storage coefficient values are given by the specific 

storage of the cell material multiplied by layer thickness in the cell, 

ssi,j,k Avk; for an unconfined layer they are equal to the specific yield of the 

material in the cell. The incorporation of layer thickness into the confined 
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storage term maintains the flexibility of the program to represent layers 

of varying thickness, and to implement either the direct three-dimensional 

or "quasi-three-dimensional" conceptualizations of vertical discretization. 

The storage coefficient values are read layer by layer; they are designated 

as array sfl in the input instructions. These values are then multiplied 

by the cell areas, ArjACi, to create storage capacity values, and they are 

stored in the SC1 array. 

Storage Term Conversion 

The primary storage capacity described above, scli,j,k is adequate 

for simulations in which the water level in each individual cell remains 

either above the top of the cell or below the top of the cell throughout 

the course of the simulation. If the water level crosses the top of a cell 

during a simulation--i.e., if the water level in a confined (fully saturated) 

cell falls below the top of the cell as a result of simulated pumpage, or if 

the water level in an unconfined cell rises above the top of the cell--then 

in effect the system "converts" from confined to water table conditions, or 

vice versa, during the simulation. Where these conditions appear to be 

possible, the user may invoke storage term conversion for the entire layer 

through use of the layer-type flag. When this is done, the primary storage 

capacity, SCli,j,k for any cell in the layer will represent the confined 

storage coefficient multiplied by cell area; a secondary storage capacity, 

SCzi,j,k is used to represent specific yield multiplied by cell area. 

Values of confined storage coefficient for each cell in the layer are read 

through the two-dimensional input array sfl. These confined storage 
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